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Abstract

Model-based reinforcement learning algo-
rithms (MBRL) present an exceptional po-
tential to enhance sample e�ciency within
the realm of online reinforcement learning
(RL). Nevertheless, a substantial proportion
of prevalent MBRL algorithms fail to ade-
quately address the dichotomy of exploration
and exploitation. Posterior sampling rein-
forcement learning (PSRL) emerges as an in-
novative strategy adept at balancing explo-
ration and exploitation, albeit its theoretical
assurances are contingent upon exact infer-
ence. In this paper, we show that adopting
the same methodology as in exact PSRL can
be suboptimal under approximate inference.
Motivated by the analysis, we propose an
improved factorization for the posterior dis-
tribution of polices by removing the condi-
tional independence between the policy and
data given the model. By adopting such a
posterior factorization, we further propose
a general algorithmic framework for PSRL
under approximate inference and a practical
instantiation of it. Empirically, our algorithm
can surpass baseline methods by a significant
margin on both dense rewards and sparse re-
wards tasks from the Deepmind control suite,
OpenAI Gym and Metaworld benchmarks.

1 Introduction

Model-based reinforcement learning has proven instru-
mental in enhancing the sample e�ciency of reinforce-
ment learning. Despite this, prevalent MBRL algo-
rithms (Kurutach et al., 2018; Chua et al., 2018; Janner
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et al., 2019; Eysenbach et al., 2022) often struggle to
balance exploration and exploitation, leading to poor
performance when exploration is pivotal. Existing al-
gorithms typically employ one of three strategies to
achieve this balance: 1) optimism-based (Auer et al.,
2008; Pacchiano et al., 2021; Curi et al., 2020); 2)
posterior-sampling-based (Strens, 2000; Osband et al.,
2013, 2018; Fan and Ming, 2021); or 3) information-

directed sampling (Russo and Roy, 2014).

As outlined by Osband and Roy (2017), posterior sam-
pling reinforcement learning (PSRL) can match the
statistical e�ciency or regret bound of optimism-based
algorithms while providing superior computational ef-
ficiency. Information-directed sampling methods can
exhibit even greater statistical e�ciency when dealing
with intricate information structures (Russo and Roy,
2014), but they require estimators for the mutual in-
formation, which is challenging for high-dimensional
random variables. Consequently, this paper focuses on
PSRL in the episodic setting.

Within the PSRL framework, a posterior p(M|DE)
of the Markov decision process (MDP) M, based on
the observations DE from a real-world environment
E , is maintained. At the onset of each episode, an
MDP is sampled from the posterior and the optimal
policy ⇡(M) for the chosen model M is computed.
This procedure could equivalently be perceived as the
sampling of this policy from a specialized posterior,
termed “degenerate” in this context, which is for-
mulated as p(⇡|DE) =

R
�(⇡|M)p(M|DE)dM. Here,

�(⇡|M) = �(⇡ � ⇡(M)) represents a Dirac delta dis-
tribution of the optimal policy. This specific policy
is then applied within the real environment to collect
new data. Theoretically, such a direct approach has
been proven to achieve a Bayesian regret of Õ(

p
K)

over K episodes, as corroborated by prior studies (Os-
band et al., 2013; Osband and Roy, 2014). Nonetheless,
these theoretical guarantees hold true only under spe-
cific conditions of exact inference, namely, when one
can access the exact posterior over models, denoted as
p(M|DE), and when the computation of the optimal
policy is achievable. In real-world scenarios, however,
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such precise conditions are unlikely to be met, and thus
we may need approximations.

An often-employed heuristic approximation to PSRL,
as seen in Fan and Ming (2021), is to substitute the
posterior over models, p(M|DE), with an approxima-
tion q(M|DE), such as Bayesian linear regression (Box
and Tiao, 2011; Gelman et al., 2013; Murphy, 2022)
applied to representations learned via a neural net-
work. In this way, the resulting policy is then sampled
from q�(⇡|DE) =

R
�(⇡|M)q(M|DE)dM, where we use

q(M|DE) to approximate the true posterior p(M|DE).

While the heuristic q�(⇡|DE) may initially seem ap-
propriate due to its resemblance to the true poste-
rior p(⇡|DE), our findings demonstrate that its per-
formance could be substandard, as measured by the
KL divergence between the heuristic and the true
posterior, potentially leading to increased regret (Lu
et al., 2021). To address this issue, we propose
the substitution of the degenerate �(⇡|M) with a
non-degenerate distribution q(⇡|M,DE), which con-
ditions on both the model and the empirical data
DE . In this way, the posterior of polices then become
q(⇡|DE) =

R
q(⇡|M,DE)q(M|DE)dM. This modifi-

cation counterbalances any potential inadequacies in
the posterior over models q(M|DE). Further tuning
the dependency of ⇡ on DE and M enables a harmo-
nious balance between data e�ciency and inference
error in q(M|DE). Crucially, this proposed modifica-
tion comes with a performance guarantee: it is assured
not to underperform compared to the conventional ap-
proach (i.e., q�(⇡|DE)) that employs the degenerate
distribution �(⇡|M).

Capitalizing on these findings, we propose a novel frame-
work for PSRL under approximate inference. To put
this method into practice, we amalgamate deep ensem-
bles (Lakshminarayanan et al., 2017) and Model-based
Policy Optimization (MBPO) (Janner et al., 2019). We
also put forward two distinct sampling strategies for
policy selection, leveraging our posterior approximation.
Empirical evidence demonstrates that our algorithm
substantially outperforms existing baselines on both
dense reward and sparse reward tasks (Brockman et al.,
2016; Tunyasuvunakool et al., 2020; Yu et al., 2020).
In addition to these performance evaluations, we per-
form numerous ablation studies to facilitate a deeper
understanding of our algorithm’s e↵ectiveness.

In summary, the key contributions of this paper are:

1. We first conduct a study on how approximate in-
ference impacts the performance in PSRL, demon-
strating that maintaining the same methodol-
ogy (i.e., q�(⇡|M)) as in exact PSRL may be less
e↵ective when the true posterior is unavailable.

2. Second, we design a novel framework for PSRL
under approximate inference, building on the afore-
mentioned observations. This framework inte-
grates the use of deep ensembles and Model-based
Policy Optimization (MBPO) along with two pol-
icy sampling strategies that exploit our posterior
approximation. This forms our main contribution.

3. Finally, we conduct experiments on the DM control
suite, OpenAI Gym, and Metaworld benchmarks
to demonstrate the superiority of our approach.
Our algorithm shows significant performance im-
provements over existing baselines on both dense
and sparse reward tasks. We further elucidate the
e↵ectiveness through several ablation studies.

2 Preliminary and Backgrounds

Notation. We consider the finite-horizon episodic
Markov Decision Process (MDP) problem, of which we
denote an instance as M := {S,A, rM, pM, H, ⇢}. For
each instance M, S and A denote the set of states and
actions, respectively. rM : S ⇥ A ! [0, Rmax] is the
reward function, pM is the transition distribution, H
is the length of the episode, and ⇢ is the distribution of
the initial state. We further define the value function
of a policy ⇡ under MDP M at timestep i as

V M
⇡,i

(s) := EM,⇡

"
HX

t=i

rM(st,at)| si = s

#
, (1)

where st+1 ⇠ pM(s|st,at) and at ⇠ ⇡(a|st). We
define ⇡? as the optimal policy for an MDP M if
V M
⇡?,i(s) = max⇡ V M

⇡,i
(s) for all s 2 S and i 2 [1, H].

We define the cumulative reward obtained by policy ⇡
over H steps sampled from model M as follows:

RM(⇡) = EM,⇡

"
HX

t=1

rM(st,at)

#
(2)

where st+1 ⇠ pM(s|st,at) and at ⇠ ⇡(a|st),

where the initial state is sampled from s1 ⇠ ⇢(s).

PSRL. Posterior Sampling Reinforcement Learning
or PSRL (Strens, 2000) is a well-known algorithmic
framework for managing the trade-o↵ between explo-
ration and exploitation in online RL. The framework is
generic and can be applied to various RL problems. At
the core of PSRL lies the computation of the posterior
distribution over MDPs, which includes the dynam-
ics and reward models. The quality of this posterior
distribution is crucial for the performance of PSRL.
We denote the posterior of the model as p (M|DE),
which is conditioned on the data DE collected from the
environment. Therefore, the posterior distribution of
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example 1. Suboptimality of q�(⇡|M).

