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Abstract

Recently, tensor low-rank representation
(TLRR) has become a popular tool for ten-
sor data recovery and clustering, due to its
empirical success and theoretical guarantees.
However, existing TLRR methods consider
Gaussian or gross sparse noise, inevitably
leading to performance degradation when the
tensor data are contaminated by outliers or
sample-specific corruptions. This paper de-
velops an outlier-robust tensor low-rank rep-
resentation (OR-TLRR) method that pro-
vides outlier detection and tensor data clus-
tering simultaneously based on the t-SVD
framework. For tensor observations with ar-
bitrary outlier corruptions, OR-TLRR has
provable performance guarantee for exactly
recovering the row space of clean data and de-
tecting outliers under mild conditions. More-
over, an extension of OR-TLRR is proposed
to handle the case when parts of the data are
missing. Finally, extensive experimental re-
sults on synthetic and real data demonstrate
the effectiveness of the proposed algorithms.
We release our code at https://github.

com/twugithub/2024-AISTATS-ORTLRR.

1 INTRODUCTION

In this work, we are interested in clustering 3-way ten-
sor data in the presence of outliers. Formally, suppose
we are given a data tensor X ∈ Rn1×n2×n3 with each
lateral slice corresponding to one data sample, and we
know the tensor can be decomposed as

X = L0 + E0, (1)
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where L0 is a low-rank tensor with the tensor columns
drawn from a union of tensor subspaces (see Sec-
tion 3.2), and E0 is a column-sparse tensor. Both com-
ponents are of arbitrary magnitudes. In particular, we
do not know the locations of the nonzero columns of
E0, not even how many there are. We aim to exactly
recover the low-rank tensor L0 from X and cluster
the samples in L0 according to their respective ten-
sor subspaces. This problem is important for many
applications, including image/video denoising and in-
painting [Liu et al., 2013b, Lu et al., 2020], data clus-
tering [Elhamifar and Vidal, 2013, Zhou et al., 2021],
background subtraction [Xia et al., 2021], and net-
work traffic monitoring [Mardani et al., 2015].

This problem has been well studied in the matrix do-
main. Subspace clustering methods, for example, in-
volve treating vectorized data samples as lying near a
union of subspaces and clustering the samples based on
the self-expressive model [Elhamifar and Vidal, 2013,
Liu et al., 2013a]. While these matrix techniques are
remarkably effective, one major shortcoming is that
they can only handle 2-way (matrix) data. To deal
with multi-way data such as color images, hyperspec-
tral images and videos, one needs to reshape the tensor
data into a matrix. Such a vectorization process would
destroy the original spatial structure of data and lead
to compromised performance [Lu et al., 2020]. This
suggests that it might be useful to maintain the in-
trinsic structure of multi-dimensional data for efficient
and reliable subsequent processing.

Recently, several tensor-based clustering algo-
rithms that exploit the spatial aspects of tensor
data using multilinear algebra tools have been
proposed [Kernfeld et al., 2014, Fu et al., 2016,
Zhang et al., 2018, Wu and Bajwa, 2018, Wu, 2020,
Zhou et al., 2021, Yang et al., 2022, Wu, 2023]. In
particular, motivated by the notion of the tensor-
tensor product (t-product) [Kilmer and Martin, 2011]
which generalizes the matrix multiplication for third-
order tensors based on the Discrete Fourier Transform
(DFT), one can assume that multi-way data lie near
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a union of tensor subspaces [Kernfeld et al., 2014,
Wu and Bajwa, 2018, Wu, 2020, Zhou et al., 2021].
As a consequence, each data sample in a union
of tensor subspaces can be well represented by
a t-linear combination of other points in the
dataset. Interestingly, the t-product can be gen-
eralized by replacing DFT with any invertible
linear transforms [Kernfeld et al., 2015]. Such a
new transform based t-product is of great interest
because it allows to use data-adaptive trans-
forms for different types of tensor data. Driven
by this advantage, extensive numerical examples
have shown its effectiveness in many applications
[Lu et al., 2019b, Song et al., 2020, Jiang et al., 2020,
Lu, 2021, Kong et al., 2021, Wang et al., 2021,
Qin et al., 2022, Yang et al., 2022, Jiang et al., 2023].

However, all the aforementioned tensor clustering
methods simply assume the noise is sparse and uni-
formly distributed across E0. Thus, such methods
cannot effectively handle outliers or sample-specific
corruptions, which are common in real scenarios be-
cause of sensor failures, uncontrolled environments,
etc. Another limitation of existing tensor subspace
clustering methods is that most of them are designed
for complete data. When dealing with incomplete
data, we need to first recover the incomplete tensor
data using any off-the-shelf tensor completion meth-
ods and then cluster the recovered data. This two-
step approach may lead to sub-optimal clustering re-
sults because the downstream clustering task is inde-
pendent of the optimization problem that is used for
tensor recovery [Yang et al., 2022]. While the work
in [Yang et al., 2022] can simultaneously recover and
cluster the incomplete and noisy data, it still requires
learning a dictionary from the incomplete data before
clustering can be carried out.

