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Abstract

In numerical integration, Bayesian quadra-
ture (BQ) excels at producing estimates
with quantified uncertainties, particularly in
sparse data settings. However, its compu-
tational scalability and kernel learning capa-
bilities have lagged behind modern advances
in Gaussian process research. To bridge this
gap, we recast the BQ posterior integral as
a convolution operation, which enables effi-
cient computation via fast Fourier transform
of low-rank matrices. We introduce two new
methods enabled by recasting BQ as a convo-
lution: fast Fourier Bayesian quadrature and
sparse spectrum Bayesian quadrature. These
methods enhance the computational scalabil-
ity of BQ and expand kernel flexibility, en-
abling the use of any stationary kernel in the
BQ setting. We empirically validate the effi-
cacy of our approach through a range of inte-
gration tasks, substantiating the benefits of
the proposed methodology.

1 INTRODUCTION

Several domains, from physical simulation to Bayesian
inference, necessitate the computation of challenging,
non-analytic integrals. Conventional techniques like
quadrature rules and Monte Carlo approximation are
commonly employed to mitigate this issue. Quadra-
ture approaches often approximate the integral as a
weighted sum of integrand evaluations f(x):∫

f(x)p(x)dx ≈
N∑
i=1

τif(xi) . (1)

However, for many problems, these methodologies may
be slow to converge and require a large number of
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model evaluations to reach a desired level of solution
accuracy (Robert et al., 2018), or may even be in-
feasible if the solution environment or computational-
budget requires fast evaluations or data efficiency.

Probabilistic numerical integration offers an alterna-
tive. These methods instead model the integrand or
integral as a probability measure, which enables the
use of statistical inference to achieve data-efficient re-
sults (Cockayne et al., 2019; Briol et al., 2019). Among
these approaches, Bayesian quadrature (BQ) is par-
ticularly compelling for its data efficiency and robust
uncertainty quantification (O’Hagan, 1991; Ghahra-
mani and Rasmussen, 2003). These advantages stem
from modeling the integrand as a Gaussian process
(GP) (Rasmussen and Williams, 2006) which can be
used compute closed-form integral posteriors when us-
ing specific choices of GP kernel covariance functions.

However, the power of GP methods often lies in the
ability to select a kernel that incorporates known qual-
ities of the problem under study, such as symmetries,
smoothness, or periodicity. BQ’s limitation in pro-
viding analytical results for only a much-reduced set
of kernel functions – rather than all possible positive-
definite kernel functions – limits BQ’s applicability on
specialized or complex integrands that could benefit
from domain-derived kernels.

In addition to this modeling inflexibility, BQ scales in
O(N3) time due to a necessary inversion of the kernel
Gram matrix K for calculation of the GP posterior,
which can grow computationally intractable for large
datasets.

Recent advances in Gaussian processes (GPs) have fo-
cused on enhancing kernel expressiveness and learning
(Xie et al., 2019; He et al., 2020; Ober et al., 2021; S.
Zhu et al., 2021), as well as computational scalability
(Liu et al., 2019). A key breakthrough is the spectral
representation of kernels (Rahimi and Recht, 2008a;
Wilson and Adams, 2013), which offers both flexible
kernel learning and computational efficiency. However,
traditional Bayesian quadrature (BQ) has yet to capi-
talize on these advances, as they diverge from the lim-
ited set of kernels that permit an analytically tractable
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BQ integral posterior. This intractability introduces a
need for Monte Carlo approximations for many kernel
and measure choices, which runs counter to the origi-
nal motivations of BQ to avoid such approaches.

Recent work has reformulated the Bayesian integra-
tion problem using alternative integrand model archi-
tectures (H. Zhu et al., 2020; Ott et al., 2023) or
adapted low-rank inducing point methods (Hensman
et al., 2015; Titsias, 2009) to the BQ setting (Adachi
et al., 2022; Hayakawa et al., 2022).

However, the opportunity remains to incorporate ex-
isting advances in spectral GP methodologies – which
offer both computational improvements as well as flexi-
ble kernel parametrization and learning schemes – into
traditional BQ. In this paper, we build upon recent
work (Warren et al., 2022; Sellier and Dellaportas,
2023) by leveraging tools from spectral analysis to ad-
dress the constraints of classical BQ. Our main contri-
butions are:

1. We recast BQ as a spectral convolution, facilitat-
ing the utilization of modern kernel learning and
low-rank approximation techniques. This refor-
mulation allows for quick and precise BQ integral
posterior approximations for any stationary ker-
nel and measure.

2. We propose two novel methods derived from this
reformulation: fast Fourier Bayesian quadrature
(FFBQ), which leverages the fast Fourier trans-
form (FFT) for BQ kernel mean calculation, and
sparse spectrum Bayesian quadrature (SSBQ), a
low-rank and computationally efficient BQ vari-
ant.

3. We provide empirical evidence of FFBQ and
SSBQ’s efficacy across a range of integration prob-
lems, demonstrating their adaptability and per-
formance in various dimensions and contexts.

2 PRELIMINARIES

This section will briefly review various preliminaries
necessary to introduce the FFBQ and SSBQ methods.

2.1 Gaussian Processes

In the BQ setting, we assume that we have N noisy
samples D = {xi, yi}Ni=1 = {X,y} of an integrand f ,
where the noise ϵ is i.i.d normal, i.e.: yi = f(xi) + ϵ.
The motivating use cases for BQ involve situations
where Monte Carlo integration or quadrature meth-
ods are prohibitively expensive, such that we assume
samples of f are sparse and thus data-efficiency is nec-
essary.

This data-efficiency condition is the driving motiva-
tion for the use of Gaussian processes (Rasmussen
and Williams, 2006) for setting a non-parametric prior
on the integrand f given the ability for GPs to offer
uncertainty-quantified predictions from sparse data.
The GP prior takes the form of a joint multivariate
Gaussian:

f ∼ GP(µ(x), kθ(x,x
′)), (2)

y = f(x) + ϵ. (3)

In (2), kθ is a positive semi-definite kernel function
with hyper-parameters θ, and µ is a mean function,
which is commonly set to 0 without loss of general-
ity. The associated multivariate-normal GP posterior-
predictive for a new data point {x∗} is given as:

µ(f∗) = K∗x(Kxx + σ2I)−1y, (4)

Cov(f∗) = K∗∗ −K∗x(Kxx + σ2I)−1Kx∗, (5)

whereK is the Gram matrixKxx = kθ(x,x
′), ∀x,x′ ∈

X, and {xi, yi}Ni=1 = {X,y} are the training data.

The choice of kernel function k, such as the widely-
used squared-exponential (RBF) kernel, serves as a
conduit for incorporating prior domain knowledge into
the GP model, including attributes like periodicity,
smoothness, or derivative information (Raissi and Kar-
niadakis, 2018). The inductive bias from the kernel
significantly contributes to the GP’s robust predictive
capabilities, particularly when data are sparse.

2.2 Bayesian Quadrature

As the GP posterior is multivariate Gaussian, the ex-
pectation of (4) over a Gaussian measure p(x) is also
Gaussian (Rasmussen and Williams, 2006). BQ uses
this fact to form an integral estimate ⟨f̄⟩ of the inte-
grand f , which yields an analytical solution when the
kernel k is the RBF (Gaussian) kernel (Briol et al.,
2019). Formally, the mean of the BQ posterior inte-
gral estimate is defined as:

⟨f̄⟩ =
∫
k(x,X)TK−1y p(x) dx

= yTK−1

∫
k(x,X) p(x) dx

= yTK−1µx(X),

(6)

where y = f(x) + ϵ are integrand observations,
µx(X) =

∫
k(x,X) p(x) dx is the kernel mean of the

observed data X, and for brevity we define (K +
σ2I)−1 := K−1 throughout. The associated variance
of ⟨f̄⟩ is:

V(⟨f̄⟩) = µxx′ − µx(X)TK−1µx(X) (7)

µxx′ =

∫ ∫
k(x,x′)p(x)p(x′)dx dx′ (8)
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where µxx′ represents the kernel mean over both x and
x′. The BQ mean equates to a quadrature rule of the
form in Equation 1, where weights τ ≡ µx(X)K−1 are
defined by the GP fit to integrand samples {X,y}.
In this context, it is crucial to recognize that all error
in the BQ posterior integral estimates ⟨f̄⟩ and V(⟨f̄⟩)
arises from the integrand GP, not the integral calcula-
tion itself. This fact emphasizes the significance of the
GP model’s fit, which is influenced primarily by:

1. The Gaussian assumption for integrand samples
y.

2. The selection of kernel function k and its hyper-
parameters θ.

This paper focuses on the latter. Traditional BQ re-
stricts kernel choices to ensure analytical tractability,
limiting its applicability. Specifically, if the integrand
does not reside in the Hilbert space H governed by
k, the GP assumptions are violated, affecting empiri-
cal performance. Numerical approximations for terms
µx(X) ≈ µ̂x(X) and µxx′ ≈ µ̂xx′ are required to ex-
tend BQ’s reach beyond analytically tractable kernels.

