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Abstract

Cyclical MCMC is a novel MCMC frame-
work recently proposed by Zhang et al. (2019)
to address the challenge posed by high-
dimensional multimodal posterior distribu-
tions like those arising in deep learning. The
algorithm works by generating a nonhomoge-
neous Markov chain that tracks – cyclically
in time – tempered versions of the target dis-
tribution. We show in this work that cycli-
cal MCMC converges to the desired probabil-
ity distribution in settings where the Markov
kernels used are fast mixing, and sufficiently
long cycles are employed. However in the far
more common settings of slow mixing kernels,
the algorithm may fail to produce samples
from the desired distribution. In particular,
in a simple mixture example with unequal
variance we show by simulation that cyclical
MCMC fails to converge to the desired limit.
Finally, we show that cyclical MCMC typ-
ically estimates well the local shape of the
target distribution around each mode, even
when we do not have convergence to the tar-
get.

1 INTRODUCTION

Over the last few decades, statistics and machine
learning have become the dominant framework for
scientific knowledge discovery and decision making
from data. However uncertainty quantification re-
mains one important aspect where further basic ad-
vancement is needed. In principle Bayesian statis-
tics provides a coherent learning framework where
uncertainty can be rigorously quantified. However,
deploying the Bayesian machinery in practice invari-
ably hinges on the ability to handle high-dimensional
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and often multimodal posterior distributions. Markov
chain Monte Carlo (MCMC) is the state-of-the-art
for dealing with this problem (Robert and Casella
(2004); Douc et al. (2018)). Despite several decades
of progress in MCMC, sampling from multimodal dis-
tributions, particular in a high-dimensional context,
remains extremely challenging. The state-of-the-art
for dealing with multimodality is the idea of “temper-
ing” - that is, building a sequence of distributions that
bridges the target distribution and some other distri-
bution that is easier to sample. Simulated tempering
(ST) and parallel tempering (PT) are the two main
algorithms built on this principle (Geyer (1991); Mari-
nari and Parisi (1992); Hukushima and Nemoto (1996);
Geyer and Thompson (1995)). However to maintain
correctness, these algorithms require additional auxil-
iary variables and Metropolis steps that significantly
increase their implementation costs.

In Zhang et al. (2019) the authors proposed “cycli-
cal stochastic gradient MCMC”, a fast implementation
of tempering, that dispenses with the costly auxiliary
variables required in ST and PT. The algorithm im-
plements tempering without any Metropolis step in
the temperature dimension. The algorithm operates
in cycles, and is designed such that in the initial part
of a cycle there is an exploration of the space to find
a mode, and in the second part of a cycle, samples are
drawn from the mode found. In this paper we use the
generic term “cyclical MCMC” to refer to algorithms
built on that principle. The purpose of this work is to
analyze these algorithms.

We found that in general cyclical MCMC does not con-
verge to the correct target distribution. For instance,
we show by simulation that in a simple Gaussian mix-
ture model with unequal variance, cyclical MCMC
does not correctly recover the weights of the mixture.

Using a novel adaptation of the spectral gap tech-
nique to nonhomogeneous Markov chains, we show
that cyclical MCMC does converge to the intended tar-
get distribution when the Markov kernels used have
fast enough mixing, and an appropriate tempering
schedule is selected. We also found that even when
the weights of the mixture are poorly approximated,



On cyclical MCMC sampling

cyclical MCMC typically produces a correct approx-
imation of the shape of the distribution around each
mode.

The remaining of the paper is organized as follows.
We provide some motivating background in Section 2.
The cyclical MCMC algorithm is described in Section
3. Our theoretical results are described in Section 4,
with most proofs collected in Section 6 and in the sup-
plement.

2 MOTIVATION: BAYESIAN
INFERENCE

Suppose that we have data D def
= {(xi,yi), 1 ≤ i ≤ n},

where yi|xi ∼ fθ(yi|xi), for some statistical model fθ
with (vectorized) parameter θ ∈ Θ ⊆ Rp. Assuming
independence, the log-likelihood writes

ℓ(θ;D)
def
=

n∑
i=1

ℓi(θ), where ℓi(θ)
def
= log fθ(yi|xi).

In the Bayesian paradigm we complement the model
with a prior distribution µ0 on θ that summarizes all
available prior knowledge (our inductive bias), such as
boundedness, smoothness, sparsity, etc. The resulting
posterior distribution of θ is the probability measure

Π(dθ|D) ∝ eℓ(θ;D)µ0(dθ). (1)

Π(·|D) captures the uncertainty in the estimation of
θ. Given a new data point for which we observe x,
we can predict corresponding response y by sampling
from the posterior predictive distribution

f(·|x) def
=

∫
Rp

fθ(·|x)Π(dθ|D). (2)

The uncertainty in a draw from f is the combination
of the uncertainty in learning the model, as reflected
by the posterior distribution, plus the inherent uncer-
tain of the model itself. Some authors (Hüllermeier
and Waegeman (2021)) use the terms epistemic and
aleatoric uncertainty respectively to refer to these two
sources of uncertainties.

In practice, the posterior integral in (2) is rarely
tractable, and so it is often replaced by an approxi-
mation

f̂(·|x) def
=

1

K

K∑
k=1

fθ(k)(·|x), (3)

where {θ(k), 1 ≤ k ≤ K} are approximately sam-
pled from Π(·|D). Taking K = 1, and θ(1) as the
estimate obtained by running stochastic gradient de-
scent (SGD) provides a very poor representation of
the epistemic uncertainty. Other approaches such as

variational approximation (Graves (2011); Blei et al.
(2016)) or dropout (Srivastava et al. (2014); Gal and
Ghahramani (2016)) produce better approximations of
Π(·|D), but still, are known to misrepresent the epis-
temic uncertainty. At the other end of the spectrum,
traditional MCMC methods produce (asymptotically)
correct samples, but are computationally too expen-
sive in many large applications. There is therefore a
pressing need for methods, such as cyclical MCMC,
that aim to strike a better balance between cost and
accuracy. However a good theoretical understanding
of these algorithms is needed.