Consider a toy setting, where the support set of MDPs is {M1,M2}, and the support set of policies is
{⇡1,⇡2}. Suppose that the true posterior distribution of MDPs is p(M1|DE) = 1/3, p(M2|DE) = 2/3,
and the optimal policy per MDP is �(⇡1|M1) = 1 and �(⇡2|M2) = 1. This we get the following exact
distribution over policies: p(⇡|DE) is

p(⇡|DE) =
h
�(⇡1|M1)=1, �(⇡1|M2)=0

�(⇡2|M1)=0, �(⇡2|M2)=1

i

| {z }
�(⇡|M)

h
p(M1|DE)=

2
3

p(M2|DE)=
1
3

i

| {z }
p(M|DE)

=
h
p(⇡1|DE)=

2
3

p(⇡2|DE)=
1
3

i
(3)

Now suppose we use the approximate posterior distribution over models, q(M1|DE) = 0 and q(M2|DE) = 1.
We can optimize q(⇡|M) by minimizing dKL (q(⇡|DE)| p(⇡|DE)). One solution could be

q(⇡|DE) =
h
q(⇡1|M1)=

1
2 , q(⇡1|M2)=

2
3

q(⇡2|M1)=
1
2 , q(⇡2|M2)=

1
3

i

| {z }
q(⇡|M)

h
q(M1|DE)=0

q(M2|DE)=1

i

| {z }
q(M|DE)

=
h
q(⇡1|DE)=

2
3

q(⇡2|DE)=
1
3

i
(4)

We see that the optimal q(⇡|M) requires modeling uncertainty in the policy even conditional on the model.
By contrast, if we adopt q�(⇡|DE) as our approximation, we will have

dKL

�
q�(⇡|DE)

�� p(⇡|DE)
�
= log 3 = max

q2�1
dKL (q(⇡|DE)| p(⇡|DE)) . (5)

policies can be expressed as follows:

p(⇡|DE) =

Z
p (⇡|M) p(M|DE)dM, (6)

where p (⇡|M) = �(⇡|M), and �(⇡|M) is a Dirac delta
distribution1, defined as �(⇡(M)|M) = 1, and ⇡(M) =
argmax

⇡
RM(⇡) is the optimal policy for solving the

MDP M. At the start of each episode, a Markov
decision process (MDP) or, equivalently, a policy, is
drawn at random from the posterior distribution. This
sampled MDP is then used to collect new data. Despite
its simplicity, this algorithmic framework achieves a
Bayesian regret of Õ(

p
K) (Osband et al., 2013), where

K is the total number of episodes. However, it is
important to note that the theoretical results only hold
under the assumption of exact inference. In the next,
we will discuss the impact on performance when using
approximate inference methods.

A typical instantiation of q(⇡|DE) is to use a distri-
bution that has the same functional form as the true
posterior, which is commonly adopted in practice (Fan
and Ming, 2021), i.e.,

q�(⇡|DE) :=

Z
�(⇡|M)q(M|DE)dM. (7)

However, this choice may not always be e↵ective for ap-
proximating the posterior of policies, as demonstrated
by the following proposition.

1Although an MDP, M, can have multiple optimal poli-
cies, we’ll simplify by assuming just one.

Proposition 1 Under approximate inference (i.e.,

q(M|DE) 6= p(M|DE)), the optimal q(⇡|M) may not

be a Dirac delta distribution, i.e., there exists other

q(⇡|DE) such that

dKL (q(⇡|DE)| p(⇡|DE))  dKL

�
q�(⇡|DE)

�� p(⇡|DE)
�
.

As an illustration, we present an example in Example
1 that serves as a constructive proof of Proposition 1.
This example demonstrates that q�(⇡|DE) can have
arbitrarily poor performance in terms of the KL di-
vergence. Given this observation, a reasonable and
pressing question arises: what is a better alternative to
q�(⇡|DE)? The subsequent section provides an answer
to this question by introducing a novel approach that
outperforms q�(⇡|DE) in terms of the KL divergence.

3 Method

Prompted by the findings delineated in the preceding
section, we initially propose a posterior decomposition
that is assuredly superior to q�(⇡|DE). Subsequently,
we present a pragmatic version of the algorithm based
deep ensembles (Lakshminarayanan et al., 2017) and
MBPO (Janner et al., 2019). Lastly, we propose a duo
of sampling methods designed for e�cient exploration.

3.1 An improved posterior decomposition

In section 2, we demonstrated that q�(⇡|DE) is not
an advantageous choice, primarily due to its presump-
tion that the policy ⇡ is predetermined once M is
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Figure 1: Graphical models for (a) the standard and (b) our posterior
over policies ⇡. Di↵erences are shown in red.

Figure 2: A comparison of cumu-
lative regret for di↵erent �.

provided. This rationale prompts us to contemplate a
more versatile posterior decomposition of q(⇡|DE).

q(⇡|DE ,�) =

Z
q(⇡|M,DE ,�)q(M|DE)dM. (8)

From an intuitive standpoint, such a posterior decom-
position no longer operates under the assumption that
the model is fully capable of encapsulating all rele-
vant attributes of the data. We exemplify these two
posterior approximations in Figure 1. The additional
parameter � 2 [0, 1] provides a mechanism for calibrat-
ing the significance of fictitious data (DM) originating
from M and the actual data (DE) sourced from the
environment. In particular, we define

q(⇡|M,DE ,� = 0) = q(⇡|M) = �(⇡|M) (9)

q(⇡|M,DE ,� = 1) = q(⇡|DE) (10)

Consequently,when � is small, we trust our model
more, whereas when � is large we trust it less (see
Appendix A.1 for more details). In the extreme sce-
nario where � = 0, this framework degenerates to the
posterior q�(⇡|DE). By fine-tuning �, an optimal bal-
ance can be struck between minimizing the impact of
approximate inference error and maximizing data e�-
ciency. Formally, the subsequent proposition delineates
the advantage of equation 8.

Proposition 2 By adopting the posterior decomposi-

tion of equation 8, we have

min
�

dKL (q(⇡|DE ,�)| p(⇡|DE))  dKL

�
q�(⇡|DE)

�� p(⇡|DE)
�
.

This proposition indicates that we have the capability
to curtail the KL divergence, and thus potentially re-
duce the Bayesian regret, through a judicious selection
of the � value. As corroborative empirical evidence,
Figure 2 depicts the cumulative regret with varying � in
the cartpole-swingup environment with sparse reward
adopted from the DeepMind Control Suite (Tunyasu-
vunakool et al., 2020). We can observe that a � value
of approximately 0.4 or 0.5 is optimal, while � = 0 is
least favorable in this circumstance.

3.2 The proposed algorithm and its practical
instantiation

Leveraging the aforementioned results, we present a
simple yet general algorithmic framework for PSRL
under approximate inference. This framework diverges
from the standard PSRL framework solely in the de-
composition of policy posterior, as delineated in Al-
gorithm 2 in Appendix C. For practical implementa-
tion, we employ deep ensembles (Lakshminarayanan
et al., 2017) to approximate the posterior distributions
q(M|DE) and q(⇡|M,DE), as represented using ⇥ and
� in Algorithm 1. This approach aligns with ME-
TRPO (Kurutach et al., 2018), PETS (Chua et al.,
2018), and MBPO (Janner et al., 2019), with the addi-
tional facet of modeling the uncertainty over policies,
i.e., q(⇡|M,DE), as well as dynamics, i.e., q(M|DE).

Delving into greater detail, each constituent of the deep
ensemble represents a conditional Gaussian distribu-
tion over outputs, marked by its mean µ and variance
�2. For multi-dimensional predictions, we treat each
dimension independently, predicting only the marginal
mean and variance for the sake of simplicity. Each
ensemble member is then trained independently by
minimizing the negative log-likelihood, represented by
the following equation:

� log p✓(y|x) /
log �2

✓(x)

2
+

(y � µ✓(x))2

2�2

✓(x)
. (11)

We maintain N distinct dynamics models ⇥ = {✓̂n}Nn=1
.

For each of the dynamics model ✓̂n, we compute M
di↵erent policies (i.e., � = {�̂n,m}n,m=1

N,M ) employ-
ing the soft actor-critic (SAC) (Haarnoja et al., 2018)
method (please refer to the appendix for detailed in-
formation). The policy network ⇡n,m with parameters

�̂n,m is updated based on synthetic data D
n,m

M , gen-
erated by dynamics model n and policy model m, in
conjunction with environment data DE collected from
real-world dynamics interaction with a sampled policy.
The pseudo-code is in Algorithm1.

2By mixed dataset �DE +(1��)Dn,m
M , we mean that for

each data point in the training batch, it is with probability
of � being sampled from the real data DE and probability
of 1� � from the fictitious data Dn,m

M .
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Algorithm 1 PSRL with approximate inference using Ensemble Sampling (PS-MBPO) or Optimistic
Ensemble Sampling (OPS-MBPO).

Require: Initialize an ensemble of dynamics models ⇥ = {✓̂n}Nn=1 i.i.d. ⇠ q(✓).
Require: Initialize an ensemble of policy networks � = {�̂n,m}N,M

n,m=1 i.i.d. ⇠ q(�).
Require: Initialize empty datasets DE and {Dn,m

M }N,M
n,m=1. Real data vs. synthetic data ratio �.

1: for K episodes do
2: Train the ensemble models ⇥ on DE under the objective in equation 11.

. /* Policy sampling. (Line 3) */
3: Sample a policy ⇡ from � uniformly at random (equation 12) or based on the optimistic distribution

(equation 13).
4: Sample state s1 from the initial state distribution ⇢(s)
5: for h = 2 : H steps do

. /* Data collection. (Lines 6-11) */
6: sh = rollout(world dynamics E , policy ⇡, initial state sh�1, num. steps 1)
7: Add sh to DE
8: Sample state s ⇠ DE
9: for each model n, policy m do

10: D
n,m

M = rollout(dynamics ✓̂n, policy �̂n,m, initial state s, num. steps R)
11: Created mixed dataset D = �DE + (1� �)Dn,m

M
2

. /* Policy optimization (Line 12) */
12: �̂n,m = update-policy(�̂n,m, D, num. gradient steps G)
13: end for
14: end for
15: Update the optimistic policy distribution (equation 13).
16: end for

3.3 Sampling policies

Ensemble Sampling. Given the posterior distri-
butions, it remains to specify the sampling approach
for policies. The most rudimentary sampling strategy
consists of uniform sampling at the beginning of each
episode. For our algorithm that employs ensemble
sampling, we shall use the term PS-MBPO.