Recent advances propose a more flexible BQ formu-
lation leveraging spectral kernel representations, thus
permitting the use of any stationary kernel. We will
explore these innovations and their theoretical under-
pinnings next.

2.3 Spectral Kernel Methods

Representing and learning kernel functions through
their spectral representations has been a significant
method in recent years, with foundational works
(Rahimi and Recht, 2008a; Rahimi and Recht, 2008b;
Wilson and Adams, 2013; Le et al., 2013) and their
derivatives proving to be a powerful means to increase
kernel flexibility and computational scaling in a wide
array of kernel methods.

The validity of the spectral kernel representation de-
rives from Bochner’s theorem:

Theorem 1 (Bochner’s theorem (Rudin, 2011)). A
shift-invariant kernel k(x,x′) = k(x − x′) is positive-
definite if and only if it is the Fourier transform of a
non-negative measure.

The implication of Bochner’s theorem is that while
positive-definite kernel functions may be difficult to
define in a parametric form, we may instead leverage
the rich capabilities of distribution modeling to repre-
sent and approximate a kernel.

Random Fourier Features Perhaps the most well-
known approach to applying Bochner’s theorem is

through random Fourier features (RFFs) (Rahimi and
Recht, 2008a). RFFs present a means through which
the theoretical results of Theorem 1 can be applied by
modeling stationary kernels as the Monte Carlo ap-
proximation to the Fourier transform of a probability
measure. Under the property of kernel stationarity
such that k(x,x′) = k(x− x′), we can derive the RFF
approximate to a real-valued kernel as:

k(x− x′) =

∫
Rd

p(ω)eiω(x−x′) dω,

=

∫
Rd

p(ω) cos(ω(x− x′)) dω

≈ 1

R

R∑
r=1

cos(ωT
r (x− x′)) ,

(9)

where ωr ∼ p(ω).

In practice, it is common to evolve (9) a further
step and represent kernel evaluations as k(x − x′) =
Φ(x)TΦ(x′) where:

Φ(x) =

√
2√
2R


cos(ωT

1 x)
sin(ωT

1 x)
...

cos(ωT
Rx)

sin(ωT
Rx)

 , (10)

for which the expectation exactly evaluates to the
Monte Carlo estimate in (9). Many common kernels
are, in fact, the result of applying Bochner’s theorem
to specific measures p(ω): as an example, the RBF
is the result of the Fourier transform of a Gaussian
distribution p(ω) ∼ N (0, 1).

The RFF formulation offers a more flexible setting for
defining stationary kernels essential for Gaussian pro-
cesses and other kernel methods. In this framework,
each kernel is uniquely characterized by a probabil-
ity measure, thereby enabling the vast tool set for pa-
rameterization of probability distributions for use in
defining any valid stationary kernel – provided we can
sample from p(ω). Alternatively, samples ω can serve
as learnable hyperparameters in the GP hyperparam-
eter selection process, obviating the need to specify
p(ω) directly.

Sparse Spectrum Gaussian Processes Besides
kernel flexibility, the RFF approach also addresses the
computational bottleneck in GPs, namely the O(N3)
computational complexity for Gram matrix K inver-
sion in posterior-predictive estimates. A low-rank ap-
proximation proposed in Lázaro-Gredilla et al., 2010
scales in O(R3) time, where R is the number of Fourier
features, and typically R << N . This is achieved by
re-expressing the GP posterior-predictive (4) using the
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RFF representations in (10):

µ(f∗) = Φ(x∗)TA−1Φ(X)y

A = Φ(X)Φ(X)T
(11)

where A ∈ RR×R, rather than K ∈ RN×N , as in tra-
ditional GP inference. Typically, R is held constant
at a value significantly lower than the number of data
points N or increased at a much-reduced rate.

There have been numerous approaches proposed to
learn the optimal p(ω) or ω directly for a given prob-
lem setting using the RFF representation (Oliva et al.,
2016; Chang et al., 2017; Tompkins et al., 2019; Li et
al., 2019; Xie et al., 2019). Regardless of the method
chosen, the final kernel representation shown in Equa-
tions 9 and 10 remain primarily consistent across these
methods, allowing for easy implementation of different
learning schemes in a unified setting.

2.4 Spectral Bayesian Quadrature

Motivated by the flexibility and success of the RFF
approach in GP modeling, recent work (Warren et al.,
2022; Sellier and Dellaportas, 2023) has proposed re-
formulating the BQ problem using kernels and mea-
sures represented through RFFs. Specifically, the first
such approach, dubbed generalized Bayesian quadra-
ture (GBQ), reformulates the BQ integral posterior
mean estimate (6) as:

⟨f̄⟩ = yTK−1

RZ
√
(2π)d|Σ|

∫
x∈R

R∑
r=1

cos(ωT
r (x−X))

×
Z∑

z=1

cos(ρT
z (x− µ))dx,

(12)

where the first integrand term is the RFF approxi-
mation to a stationary kernel. The second integrand
term is the RFF representation of a Gaussian measure,
which the authors define as the RFF approximation
to an RBF kernel, through samples ρ, which is then
normalized by the appropriate Gaussian normalization
term [(2π)d|Σ|]−1/2.

The authors show that the integral in (12) can be ana-
lytically solved under such a formulation, thus yielding
the closed-form solution to the BQ posterior for RFF
kernels.

3 FAST AND LOW-RANK
SPECTRAL BAYESIAN
QUADRATURE

In the preceding section, we introduced foundational
concepts that pave the way for our contribution: two

novel methodologies enhancing the spectral BQ frame-
work’s flexibility and scalability.

Unlike prior approaches that primarily consider BQ
in the context of online integration – constructing in-
tegral posteriors ⟨f̄⟩ via adaptive sampling strategies
(Gunter et al., 2014; Adachi et al., 2022; Hayakawa et
al., 2022) – our focus shifts towards the offline scenario.
Our developments build upon recent efforts by (War-
ren et al., 2022; Sellier and Dellaportas, 2023) aimed
at augmenting the core BQ methodology’s adaptabil-
ity and computational efficiency. Although primarily
tailored for offline applications, our methods hold po-
tential for integration into adaptive sampling frame-
works, a prospect reserved for future investigation.

We begin with the observation that the traditional BQ
kernel mean µx(X) =

∫
k(x−X)p(x)dx is a convolu-

tion of a kernel function with a probability measure,
thus enabling the use of the convolution theorem to
solve the integral.

Theorem 2 (Convolution theorem (McGillem and
Cooper, 1991)). The convolution of functions g and
h in the spatial domain is equivalent to the inverse
Fourier transform of their point-wise multiplication in
the frequency domain:

(g ∗ h)(x) =
∫
g(x− τ)h(τ)dτ

= F−1
[
F [g]×F [h]

]
(x),

(13)

where F [g] and F−1[g] denote the Fourier and inverse
Fourier transforms of function g, respectively.

Using this result, we will derive our two novel method-
ologies: fast Fourier Bayesian quadrature (FFBQ) and
sparse spectrum Bayesian quadrature (SSBQ).

3.1 Fast Fourier Bayesian Quadrature

Using Bochner’s Theorem (1), we note that in the BQ
kernel mean setting F [k](ω) = pk(ω), while F [p](ω) =
kp(ω), where pk is the Fourier dual probability mea-
sure of kernel k, and kp is the kernel resulting from the
Fourier transform of measure p. Using these spectral
representations and the convolution theorem, we can
rewrite the BQ kernel mean µx(X) in (6) as:

µx(X) =

∫ ∫
k(x,X)p(x)dx

=

∫
k(X− x)p(x)dx

≡ F−1
[
F [k] ◦ F [p]

]
(X)

≡ F−1
[
pk ◦ kp

]
(X),

(14)

where ◦ denotes point-wise multiplication. We can
likewise reformulate the kernel mean variance term
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µxx′ in (7) as:

µxx′ =

∫
k(x,x′)p(x)p(x′)dxdx′

=

∫
µx(x

′)p(x′)dx′

=

∫
µx(0− x′)p(x′)dx′

≡ F−1
[
F [µx] ◦ F [p]

]
(0)

≡ F−1
[
pk ◦ kp ◦ kp

]
(0)

(15)

We note that the result of (15) is a convolution over
the result of (14) evaluated at 0.