3 CYCLICAL MCMC SAMPLING

Let Θ ⊆ Rp be the state space. Suppose that we are
interested in a probability density Π (with respect to
the Lebesgue measure) of the form

Π(θ) =
exp (−E(θ))

Z
, θ ∈ Θ, (4)

where Z is the normalizing constant, and E : Θ → R
some arbitrary measurable function. Let β : [0, 1] →
[0, 1] be a continuously differentiable function with
β(0) = β(1) = 1. We also assume that β is decreasing
on [0, 1/2], and increasing on [1/2, 1]. We extend β
into a function β : [0,∞) → [0, 1] by period extension
(meaning that for all x ≥ 0, β(x + 1) = β(x)). For
example, following (Zhang et al. (2019)) we consider
in our simulations the choice1

β(t) =
1 + cos(2πtr)

2
, t ≥ 0 (5)

for some power r ≥ 1.

Let L ≥ 1 be a cycle length. For integer j ≥ 1, and

with βj
def
= β(j/L), we define the density

Πj(θ) =
1

Zj
exp (−βjE(θ)) , θ ∈ Θ. (6)

Since β is periodic with period 1 and β(0) = 1, it holds
that ΠL = Π2L = · · ·ΠkL = Π, for all k ≥ 1. Further-
more, as j increases from 1 to L/2, the distribution
Πj(dθ) becomes more diffuse, and its shape is restored
back to Π as j increases from L/2 to L.

For each j ≥ 1, let Mj be a Markov kernel on Θ that
can be used to sample from Πj . In the theoretical in-
vestigation we will assume that Mj has invariant dis-
tribution Πj . In practice, Markov kernels that do not
maintain Πj as invariant distribution (such as stochas-
tic gradient Langevin dynamics (SGLD)) are used, but

1In the simulations we actually use max(β(t), 0.001) to
prevent β(t) = 0 which may be problematic when Θ is
unbounded.
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we do not analyze these here. Given some initial dis-
tribution ν(0), the idea of cyclical MCMC as devel-
oped in (Zhang et al. (2019)) consists in simulating the
nonhomogeneous Markov chain {θ(j), j ≥ 0}, where
θ(0) ∼ ν(0), and for j ≥ 1,

θ(j) | {θ(0), . . . , θ(j−1)} ∼ Mj(θ
(j−1), ·). (7)

The chain is run for K cycles (meaning for K × L
iterations), and we collect the samples obtained at (or
around) the end of each cycle to form {θ(kL), 1 ≤ k ≤
K} as our sample representation of Π. A synoptic view
of the algorithm is given in Algorithm 1.

Remark 1. The intuition of the method when Π is
multimodal is that, as the kernel Mj changes along the
cycle and targets Πj , by the middle of the cycle (since
Π1/2 is more diffuse), the sampler is able to escape
more easily from any current (local) mode. However
by the end of the cycle as βj moves closer to 1, the
algorithm returns back to targeting Π. Hence, there is
an exploration phase with mode discovery, followed by
an exploitation phase where samples are drawn from
around the selected mode. □

Remark 2. The kernel Mj can be constructed us-
ing any standard MCMC algorithm that is applicable
(Gibbs sampling, Metropolis-Hastings, HMC, etc...).
We note however, since the distributions Πj have
markedly different covariance structures, for good per-
formance it is important to properly scale the proposal
kernels accordingly. In Zhang et al. (2019) the authors
mostly focused on SGLD (Welling and Teh (2011); Ra-
ginsky et al. (2017)) and SGHMC (Chen et al. (2014);
Ma et al. (2015)). □

Algorithm 1. [Cyclical MCMC]
Choose the function β : [0, 1] → [0, 1], the cycle
length L, the number of cycle K, the initial distri-
bution ν(0), and construct the sequence of nonhomo-
geneous Markov kernel {Mj , j ≥ 1}.
1. Draw θ(0) ∼ ν(0).

2. For j = 1, . . . ,K × L, draw

θ(j) | {θ(0), . . . , θ(j−1)} ∼ Mj(θ
(j−1), ·).

3. Return {θ(kL), 1 ≤ k ≤ K}.

3.1 A toy example

Although the idea of cyclical MCMC is intuitively clear
and appealing, the algorithm typically does not con-
verge to the correct limit. For instance, consider a
simple one-dimensional mixture density

Π(θ) =
1

2
f1(θ) +

1

2
f2(θ).

Figure 1: Top left (resp. bottom left) is the density Π
and its estimate as produced by cyclical MCMC when
c = 1 (resp c = 0.1). Top right (resp. bottom right)
shows the powered density Π0.001 with c = 1 (resp
c = 0.1).

where f1 (resp. f2) is the density of N(5, 1) (resp.
N(−5, c2)) where c is either c = 1 (equal variance mix-
ture) or c = 0.1 (unequal variance mixture). We apply
Algorithm 1 to sample from Π where Mj is taken as a
random walk Metropolis with proposal N(x, 0.25/βj).
The initial distribution is N(0, 1). We use K = 1000,
L = 5000, and β as in (5) with r = 1. In Figure 1, the
shaded areas on the left side depict the densities esti-
mated from the cyclical MCMC outputs, whereas the
solid black lines on the left side represent the true den-
sity. In the top-left plot, where c = 1 (equal variance),
the recovery is excellent and it is hard to distinguish
the two curves. In the bottom-left where c = 0.1 (un-
equal variance), the recovery is poor. In the unequal
variance setting cyclical MCMC systematically fails to
correctly estimate the weights of the mixture. In this
specific example, the estimate of the weight of f1 is
0.497 in the equal variance setting – which is excel-
lent, but 0.87 in the unequal variance setting.