⇡ ⇠ U({⇡1,1, ...,⇡N,M}). (12)

In the context of bandits (where N = 1, as there
is no transition model), this elementary strategy has
been demonstrated to achieve a regret of Õ(

p
T +

T
p
A/M) (Lu and Roy, 2017) for T steps in Gaus-

sian linear bandits, with M denoting the size of the
ensemble and A the number of arms. This regret bound
analysis suggests that the regret can be mitigated by
adding more ensemble members, although it remains
uncertain how this theoretical result extrapolates to
the RL setting—an intriguing avenue for future re-
search. However, in our experiments, we observe that
this aforementioned relationship also applies to RL.

Optimistic Ensemble Sampling. Unfortunately,
ensemble sampling may instigate excessive exploration
in certain unpromising regions, as it treats each mem-
ber of the ensemble model equally. This could result in
unnecessary or even wasteful explorations. To counter
this, we propose an optimistic variant of ensemble sam-

pling, which we term OPS-MBPO. Specifically, we
monitor the performance of each ensemble member
in terms of the accumulated episodic return. Alterna-
tively, one could also employ the value function for each
policy (Agarwal and Zhang, 2022). We then utilize this
performance record to determine the probability of se-
lecting each member, thereby gradually phasing out
unpromising ensemble members.

More precisely, at the commencement of the kth episode,
we sample the policy from the subsequent Boltzmann
distribution, as opposed to a uniform random selection.

pk(⇡ = ⇡i) :=
exp

⇣P
k

l=1
RE(⇡i, l)/⌧

⌘

P
N ·M
j=1

exp
⇣P

k

l=1
RE(⇡j , l)/⌧

⌘ , (13)

where ⌧ represents the temperature term used for reg-
ulating the level of optimism, while RE(⇡i, l) refers
to the empirical cumulative reward obtained by pol-
icy ⇡i after the lth episode. It is worth noting that
when ⌧ !1, the resulting sampling method becomes
uniform, which we refer to as PS-MBPO.

4 Experiments

Our empirical investigation aims to: 1) verify the ef-
fectiveness of our proposed methodologies on standard
benchmarks; 2) o↵er a profound understanding of the
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Dense reward tasks Sparse reward tasks

Figure 3: We consider seven tasks from three benchmarks: OpenAI Gym, DM Control and Metaworld. These
seven tasks cover both dense reward and sparse reward tasks.

Figure 4: Comparisons on four tasks with dense rewards. The shaded region denotes the one-standard error. The
dashed green curve corresponds to the asymptotic performance of SAC at 3M steps. PS-MBPO improves over
MBPO across all of the four tasks, and the improvement is more significant on Ant and Walker2D. OPS-MBPO
achieves similar sample e�ciency with PS-MBPO.

mechanisms instrumental to the improved performance;
and 3) conduct supplementary ablation studies on re-
maining components. We commence by presenting the
experimental setup.

4.1 Experimental setup

We examine seven tasks sourced from OpenAI
Gym (Brockman et al., 2016), DeepMind Control
Suite (Tunyasuvunakool et al., 2020), and Meta-
world (Yu et al., 2020). This set includes four
dense reward tasks (namely, ant, half-cheetah,
walker2d, and hopper), wherein the agent garners
an immediate reward at each step. Additionally,
we consider three sparse reward tasks (ball-in-cup,
cartpole-swingup, and window-open-v2), where the
agent is rewarded only upon successful completion of
the pertinent task. It’s important to note that e�cient
exploration of the environment is of paramount impor-
tance in the case of sparse reward tasks, more so than
in dense reward tasks. For more detailed insights, we
refer the reader to Figure 3 for visualizations.

For the baseline methods, we consider a range of model-
based methods including SLBO (Luo et al., 2019),
PETS (Chua et al., 2018), and MBPO (Janner et al.,
2019), as well as a model-free approach, SAC (Haarnoja
et al., 2018). We juxtapose each method with respect
to the average episodic reward, where each episode
ends either upon reaching the 1, 000 timestep or the

agent’s arrival at the terminal state. To ensure the
robustness of our findings, each experiment is repeated
with 10 random seeds, and we report the mean and
the standard error. For further details, please refer to
Appendix A and C.

4.2 Comparison with existing methods

The results for the dense reward tasks are depicted in
Figure 4. Initially, it is noteworthy that our (O)PS-
MBPO method surpasses the baseline methods across
all four tasks, including the MBPO method. We
have verified that our implementation of MBPO either
matches or exceeds the performance of the original im-
plementation (please refer to the appendix for further
details). Specifically, for the hopper task, our approach
requires approximately 40K iterations to attain an av-
erage reward around 3, 500, in contrast to the MBPO
method, which requires around 150K steps to achieve
similar performance.

The results for the sparse reward tasks are then pro-
vided in Figure 5. Corresponding to the outcomes
presented in Figure 4, we initially observe that both
PS-MBPO and OPS-MBPO outperform the MBPO
method across all three tasks. The magnitude of
improvement is notably more pronounced on the
Cartpole-swingup and Window-open-v2 tasks. In
contrast to the findings depicted in Figure 4, we ad-
ditionally observe that OPS-MBPO significantly im-
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Figure 5: Comparisons on three tasks (Ball-in-Cup, Cartpole-Swingup and Window-open-v2) with sparse
rewards. PS-MBPO improves over MBPO, and OPS-MBPO further improves over PS-MBPO in sample e�ciency.

proves upon the performance of PS-MBPO on these
three tasks. This observation underscores the potential
benefits of integrating an optimistic sampling strategy
within sparse reward tasks.

4.3 Ablation Studies

In this section, we conduct a series of ablation studies to
better comprehend our proposed method. Additional
experiments are available in the appendix, including
an ablation study with forced exploration (Phan et al.,
2019), random function prior network (Osband et al.,
2018) and more.

Figure 6: Ablation
study on the perfor-
mance of with (solid
curves) and without
(dashed curves) the
sampling step.

Does the gain come from
posterior sampling or en-
semble? To ascertain the
impact of posterior sam-
pling, we draw a comparison
between two performance
conditions: one where a
policy is sampled from the
posterior at each episode,
and another where we em-
ploy the average policy, com-
puted by averaging the dis-
tribution over actions across
all ensemble members. The
results, as depicted in Fig-
ure 6, utilize N = 5 dynam-
ics networks and M 2 {1, 3, 5} policy networks. A
clear observation from the experiment is the significant
performance degradation upon disabling the sampling
procedure. Furthermore, it’s noteworthy that perfor-
mance improvements are observed as the number of
ensemble members increases (i.e., as M increases) when
posterior sampling is active. In contrast, when pos-
terior sampling is deactivated, increasing M does not
appear to result in performance enhancements. These
findings strongly support the premise that the primary
factor contributing to improved performance is the ap-
plication of posterior sampling, rather than simply the
use of a larger ensemble for both dynamics and policies.

E↵ect of N and M . Considering our employ-
ment of the deep ensemble approximation, it is
natural to speculate whether enhanced performance
could be realized through the application of a larger
ensemble for both dynamics models and policies.

Figure 7: Average
reward for varying
number of dynamics
model (N) and poli-
cies (M).

In Figure 7, we present the
average reward of the fi-
nal 10 evaluations, each ob-
tained with 10 distinct ran-
dom seeds. These results uti-
lize N dynamics models and
M policy networks for each
dynamics model, with the
values of N and M varying
within the set {1, 2, 3, 4, 5}.
The results clearly indicate
that increasing both N and
M can yield performance im-
provements. Furthermore,
both forms of uncertainty (pertaining to policies and
dynamics) seem to play a significant role.

Visualization of the State Space. To gain a more
nuanced understanding of the exploration behavior,
we project the high-dimensional states of each trajec-
tory gathered by PS-MBPO and MBPO into a two-
dimensional space using Umap (McInnes et al., 2018).
These visualizations are provided in Figure 8. Dur-
ing the initial phase, it is apparent that PS-MBPO
(as represented in the top three figures on the left)
demonstrates a more explorative approach than MBPO
(top right three figures), which subsequently leads to
superior final performance (refer to Figure 5 for de-
tails). Additionally, we illustrate two representative
trajectories of PS-MBPO and MBPO for a qualitative
comparison in Figure 8, corresponding to the same
training iterations. Visually, it can be observed that
PS-MBPO manages to manipulate the robot arm to
cover more diverse regions, whereas MBPO is unable
to do so, resulting in the two trajectories appearing
markedly similar to each other. This observation is
also reflected in the Umap visualization.
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Figure 8: The visualization of the state spaces visited by PS-MBPO (top left) and MBPO (top right) on the
Window-open-v2 during the initial stages of training is provided. We also showcase two illustrative trajectories of
PS-MBPO (bottom left) and MBPO (bottom right), which consist of four frames extracted from the videos.

5 Related Works

Model-Based Reinforcement Learning (MBRL).
The field of MBRL predominantly targets two core
concerns: the manner of learning the dynamics model
from the available data, and the subsequent usage of
the acquired model. The most widespread technique
for model learning involves the use of the L2 loss for
one-step transitions (Kurutach et al., 2018; Luo et al.,
2019; Chua et al., 2018; Janner et al., 2019; Rajeswaran
et al., 2020). This is equivalent to maximum likelihood
estimation under a Gaussian assumption. Advancing
beyond the scope of one-step training, Hafner et al.
(2019); Asadi et al. (2019); Lutter et al. (2021) have
demonstrated that multi-step training can further en-
hance prediction accuracy for long horizons. However,
this comes with increased computational costs which
scale quadratically with the number of prediction steps.