There are several advantages to this reformulation of
BQ. First, analytical Fourier transforms exist for many
commonly used kernels and measures, enhancing flexi-
bility compared to traditional BQ. Secondly, when an-
alytical forms are unavailable, we can employ the fast
Fourier transform (FFT) to affordably approximate
spectral representations, extending BQ kernel options
to include stationary kernels defined in any manner.

Definition 1 (Fast Fourier Transform (Cooley and
Tukey, 1965)). Let (x = (x0, . . . , xZ−1) be a sequence
of Z complex numbers. The Fast Fourier Transform
FFT

[
x
]
computes the sequence X = (X0, . . . , XZ−1)

in O(Z logZ) time, where Xk =
∑Z−1

z=0 xze
−i2πkz/Z .

We next formally present our proposed FFBQ method,
which incorporates Equations 14 and 15 into the larger
context of BQ. We present our BQ integral mean
methodology below and include methodology for in-
tegral variance in the supplement.

Definition 2 (Fast Fourier Bayesian Quadrature).
Given data D = {xi, yi}Ni=1 = {X,y}, stationary ker-
nel kθ with hyperparameters θ, and probability measure
pγ with parameters γ, and a uniformly-spaced grid of
Z coordinates Λ = {λz}Zz=1 taken over the domain
of integration, we can approximate the BQ posterior
mean (6) as:

⟨f̄⟩ = yTK−1µx(X) ≈ yTK−1µ̂x(X), (16)

where

µ̂x(X) := ψ

[
FFT−1

[
Ḟ [kθ] ◦ Ḟ [pγ ]

]
(Λ)

]
(X), (17)

in which Ḟ signifies either the analytical Fourier trans-
form or fast Fourier transform, and ψ[·](X) is any in-
terpolation operator evaluated at X.

The interpolation function ψ in (17) is necessary be-
cause the FFT operates on uniformly sampled d-
dimensional grids Λ, while integrand samples D =
{X,y} may be non-uniform. Section 4 shows that this

interpolation step negligibly impacts FFBQ’s approx-
imation accuracy.

Definition 2 confers three advantages over Monte Carlo
methods for computing kernel means. First, its data
efficiency in the spectral domain, even at modest Z,
achieves higher accuracy with fewer samples and al-
lows for a higher accuracy ceiling, as validated in Sec-
tion 4. Second, the algorithmic efficiency of FFT en-
ables GPU acceleration and rapid evaluations for large
Z. Third, it allows practitioners flexibility in choosing
any valid stationary kernel or measure and leverag-
ing analytical Fourier transforms if available, all with-
out altering the formula. FFBQ is applicable as long
as the kernel and measure can be forward-evaluated
for grid points Λ and eliminates the need for measure
sampling, a frequent issue in Bayesian posterior esti-
mation.

3.2 Sparse Spectrum Bayesian Quadrature

We additionally extend spectral BQ to make use of the
efficient low-rank sparse spectrum GP in Equation 11
and derive here the equivalent low-rank BQ posterior
integral estimate resulting from this inclusion.

Substituting the sparse spectrum GP posterior mean
(11) for the full-rank GP posterior mean (4) in the BQ
integral posterior mean (6) yields:

⟨f̄⟩ ≈
∫

yTΦ(x)TA−1Φ(X)p(x)dx

≈
∫

yTΦ(X)TA−1Φ(x)p(x)dx

≈ yTΦ(X)TA−1

∫
Φ(x)p(x)dx.

(18)

Using this result, with the associated integral estimate
variance provided in the supplement, we define SSBQ:

Definition 3 (Sparse-Spectrum Bayesian Quadra-
ture). Given data D = {xi, yi}Ni=1 = {X,y}, sta-
tionary RFF-defined kernel kω formed by R samples
of the kernel’s spectral distribution pk(ω), probability
measure pγ with parameters γ, and a uniformly-spaced
grid of Z coordinates Λ = {λz}Zz=1 taken over the do-
main of integration, the low-rank SSBQ approximation
to the BQ posterior mean is:

⟨f̄⟩ =
∫

yTΦ(X)TA−1Φ(λ)p(λ)dλ

≈ yTΦ(X)TA−1Φ̂(Λ),

(19)

where

Φ̂(Λ) =
[
ψ
[
Φ̂1(Λ)

]
(0), . . . , ψ

[
Φ̂R(Λ)

]
(0)

]T
,

Φ̂r(Λ) := FFT−1
[
FFT

[
Φr

]
◦ Ḟ [pγ ]

]
(Λ)

(20)
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Figure 1: 2D Gaussian Mixture Analytical BQ Approximation Error of Kernel Mean, Integral Mean, and Integral
Variance.

if using FFT convolution, or

Φ̂r(Λ) =
1

Z

Z∑
z=1

Φr(λz)pγ(λz) (21)

if using Monte Carlo convolution. Φ and A are de-
fined as in Equation 11, and the transform operator
Ḟ and interpolation operator ψ[·](X) are as defined in
Definition 2.

SSBQ offers computational benefits beyond FFBQ, ex-
ecuting the BQ posterior integral in O(R3) time while
retaining desirable approximation error (Sutherland
and Schneider, 2015). Similar to FFBQ, SSBQ per-
mits any stationary kernel or measure without altering
the formulation. The distribution pk can be changed
for a sampling-based approach, or ω can be directly
optimized for a parametric approach.

3.3 Computational Complexity and
Considerations

In traditional analytical BQ, the computational com-
plexity is primarily governed by Gram matrix inver-
sion, with a complexity of O(N3). However, when
dealing with non-analytical kernel/measure pairs, the
complexity will vary depending on kernel mean ap-
proximation method.

If we consider MC kernel mean approximation, we can
observe complexities of O(NZ) for full-rank GPs and
O(RZ) in the low-rank scenario, with Z representing
the number of MC points. Due to the curse of di-
mensionality, Z can expand exponentially with dimen-
sion d, making kernel mean approximation the dom-
inant factor in BQ computational complexity when
N2 << Z or R2 << Z, which is a common occur-
rence in high-dimensional spaces.

This varying complexity motivates the introduction of

both FFBQ and SSBQ to address the dual BQ com-
putational challenges of kernel mean approximation
and Gram matrix inversion respectively. While FFT
convolution scales in O(N logN) compared to linear
complexity of MC, our experiments shown in Figure
2 demonstrate that FFBQ convolution offers compu-
tational improvements over MC in terms of sample-
efficiency in Z.

For SSBQ, we present methods for both FFT convo-
lution and MC approximation for computing the fea-
ture map mean Φ̂(Λ), tailoring the approach to the
integration measure and computational context. An-
alytical solutions for common measures like Gaussian
or uniform distributions streamline the process, but
alternative measures may require R independent FFT
convolutions. The choice between FFT and MC for
SSBQ is problem-specific, but to our knowledge, both
approaches are novel techniques for BQ using sparse
spectrum GP approximation.

Together, the FFBQ and SSBQ methodologies pre-
sented here represent significant computational and
flexibility improvements to traditional BQ that ad-
dress the dual challenges of non-analytical BQ. De-
tailed derivations of integral variance V(⟨f̄⟩) for both
methodologies are provided in the supplementary ma-
terial.

4 EXPERIMENTS

We evaluate our methods against various benchmark
problems, using models that vary across two axes: (1)
GP kernel choice; and (2) kernel mean operator for
solving or approximating µx(X) and µxx′ .

Baseline operators include analytical BQ with the
Gaussian measure and RBF kernel, Monte Carlo
(MC), and quasi-Monte Carlo (QMC) kernel mean ap-
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Figure 2: 2D Gaussian Mixture Wall-Clock and Sample Efficiency Ablation.

proximations. Hardware limitations cap the maximum
sample size Z at 100,000 for full BQ and 500,000 for
low-rank BQ in all Monte Carlo implementations, in-
cluding SSBQ (21). FFBQ faced no such limitations,
likely due to the optimized and GPU-parallelized na-
ture of the FFT, constituting an implicit advantage.

We use PCHIP (Fritsch and Butland, 1984) as the in-
terpolation function ψ in Definitions 2 and 3, leverag-
ing its fast, performant implementations. Experiments
are conducted using Jax, and all code and results are
publicly available1.