The issue in this example is that in the unequal vari-
ance setting, tempering by powering leads to a witch-
hat distribution (Matthews (1993)), with a small bulge
at the top (bottom-right side of Figure 1) that is virtu-
ally impossible to detect by most MCMC algorithms
– but is crucial to properly approximate the weights
of the mixture. As a result the algorithm spends more
time on the positive side of the line and produces an
estimate of the mixture weights that is biased towards
f1. In the equal variance setting, powering produces a
nice smooth symmetric density (top-right side of Fig-
ure 1) and the corresponding Markov kernels Mj ’s are
fast mixing. Parallel tempering and simulated temper-
ing are known to suffer from the same poor mixing in
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the unequal variance setting (Woodard et al. (2009a)).
However unlike cyclical MCMC, these algorithms have
a built-in Metropolis-Hastings acceptance step that re-
stores the correctness of the target distribution.

4 SOME THEORETICAL INSIGHTS

In this section we analyze the convergence of cyclical
MCMC. First, we analyze the behavior of Algorithm
1 in the case where the Markov kernels Mj ’s are fast
mixing. In that setting we show that indeed cyclical
MCMC can converge to Π. In the second part we
consider a more realistic setting where the cycle of the
algorithm can be decomposed into a mode exploration
part, and a mode exploitation part. In that regime
we show that cyclical MCMC converges to a mixture
with correct mixture components, but with possibly
incorrect weights.

4.1 The fast mixing regime

Since the algorithm generates a nonhomogeneous
Markov chain, classical Markov chain mixing time
analysis do not apply. We extend the classical Markov
chain spectral gap theory to handle nonhomogeneous
Markov chains.

Let BΘ denote the Borel sigma-algebra of Θ. We recall
that the target density Π and the sequence of densities
Πj are defined in (4) and (6) respectively. We will
abuse notation and also write Π (resp. Πj) to denote
the probability measure on Θ with density Π (resp.
Πj). For instance we will write Π(A) as a short for∫
A
Π(θ)dθ.

To proceed, we need some Markov chain notations. A
good reference is (Meyn and Tweedie (2009)). Given
two Markov kernels Q1, Q2 on Θ, their product is

the Markov kernel Q1Q2 defined2 as (Q1Q2)(u,A)
def
=∫

Θ
Q1(u,dv)Q2(v,A). This multiplication can natu-

rally be iterated. Given a Markov kernel Q, and a
probability ν, the product νQ denotes the probability

measure (νQ)(A)
def
=
∫
Θ
ν(du)Q(u,A). Furthermore,

given a measure ν on Θ, and a function h : Θ → R,
we write ν(h)

def
=
∫
Θ
h(u)ν(du). For j ≥ 1, we let

L2
j

def
= L2(Πj)

def
=
{
h : Θ → R : Πj(h

2) < ∞
}
,

and for h, h1, h2 ∈ L2
j , we set Varj(h)

def
= Πj(h

2) −
Πj(h)

2 and ⟨h1, h2⟩j
def
=
∫
Θ
h1h2dΠj . Given two fi-

nite measures µ, ν on Θ the total variation distance

2In this definition we follow the convenient practice in
Markov chains theory of writing the integrant after the
integrating measure.

between µ and ν is

∥µ− ν∥tv
def
= sup

f : |f |≤1

|µ(f)− ν(f)| .

Given a function h : Θ → R, we set ∥h∥∞ =
supu∈Θ |h(u)|. We impose the following assumption.

H 1. For all 1 ≤ j ≤ L, the Markov kernel Mj is
reversible with respect to Πj, and

∥Πj−1/Πj∥∞ < ∞. (8)

Remark 3. Reversibility is imposed here for conve-
nience, and can be removed by introducing the ad-
joints of the Mj ’s. Reversibility is a commonly im-
posed assumption in Markov chain theory, and is sat-
isfied by many MCMC samplers. For instance all
Metropolis-Hastings samplers, by definition generate
reversible Markov kernels. However there are many
other MCMC algorithms that are not reversible. Ex-
tending our results beyond the reversible case is an
important question for future research.

The boundedness assumption ∥Πj−1/Πj∥∞ < ∞ is
typically satisfied when Θ is bounded, and can essen-
tially be viewed as assuming that Θ is bounded. Ex-
tending our framework to remove that assumption is
an important direction for future work. □

The marginal distribution of θ(j) at the j-th iteration
of cyclical MCMC is given by

ν(j)
def
= ν(0)M1 × · · · ×Mj .

We seek conditions under which

ν(kL) ≈ Π.

In what follows we set

αj
def
= sup

{
∆j(f), f ∈ L2

j−1, Πj−1(f
2) = 1

}
,

where

∆j(f)
def
=

∫
Θ

Πj−1(dx)f
2(x)

∫
Θ

M2
j (x, dz)

∣∣∣∣Πj−1(z)

Πj(z)
− 1

∣∣∣∣ .
αj is a measure of discrepancy between Πj−1 and Πj

and can be controlled by the choice of the function β
and the cycle length L. The next result illustrates this
point. The proof is given in the supplement.

Proposition 4. Suppose that Θ is bounded, and

osc(E) def
= max

x,y
|E(x)− E(y)|,

is finite, where E is as in (4). Then there exists a
constant C, such that for all 1 ≤ j ≤ L

αj ≤
C|β̇(tj)|

L
, (9)

for some tj, with (j− 1)/L ≤ tj ≤ j/L, where β̇ is the
derivative of β.
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Proof. See Section 9 of the Supplement.

Remark 5. A more natural measure of discrepancy
between Πj−1 and Πj is their total variation distance

∥Πj−1 −Πj∥tv =

∫
Θ

∣∣∣∣Πj−1(z)

Πj(z)
− 1

∣∣∣∣Πj(z)dz.