To utilize the learned model, several methodologies
have been proposed. One common method is Model
Predictive Control (MPC) (Camacho and Alba, 2013),
a derivative-free optimization technique that has found
wide acceptance in numerous preceding works (Naga-
bandi et al., 2018; Chua et al., 2018; Hafner et al., 2019;
Fan and Ming, 2021; Lutter et al., 2021). However,
while e↵ective, MPC has some limitations. It is sensi-
tive to the planning horizon and struggles to handle
high-dimensional problems. As a mitigation strategy,
Kurutach et al. (2018); Luo et al. (2019); Janner et al.
(2019) propose training a policy on top of the model
to amortize the planning cost. This approach lever-
ages the model for generating synthetic data, which are
then used to train a policy using model-free methods,
thereby reducing the online sample complexity. Simi-
larly, other research has proposed using the model to
facilitate learning of value functions (Feinberg et al.,
2018; Buckman et al., 2018), allowing for more e�-
cient policy evaluation and improvement. However,
few of them have investigated the tradeo↵ between

exploration and exploitation in policy optimization.

Exploration and exploitation. Handling the explo-
ration and exploitation tradeo↵ is the central problem
in online learning. Typical methods can be catego-
rized into the following three classes: 1) optimism-

based (Auer et al., 2008; Pacchiano et al., 2021; Curi
et al., 2020); 2) posterior-sampling-based (Strens, 2000;
Osband et al., 2013; Osband and Roy, 2014; Osband
et al., 2018; Fan and Ming, 2021); and 3) information-

directed sampling (Russo and Roy, 2014; Nikolov et al.,
2019) approaches. Optimism-based methods needs one
to construct the confidence set that contains the target
model/policy with high probability, which su↵ers from
scalability issues (Osband and Roy, 2017); in addition
this approach empirically performs worse than Thomp-
son sampling (Chapelle and Li, 2011). Information-
directed sampling can be better than optimism-based
methods and Thompson sampling, as it directly mini-
mizes the “regret per information bit” (Russo and Roy,
2014). However, it relies on estimating the mutual
information between random variables, which is espe-
cially di�cult for high-dimensional continuous random
variables (McAllester and Stratos, 2020). Therefore,
we focus on posterior sampling. However, di↵erent
from prior works, we study the e↵ect of approximate
inference in an RL setting.

6 Conclusion

We have introduced PS-MBPO and OPS-MBPO as in-
novative algorithms for e�cient model-based reinforce-
ment learning in intricate environments. We demon-
strate that both PS-MBPO and OPS-MBPO signif-
icantly enhance the sample e�ciency in online rein-
forcement learning and outperform various benchmark
methods by a considerable margin, especially in sparse
reward tasks. Our hope that our analysis will inspire fu-
ture research to propose more advanced factorizations
of the posterior over policies and models.



Chaoqi Wang, Yuxin Chen, Kevin Murphy

Acknowledgments

We thank Sergey Levine and Dale Schuurmans for their
feedback on an early draft of this work, as well as the
anonymous reviewers for their constructive feedback.
Additionally, we express our gratitude to Michael Jan-
ner for providing the results of PETS, SLBO, and SAC
on the Halfcheetah, Ant, Hopper, andWalker2D. Lastly,
we acknowledge the Google TPU Research Cloud for
providing the computing resources.

References

Alekh Agarwal and Tong Zhang. Model-based rl
with optimistic posterior sampling: Structural con-
ditions and sample complexity. ArXiv preprint,
abs/2206.07659, 2022. URL https://arxiv.org/

abs/2206.07659.

Shipra Agrawal and Randy Jia. Optimistic posterior
sampling for reinforcement learning: worst-
case regret bounds. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wal-
lach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural

Information Processing Systems 30: Annual

Conference on Neural Information Processing

Systems 2017, December 4-9, 2017, Long Beach,

CA, USA, pages 1184–1194, 2017. URL https:

//proceedings.neurips.cc/paper/2017/hash/

3621f1454cacf995530ea53652ddf8fb-Abstract.

html.

Dilip Arumugam and Benjamin Van Roy. Deciding
what to model: Value-equivalent sampling for rein-
forcement learning. Advances in Neural Information

Processing Systems, 35:9024–9044, 2022.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and
Michel L Littman. Combating the compounding-
error problem with a multi-step model. ArXiv

preprint, abs/1905.13320, 2019. URL https://

arxiv.org/abs/1905.13320.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-
optimal regret bounds for reinforcement learning. In
Daphne Koller, Dale Schuurmans, Yoshua Bengio,
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A Extended Discussions

A.1 Graphical models under exact and approximate inference
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Figure 9: Left: (a) and (b) show the graphical model of PSRL when the model M is the su�cient statistics of ⇡.
Right: (e) and (f) show the graphical model when the model M is no longer the su�cient statistics of ⇡. (g)
shows the graphical model under approximate inference (our case).

In this section, we provide a more detailed derivation of our posterior factorization introduced in section 3.1.
Under exact inference (i.e., we have access to the true posterior of p(M|DE)), the dynamics model M is the
su�cient statistics of the policy ⇡. Therefore, when given the dynamics model, the policy ⇡ is conditionally
independent of the collected data DE . This is captured in Figure 9 (a) and (b). For Figure 9 (b), it illustrates
that we infer the policy using the interaction data (i.e., the trajectories) with dynamics model.

For approximate inference, the dynamics model M is no longer the su�cient statistics of the policy ⇡, and there
are unmeasured variables U in determining ⇡ (see Figure 9 (e)). The unmeasured variable U can be caused by
approximate inference or model error. In principle, we can infer the policy using the observed data via interacting
with the dynamics model M and the unmeasured variable U . However, U is unmeasured, and hence DU (see
Figure 9 (f)) is unknown. Thus, we replace DU with DE . The impacts of DM and DE on the policy ⇡ is adjusted
by the introduced hyperparameter � (see Figure 9 (g)).

A.2 Limitations and future works

Our methodology hinges on the employment of an ensemble technique to approximate the posterior for both
the dynamic models and the policies. Despite the ensemble method being lauded as one of the most e�cacious
methods for approximating the posterior distribution in practical scenarios, it may potentially necessitate
extensive computational resources. Furthermore, while our algorithm might be assured to outperform traditional
methodologies (i.e., q�), it remains ambiguous whether sublinear regret can be attained under approximate
inference, and how the inference error is influenced by the ensemble size in reinforcement learning. These facets
constitute the primary constraints of our research and provide intriguing prospects for future exploration.

Moving forward, we intend to explore the possibility of automatically adapting the value of � in an online manner.
(See Section B.2 for preliminary results.) Furthermore, we aim to extend the results of Phan et al. (2019) and
establish sublinear regret for PSRL under approximate inference. It would also be intriguing to examine epistemic
neural networks (Osband et al., 2021) and transformers (Vaswani et al., 2017; Müller et al., 2022) as alternatives
to deep ensembles for approximate posterior inference.

A.3 Dynamics model

We use deep ensemble for fitting the environment dynamics. For each network in the ensemble f✓, it takes a
whitened state and action pair as input, and predicts the residual of the next state as well as the reward, i.e.,

f✓

✓
st � µs

�s

,
at � µa

�a

◆
= N

✓
�st

r(st,at)

�
,


diag(�2

�st
), 0

0, �2

rt

�◆
, (14)

where µs, µa are the empirical mean of the states and actions, �s and �a are the empirical standard deviation of
them. Then, the predictions of next state and reward will be


st+1

rt

�
⇠ N

✓
st +�st
r(st,at)

�
,


diag(�2

�st
), 0

0, �2

rt

�◆
. (15)

Below is our implementation of each individual neural network in JAX (Bradbury et al., 2018).
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class GaussianMLP(hk.Module):

""" MLP with Gaussian distribution outputs."""

def __init__(

self ,

output_size: int ,

hidden_sizes: Sequence[int],

*,

activation=jax.nn.swish ,

min_logvar: float = -10.0,

max_logvar: float = 2.0,

name: Optional[str] = None ,

):

super().__init__(name=name)

self.output_size = output_size

w_init = hk.initializers.VarianceScaling(1.0, ’fan_in ’, ’truncated_normal ’)

self.mlp = hk.nets.MLP(

hidden_sizes , w_init=w_init , activation=activation , activate_final=True)

self.min_logvar = jnp.ones(output_size) * min_logvar

self.max_logvar = jnp.ones(output_size) * max_logvar

self.mean_and_logvar = hk.Linear(

self.output_size * 2, w_init=w_init , name=’mean_and_logvar ’)

def __call__(self , x):

h = self.mlp(x)

mean , logvar = jnp.split(self.mean_and_logvar(h), 2, axis=-1)

logvar = self.max_logvar - jax.nn.softplus(self.max_logvar - logvar)

logvar = self.min_logvar + jax.nn.softplus(logvar - self.min_logvar)

return mean , logvar

A.4 Soft actor-critic (SAC)

We use SAC for learning the policies. In a highlevel, SAC is a maximum entropy RL algorithm, which typically
optimizes the following objective,

J(⇡) =
TX

t=0

E(s,a)⇠⇢⇡
[r(s,a) + ↵H(⇡(·|s))]. (16)

As a result, maximum entropy RL algorithm will favor those policies that not only optimize for the reward, but
also has a large entropy. This can in turn improve the robustness of the optimized policy. As for SAC, it searches
the policy by iteratively solving the policy evaluation and policy improvement steps.