4.1 FFBQ and SSBQ Approximation Fidelity
& Computational Performance

We evaluate the performance of FFBQ and SSBQ
in approximating standard BQ results with analyti-
cal kernel and measure pairs. Specifically, we look at
the problem of integral approximation over the infi-
nite bounds of a 2D Gaussian mixture distribution us-
ing an RBF kernel and Gaussian measure. We present
results across Z: the number of samples (or uniform
grid points) Λ used by the operator for kernel mean
approximation.

In this study, we aim to quantify the error introduced
by FFBQ and SSBQ approximation methods to the
traditional BQ algorithm, and therefore use the BQ
analytical solutions as our ground truth rather than
the true integral solution. Figure 1 presents our re-
sults, where we assess:

1. The quality of FFBQ kernel mean estimates
µ̂x(X).

2. The accuracy of integral mean estimates ⟨f̄⟩.
3. Reliability in estimating the integral variance

V(⟨f̄⟩).

We measure error using absolute relative error against
analytical BQ solutions. For evaluating the quality

1https://github.com/houstonwarren/ffbq

of kernel mean approximations, the relative vector

norm metric,
||µx(X)BQ−µ̂x(X)||

||µx(X)BQ|| is used. In addition,

we present a wall-clock computational comparison be-
tween kernel mean approximation methods in Figure
2.

FFBQ shows superior performance in approximating
the kernel mean, integral mean, and integral variance
over the vast majority of Z. In addition, FFBQ offers
improved computational scaling (wall-clock) over MC
and QMC, and exhibits significant advantages over
baselines when approximation quality is jointly con-
sidered with computation time.

SSBQ also shows strong performance despite using
only 10% of the full-rank size. We study this behav-
ior further in Figure 3, measuring the approximation
accuracy of SSBQ as a function of sparsity ratio R

N .
SSBQ achieves less than 5% relative error while using
a covariance matrix that is only 30% of the full-rank
size, offering promise for more computationally scal-
able BQ methods.

4.2 Genz Integration Benchmarks: FFBQ
and SSBQ Kernel Flexibility

Next, we evaluate the performance of FFBQ and
SSBQ, using an expanded set of kernel families that are
not analytically tractable in traditional BQ, on a vari-
ety of d-dimensional Genz (Genz, 1984) bounded inte-
gration benchmarks. Specifically, we adopt the Genz
continuous, discontinuous, and oscillatory benchmarks
to study FFBQ and SSBQ’s integration capability
across varied integrand geometries.

For MC, QMC, FFBQ, and SSBQ, we implement the
RBF, the Matern 3/2, and fully parametric RFF ker-
nels. We implement the full-rank RFF kernel as a
product kernel multiplied by the bounded kernel from
Melkumyan and Ramos, 2009, which we observed to
produce more stable integral approximations. For
SSBQ, we report results for the QMC variant in Equa-
tion 21. We evaluate all possible combinations of

https://github.com/houstonwarren/ffbq
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d = 2 d = 4 d = 6

Genz Continuous
BQ-RBF 2.39e-03 ± 1.32e-03 2.81e-03 ± 2.00e-03 1.34e-03 ± 1.26e-03
QMC-RFF 2.10e-03 ± 1.40e-03 1.64e-03 ± 1.46e-03 1.55e-03 ± 7.24e-04
FFBQ-RFF 2.21e-03 ± 1.35e-03 1.53e-03 ± 1.22e-03 1.35e-03 ± 7.46e-04
SSBQ-RFF 5.92e-03 ± 4.82e-03 3.31e-03 ± 2.03e-03 1.22e-03 ± 1.22e-03

Genz Discontinuous
BQ-RBF 1.12e-01 ± 7.94e-02 4.17e+00 ± 3.71e+00 6.02e+01 ± 3.27e+01
QMC-M3/2 1.02e-01 ± 9.67e-02 1.00e+01 ± 5.97e+00 7.42e+01 ± 3.06e+01
FFBQ-M3/2 1.07e-01 ± 1.07e-01 8.91e+00 ± 4.07e+00 7.22e+01 ± 3.29e+01
SSBQ-RFF 1.06e-01 ± 1.05e-01 6.41e+00 ± 3.30e+00 6.46e+01 ± 3.92e+01

Genz Oscillatory
BQ-RBF 2.83e-05 ± 1.37e-05 7.09e-04 ± 4.70e-04 1.10e-02 ± 9.39e-03
QMC-RFF 3.63e-05 ± 1.32e-05 1.98e-03 ± 1.15e-03 3.92e-03 ± 4.12e-03
FFBQ-RFF 6.84e-04 ± 3.98e-04 3.06e-03 ± 1.96e-03 6.09e-03 ± 6.11e-03
SSBQ-RFF 1.03e-04 ± 9.07e-05 3.05e-04 ± 3.87e-04 4.96e-04 ± 3.42e-04

Table 1: 10-Fold Mean Absolute Integration Error With Standard Deviations for Genz Experiments.

kernel families and kernel mean operators; however,
some combinations are restricted (such as using non-
analytical kernel/measure combinations within vanilla
BQ).

Importantly, all these experiments are carried out un-
der strictly controlled conditions, with identical hyper-
parameters, data sizes (N = 1000, R = 100), learning
rates, training epoch counts, and diagonal Gram ma-
trix noise to ensure a fair comparison. The efficacy
of the Bayesian quadrature scheme is well-supported
(Briol et al., 2019), and the intention in this study
is not to focus on magnitude of error – which can be
strongly dependent on these factors – but rather the
relative errors between methods under identical cir-
cumstances.

For each kernel mean operator, the best-performing
kernel is selected based on 10-fold cross-validated GP
negative-log likelihood across a range of data dimen-
sionalities (d ∈ [2, 6]). This approach reflects a real-
world scenario where practitioners would choose a ker-
nel based on empirical performance, as analytical inte-
gral solutions for model selection are generally unavail-
able. The integration measures used are either Gaus-
sian or uniform distributions, chosen based on prior
knowledge of the integrand geometry.

The ultimate goal is to assess whether FFBQ and
SSBQ can match or exceed the performance of es-
tablished Bayesian quadrature schemes while offering
flexibility or computational efficiencies. A high sam-
ple count Z is used to isolate the benefits of increased
kernel flexibility within the BQ framework. Mean and
standard deviations of errors across ten random seeds
are included in Table 1, and full experimental setup
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Figure 3: 2D Gaussian Mixture SSBQ Relative Ap-
proximation Error of Analytical BQ Across Low-Rank
Size R / Full-Rank Size N .

details are provided in the supplement.

The results show that FFBQ and SSBQ tend to beat
other baselines as data dimensionality increases. The
value of kernel flexibility is especially apparent in
the Genz oscillatory benchmark, where the ideal pe-
riodic kernel can instead be captured through para-
metric RFF representation. SSBQ, in some instances,
achieves the best performance across methods despite
its low rank, especially in higher dimensions. This be-
havior is worthy of deeper analysis in future work.

A limitation we observed in all BQ methods, but par-
ticularly in SSBQ and FFBQ, is their sensitivity to the
parameters of the integration measure and the magni-
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tude of the jitter term added to the Gram matrix K
during the calculation of the BQ posterior. We pro-
vide a brief ablation study in the supplement evaluat-
ing this behavior, and confirm that FFBQ and SSBQ
converge to analytical BQ solutions under a wide range
of reasonable jitter terms.

Additionally, although the FFT enables FFBQ to scale
to large kernel mean sample sizes Z, it also necessitates
high Z as dimensionality grows, given that the num-
ber of points in the uniform grid over which the FFT
is performed grows exponentially with d. Even though
Bayesian Quadrature methods are often limited to
problems with d < 10, FFBQ can quickly become in-
tractable as we approach this limit. In such cases,
SSBQ paired with QMC methods are more compu-
tationally feasible, and our experiments demonstrate
that they can result in superior performance.

However, we note that for isotropic (separable) inte-
gration measures or kernels, multi-d FFT convolution
can be carried out as 1-d FFT convolutions in each
dimension, which greatly reduces the FFBQ compu-
tational footprint. We adopt this approach where ap-
propriate in our implementations.

4.3 Comparing SSBQ and Nyström for
Low-Rank BQ

Lastly, we perform an ablation study of SSBQ against
an alternative low-rank GP methodology in Nyström
approximation. Specifically, we adapt the sparse varia-
tional GP (SVGP) approach of Titsias, 2009, in which
R GP inducing point locations are trained through
variational inference and subsequently used for low-
rank inference. We use a problem setting of integration
over a 2D periodic signal (Pinder and Dodd, 2022):

f(x) =

2∑
d=1

sin(2xd) + xd cos(5xd) (22)

We use QMC kernel mean approximation for both
SSBQ and SVGP, and provide details of our SVGP
BQ implementation in the supplement. We perform
SSBQ using the RFF approximation to the RBF ker-
nel as well as a fully parametric RFF in which we train
frequencies ω. For the SVGP, we use the RBF and sin2

(periodic) kernels in order to provide similar induc-
tive biases to the SSBQ implementations. We present
results in Table 2 for sparsity ratios of R=100

N=1000 and
R=100
N=5000 , with means and standard deviations over 10
seeds. We additionally include standard MC integra-
tion as a baseline.