However the total variation distance does not appear
naturally in our analysis. □

For each j ≥ 1, let Qj : Θ × BΘ → R be the finite
kernel defined as

Qj(x,A)
def
=

∫
Θ

Mj(x,dy)

∫
A

Mj(y,dz)
Πj−1(z)

Πj(z)
.

(10)
Note that for each x ∈ Θ, Qj(x, ·) is a finite measure
on (Θ,BΘ), but not necessarily a probability measure.
We show in Section 9 of the supplement that under
H1, Qj induces an operator Qj : L2

j−1 → L2
j−1 that is

self-adjoint and positive. We define the “spectral gap”
of the operator Qj as

λj
def
= inf

{
Gj(f), f ∈ L2

j−1, Varj−1(f) > 0
}
,

where

Gj(f)
def
=

∫
Θ

∫
Θ
(f(y)− f(x))

2
Πj−1(dx)Qj(x, dy)∫

Θ

∫
Θ
(f(y)− f(x))

2
Πj−1(dx)Πj−1(dy)

.

Remark 6. λj is large when the spectral gap of Mj

is large. This is easily seen from the definition of Qj .
One can also easily show for example that if for all
x, ∥Mj(x, ·)−Πj∥tv ≤ 2(1− βj) for some βj > 0 that
can be viewed as the spectral gap of Mj , then λj ≥ βj .
This is because the last total variation norm inequality
is equivalent to Mj(x, ·) ≥ βjΠj(·) for all x, which in
turn implies that Qj(x, ·) ≥ βjΠj−1(·), and so λj ≥ βj .

Finite kernels that are not necessarily Markov appear
commonly in Markov chain theory (for instance in the
analysis of sequence Monte Carlo samplers or in large
deviations for Markov chains; see e.g. Kontoyiannis
et al. (2006); Hervé (2008); Whiteley (2013)). □

With α0
def
= 0, we set

ΛL
def
=

L∑
i=0

αi

L∏
ℓ=i+1

(1− λℓ + αℓ).

Under assumption H1 we show in (23) that λj ≤ 1+αj .
Hence it is always true that ΛL ≥ 0. Our main result
of this section is as follows.

Theorem 7. Assume H1. Let ν(0)(dx) = f0(x)Π(dx).
Then for all k ≥ 1,

∥ν(kL) −Π∥2tv ≤ Var0(f0)Λ
k
L.

Proof. See Section 6.

Remark 8. To explore the implications of this result,
suppose for instance that

λj ≥ λ > 0, for all j ≥ 1. (11)

Then using Proposition 4, we see that we can choose
the tempering β and L such that αj ≤ C|β̇(tj)|L−1 ≤
λ/2. In that case we have

|ΛL| ≤
C

L

L∑
i=0

|β̇(ti)|
(
1− λ

2

)L−i

≤ 2C × ∥β̇∥∞
Lλ

< 1,

for L > 2C × ∥β̇∥∞/λ. The condition (11) is a fast
mixing condition on the kernels {Mj , j ≥ 1}. We
note that a similar but more subtle analysis can also
be developed in cases where some of the initial Markov
kernels Mj (for j closed to 1) have poor mixing. □

Remark 9. Our theorem and the discussion above
thus show that in settings where all the Markov ker-
nels Mj have fast mixing, cyclical MCMC does con-
verge to the right target distribution. For instance, in
the mixture density example with equal variance set-
ting, it is well-known that tempering by powering sig-
nificantly improve mixing (Woodard et al. (2009b)).
Thus we expect cyclical MCMC to work well for L
large enough, and this is what we observed in the sim-
ulations. In contrast, in the unequal variance setting,
it is also known that powering does not improve mix-
ing (Woodard et al. (2009a)). Hence in that case all
the λj ’s remain close to 0, and cyclical MCMC would
require exponentially large cycle length L to work. □

Remark 10. One natural objection to Theorem 7 is
this: for many MCMC problems where the tails of
Π are poorly understood and ν(0) badly chosen, the
variance term Var0(f0) appearing in the conclusion of
Theorem 7 is infinite, and so the theorem does not give
nontrivial upper bounds. Fortunately, in many exam-
ples, this problem can be easily fixed via truncation as
we explain in Section 10 of the supplement. □

4.2 The highly multimodal regime

We show here that even when it fails to capture cor-
rectly the weights of the mixture, cyclical MCMC typ-
ically estimates well the component densities in the
mixture. In this section we assume that Π is a mix-
ture of the form

Π(θ) =

d∑
i=1

wifi(θ). (12)

Let Θ1, . . . ,Θd ⊂ Θ be a collection of disjoint subsets
of Θ such that Θj contains the bulk of the probability
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mass of fj . For each j ∈ [d], let Ij ⊂ Θj , where [d] is a
short for {1, . . . , d}. Finally, fix L2 ∈ [L]. We consider
the process {θ(j), j ≥ 0} generated by Algorithm 1
applied to (12).

The main result in this section, Theorem 13, has three
main error terms. Immediately after each term is in-
troduced, we verify that it is small for Metropolis-
Hastings chains with ultimate target

Π =
1

2
N(−1, σ2) +

1

2
N(−1, c2σ2) (13)

for 0.5 < c < 2, and proposal kernel Unif([θ− i
Lσ, θ+

i
Lσ]). These simple chains are similar to the toy ex-
ample considered in Section 3.1.