Policy Evaluation: Q⇡t(s,a) r(s,a) + �Es0⇠p(·|s,a)[V
⇡t(s0)], (17)

V ⇡t(s) = Ea⇠⇡t(·|s)[Q
⇡t(s,a)� log ⇡t(a|s)]; (18)

Policy Improvement: ⇡t+1  argmin
⇡

dKL (⇡(·|s0)| exp(Q
⇡t(s0, ·))) . (19)

In the practical implementation of SAC, it uses a separate function approximator for the state value to stabilize
the training. Specifically, there are three components in SAC, a parameterized state value function V (s), a soft
Q-function Q✓(s,a), and a policy ⇡�(a|s). The objectives for each component are

JV ( ) = Es⇠D


1

2

�
V (s)� Ea⇠⇡�(·|s)[Q

⇡�(s,a)� log ⇡�(a|s)]
�2
�
, (20)

JQ(✓) = E(s,a)⇠D


1

2

⇣
Q✓(s,a)� Q̂(s,a)

⌘2�
, (21)

J⇡(�) = Es⇠D [dKL (⇡�(·|s)| exp(Q✓(s, ·)))] , (22)

where Z✓(·) is a normalizing constant, and Q̂(s,a) is defined as

Q̂(s,a) := r(s,a) + �Es0⇠p(·|s,a)
⇥
V ̄(s

0)
⇤
. (23)
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Additionally,  ̄ is the exponentially moving average of the weights of the value network, and J⇡(�) can be
optimized with reparameterization trick under Gaussian case, which can further reduces the variance of the
gradient estimator and hence stabilizes the training. We adopt the SAC implementation from Acme (Ho↵man
et al., 2020).

A.5 Revisiting MBPO, PETS and ME-TRPO

Popular model-based reinforcement learning algorithms such as ME-TRPO (Kurutach et al., 2018), PETs (Chua
et al., 2018) and MBPO (Janner et al., 2019) typically repeat the following three steps: 1) train a dynamics
model (or an ensemble of models) q(M|DE); 2) train/extract a policy ⇡? from the learned model; 3) collect
data from the environment with the policy. Consequently, their policy is (approximately) equivalent to the one
obtained by solving

⇡? = argmax
⇡2⇧

EM[RM(⇡)] = argmax
⇡2⇧

Z
RM(⇡)q(M|DE)dM, (24)

where the posterior of the model M is approximated by an ensemble of neural networks, ⇧ is the search space of
policies, and the cumulative reward RM(⇡) for an episode of length H of a policy ⇡ under dynamics model M is
defined as

RM(⇡) = E

"
HX

t=1

rM(st,at)

#
where st+1 ⇠ pM(s|st,at) and at ⇠ ⇡(a|st). (25)

However, the above strategy only accounts for exploitation, so will lead to low data e�ciency.

A.6 Posterior sampling reinforcement learning

The idea of PSRL is introduced by Strens (2000). The first regret bound Õ(HS
p
AT ) for PSRL is proved by

Osband et al. (2013) for a tabular case with S, A, T , H denotes the number of state, number of actions, number
of time steps, and the length of each episode, respectively. In Osband and Roy (2017), the bound was improved
to Õ(H

p
SAT ). For the continuous case, Osband and Roy (2014) provides the first regret bound Õ(

p
dKdET )

based on the eluder dimension dE and Kolmogorov dimension dK . More recently, Fan and Ming (2021) study
the regret bound for PSRL under Gaussian process assumption, and obtain a regret bound of Õ(H3/2d

p
T ). In

addition to the bound on Bayesian regret, there is also a line of works studying the worst-case or frequentist
regret bound for PSRL (Agrawal and Jia, 2017; Tiapkin et al., 2022b,a), and achieve a regret bound of order
Õ(
p
T ). Nevertheless, most of these regret bounds are derived under exact Thompson sampling. More recently,

Arumugam and Van Roy (2022) extends PSRL and establishes a theoretical foundation for value-equivalent,
model-based RL. In their approach, the agent balances information retention about the environment with the
quality of future decision-making.

B Additional Results for (O)PS-MBPO

B.1 Visualization of the optimistic weights

For OPS-MBPO, we will maintain the weights for each policy throughout the entire process of online learning.
To investigate how those weights evolve, we plot the weights of each policy in Figure 10 and Figure 11, which
covers one dense reward task and one sparse reward task. The leftmost figure corresponds to the weights in the
initial phase, which will change more rapidly than the later phases. We observe that the weights of some polices
will first go up and than go down, and finally it will converge to a single policy. More interestingly, the reward
curve in the rightmost figure is also consistent with the pattern in the optimistic weights curve.

B.2 How does the temperature term a↵ect the performance?

We further study how does the temperature term will a↵ect the performance on both dense reward and sparse
reward tasks. The results can be found in Figure 12 and Figure 13. We observe that the temperature term will
a↵ect the convergence speed of the reward on most of the tasks. For some of the tasks, such as Ant, Hopper and
Walker2d, it will also a↵ect the converged reward slightly. In general, we recommend the temperature term to be
around five times of the best averaged episodic reward that can be achieved.
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Figure 10: Visualization of the optimistic weights of the first 40K iterations (left) and during the entire training
process (middle), and the reward curve (right) on Hopper. Each chart in the left and middle figures corresponds
to the weights of each single policy.

Figure 11: Visualization of the optimistic weights of the first 100K iterations (left) and during the entire training
process (middle), and the reward curve (right) on Cartpole-Swingup. Each chart in the left and middle figures
corresponds to the weights of each single policy.

B.3 How does the schedule a↵ect the performance?

Since � plays a role in balancing the e↵ect of approximate inference error and data e�ciency, we are interested
in how di↵erent schedules of � will a↵ect the reward curve. We consider two schemes for adjusting �, i.e., 1) a
constant schedule; and 2) a linear schedule. For constant schedule, we fix the value of � throughout training,
whereas for linear schedule, we decrease the value of � from 1 to 0 linearly. The rightmost figure in Figure 14
visualizes the di↵erence between these two schedules. To make them comparable, we ensure that the areas under
both curves are of the same size, so that the total amount of real-world data is the same. The comparison on
three tasks are shown in the left three figures of Figure 14. We observe that the linear schedule has very little
e↵ect on the dense reward tasks, though slightly improves the the final reward in Hopper. For Cartpole-swingup,
the performance of linear schedule improves faster than constant schedule, but achieves similar rewards in the
end. Nevertheless, we believe that there might be more sophisticated schedules for � that can achieve better
performance than the constant schedule, e.g., adapting the value of � based on the model’s validation loss. For
simplicity, we recommend to use a constant schedule in practice. For sparse reward tasks, the search range of �
can be {0, 0.1, 0.3, 0.5, 0.7}, and {0, 0.05, 0.15, 0.3} for dense reward tasks.

In addition to the grid search, we believe it’s also possible to adapt the value of � online. We can cast the the
problem of choosing the optimal value of � as a bandit problem. The high-level idea of the algorithm is: 1)
Initialize a set of possible values for �, and treat each value of � as an arm in bandit. 2) Apply any no-regret
learning algorithms for solving it, e.g., explore-then-commit. However, we haven’t test this algorithm yet, and it
would be interesting as a future extension.
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Figure 12: Ablation study on how the choice of the temperature will a↵ect the performance on dense reward tasks.
All the experimental setups are the same as those experiments in our main paper, except for the temperature
term.

Figure 13: Ablation study on how the choice of the temperature will a↵ect the performance on sparse reward tasks.
All the experimental setups are the same as those experiments in our main paper, except for the temperature
term.

C Additional Details about the Algorithm and Experiments

C.1 Algorithm Details

In Algorithm 1, we approximate the posterior of MDPs and policies, i.e., q(M|DE) and q(⇡|M,DE ,�) using deep
ensemble, which can be regarded as a finite particle approximation to the posterior. Specifically, q(M|DE) is
approximated by {M✓̂n

}
N

n=1
and q(⇡|M✓̂n

,DE ,�) is approximated by {⇡�̂n,m
}
M

m=1
for all n 2 [N ], where both

M✓̂n
and ⇡�̂n,m

are implemented using a multi-layer perceptron (MLP) with parameters ✓̂n trained on DE and

�̂n,m trained on the mixed dataset �DE + (1� �)Dn,m

M , respectively. By mixed dataset �DE + (1� �)Dn,m

M , we
mean that for each data point in the training batch, it is with probability of � being sampled from the real data
DE and probability of 1� � from the fictitious data D

n,m

M .

C.2 Implementation Details

In this section, we provide the additional details about our algorithm and experiments. We provide a detailed
description of our approach in Algorithm 1 and a visual illustration about its di↵erence with MBPO in Figure 15. In
terms of the hyperparameters, our choice of them are mostly the same as the ones adopted in MBPO (Janner et al.,
2019) and Pineda et al. (2021) for Ant, Halfcheetah, Hopper, Walker2D and Cartpole-swingup, and Eysenbach
et al. (2022) for Window-open-v2, which are su�ciently optimized by the authors for MBPO. Specifically, the
hyperparameters of MBPO are directly adopted from https://github.com/facebookresearch/mbrl-lib for
dense reward tasks. For sparse reward tasks, the hyperparameters are adopted from Eysenbach et al. (2022).
The hyperparameters for our method on each task are reported in Table 1. We will also release our code for
reproducing all the experiments. Next, we introduce the details about each tasks.

https://github.com/facebookresearch/mbrl-lib
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Figure 14: Ablation study on how the schedule of � a↵ect the performance with PS-MBPO. All the experimental
setups are the same as the experiments in main paper.
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Figure 15: An illustration of the di↵erences between (a) MBPO, (b) PS-MBPO with � = 0 and (c) PS-MBPO
with � 2 (0, 1). MBPO adopt a point estimation to the policy, which is obtained by MAP inference. Thus, the
uncertainty propagation from the dynamics model to the policy is blocked. For (b), it implicit assumes the
dynamics model captures all the relevant properties of the data. For (c), we add a short cut from data directly to
the policy, which is controlled by the value of �. Hence, the policy can further utilize the information in the data
that are not captured in the dynamics model.