We can see that both the RBF and RFF variants
of SSBQ outperform the SVGP approaches, with the
RFF approach significantly outperforming other meth-

N = 1000 N = 5000

MC 1.36 ± 1.24 0.65 ± 0.68
SVGP-RBF 1.59 ± 1.44 0.65 ± 0.70
SVGP-sin2 1.72 ± 1.24 0.65 ± 0.68
SSBQ-RBF 0.48 ± 0.20 0.16 ± 0.13
SSBQ-RFF 0.02 ± 0.02 0.02 ± 0.01

Table 2: Low-Rank BQ Integration RMSE, 2D Peri-
odic Signal.

ods due to the full kernel flexibility and the periodic
problem setting.

In the N = 5000 setting, SSBQ-RBF and SVGP-RBF
GPs respectively had integrand GP RMSE’s of 0.342
and 0.259. However, SSBQ-RBF significantly outper-
forms SVGP-RBF in the integration setting despite
having a lower integrand GP accuracy. We hypothe-
size the spectral domain offers unique benefits for BQ
as RFFs span the full GP domain in frequency space,
while SVGP inducing points are inherently local. Fur-
ther theoretical and empirical study of this conjecture
is a compelling direction for future research.

5 CONCLUSION

This paper presents a novel reformulation of Bayesian
quadrature as spectral convolution, from which we de-
rive fast Fourier Bayesian quadrature and sparse spec-
trum Bayesian quadrature. We derived a method us-
ing the fast Fourier transform to approximate the BQ
posterior mean and variance for any stationary kernel.
We also presented a method to leverage the low-rank
approximation of the kernel Gram matrix for improved
BQ computational scaling. Finally, we demonstrated
these methods’ effectiveness on a variety of integration
problems.

These contributions lay the groundwork for incorpo-
rating recent advancements in spectral GP representa-
tions into BQ. Their straightforward implementations,
flexibility in kernel and measure selection, and com-
patibility with various kernel learning techniques can
facilitate future BQ developments. Potential future
studies might explore theoretical aspects of low-rank
BQ in both spectral and spatial domains and adapt
these methods to online BQ settings.

References

Adachi, Masaki et al. (Dec. 2022). “Fast Bayesian In-
ference with Batch Bayesian Quadrature via Kernel
Recombination”. In: Advances in Neural Informa-
tion Processing Systems 35, pp. 16533–16547.



Fast Fourier Bayesian Quadrature

Briol, François-Xavier et al. (2019). “Probabilistic In-
tegration: A Role in Statistical Computation?” In:
Statistical Science 34.1, pp. 1–22.

Chang, Wei-Cheng et al. (May 23, 2017). “Data-
Driven Random Fourier Features Using Stein Ef-
fect”. arXiv: 1705.08525 [cs, stat].

Cockayne, Jon et al. (Jan. 2019). “Bayesian Proba-
bilistic Numerical Methods”. In: SIAM Review 61.4,
pp. 756–789.

Cooley, James W. and John W. Tukey (1965). “An
Algorithm for the Machine Calculation of Complex
Fourier Series”. In: Mathematics of Computation
19.90, pp. 297–301. JSTOR: 2003354.

Fritsch, F. N. and J. Butland (June 1984). “A Method
for Constructing Local Monotone Piecewise Cubic
Interpolants”. In: SIAM Journal on Scientific and
Statistical Computing 5.2, pp. 300–304.

Genz, Alan (Sept. 1, 1984). “Testing Multidimensional
Integration Routines”. In: Proc. of International
Conference on Tools, Methods and Languages for
Scientific and Engineering Computation, pp. 81–94.

Ghahramani, Zoubin and Carl E. Rasmussen (2003).
“Bayesian Monte Carlo”. In: Advances in Neural In-
formation Processing Systems. Vol. 15.

Gunter, Tom et al. (2014). “Sampling for Inference
in Probabilistic Models with Fast Bayesian Quadra-
ture”. In: Advances in Neural Information Process-
ing Systems. Vol. 27. Curran Associates, Inc.

Hayakawa, Satoshi, Harald Oberhauser, and Terry
Lyons (Dec. 2022). “Positively Weighted Kernel
Quadrature via Subsampling”. In: Advances in Neu-
ral Information Processing Systems 35, pp. 6886–
6900.

He, Bobby, Balaji Lakshminarayanan, and Yee Whye
Teh (2020). “Bayesian Deep Ensembles via the Neu-
ral Tangent Kernel”. In: Advances in Neural Infor-
mation Processing Systems 33, pp. 1010–1022.

Hensman, James, Alexander Matthews, and Zoubin
Ghahramani (Feb. 2015). “Scalable Variational
Gaussian Process Classification”. In: Proceedings of
the Eighteenth International Conference on Artifi-
cial Intelligence and Statistics. PMLR, pp. 351–360.

Lázaro-Gredilla, Miguel et al. (2010). “Sparse Spec-
trum Gaussian Process Regression”. In: Journal of
Machine Learning Research 11.63, pp. 1865–1881.

Le, Quoc, Tamas Sarlos, and Alexander Smola
(May 26, 2013). “Fastfood - Computing Hilbert
Space Expansions in Loglinear Time”. In: Proceed-
ings of the 30th International Conference on Ma-
chine Learning, pp. 244–252.

Li, Chun-Liang et al. (Feb. 26, 2019). Implicit Kernel
Learning. arXiv: 1902.10214 [cs, stat]. preprint.

Liu, Haitao et al. (Apr. 9, 2019). “When Gaussian Pro-
cess Meets Big Data: A Review of Scalable GPs”.
arXiv: 1807.01065 [cs, stat].

McGillem, Clare D. and George R. Cooper (1991).
Continuous and Discrete Signal and System Anal-
ysis. 3rd ed. 494 pp.

Melkumyan, Arman and Fabio Ramos (July 11, 2009).
“A Sparse Covariance Function for Exact Gaus-
sian Process Inference in Large Datasets”. In: Pro-
ceedings of the 21st International Joint Conference
on Artificial Intelligence. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., pp. 1936–1942.

O’Hagan, A. (Nov. 1, 1991). “Bayes–Hermite Quadra-
ture”. In: Journal of Statistical Planning and Infer-
ence 29.3, pp. 245–260.

Ober, Sebastian W., Carl E. Rasmussen, and Mark
van der Wilk (Dec. 1, 2021). “The Promises and
Pitfalls of Deep Kernel Learning”. In: Proceedings
of the Thirty-Seventh Conference on Uncertainty in
Artificial Intelligence, pp. 1206–1216.

Oliva, Junier B. et al. (May 2, 2016). “Bayesian Non-
parametric Kernel-Learning”. In: Proceedings of the
19th International Conference on Artificial Intelli-
gence and Statistics. PMLR, pp. 1078–1086.

Ott, Katharina et al. (July 2, 2023). “Baysian Numer-
ical Integration with Neural Networks”. In: Proceed-
ings of the Thirty-Ninth Conference on Uncertainty
in Artificial Intelligence, pp. 1606–1617.

Pinder, Thomas and Daniel Dodd (2022). “GPJax: A
Gaussian Process Framework in JAX”. In: Journal
of Open Source Software 7.75, p. 4455.

Rahimi, Ali and Benjamin Recht (2008a). “Random
Features for Large-Scale Kernel Machines”. In: Ad-
vances in Neural Information Processing Systems.
Vol. 20.

– (2008b). “Weighted Sums of Random Kitchen Sinks:
Replacing Minimization with Randomization in
Learning”. In: Advances in Neural Information Pro-
cessing Systems. Vol. 21.

Raissi, Maziar and George Em Karniadakis (Mar. 15,
2018). “Hidden Physics Models: Machine Learn-
ing of Nonlinear Partial Differential Equations”. In:
Journal of Computational Physics 357, pp. 125–141.

Rasmussen, Carl E. and Christopher Williams (2006).
Gaussian Processes for Machine Learning. Cam-
bridge, Mass: MIT Press. 248 pp.