Our first error term comes from the following “no-
escape” assumption:

H2. There exists some 0 ≤ δ1 < 1 with the follow-
ing property. For any j ∈ [d] and any θ ∈ Ij, the
nonhomogeneous Markov chain

θ(L2) = θ, θ(i) ∼ Mi(θ
(i−1), ·) L2 < i ≤ L (14)

satisfies

P

(
L⋃

i=L2+1

{θ(i) /∈ Θj}

)
≤ δ1. (15)

Remark 11. One can verify Assumption 2 by show-
ing that the kernels Mj satisfy a Lyapunov drift con-
dition. We explain the details in Section 12 of the
supplement. For the target given in Equation (13),
for σ small enough, we take Θ1 = [−1.5,−0.5] and
Θ2 = [0.5, 1.5] and time L

3 ≤ L2 ≤ 2L
3 , and the exis-

tence of a Lyapunov drift condition is given by Lemma
17 of the supplement. □

For any j ∈ [d], denote by M
(j)
i the Metropolis-

Hastings chain with proposal distribution Mi and

target distribution Π
(j)
i with density proportional to

Πi(θ)1θ∈Θj
; we call this the “restriction” of Mi (re-

spectively Πi) to the set Θj . We make the following
“mixing within modes” assumption:

H 3. There exists 0 ≤ δ2 < 1 with the following
property. Fix j ∈ [d] and θ ∈ Ij. Define the time-
inhomogeneous Markov chain:

θ(L2) = θ, θ(i) ∼ M
(j)
i (θ(i−1), ·) L2 < i ≤ L. (16)

This chain satisfies:

∥P(θ(L) ∈ ·)−Π(j)(·)∥tv ≤ δ2. (17)

Remark 12. The inequality in Assumption 3 is ex-
actly the conclusion of Theorem 7 but applied to the
restricted process, and so that theorem can be used to
verify Assumption 3. □

Under these assumptions, we have:

Theorem 13. Let Assumptions 2, 3 hold and let δ =
δ1 + δ2. Then the Markov chain satisfies:

∥ν(L) −
d∑

j=1

ν(L2)(Ij)Π
(j)∥tv

≤ δ + (1− ν(L2)(∪d
j=1Ij)). (18)

Proof. See Section 7.

Remark 14. The remainder term (1−
∑d

j=1 ν
(L2)(Ij))

appearing in Theorem 13 can be bounded using the
same Lyapunov function approach described in Re-
mark 11. In particular, assume there exists a function
V : Θ → [1,∞) and constants m > 0, 1 < L1 < L2,
0 < α ≤ 1, and 0 ≤ β < ∞ with following properties:

1. For θ /∈ ∪jΘj , we have V (θ) ≥ em.

2. For all θ ∈ ∪jΘj and all L1 ≤ i ≤ L2, one has

MiV (θ) ≤ (1− α)V (θ) + β.

Then applying Markov’s inequality, we find

P (XL2
/∈ ∪jΘj) ≤ P (V (XL2

) > em)

≤ e−mE (V (XL3)) ≤ e−m

(
β

α
+ E (V (XL1))

)
.

Such a Lyapunov function is known to exist in sub-
stantial generality. For example, see Theorem 4.1 of
Jarner and Hansen (2000) for conditions under which
V (θ) = Π(θ)−c is a Lyapunov functions for ML for all
0 < c < 1; this result covers the example in Equation
(13). If we choose L1 ≥ aL, this means that for all
0 < c < a

2 the single function V (θ) = Π(θ)−c is simul-
taneously a Lyapunov function for all chains Mi with
L1 ≤ i ≤ L2. □

Remark 15. A reviewer insightfully asked whether
Theorem 13 can be extending to analyze ν(kL). This
can be done using the following general argument. If
a Markov kernel P and a probability measure ν (not
nec. invariant under P ) satisfy ∥P (x, ·)− ν∥tv ≤ ρ, for
all x, and for some ρ ∈ (0, 1), then we can say that P
satisfies Doeblin’s condition, and therefore admits an
invariant π, say, and it holds ∥π−ν∥tv ≤ ρ. Therefore,
for all k ≥ 1, ∥P k(x, ·) − ν∥tv ≤ κk + ρ, for some
κ ∈ (0, 1). □

4.2.1 Illustration with a two-dimensional
mixture

As illustration of Theorem 13 we consider a two-
dimensional Gaussian mixture with 25 components
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Figure 2: Top row is the x-component of the com-
ponent density f25 and its estimate as produced by
cyclical MCMC. The true densities are plotted in blue
dashed line. Top-left is the equal variance setting.
Bottom left shows the estimated weights of the mix-
ture.

adapted from Zhang et al. (2019), where

Π(θ) =
1

25

25∑
i=1

fi(θ), θ ∈ R2,

where fi is the density of the Gaussian distribution
N(µi, σ

2
i I2). The means µi’s are the elements of

{−4,−2, 0, 2, 4} × {−4,−2, 0, 2, 4}, and σ2
i = 0.2 in

the equal variance setting, and σ2
i = 0.2/i, 1 ≤

i ≤ 25 in the unequal variance setting. In both
cases we apply Algorithm 1 with L = 20, 000, K =
50, 000 using a random walk Metropolis with proposal

N(x, 0.01β
−1/2
j I2), and we take β as in (5) with r = 1

(we obtained similar results for values of r ≤ 20 that
we tried). The results are shown on Figure 2. The es-
timate of the mixture weights (a uniform distribution
on {1, . . . , 25}) is given on the second row of Figure 2.
Again, we see that in the constant variance setting we
recover correctly the weights, but the recovery is poor
in the unequal variance setting.

We also look at the x-component of f25. The shaded
area in the top-left (resp. top-right) plot of Figure 2
shows the estimated density in the equal (resp. the
unequal variance) variance setting. The true densities
are plotted in dashed-line. We see that in both settings
the recovery is good, which confirms the conclusion of
Theorem 13.

5 CONCLUSION REMARKS

Cyclical MCMC is an efficient implementation of tem-
pering that operates without the costly auxiliary vari-
ables required in PT and ST. The relationship between

Cyclical MCMC and ST/PT is similar in some sense
to the relationship between the Unadjusted Langevin
algorithm and the Metropolis-Adjusted Langevin al-
gorithm Durmus et al. (2019).