C.3 Task Details

Ant, Halfcheetah, Hopper and Walker2D. These tasks are taken from the o�cial Github repository of
MBPO (Janner et al., 2019), https://github.com/jannerm/mbpo.

Ball-in-Cup and Cartpole-swingup. These tasks are taken from the deepmind control suite (Tunyasuvunakool
et al., 2020). More details can be found in the Github repository at https://github.com/deepmind/dm_

control/.

Window-open-v2. This task is based on the original Window-open-v2 in Metaworld benchmakr (Yu et al.,
2020). The sparse reward is 0 only if the window is within 3 units of the open position, and �10 for all other
positions.

https://github.com/jannerm/mbpo
https://github.com/deepmind/dm_control/
https://github.com/deepmind/dm_control/
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Algorithm 2 PS-MBPO (abstract formulation)

Require: Prior distributions q(M), q(⇡) and tuning hyperparameter �.
Require: Initialize an empty dataset DE for storing data collected from the environment.
1: for K episodes do
2: Fit the posterior of the policy q(⇡|DE ,�) on data DE using equation 8.
3: Sample a policy ⇡k

⇠ q(⇡|DE ,�) from the posterior distribution.
4: for H steps do
5: Run the policy ⇡k in the environment and add the collected data to DE .
6: end for
7: end for

Figure 16: Comparisons on four tasks with dense rewards including Halfcheetah, Ant, Hopper and Walker2D.
MBPO? is the curve from the original paper by Janner et al. (2019). To be noted, in the original implementation
of MBPO, they use 7 networks for the ensemble of dynamics model, whereas our implementation only uses 5
networks. But still, our implementation mostly reproduces their results and sometimes is even better.

D Forced Exploration

Forced exploration is proposed in Phan et al. (2019) to improve approximate Thompson sampling for bandit
problems. Without properly dealing with the approximate inference error, there will be an extra term in the regret
that is linear in T , regardless how small the error is. In their paper, they use the ↵-divergence for measuring the
approximate inference error, defined as

D↵(P,Q) =
1�

R
p(x)↵q(x)1�↵dx

↵(1� ↵)
. (26)

The ↵-divergence can capture many divergences, including forward KL divergence (↵ ! 1), backward KL
divergence (↵! 0), Hellinger distance (↵ = 0.5) and �2 divergence (↵ = 2). Di↵erent inference methods will give
error guarantee measured by ↵-divergence with di↵erent ↵.

We are interested in the error guarantee under the reverse KL-divergence, i.e., ↵ = 0, as the ensemble sampling (Lu
and Roy, 2017) provides error guarantees under the reverse Kl-divergence. In Phan et al. (2019), they prove
that forced exploration can make the posterior concentrate and hence restore the sub-linear regret bound, if the
inference error is bounded by ↵-divergence with ↵  0. The reverse KL-divergence falls in this case. Specifically,
the forced exploration is a simple method, that maintains a probability of random exploration. This probability
decays as t, the online steps, grows.

Though the above results only hold for bandit setting and it’s unclear for reinforcement learning, we are interested
in testing its empirical performance in RL. In our experiments, we consider the following exploration rate

pk(random explore=True) = Bern(⌧/k), (27)

where k is the index for the episode, and ⌧ is the hyperparameter for controlling the frequency of forced exploration.
As k increases, the random exploration probability will decrease. In our experiments, we consider ⌧ 2 {1, 5, 10}.
All the other settings are the same as our experiments in the main paper. The results are presented in Figure 17.
We observe that forced exploration is mostly not helpful in our experiments, except for the Hopper task. Moreover,
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Table 1: Hyperparameters for each task. x ! y over episodes a ! b denotes a segment linear function,
f(k) = bmin(max(x + (k � a)/(b � a) · (y � x), x), y)c. We use Ball, Cart, Cheetah, Walker and Window as
abbreviations for Ball-in-Cup, Cartpole-Swingup, Halfcheetah, Walker2D and Window-open-v2 so as to make
the table fit in the page.

Hyper-parameter Ant Ball Cart Cheetah Hopper Walker Window

Replay bu↵er capacity 106 106 106 106 106 106 106

Episode length 1000 1000 1000 1000 1000 1000 250
Number of episodes 300 150 400 300 125 300 600

Batch size for model 256 256 256 256 256 256 256
Model update frequency 250 250 250 250 250 250 250
Model Hidden dim. 200 200 200 200 200 200 200
Model #Hidden layers 4 4 4 4 4 4 4
Learning rate for model 10�3 10�3 10�3 10�3 10�3 10�3 10�3

Weight decay for model 10�4 5⇥ 10�5 5⇥ 10�5 10�4 10�4 10�4 10�4

#Model ensemble (N) 5 5 5 5 5 5 5
Validation ratio 20% 20% 20% 20% 20% 20% 20%
Rollout batch size 105 105 105 105 105 105 5⇥ 104

Model horizon
1! 25

over episodes
20! 100

1 1 1
1! 15

over episodes
20! 100

1 1

Batch size for policy 256 256 256 256 256 256 256
Learning rate for policy 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
#Policy per model (M) 5 5 5 5 5 5 5
Discount (�) 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Target entropy �4 �0.05 �0.05 �3 �1 �3 �1
Policy update frequency 1 1 1 1 1 1 1

Optimizer Adam Adam Adam Adam Adam Adam Adam

� 0.05 0.5 0.5 0.05 0.05 0.05 0.5
⌧ for OPS 50000 1000 5000 15000 15000 50000 5000

increasing ⌧ usually make the performance even worse. On the other hand, this may not be so surprising as the
forced exploration is designed for approximate Thompson sampling in the bandit setting, and the result may not
necessary generalize to the RL setting. We leave the theoretical analysis as a future work.

E Random Function Prior

The random function prior (RFP) is proposed in Osband et al. (2018) for improving the uncertainty estimation.
The prior network are chosen for modelling the uncertainty that does not come from the observed data. The
RFPs can also be viewed as a regularization in the output space. In contrast to weight space regularization,
RFP makes it easier to incorporate di↵erent property (e.g., periodicity) of the function to be learned as a prior
information. More importantly, when using deep ensemble, incorporating the RFP is fairly simple. It modifies
the original training objective `(f✓,D) by adding an extra regularization term,

`RFP (f✓,D) := `(f✓ + �f✓0 ,D), (28)

where � is a scaling term for adjusting the e↵ect of the prior, f✓0 is the prior network which is held fixed during
training. Hence, we also conduct experiments with RFPs in our experiments to investigate how does the RFPs
will a↵ect the learning of dynamics models.

We vary the value of � in {0.1, 0.3, 1}. The results are reported in Figure 18. Firstly, by properly choosing
the value of �, RFPs slightly improve the performance on Hopper, and don’t a↵ect the performance a lot on
Walker2D. However, for Window-open-v2, RFPs will hurt the performance a lot. We conjecture that this might
because our choice of the prior function on Window-open-v2 is not suitable for the task, i.e., the reward is sparse
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Figure 17: Experiments of forced exploration on Walker2d, Hopper and Window-open-v2. The shaded region
denotes the one-standard error. ⌧ = 0 is the one without forced exploration.

Figure 18: Experiments with random function prior networks (RFPs) on Walker2d, Hopper and Window-open-v2.
The shaded region denotes the one-standard error. � = 0 corresponds to the one without using random function
prior networks.

in Window-open-v2, but the RFPs don’t induce sparsity on the predictions.

Nevertheless, one interesting observation is that both forced exploration and RFPs seem to help on Hopper, and
their overall pattern on three tasks is a bit consistent. Therefore, it would be interesting to figure out if there is a
deep connection between the forced exploration and RFPs.
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F Theoretical Analysis of PSRL under Approximate Inference

In this section, we present the proof of Theorem 1. The proof of this theorem is inspired by the techniques in
Russo and Van Roy (2016), with some additional modifications to extend the results from bandit setting to the
reinforcement learning setting.

Regret. For a given MDP M, the regret is defined as the di↵erence between value function of the optimal
policy in hindsight and that of the actual policy executed by the algorithm A ,

Regret(T,A ,M) :=
KX

k=1

Z
⇢(s1)

⇣
V M
⇡?,1(s1)� V M

⇡k,1
(s1)

⌘
ds1

| {z }
:=�k

, (29)

where ⇡? is the optimal policy for M, and ⇡k is the policy employed by the algorithm for kth episode. Corre-
spondingly, the Bayesian regret is defined as the expectation of the above regret, i.e.,

BayesianRegret(T,A , p(M)) := E [Regret(T,A ,M)] .

Here the expectation is taken over the prior distribution of dynamics models p(M) and the randomness in the
algorithm A and environment.