Robert, Christian P. et al. (2018). “Accelerating
MCMC Algorithms”. In:Wiley Interdisciplinary Re-
views. Computational Statistics 10.5.

https://arxiv.org/abs/1705.08525
http://www.jstor.org/stable/2003354
https://arxiv.org/abs/1902.10214
https://arxiv.org/abs/1807.01065


Houston Warren, Fabio Ramos

Rudin, Walter (2011). Fourier Analysis on Groups.
Hoboken: John Wiley & Sons.

Sellier, Jeremy and Petros Dellaportas (Apr. 11, 2023).
“Sparse Spectral Bayesian Permanental Process
with Generalized Kernel”. In: Proceedings of The
26th International Conference on Artificial Intelli-
gence and Statistics, pp. 2769–2791.

Sutherland, Danica J. and Jeff Schneider (July 12,
2015). “On the Error of Random Fourier Features”.
In: Proceedings of the Thirty-First Conference on
Uncertainty in Artificial Intelligence, pp. 862–871.

Titsias, Michalis (Apr. 2009). “Variational Learning of
Inducing Variables in Sparse Gaussian Processes”.
In: Proceedings of the Twelth International Confer-
ence on Artificial Intelligence and Statistics. PMLR,
pp. 567–574.

Tompkins, Anthony et al. (Apr. 11, 2019). “Black Box
Quantiles for Kernel Learning”. In: The 22nd In-
ternational Conference on Artificial Intelligence and
Statistics, pp. 1427–1437.

Warren, Houston, Rafael Oliveira, and Fabio Ramos
(June 18, 2022). “Generalized Bayesian Quadrature
with Spectral Kernels”. In: Proceedings of the 38th
Conference on Uncertainty in Artificial Intelligence.

Wilson, Andrew and Ryan Adams (May 26, 2013).
“Gaussian Process Kernels for Pattern Discov-
ery and Extrapolation”. In: Proceedings of the
30th International Conference on Machine Learn-
ing, pp. 1067–1075.

Xie, Jiaxuan et al. (Oct. 7, 2019). Deep Kernel Learn-
ing via Random Fourier Features. arXiv: 1910 .

02660 [cs, stat]. preprint.

Zhu, Harrison et al. (2020). “Bayesian Probabilis-
tic Numerical Integration with Tree-Based Models”.
In: Advances in Neural Information Processing Sys-
tems. Vol. 33, pp. 5837–5849.

Zhu, Shixiang et al. (Mar. 18, 2021). “Deep Fourier
Kernel for Self-Attentive Point Processes”. In: In-
ternational Conference on Artificial Intelligence and
Statistics, pp. 856–864.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes/No/Not Appli-
cable]

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable]

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes/No/Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes/No/Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Yes/No/Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable]

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble]

https://arxiv.org/abs/1910.02660
https://arxiv.org/abs/1910.02660


Fast Fourier Bayesian Quadrature

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. [Yes/No/Not Ap-
plicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Yes/No/Not
Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Yes/No/Not Applica-
ble]



Fast Fourier Bayesian Quadrature: Supplementary Materials

1 FAST FOURIER BAYESIAN QUADRATURE (FFBQ) PROOF

In this section, we will provide the full derivations for the Fast Fourier Bayesian Quadrature (FFBQ) and Sparse
Spectrum Bayesian Quadrature (SSBQ) mean estimate presented in the main text, as well as derive the variance
of these estimators.

We briefly replicate here the traditional BQ mean and variance estimates from the main text. The BQ mean is
defined as:

⟨f̄⟩ =
∫
k(x,X)TK−1y p(x) dx

= yTK−1

∫
k(x,X) p(x) dx

= yTK−1µx(X),

(1)

where y = f(x) + ϵ are integrand observations, µx(X) =
∫
k(x,X) p(x) dx is the kernel mean of the observed

data X, and for brevity we define (K+ σ2I)−1 := K−1 throughout.

The associated variance of ⟨f̄⟩ is defined as:

V(⟨f̄⟩) = µxx′ − µx(X)TK−1µx(X) (2)

µxx′ =

∫ ∫
k(x,x′)p(x)p(x′)dx dx′ (3)

where µxx′ represents the kernel mean over both x and x′. We will refer to the kernel mean µx(X) observed at
integrand observations X as the observed kernel mean, and the dual kernel mean µxx′ defined in Equation 3 as
the full kernel mean.

We note that FFBQ is identical to traditional BQ outside of the methodology for calculating the values of or the
observed kernel mean µx(X) and full kernel mean µxx′ , for which FFBQ instead approximates through the FFT
and inverse-FFT (IFFT) as µ̂x(X) and µ̂xx′ . We will thus focus our efforts in this section on detailing the FFBQ
methodologies for approximating these values, which can then be used interchangeably within the original BQ
mean and variance formulations in Equations 1 and 2.

We first replicate Bochner’s Theorem from the main text:

Theorem 1 (Bochner’s theorem (Rudin, 2011)). A shift-invariant kernel k(x,x′) = k(x−x′) is positive-definite
if and only if it is the Fourier transform of a non-negative measure.

From Bochner’s Theorem, we present the following lemma:

Lemma 1 (Fourier Transforms of Kernels and Measures). Given probability measure p, the Fourier transform
F of p is:

F [p] = kp, (4)

where kp is a stationary kernel function. By the properties of Fourier transforms, the double Fourier transform
of p yields:

F [F [p]] ∝ p ≡ F [kp] ∝ p (5)

The significance of this result arises when we combine it with properties of the convolution theorem, which we
replicate here:
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Theorem 2 (Convolution theorem (McGillem and Cooper, 1991)). The convolution of functions g and h in the
spatial domain is equivalent to the inverse Fourier transform of their point-wise multiplication in the frequency
domain:

(g ∗ h)(x) =
∫
g(x− τ)h(τ)dτ

= F−1
[
F [g]×F [h]

]
(x),

(6)

where F [g] and F−1[g] denote the Fourier and inverse Fourier transforms of function g, respectively.

1.1 FFBQ Mean

Combining the convolution theorem with with Lemma 1 allows us to arrive at a reformulation for the observed
kernel mean µx(X):

Lemma 2 (Observed Kernel Mean µx(X) as Convolution).

µx(X) =

∫ ∫
k(x,X)p(x)dx

=

∫
k(X− x)p(x)dx

≡ F−1
[
F [k] ◦ F [p]

]
(X)

≡ F−1
[
pk ◦ kp

]
(X),

(7)

where ◦ denotes point-wise multiplication.

In (7), our choice of kernel and measure may yield closed forms for pk and kp, but in the case they do not, we
can approximate these values using the fast Fourier transform (FFT):

Definition 1 (Fast Fourier Transform (Cooley and Tukey, 1965)). Let (x = (x0, . . . , xZ−1) be a sequence
of Z complex numbers. The Fast Fourier Transform FFT

[
x
]
computes the sequence X = (X0, . . . , XZ−1) in

O(Z logZ) time, where Xk =
∑Z−1

z=0 xze
−i2πkz/Z .

Regardless of how we choose to represent pk and kp – whether via analytical relationships or FFT approximation
– the inverse Fourier transform F−1

[
pk ◦kp

]
of their point-wise multiplication will in general not be closed-form,

thus requiring use of the inverse FFT (IFFT) in the FFBQ implementations.

Both the FFT and IFFT operate on a uniformly spaced d-dimensional hypergrid of function evaluations over
the domain of convolution. We note this grid as Λ = {λz}Zz=1. In BQ we assume that we have access to forward
calculation of both k and p such that in combination with the FFT we can approximate pk and kp if their
analytical forms aren’t available.

If analytical forms are available, we can simply evaluate pk and kp on FFTFreq[Λ], where FFTFreq denotes the
FFT frequency transform, which maps uniform coordinates in the spatial domain to their equivalent coordinates
in the frequency domain. This transform is a basic functionality available in any FFT implementation library.

Thus far, we have the means to calculate the observed kernel mean, using FFT convolution, at the coordinates
of Λ, ie. µ̂x(Λ). However, BQ requires that we have access to the values of µ̂x(X) at integrand observations X.
As µ̂x(Λ) constitutes a uniformly spaced hyper-grid of µ̂x, it presents a valuable representation from which we
can infer µ̂x(X) using interpolation. We denote this interpolator applied to integrand values X as ψ[Λ](X).