An initial analysis of the Cyclical MCMC was under-
taken by Zhang et al. (2019). However their conver-
gence upper bounds are actually non-informative. We
show in this work that the algorithm does converge
to the desired limit in settings where the Markov ker-
nels used are fast mixing, and sufficiently long cycles
are used. However in the far more common settings
of slow mixing kernels, the algorithm may fail to con-
verge to the correct limit. Indeed, in a simple mix-
ture example with unequal variance where tempering
is known to produce slow mixing kernels (Woodard
et al. (2009a)), we show by simulation that cyclical
MCMC fails to converge to the desired limit. However
on the bright side, we also found that even when it fails
to capture correctly the weights of the modes, cyclical
MCMC typically estimates well the local shape of each
mode.

Since it is biased toward flatter modes, in the context
of Bayesian inference (Section 2), it appears that cycli-
cal MCMC leads to a systematic over-estimation of the
epistemic uncertainty, which may be a desirable fea-
ture in a prediction setting. It has also been observed
empirically that in deep learning, flatter modes seem
generalize better (see e.g. Pittorino et al. (2021)). It
is thus possible that the biased asymptotic behavior of
cyclical MCMC that we identified here may become a
useful feature in some settings, although more research
is needed on this issue.

The bias of the algorithm that we identified in the un-
equal variance mixture examples is ultimately a limi-
tation of powering as a way of tempering. Our work
thus also raises the question of how to build better
tempering paths – that go beyond simple powering –
to obtain fast mixing kernels. There are some recent
developments on this issue in the context of PT/ST
(Syed et al. (2021)). How to leverage these ideas while
retaining the initial computational efficiency of cycli-
cal MCMC is also an important direction for future
research.

6 Proof of Theorem 7

For j ≥ 1, let ν(j) denote the marginal distribution of
θ(j), and define the kernel M̄j by

M̄j(u,A)
def
=

∫
A

Mj(u,dv)
Πj−1(v)

Πj(v)
.

First, we observe that if ν(j) admits a density with
respect to Πj , and dν(j)/dΠj = fj , then ν(j+1) admits
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a density with respect to Πj+1, and

dν(j+1)

dΠj+1
(u) = M̄j+1fj(u), u ∈ Θ.

To see this, use reversibility and write for any A ∈ BΘ,

ν(j+1)(A) =

∫
Θ

Πj(du)fj(u)

∫
Θ

Mj+1(u,dv)1A(v)

=

∫
A

Πj+1(du)

∫
Θ

Mj+1(u,dv)fj(v)
Πj(v)

Πj+1(v)
.

Since, by assumption the initial distribution of the
cyclical MCMC sampler has a density denoted f0 with
respect to Π, and ν(0)(dx) = f0(x)Π0(dx), we conclude
that for all j ≥ 1, ν(j) has a density fj with respect to
Πj , and the sequence {fj , j ≥ 0} satisfies

fj+1 = M̄j+1fj . (19)

Using this and the Cauchy-Schwarz inequality, we
write for all j ≥ 0,

∥ν(j)−Πj∥tv =

∫
Θ

∣∣∣∣dν(j)dΠj
(u)− 1

∣∣∣∣Πj(du) ≤
√
Varj (fj).

(20)

We show in Lemma 16 in the supplement that if
f ∈ L2

j−1, then M̄jf ∈ L2
j , and the adjoint of the op-

erator M̄j is Mj . Also, recall that fj is the density of
ν(j) with respect to Πj , and we have seen above that
fj = M̄jfj−1, and Πj(M̄jfj−1) = Πj−1(fj−1) = 1.
Therefore,

Varj(fj) =

∫
Θ

(M̄jfj−1)
2Πj(dx)− 1

=
〈
M̄jfj−1, M̄jfj−1

〉
j
− 1

=
〈
fj−1,MjM̄jfj−1

〉
j−1

−1 = ⟨fj−1, Qjfj−1⟩j−1−1,

where the operator Qj is as introduced in (10).
Whereas

Varj−1(fj−1) = ⟨fj−1, fj−1⟩j−1 − 1.

Hence

Varj(fj)

= Varj−1(fj−1)− ⟨fj−1, (I−Qj) fj−1⟩j−1 , (21)

where I denotes the identity operator. We now relate
the term ⟨fj−1, (I−Qj) fj−1⟩j−1 to the spectral gap

λj of Qj . For f ∈ L2
j−1,∫

Θ

∫
Θ

(f(y)− f(x))
2
Πj−1(dx)Qj(x, dy)

=

∫
Θ

Πj−1(dx)Qjf
2(x) +

∫
Θ

Πj−1(dx)f
2(x)Qj(x,Θ)

− 2 ⟨f,Qjf⟩j−1 .

We have

Qj(x,Θ) = 1

+

∫
Θ

Mj(x, dy)

∫
Θ

Mj(y,dz)

(
Πj−1(z)

Πj(z)
− 1

)
.

Hence∫
Θ

Πj−1(dx)f
2(x)Qj(x,Θ)

= Πj−1(f
2) +

∫
Θ

Πj−1(dx)f
2(x)

×
∫
Θ

Mj(x, dy)

∫
Θ

Mj(y,dz)

(
Πj−1(z)

Πj(z)
− 1

)
.

And since Πj(Qjf) = Πj−1(f), we have∫
Θ

Πj−1(dx)Qjf
2(x)

= Πj−1(f
2) +

∫
Θ

Πj(dx)

(
Πj−1(x)

Πj(x)
− 1

)
Qjf

2(x)

= Πj−1(f
2) +

∫
Θ

Πj−1(dx)f
2(x)

×
∫
Θ

Mj(x, dy)

∫
Θ

Mj(y,dz)

(
Πj−1(z)

Πj(z)
− 1

)
.