Bayesian regret under approximate inference. Let us denote the approximate and true posterior distribu-
tion of polices at kth episode by

qk(⇡) = q(⇡|Dk

E) and pk(⇡) =

Z
�(⇡|M)p(M|D

k

E)dM.

where D
k

E denotes all the data collected from the environment E till the k-th episode . Next we characterize how
approximate posterior inference a↵ects the Bayesian regret.

Theorem 1 For K episodes, the Bayesian regret of posterior sampling reinforcement learning algorithm A with

any approximate posterior distribution qk at episode k is upper bounded by

p
CK(HRmax)2H (⇡?) + 2HRmax

KX

k=1

r
E

h
dKL (qk(⇡)| pk(⇡))

i
, (30)

where H(⇡?) is the entropy of the prior distribution of optimal polices, i.e., p(⇡) =
R
�(⇡|M)p(M)dM, C is a

problem-dependent constant (see Appendix for details) and dKL ( ·| ·) is the KL-divergence.

Our Theorem 1 is a general result with minimal assumptions. For a specific problem setup, it remains to
instantiate the problem-dependent constant C and H(⇡?) for deriving the regret bound. Although a detailed
investigation is out the scope of this work, we provide a concrete example for showing that the constant C can be
bounded well.

Remark 1 When the number of policies |⇧| is finite, and the value function V M

⇡,1
is linear with its parameter

lives in R
d
, then C can be upper bounded by d, i.e., C  d.

To be noted, the first term of the regret is Õ(
p
K), which is the standard result. The second term will be zero

under exact posterior inference. However, when performing approximate inference (which is usually the case
in practice), the second term could result in a linear regret (i.e., Õ(K)) due to the approximation error (i.e.,
minq dKL (q| p) > 0). Therefore, the second term will dominate the entire regret under approximate inference. To
reduce it, we should choose an approximate posterior distribution q(⇡|DE) as “close” to the true distribution
p(⇡|DE) as possible.
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F.1 Proof of Theorem 1

Proof: Recall the definition of Bayesian regret,

BayesianRegret(T,A , p(M)) := E [Regret(T,A ,M)] = E

"
KX

k=1

�k

#
. (31)

Let’s denote history at the beginning of episode k as Hk. Then, we can rewrite the Bayesian regret as

BayesianRegret(T,A , p(M)) =
KX

k=1

EHk [E [�k|Hk]] . (32)

By doing so, we can bound each term E[�k|Hk] separately. For convenience, we define Ek[�k] := E[�k|Hk].
Then, by Lemma 1, we can further decompose it into,

E[�k|Hk] = Gk +Dk, (33)

where

Gk :=

Z p
qk(⇡)pk(⇡)

�
Ek

⇥
V M

⇡,1
(s1)|⇡

? = ⇡
⇤
� Ek

⇥
V M

⇡,1
(s1)

⇤�
d⇡ (34)

and

Dk :=

Z ⇣p
pk(⇡)�

p
qk(⇡)

⌘⇣p
pk(⇡)Ek

⇥
V M

⇡,1
(s1)|⇡

? = ⇡
⇤
+
p
qk(⇡)Ek

⇥
V M

⇡,1
(s1)

⇤⌘
d⇡. (35)

Then, it remains to bound
P

K

k=1
E[Gk] and

P
K

k=1
E[Dk]. By Lemma 2, we can bound the sum of expectation of

Dk by

KX

k=1

E[Dk]  2HRmax

KX

k=1

p
E [dKL (qk| pk)]. (36)

By Lemma 3, the upper bound for the sum of the expectation of Gk is

KX

k=1

E[Gk] 
p
CK ((HRmax)2/2)H (⇡?). (37)

Hence, the term Dk captures the regret incurred by the approximate inference error, and Gk captures the standard
regret for Thompson sampling, which is of order Õ(

p
K). By combining them together, we finally arrive at the

upper bound of the Bayesian regret

BayesianRegret(T,A , p(M)) 
p
CK(HRmax)2H (⇡?)

+ 2HRmax

KX

k=1

r
E

h
dKL (qk(⇡)| pk(⇡))

i
. (38)

⇤

F.2 Proof of Remark 1

Proof: Recall that the definition of C is

C = max
k2Z+

[
P

⇡
gk(⇡,⇡))]2P

⇡

P
⇡0 [gk(⇡,⇡0)]2

(39)

where gk(⇡,⇡0) is defined as

gk(⇡,⇡
0) =

p
qk(⇡)pk(⇡0)(Ek[V

M

⇡,1
|⇡? = ⇡0]� Ek[V

M

⇡,1
]) (40)
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Since the number of polices |⇧| is finite, we then define the following matrix

Gk =

2

664

gk(⇡1,⇡1) gk(⇡1,⇡2) . . . gk(⇡1,⇡|⇧|)
gk(⇡2,⇡1) gk(⇡2,⇡2) . . . gk(⇡2,⇡|⇧|)

. . . . . . . . . . . .
gk(⇡|⇧|,⇡1) gk(⇡|⇧|,⇡2) . . . gk(⇡|⇧|,⇡|⇧|)

3

775 (41)

Then, we can rewrite C as

C = max
k2Z+

Trace(Gk)2

kGkk
2

F

(42)

By the fact that, Trace(A)2  rank(A)kAk2
F
, we will have

Trace(Gk)2

kGkk
2

F

 rank(Gk) (43)

Since Gk is a |⇧|-by- |⇧| matrix, we must have

rank(Gk)  |⇧| (44)

Since we also assume that the value function is linear in its parameters which is in R
d, then by the linearity of

expectation, we can write each gk(⇡i,⇡j) as (for some vi, ✓j)

gk(⇡i,⇡j) =
q
qk(⇡i)pk(⇡j)(v

>
i
✓j � v>

i
✓) (45)

Then, we can define ui =
p
qk(⇡i)vi and wj =

p
pk(⇡j)(✓j � ✓), which further gives us

Gk =

2

664

u>
1

u>
2

. . .
u>
|⇧|

3

775

| {z }
:=U

⇥
w1 w2 . . . w|⇧|

⇤
| {z }

:=W

= UW (46)

Since the parameters ✓ is in R
d, we must have the rank of both U,W no greater than d. Therefore, we then have

rank(Gk)  d. By combining the above two, we can conclude that 8k 2 Z+

rank(Gk)  min{|⇧|, d}, (47)

which further implies that C  min{|⇧|, d} and concludes the proof. ⇤

F.3 Technical Lemmas

Lemma 1 For each time k = 1, ...,K, we have

E [�k|Hk] = E

h
V M

⇡?,1(s1)� V M

⇡k,1
(s1)|Hk

i
:= Ek

h
V M

⇡?,1(s1)� V M

⇡k,1
(s1)

i
= Gk +Dk, (48)

where

Gk :=

Z p
qk(⇡)pk(⇡)

�
Ek

⇥
V M

⇡,1
(s1)|⇡

? = ⇡
⇤
� Ek

⇥
V M

⇡,1
(s1)

⇤�
d⇡ (49)

and

Dk :=

Z ⇣p
pk(⇡)�

p
qk(⇡)

⌘⇣p
pk(⇡)Ek

⇥
V M

⇡,1
(s1)|⇡

? = ⇡
⇤
+
p
qk(⇡)Ek

⇥
V M

⇡,1
(s1)

⇤⌘
d⇡. (50)
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Proof: Conditioning on the history Hk, we can write the conditional Bayesian regret as

Ek

h
V M

⇡?,1(s1)� V M

⇡k,1
(s1)

i
(51)

=

Z
pk(⇡)Ek

⇥
V M

⇡,1
(s1)|⇡

? = ⇡
⇤
d⇡ �

Z
qk(⇡)Ek

⇥
V M

⇡,1
(s1)|⇡

k = ⇡
⇤
d⇡ (52)

=

Z
pk(⇡)Ek

⇥
V M

⇡,1
(s1)|⇡

? = ⇡
⇤
d⇡ �

Z
qk(⇡)Ek

⇥
V M

⇡,1
(s1)

⇤
d⇡ (53)

= Gk +Dk, (54)

where the second equality holds because the value function is independent of the instantiation of the policy ⇡k

when given the history Hk. ⇤

Lemma 2 For any k = 1, ...,K, we have

KX

k=1

E[Dk]  2HRmax

KX

k=1

p
E [dKL (qk| pk)]. (55)

Proof: Recall Dk,

Dk :=

Z ⇣p
pk(⇡)�

p
qk(⇡)

⌘⇣p
pk(⇡)Ek

h
V M
⇡,1(s1)|⇡? = ⇡

i
+

p
qk(⇡)Ek

h
V M
⇡,1(s1)

i⌘
d⇡ (56)

By using the Cauchy-Schwarz inequality, we have

Dk 

 sZ ⇣p
pk(⇡)�

p
qk(⇡)

⌘2
d⇡

!