Finally, we arrive at the FFBQ approximation to µ̂x(X):

Definition 2 (FFBQ Observed Kernel Mean Approximation). Given data D = {xi, yi}Ni=1 = {X,y}, stationary
kernel kθ with hyperparameters θ, and probability measure pγ with parameters γ, and a uniformly-spaced grid of
Z coordinates Λ = {λz}Zz=1 taken over the domain of integration, we can approximate the observed kernel mean
µx(X) ≈ µ̂x(X) as:

µ̂x(X) := ψ

[
FFT−1

[
Ḟ [kθ] ◦ Ḟ [pγ ]

]
(Λ)

]
(X), (8)

in which Ḟ signifies either the analytical Fourier transform or fast Fourier transform, depending on availability
from choice of kernel k and measure p, and ψ[·](X) is any interpolation operator evaluated at X.



µ̂x(X) is a drop-in replacement for µx(X) in both the BQ mean and variance terms in Equations 1 and 2. With
µ̂x(X), we can fully produce the FFBQ integral mean ⟨f̄⟩ approximation (1), and can calculate the second term
µ̂x(X)TK−1µ̂x(X) in the BQ variance (2).

1.2 FFBQ Variance

In order to calculate the full FFBQ variance we require the approximation of the full kernel mean µxx′ , which
we propose here is a simple extension of Lemma 1 to instead be a two-fold convolution of kernel k over measure
p. As in Lemma 1, we make use of Bochner’s and convolution Theorems (1, 2) to put forward the following:

Lemma 3 (Full Kernel Mean µxx′ as Convolution).

µxx′ =

∫
k(x,x′)p(x)p(x′)dxdx′

=

∫
µx(x

′)p(x′)dx′

=

∫
µx(0− x′)p(x′)dx′

≡ F−1
[
F [µx] ◦ F [p]

]
(0)

≡ F−1
[
pk ◦ kp ◦ kp

]
(0)

(9)

As in the FFBQ approximation of the observed kernel mean µ̂x(X), we can make use of the FFT/IFFT for
Fourier approximations and interpolation operator ψ to evaluate the resulting convolution at 0. Thus, our
definition for the FFBQ approximation to µxx′ is a simple extension of Definition 2:

Definition 3 (FFBQ Full Kernel Mean Approximation). Given data D = {xi, yi}Ni=1 = {X,y}, stationary
kernel kθ with hyperparameters θ, and probability measure pγ with parameters γ, and a uniformly-spaced grid
of Z coordinates Λ = {λz}Zz=1 taken over the domain of integration, we can approximate the full kernel mean
µxx′ ≈ µ̂xx′ as:

µ̂xx′ := ψ

[
FFT−1

[
Ḟ [kθ] ◦ Ḟ [pγ ] ◦ Ḟ [pγ ]

]
(Λ)

]
(0), (10)

in which Ḟ signifies either the analytical Fourier transform or fast Fourier transform, depending on availability
from choice of kernel k and measure p, and ψ[·](0) is any interpolation operator evaluated at 0.

Using the results for approximations of observed and full kernel means from Definitions 2 and 3 yields the final
forms for the FFBQ integral mean and variance approximations:

⟨f̄⟩ ≈ yTK−1µ̂x(X), (11)

V(⟨f̄⟩) ≈ µ̂xx′ − µ̂x(X)TK−1µ̂x(X). (12)

2 SPARSE SPECTRUM BAYESIAN QUADRATURE (SSBQ) PROOF

We now turn our attention towards providing the derivations for the low-rank SSBQ mean and variance approx-
imations. SSBQ builds upon the results presented by Lázaro-Gredilla et al., 2010 who propose a low-rank form
for a GP marginal distribution:

µ(f∗) = Φ(x∗)TA−1Φ(X)y (13)

V(f∗) = Φ(x∗)TA−1Φ(x∗) (14)

A = Φ(X)Φ(X)T , (15)

where Φ represents the RFF feature projection:

Φ(x) =

√
2√
2R


cos(ωT

1 x)
sin(ωT

1 x)
...

cos(ωT
Rx)

sin(ωT
Rx)

 , (16)



Fast Fourier Bayesian Quadrature: Supplementary Materials

2.0.1 SSBQ Integral Mean

If we substitute the low-rank mean for the full-rank GP mean in the BQ mean (1) equation and reorganize terms,
we arrive at the following low-rank BQ integral mean approximation:

⟨f̄⟩ ≈
∫

yTΦ(x)TA−1Φ(X)p(x)dx

≈
∫

yTΦ(X)TA−1Φ(x)p(x)dx

≈ yTΦ(X)TA−1

∫
Φ(x)p(x)dx.

(17)

The question then turns to how we choose to approximate the integral
∫
Φ(x)p(x)dx, for which we propose two

methodologies. The simplest methodology is to do so with Monte Carlo/Quasi-Monte Carlo:∫
Φ(x)p(x)dx ≈ Φ̂ =

1

Z

Z∑
z=1

Φ(xz), (18)

where xz ∼ p(x). The resulting vector Φ̂ is length R, where R is the number of Fourier features used in the
feature map projection in Equation 16.

Following the same logic presented in Section 1.1, we can alternatively solve this integral through convolution:∫
Φ(x)p(x)dx ≡

∫
Φ(0− x)p(x)dx

≡ F−1
[
F [Φ] ◦ F [p]

]
(0)

≡ F−1
[
F [Φ] ◦ kp

]
(0).

(19)

We note that in the case of sin features, we actually repose the integral as correlation, ie.
∫
Φ(0+x)p(x)dx, but

the principles and implementations are nearly identical to the convolution setting.

Equations 18 and 19 are all we need, in addition to the definition for grid points Λ and interpolator ψ, to define
the SSBQ mean approximation presented in the main text:

Definition 4 (Sparse-Spectrum Bayesian Quadrature Integral Mean). Given data D = {xi, yi}Ni=1 = {X,y},
stationary RFF-defined kernel kω formed by R samples of the kernel’s spectral distribution pk(ω), probability
measure pγ with parameters γ, and a uniformly-spaced grid of Z coordinates Λ = {λz}Zz=1 taken over the
domain of integration, the low-rank SSBQ approximation to the BQ posterior mean is:

⟨f̄⟩ =
∫

yTΦ(X)TA−1Φ(λ)p(λ)dλ

≈ yTΦ(X)TA−1Φ̂(Λ),

(20)

where

Φ̂(Λ) =
[
ψ
[
Φ̂1(Λ)

]
(0), . . . , ψ

[
Φ̂R(Λ)

]
(0)

]T
,

Φ̂r(Λ) := FFT−1
[
FFT

[
Φr

]
◦ Ḟ [pγ ]

]
(Λ)

(21)

if using FFT convolution, or

Φ̂r(Λ) =
1

Z

Z∑
z=1

Φr(λz)pγ(λz) (22)

if using Monte Carlo convolution.

We note that in the case of Monte Carlo approximation of the feature map mean (22), Λ need not actually be
uniformly sampled, but in the interest reducing notation clutter we use Λ to also represent MC/QMC samples.



2.0.2 SSBQ Variance

The SSBQ variance is trivial to calculate given either the FFT or MC/QMC approximations to the vector Φ̂, and
requires no further sampling or FFT procedures beyond what is performed in the integral mean approximation.
We derive the SSBQ variance from the sparse spectrum GP variance presented in Equation 14.

The full-rank BQ integral variance estimate is simply the variance of the conditional full-rank GP integrated over
x and x′, which is Gaussian under linear integration (Hennig et al., 2022). We apply the same pattern here, and
integrate the sparse spectrum GP variance (14) over both x and x′ to obtain the SSBQ variance approximation:

V(⟨f̄⟩) ≈
∫ ∫

Φ(x)TA−1Φ(x′)dxdx′

≈ Φ̂(x)TA−1Φ̂(x′)T ,

(23)

As we have already calculated Φ̂(x) andA−1 through the SSBQ integral mean calculation, no additional sampling
or computation is required beyond simple low-rank matrix multiplication. We thus arrive at our definition for
the SSBQ integral variance approximation:

Definition 5 (Sparse-Spectrum Bayesian Quadrature Integral Variance). Given data D = {xi, yi}Ni=1 = {X,y},
stationary RFF-defined kernel kω formed by R samples of the kernel’s spectral distribution pk(ω), probability
measure pγ with parameters γ, and a uniformly-spaced grid of Z coordinates Λ = {λz}Zz=1 taken over the
domain of integration, the low-rank SSBQ approximation to the BQ integral posterior variance is:

V(⟨f̄⟩) ≈ Φ̂(Λ)TA−1Φ̂(Λ)T , (24)

where Φ̂(Λ) is as defined in Definition 4 through either FFT or MC approximation.

3 EXPERIMENTAL DETAILS

3.1 Gaussian Mixture Wall-Clock Experimental Details

We provide details here for the computational ablation study (Section 4.1 and Figure 2 in the main text). While
our other experiments leverage modern GPU libraries and acceleration methods, we deliberately perform this
experiment on CPU (M2 MacBook Air) in order to ensure that comparisons are fair between methods and not
owing to specific library choices that are optimized for GPU.