We conclude that

1

2

∫
Θ

∫
Θ

(f(y)− f(x))
2
Πj−1(dx)Qj(x,dy)

= ⟨f, (I−Qj) f⟩j−1

+

∫
Θ

Πj−1(dx)f
2(x)

×
∫
Θ

Mj(x,dy)

∫
Θ

Mj(y,dz)

(
Πj−1(z)

Πj(z)
− 1

)
. (22)

Since Qj is positive as shown in Lemma 16, with f̄ =
f − Πj−1(f), we have

〈
f̄ , (I−Qj) f̄

〉
j−1

≤ Varj−1(f),

so that

1

2

∫
Θ

∫
Θ

(f(y)− f(x))
2
Πj−1(dx)Qj(x,dy)

≤ (1 + αj)Varj−1(f),

which implies
λj ≤ 1 + αj . (23)

Applied to fj−1, (22) gives

− ⟨fj−1, (I−Qj) fj−1⟩j−1

≤ −1

2

∫
Θ

∫
Θ

(fj−1(y)− fj−1(x))
2
Πj−1(dx)Qj(x, dy)

+ αj

∫
Θ

Πj−1(dx)f
2
j−1(x)

≤ −λjVarj−1(fj−1) + αjVarj−1(fj−1) + αj .
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Taking this last display in (21), we deduce that

Varj(fj) ≤ (1− λj + αj)Varj−1(fj−1) + αj .

Iterating this inequality yields

Varj(fj) ≤ Var0(f0)

j∏
k=1

(1− λk + αk)

+

j∑
i=1

αi

j∏
ℓ=i+1

(1− λℓ + αℓ).

The result follows from the last display and (20).

7 Proof of Theorem 13

Fix a measurable set A and starting point θ. Since
ν(L) = ν(L2)

∏L
i=L2+1 Mi, we have

ν(L)(A) ≥
d∑

j=1

ν(L2)(Ij) inf
θ′∈Ij

(

L∏
i=L2+1

Mi,n)(θ
′, A)

≥
d∑

j=1

ν(L2)(Ij)(Π
(j)(A)− δ),

using Assumptions 2 and 3. Similarly,

ν(L)(A) ≤
d∑

j=1

ν(L2)(Ij)

× sup
θ′∈Ij

(

L∏
i=L2

Mi,n)(θ
′, A) + (1−

d∑
j=1

ν(L2)(Ij))

≤
d∑

j=1

ν(L2)(Ij)(Π
(j)(A) + δ) + (1−

d∑
j=1

ν(L2)(Ij)).

The proof follows from combining these two inequali-
ties.
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9 PROOF OF PROPOSITION 4

In what follows we write βj as a short for β(j/L). We have

Πj−1(z)

Πj(z)
= exp ((βj − βj−1)E(z)− log(Zj−1/Zj)) .

For t ∈ [0, 1], let Πj,t(θ) ∝ exp(−(tβj + (1 − t)βj−1)E(θ)) be a probability measure that interpolates between
Πj−1 and Πj . By the path sampling identity (Gelman and Meng (1998)),

log

(
Zj−1

Zj

)
= − (βj − βj−1)

∫ 1

0

∫
Θ

E(u)Πj,t(u)du.

We deduce that

(βj − βj−1)E(z)− log

(
Zj−1

Zj

)
= (βj − βj−1)

∫ 1

0

∫
Θ

(E(u)− E(z))Πj,t(u)du.

Since |ex − 1| ≤ xe|x|, we obtain∣∣∣∣Πj−1(z)

Πj(z)
− 1

∣∣∣∣ ≤ |βj − βj−1|osc(E)e|βj−βj−1|osc(E).

We take C = osc(E)×max1≤j≤L e|βj−βj−1|osc(E), and the result follows by first order Taylor expansion of β.

10 ON THE TERM Var0(f0) IN THEOREM 7

One natural objection to the conclusion of Theorem 7 is: for typical MCMC algorithms, the variance term
Var0(f0) appearing in the conclusion of Theorem 7 is infinite, and so the theorem does not give nontrivial upper
bounds. Fortunately, in many examples, this problem can be easily fixed via truncation. More precisely, assume
there exist constants 0 < ω < 1, 0 < C < ∞ and T ∈ N so that

∏T
t=0 Mt can be written in the form

T∏
t=0

Mt(θ, ·) = ωH(·) + (1− ω)RT (θ, ·),

where H has a density h satisfying VarT (h) ≤ C. In this case, one has

∥
L∏

s=0

Ms(θ, ·)−Π∥tv ≤ ∥H
L∏

s=T+1

Ms −Π∥tv + 2(1− ω), (24)

and so Theorem 7 can be applied to the first term starting from time T , with the variance term bounded by C.
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11 ON THE KERNELS Qj’s

Lemma 16. Assume H1. Then for f, h ∈ L2
j−1, and g ∈ L2

j , M̄jf ∈ L2
j ,
〈
M̄jf, g

〉
j
= ⟨f,Mjg⟩j−1. Furthermore,

⟨f,Qjh⟩j−1 = ⟨h,Qjf⟩j−1, and ⟨f,Qjf⟩j−1 ≥ 0.

Proof. Set ρj
def
= ∥Πj−1/Πj∥∞. For f ∈ L2

j−1, the fact that M̄jf belongs to L2
j follows from the Cauchy-Schwarz

inequality and ΠjMj = Πj . Indeed,∫
Θ

Πj(du)|M̄jf(u)|2 ≤
∫
Θ

Πj(du)

∫
Θ

Mj(u,dv)f
2(v)

∣∣∣∣Πj−1(v)

Πj(v)

∣∣∣∣2 =

∫
Θ

f2(v)
Πj−1(v)

Πj(v)
Πj−1(dv) ≤ ρjΠj−1(f

2).