·

 sZ
pk(⇡)E

⇥
V M

⇡,1
(s1)|⇡? = ⇡

⇤2
d⇡ +

sZ
qk(⇡)Ek

⇥
V M

⇡,1
(s1)

⇤2
d⇡

!
. (57)

By the definition of Hellinger distance dH ( ·| ·) between two random variables, we have

Dk  dH (qk| pk)

 sZ
pk(⇡)E

⇥
V M

⇡,1
(s1)2|⇡? = ⇡

⇤
d⇡ +

sZ
qk(⇡)Ek

⇥
V M

⇡,1
(s1)2

⇤
d⇡

!
. (58)

Since [dH ( ·| ·)]2  dKL ( ·| ·) and V M

⇡,1
is a bounded random variable with HRmax as its upper bound, we have

Dk  2dH (qk| pk)HRmax  2
p
dKL (qk| pk)HRmax. (59)

Hence, we have

KX

k=1

E[Dk]  2HRmax

KX

k=1

p
E [dKL (qk| pk)]. (60)

⇤

Lemma 3 For each k = 1, ...,K, we have

KX

k=1

E[Gk] 
p
CK ((HRmax)2/2)H (⇡?). (61)

Proof: Recall the definition of Gk,

Gk :=

Z p
qk(⇡)pk(⇡)

�
Ek

⇥
V M

⇡,1
(s1)|⇡

? = ⇡
⇤
� Ek

⇥
V M

⇡,1
(s1)

⇤�
d⇡. (62)
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Since V M

⇡,1
(here, we drop the dependency on s1 for clearness) is a bounded random variable, and more specifically,

it’s ((HRmax)/2)-sub-Gaussian. Hence, by Lemma 4, the following holds,

Ek

⇥
V M

⇡,1
|⇡? = ⇡

⇤
� Ek

⇥
V M

⇡,1

⇤


✓
HRmax

2

◆q
2dKL

�
pk(V M

⇡,1
|⇡? = ⇡)

�� pk(V M

⇡,1
)
�
. (63)

This gives us that

Gk 

Z p
qk(⇡)pk(⇡)

✓
HRmax

2

◆q
2dKL

�
pk(V M

⇡,1
|⇡? = ⇡)

�� pk(V M

⇡,1
)
�
d⇡. (64)

Then, we can further rewrite the KL-divergence using the conditional mutual information Ik(·; ·) (i.e., conditioning
on the history Hk),

ZZ
qk(⇡)pk(⇡

0)dKL

�
pk(V

M

⇡,1
|⇡? = ⇡0)

�� pk(V M

⇡,1
)
�
d⇡d⇡0 =

Z
qk(⇡)Ik(⇡

?;V M

⇡,1
)d⇡. (65)

When conditioning on the history Hk, the optimal policy ⇡? and M is independent of the ⇡k, hence we have

Z
qk(⇡)Ik(⇡

?;V M

⇡,1
)d⇡ =

Z
qk(⇡)Ik(⇡

?;V M

⇡k,1
|⇡k = ⇡)d⇡ = Ik(⇡

?;V M

⇡k,1
|⇡k). (66)

By the fact that ⇡? is jointly independent of V M

⇡k,1
and ⇡k when conditioning on the history Hk, hence we have

Ik(⇡
?;V M

⇡k,1
|⇡k) = Ik(⇡

?;V M

⇡k,1
|⇡k) + Ik(⇡

?;⇡k). (67)

By the chain rule of mutual information, we finally get

Ik(⇡
?;V M

⇡k,1
|⇡k) + Ik(⇡

?;⇡k) = Ik(⇡
?; (V M

⇡k,1
,⇡k)). (68)

Now, let’s define the following function gk and C,

gk(⇡,⇡
0) :=

p
qk(⇡)pk(⇡0)

�
Ek

⇥
V M

⇡,1
|⇡? = ⇡0⇤

� Ek

⇥
V M

⇡,1

⇤�
. (69)

C := max
k2Z+

(
R
gk(⇡,⇡)d⇡)2RR

[gk(⇡,⇡0)]2d⇡d⇡0 . (70)

Thus, we further have

Ik(⇡
?; (V M

⇡k,1
,⇡k)) �

2

(HRmax)2

ZZ
[gk(⇡,⇡

0)]2d⇡d⇡0. (71)

On the other hand, we can rewrite Gk as

Gk =

Z
gk(⇡,⇡)d⇡. (72)

By rearranging the terms, we get

G2

k
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�
(HRmax)2/2

�
(
R
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 C

�
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2/2
�
. (73)

Hence,

Gk 

q
C ((HRmax)2/2) Ik(⇡?; (⇡k, V M

⇡k,1
)). (74)
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Hence, we have
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p
CK ((HRmax)2/2)H (⇡?), (79)

⇤

Lemma 4 (Russo and Van Roy (2016)) Suppose that there is a Hk-measurable random variable ⌘, such that

for each ⇡ 2 ⇧, V M

⇡,1
is a ⌘-sub-Gaussian random variable when conditioned on Hk, then for every ⇡,⇡0

2 ⇧, the

following holds with probability 1,

Ek[V
M

⇡,1
|⇡? = ⇡0]� Ek[V

M

⇡,1
]  ⌘

q
2dKL

�
pk(V M

⇡,1
|⇡? = ⇡0)

�� pk(V M

⇡,1
)
�
. (80)

F.4 An Alternative Analysis of the Bayesian Regret Bound of PSRL under Approximate
Inference

Theorem 2 For K episodes, the Bayesian regret of posterior sampling reinforcement learning algorithm A with

any approximate posterior distribution qk at episode k is upper bounded by

BR(K,TS, p(M)) + 4HRmax

KX

k=1

p
dKL (q(⇡0:k�1)| pexact(⇡0:k�1)) + 2HRmax

KX

k=1

p
E [dKL (qk(⇡)| pk(⇡))]. (81)

where BR(K,TS, p(M)) denotes the Bayesian regret under exact Thompson sampling, dKL ( ·| ·) is the KL-

divergence, and q(⇡0:k�1) and qexact(⇡0:k�1) are the joint likelihood of the polices under the approximate posterior

q and the exact posterior p, respectively.

Proof: We first define the following notations,

V M
⇡,1

=

Z
⇢(s)V M

⇡,1
(s)ds. (82)

Recall the definition of the Bayesian regret,

E
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�k

#
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"
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#
. (83)

By denoting ⇡?,k as a sample from the true posterior distribution pk(⇡), we can further rewrite the Bayesian
regret as

E

"
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#
= E

"
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#
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#
(85)
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We can further expand the first term of Equation 85 as

E

"
KX

k=1

V M
⇡?,1 � V M

⇡?,k,1

#
= E

"
KX

k=1

E

h
V M
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���Hk�1 ⇠ q(Hk�1)
i#

, (86)

where q(Hk�1) is the marginal likelihood of the history Hk�1 under approximate inference. We can further
rewrite the above equation as

E
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KX

k=1

E

h
V M
⇡?,1 � V M

⇡?,k,1
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=
KX
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Z
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Z
E

h
V M
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⇡?,k,1
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i
pexact(Hk�1)dHk�1 (89)

+

Z
E

h
V M
⇡?,1 � V M
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���Hk�1

i
(q(Hk�1)� pexact(Hk�1)) dHk�1

= BR(K,TS, p(M)) +
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 BR(K,TS, p(M)) + 2HRmax

KX

k=1

Z
|q(Hk�1)� pexact(Hk�1)|dHk�1 (91)

= BR(K,TS, p(M)) + 4HRmax

KX

k=1

dTV(q(Hk�1)|pexact(Hk�1)). (92)

where BayesianRegret(K,TS, p(M)) denotes the Bayesian regret under exact Thompson sampling, which has
been well-studied in Agrawal and Jia (2017); Osband et al. (2013); Osband and Roy (2014, 2017); Fan and Ming
(2021); Tiapkin et al. (2022a,b). pexact(Hk�1) is the marginal likelihood of the history Hk�1 under the exact
posterior. By Pinsker’s inequality, for any two distributions p and q, we have

dTV(q|p) 

r
1

2
dKL (q| p). (93)

Therefore, we have

dTV(q(Hk)|pexact(Hk)) 

r
1

2
dKL (q(Hk)| pexact(Hk)) (94)



r
1

2
dKL (q(Hk,⇡0:k�1)| pexact(Hk,⇡0:k�1)). (95)

By the definition of the joint distributions,

q(Hk,⇡0:k�1) = p(Hk|⇡0:k�1)q(⇡0:k�1) (96)

pexact(Hk,⇡0:k�1) = p(Hk|⇡0:k�1)pexact(⇡0:k�1) (97)

Thus, we can further simplify the Equation 95 as

r
1

2
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r
1

2
dKL (q(⇡0:k�1)| pexact(⇡0:k�1)) (98)
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Similarly, we can bound the second term in Equation 85 by
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. (101)

By the maximal coupling, we have that the probability of ⇡k
6= ⇡?,k is TV(pk, qk). Thus, in together with Jensen’s

inequality, we can bound the above equation by
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 2HRmax

KX

k=1

p
E [dKL (qk(⇡)| pk(⇡))]. (103)

By combining the above results, we can conclude that the regret bound, i.e., BR(K,A , p(M)), is at most

BR(K,TS, p(M)) + 4HRmax

KX

k=1

p
dKL (q(⇡0:k�1)| pexact(⇡0:k�1)) + 2HRmax

KX

k=1

p
E [dKL (qk(⇡)| pk(⇡))].

(104)

⇤

G Additional Umap Visualizations

We provide the Umap visualization of the state embeddings of PS-MBPO and MBPO during training in Figure 19
and Figure 20. We observe that PS-MBPO will mostly cover a more broad range of the embedding space, and its
pattern also evolves more rapidly than MBPO.
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Figure 19: Visualization of the Umap embeddings of PS-MBPO and MBPO from consecutive training periods on
Hopper, Ant and Halfcheetah (from top to bottom).
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Figure 20: Visualization of the Umap embeddings of PS-MBPO and MBPO from consecutive training periods on
Walker2d, Ball-in-Cup and Cartpole-swingup (from top to bottom).
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