Nonetheless, we still see major advantages in the FFBQ method over baselines on CPU, and there are a number
of high-performing GPU implementations of the FFT that can also be leveraged to provide further computational
benefits.

3.2 Genz Experimental Setup Details

We provide here extended detail on the experimental setup for the Genz integration benchmark (Genz, 1984)
experiments. We highlight in the main text that our objective is compare the relative performances of methods
under identical (potentially non-optimal) hyperparameters in order to clearly distinguish between their respective
benefits. Table 1 provides the full parameter and experimental settings used across all methods.

We follow the same training and evaluation process for all methodologies and experiments. During the training
stage, GP hyperparameters (kernel lengthscales and RFF kernel frequencies ω) are optimized through gradient
descent on integrand GP negative log likelihood. These parameters are then used to initialize new GPs on an
equally-sized test-set on which we evaluate the performance of each operator in BQ integration.

For each operator, we perform BQ using all possible valid integrand GP architectures. The results reported in
the main text are for those integrand GPs that performed best, as evaluated by mean negative log-likelihood
across random seeds, for each operator across a plurality of dimensions d ∈ [2, 6]. We then use the analytical
solutions for each benchmark to calculate errors.
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Parameter/Setting Symbol Value

Training Integrand Observation Count N 1000
Testing Integrand Observation Count N ′ 1000
Fourier Feature Count R 100
Kernel Variance σ2

k 1
Gram Diagonal Noise σ2

n 0.1
# of Random Seeds per Experiment - 10
Optimizer - Adam (Kingma and Ba, 2017)
Learning Rate - 0.01
Training Epochs - 200
Integration Bounds (Genz Continuous) - xd ∈ [0, 2]
Integration Bounds (All Others) - xd ∈ [0, 1]
CPU - AMD Ryzen 7 5800X
GPU - NVIDIA 3080 Ti GPU

Table 1: Parameters and Settings for Genz Experiments.

3.3 BQ Using Nyström SVGP

We outline here the approach for adapting the Nyström SVGP using the method of Titsias, 2009 to the BQ
setting. The SVGP predictive mean is defined as:

µ(f∗) = K∗RKRRµR, (25)

where R is the number of inducing points and µR is defined as in Equation 10 of Titsias, 2009. We follow the
standard training procedures presented in the text for performing variational inference on inducing points XR

and kernel hyperparameters using training data from the integrand f .

If we substitute the SVGP predictive mean (25) into the BQ posterior mean (1), we find:

⟨f̄⟩ =
∫
k(x,XR)

TK−1
RRµR p(x) dx

= µT
RK

−1
RR

∫
k(x,XR) p(x) dx,

(26)

which is simply the kernel mean over the inducing pointsXR. In the experiment in the main text, we approximate
the inducing-point kernel mean using QMC over a uniform integration measure, after which point the BQ
posterior integral mean and variance can be calculated in the usual manner.

4 ADDITIONAL EXPERIMENTS & ABLATION STUDIES

4.1 FFBQ Diagonal Jitter Ablation

We present in Figure 1 a simple ablation study regarding the jitter term added to the diagonal of the Gram matrix
K during FFBQ. We use the same experimental setup as Section 4.1 in the main text, where we compare the
relative errors of different kernel mean operators to posterior integral estimate produced by analytical BQ with an
RBF kernel and Gaussian measure. The results in Figure 1E demonstrate that suitable FFBQ hyperparameters
can be determined by assessing solution convergence and reveal a wide range of effective settings. We observe that
FFBQ needs comparatively larger diagonal noise σ2 than other methods to stabilize, yet this doesn’t negatively
impact its performance.

4.2 FFBQ and SSBQ Variance Calibration

We perform a small study on the BQ integral variance estimates produced by each kernel mean operator. This
setting shifts our focus towards evaluating the calibration of the full integral posterior distribution N (⟨f̄⟩,V(⟨f̄⟩))
produced by each operator. We explore this topic through the lens of results from the Genz continuous bench-
mark.



10−6 10−5 10−4 10−3 10−2 10−1 100

Diagonal Jitter σ2

10−7

10−6

10−5

10−4

lo
g
(|〈
f̄
〉−
〈f̄
〉 B

Q
|)

Parameter Sensitivity: Integral Mean 〈f̄〉 Relative
Approximation Error w.r.t Gaussian BQ

FFBQ

MC

QMC

SSBQ

Figure 1: Relative Error of Kernel Mean Approximations to Gaussian BQ Across Jitter σ2.

We use an identical experimental setup described in Section 3.2, with one modification. We observed that the
BQ integral variance was highly sensitive, across all kernel mean operators, to the magnitude of the diagonal
noise values σ2

n added to Gram matrix K to ensure numerical stability. If σ2
n is not jointly optimized while

fitting the integrand GP, then the BQ integral variance V(⟨f̄⟩) takes on a subjective element conditional on the
practitioners choice of noise term.

As we do not optimize σ2
n directly in our Genz experiments, we choose to adopt heuristics to select these

values in this example. For analytical BQ, we simply use σ2
n = Tr(K) ∗ 1e−4, while for approximated BQ

(including MC methods and FFBQ/SSBQ), we adopt an eigenvalue clipping approach to ensure numerical
stability, demonstrated below in Algorithm 1. We found that this approach was the most versatile for ensuring
stable BQ approximations across settings and dimensionalities.

Algorithm 1 Kernel Matrix Eigenvalue Clipping

Require: Kernel matrix K ∈ RN×N

Ensure: Clipped and reprojected kernel matrix K′

Perform eigenvalue decomposition of K, K = UΛUT

Identify the maximum eigenvalue λmax = maxi λi
Initialize clipped eigenvalue diagonal matrix Λ′

for each eigenvalue λi in Λ do
Clip the eigenvalue λ′i = max

(
λi,

λmax

1000

)
:

Set Λ′
ii = λ′i

end for
Reproject the kernel matrix using the clipped eigenvalues K′ = UΛ′UT :
return K′

The use of heuristics in calculation of the BQ variance means that we are less interested in the absolute values
generated by each operator, but rather the patterns that emerge as we compare the use of identical heuris-
tics across varied settings. Figure 2 outlines our results across data dimensionality d, where calibration error

represents the absolute solution Z-score, ie.
∣∣ sol−⟨f̄⟩√

V(⟨f̄⟩)

∣∣
We note that there are three GPs being represented in Figure 2, but four operators: a basic RBF GP for the
BQ operator, a low-rank RFF GP for SSBQ, and a full-rank bounded RFF GP (Melkumyan and Ramos, 2009)
shared by the QMC and FFBQ operators. Naturally, each GP will produce differing variance results based on
the kernel in use, so it is unsurprising to see that variance estimates differ between the operators.

There are interesting trends to be be gleaned from these results. We observe that as dimensionality increases,
traditional BQ and SSBQ variance estimates are relatively constant, which we would expect given that the data
size N and Fourier feature size R is held constant. Conversely, we see that the QMC and FFBQ operators
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Figure 2: BQ Variance (Left) and Calibration Error (Right) Across Dimensionality d Over 10 Seeds.

produce larger variance estimates as dimensionality increases. The true solution to the integral in fact decreases
as dimensionality increases, which implies that the increase in variance is due to increased approximation error
of the terms µx(X) and µxx′ used the the variance calculation. The calibration error of SSBQ and traditional
BQ also remain stable over dimensions, while FFBQ and SSBQ calibration errors decrease as a result of the
increase in variance. Regardless, all methods achieve admirable calibration error given that the solution Z-scores
remains −1 < Z < 1 across all settings. The QMC and FFBQ operators, when using the bounded RFF GP,
tend to slightly overestimate variance and thus have a higher calibration error. We can likely identify µx(X) and
µxx′ approximation error as the culprit in this regard.

We observed in the main text that SSBQ exhibited superior scaling in integral approximation error as dimen-
sionality increases, despite only using 10% of the full-rank size Gram matrix. This performance is mirrored
in this experiment, where the variance estimates closely match those produced by the analytical BQ solution
regardless of dimensionality. This behavior is of great interest, and surprising, given that intuitively the curse of
dimensionality should strongly affect the low-rank approximation accuracy if the number of features R is held
constant. The experimental results we have observed suggest that further theoretical study on the approximation
error and benefits of low-rank kernel methods within the BQ setting, whether through RFFs or an alternative,
could be a valuable contribution to the domain.
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