The equality
〈
M̄jf, g

〉
j
= ⟨f,Mjg⟩j−1 follows easily from reversibility. Indeed, since M̄jf ∈ L2

j , we have

〈
M̄jf, g

〉
j
=

∫
Θ

Πj(du)

∫
Θ

Mj(u,dv)g(u)f(v)
Πj−1(v)

Πj(v)

=

∫
Θ

Πj(du)

∫
Θ

Mj(u,dv)g(v)f(u)
Πj−1(u)

Πj(u)
= ⟨f,Mjg⟩j−1 .

A similar argument as above shows that for f ∈ L2
j−1,∫

Θ

(Qjf(x))
2
Πj−1(dx) ≤ ρ2jΠj−1(f

2),

and

⟨f,Qjh⟩j−1 =

∫
Θ

Πj(du)

∫
Θ

M2
j (u,dv)f(u)h(v)

Πj−1(u)

Πj(u)

Πj−1(v)

Πj(v)
= ⟨h,Qjf⟩j−1 .

The positivity is easily seen by noting that Qj is the product of Mj and its adjoint M̄j .

12 CHECKING ASSUMPTION H2

We first check that a Lyapunov drift condition implies Assumption 2. Specifically, suppose that there exists a
function V : Θj → [1,∞) and constants m > 0, 0 < α ≤ 1, and 0 ≤ β < ∞ with following properties:

1. For θ /∈ Θj , we have V (θ) ≥ em.

2. For all θ ∈ Θj and all L2 ≤ i ≤ L, one has

MiV (θ) ≤ (1− α)V (θ) + β.

Then we can calculate that for all θ ∈ I1 and all L2 ≤ i ≤ L we have

Eθ

(
V (θ(i))

)
≤ β

α
.

Thus, by Markov’s inequality,

P (Xi /∈ Θj) ≤ P (V (Xi) > em) ≤ e−mE (V (Xi)) ≤
βe−m

α
.

Taking a union bound over L2 ≤ i ≤ L, we find that Assumption 2 holds with exponentially small constant δ1
under some mild assumption on the level m of the drift function V .

We next note that this proof approach can be used to verify Assumption 2 for targets given in Equation (13)
of the main document for sufficiently small σ. Toward that we take sets Θ1 = [−1.5,−0.5] and Θ2 = [0.5, 1.5]
and time L

3 ≤ L2 ≤ 2L
3 . For σ, s, c > 0, we consider the Metropolis-Hastings chain K = Kσ,s,c with target

N (0, sc2σ2) and proposal Q(θ, ·) = Unif([θ − sσ, θ + sσ]). Denote by an the acceptance function associated
with this Metropolis-Hastings kernel. Finally, for α > 0 we consider candidate Lyapunov functions of the form
V (θ) = e

α
σ |θ|.
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Lemma 17. There exists ϵ > 0 so that for all s ∈ [−0.5, 2] and all 0 < σ < α < ϵ sufficiently small, V is a
Lyapunov function satisfying:

(KV )(θ) ≤ 0.7V (θ) + e2sα1|θ|≤sσ.

Remark 18. Although we state the result for exactly Gaussian targets on the full real line, it applies with no
substantial changes in the following situations:

1. Restricted State Space: If we change the target from the Gaussian N (0, sc2σ2) to the restriction of this
Gaussian to an interval [A,B], the result applies with no changes to the constants as long as A < −sσ and
B > sσ. To verify this, note that rejecting proposals from within [A,B] to points outside of [A,B] can only
decrease the value of V .

2. Small Multiplicative Perturbations: Denote by f the density of N (0, sc2σ2). If we target instead a

distribution with unimodal density g satisfying
∣∣∣ g(θ)f(θ) − 1

∣∣∣ ≤ ϵV (θ), then the same Lyapunov inequality holds

with the constant 0.7 replaced by (0.7 + ϵ).

These observations can be combined to verify Lyapunov conditions for Gaussian mixture models restricted to
regions where one mixture component dominates the density.

Proof. Let θ ∈ R and let Θ1 ∼ K(θ, ·). We consider three cases: θ < −sσ, θ > sσ, or θ ∈ [−sσ, sσ].

In the first case,

2

sσ
E[V (Θ1)]

=

∫ 0

−sσ

V (θ + x)an(θ, θ + x)dx+

∫ 0

−sσ

V (θ)(1− an(θ, θ + x))dx+

∫ sσ

0

V (θ + x)dx

= V (θ)

(∫ 0

−sσ

(V (x)− 1)an(θ, θ + x)dx+
1

sσ
+

∫ sσ

0

V (x)dx

)
= V (θ)

(∫ 0

−sσ

(V (x)− 1)an(θ, θ + x)dx+
1

sσ
+

σ

α
(1− e−αs)

)
.

For fixed s and all 0 < σ < α < 0.1, we can bound the last term and continue:

2

sσ
E[V (Θ1)]

≤ V (θ)

(
1.1

sσ
+

∫ 0

−sσ

(V (x)− 1)an(θ, θ + x)dx

)
= V (θ)

(
1.1

sσ
+

∫ 0

−sσ

(e
α
σ |x| − 1)e

1
2sc2σ2 (θ2−(θ+x)2)dx

)
= V (θ)

(
1.1

sσ
+

∫ 0

−sσ

(e
α
σ |x| − 1)e−

1
2sc2σ2 (2θx+x2)dx

)
≤ V (θ)

(
1.1

sσ
+

∫ 0

−sσ

e−
α
σ x− 1

2sc2σ2 (2θx+x2)dx

)
.

Investigating the two terms appearing inside the exponential, we note that for small α, the second term dominates.
Thus, for sufficiently small 0 < σ < α < ϵ, we have

2

sσ
E[V (Θ1)] ≤ V (θ)

1.2

sσ
.

This proves the desired inequality in the first case.
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In the second case, we simply note that |Θ1| ≤ |θ|+ sσ, so

V (Θ1) ≤ V (2sσ) = e2αs ≤ 0.7V (θ) + e2αs.

This proves the desired inequality in the second case.

The third case is essentially identical to the first case.
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