Our goal in this paper is to perform robust low-
rank tensor analysis on both complete and missing
data for improved data clustering in the presence of
outliers. We put forth an outlier-robust tensor low-
rank representation (OR-TLRR) method which clus-
ters the observed tensor data and detects outliers
through convex optimization. Our model is more
generic as it is allowed to use any invertible linear
transforms that satisfy certain conditions. Interest-
ingly, as we show in Section 4.4, the row space of L0

determines the segmentation result of the “authentic”
samples. We theoretically show that OR-TLRR guar-
antees the exact recovery of the row space of L0 when
L0 and E0 satisfy certain assumptions. Different from
[Zhou et al., 2021, Yang et al., 2022] that use the `1
norm of E to handle sparse noise, we focus on a differ-
ent problem and thus there exist critical differences in
theoretical analysis and guarantees. Lastly, we gener-

alize the OR-TLRR algorithm so that it can obtain a
tensor low-rank representation of the incomplete data
using only the observed entries. Experiments on syn-
thetic and real data show the efficacy of the proposed
algorithms. The main contributions of this work can
be summarized as follows:

• We propose a novel OR-TLRR method for low-
rank tensor analysis based on any invertible lin-
ear transforms. OR-TLRR handles outliers and
sample-specific corruptions which cannot be well
handled by existing tensor clustering methods.

• We provide theoretical performance guarantees
for OR-TLRR: under mild conditions, OR-TLRR
can exactly recover the row space of L0 and detect
outliers.

• We extend OR-TLRR for tensor subspace clus-
tering with missing entries called OR-TLRR by
entry wise zero fill (OR-TLRR-EWZF), in which
the self-expressiveness error is restricted only to
the observed entries.

2 RELATED WORK

Existing subspace clustering methods
[Liu and Yan, 2011, Eriksson et al., 2012,
Liu et al., 2012, Elhamifar and Vidal, 2013,
Liu et al., 2013a, Tang et al., 2014, Yang et al., 2015,
You et al., 2016, Lu et al., 2019a] that are based on
the self-expressive model mainly follow a two-stage
approach: (i) learning an affinity matrix by solv-
ing an optimization problem from the data using
different regularizations, and (ii) applying spectral
clustering (e.g., Ncut [Shi and Malik, 2000]) on the
affinity matrix. The key component in subspace
learning is to construct a good affinity graph. In
particular, the matrix-based low-rank representation
(LRR) [Liu et al., 2012, Liu et al., 2013a] algorithm
imposes a low-rank constraint on the representation
coefficient matrix to capture the global structure of
data. Due to its physical interpretation and promising
performance, many variants of LRR have been further
studied. The latent LRR [Liu and Yan, 2011] extends
LRR to handle the hidden effects and integrates
subspace segmentation and feature extraction into a
unified framework. The structure-constrained LRR
[Tang et al., 2014] improves LRR for the disjoint
subspace segmentation. Typical subspace clustering
methods, despite their effectiveness, neglect the
spatial information within the data. Due to the
powerful learning ability, deep clustering methods can
capture the complex nonlinear structure within the
data [Xie et al., 2016, Ji et al., 2017, Ji et al., 2019,
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Li et al., 2021]. However, they cannot solve the prob-
lem of clustering high-dimensional but small-scale
tensor data considered in this work. In addition, they
lack the theoretical guarantee for data clustering.

In order to better capture the geometry of ten-
sor data, a high-order model based upon t-product
[Kilmer and Martin, 2011, Kilmer et al., 2013] that
has in particular helped advance the state-of-the-art
in many applications is the union-of-tensor-subspaces
model [Kernfeld et al., 2014, Wu and Bajwa, 2018,
Zhou et al., 2021], which dictates that data lie near
a mixture of low-dimensional tensor subspaces. One
striking advantage of the t-product is its capabil-
ity in capturing the “spatial-shifting” correlation that
is ubiquitous in real-world data. For the pur-
pose of inducing tensor subspace-preserving solu-
tions, existing methods use different regularizations on
the representation coefficients. For example, sparse
submodule clustering (SSmC) [Kernfeld et al., 2014]
imposes a group sparsity constraint on the rep-
resentation tensor, while the tensor nuclear norm
[Lu et al., 2020] is adopted in tensor low-rank repre-
sentation (TLRR) [Zhou et al., 2021] as a convex sur-
rogate of the tensor tubal rank. Motivated by the gen-
eral t-product definition performed on unitary trans-
forms [Kernfeld et al., 2015], a more general TLRR
model that can handle incomplete data is proposed in
[Yang et al., 2022]. However, both [Zhou et al., 2021]
and [Yang et al., 2022] assume that noise is Gaussian
or sparse and thus cannot effectively handle outlier
corruptions. Indeed, robust tensor subspace cluster-
ing with outliers appears to be a challenging prob-
lem that has not been well studied both in prac-
tice and in theory. We conclude by noting that ten-
sor nuclear norm has been utilized for multi-view
clustering [Xie et al., 2018, Su et al., 2023]. Nonethe-
less, these works are still based on the union of
subspaces model and reduce to different variants
of [Elhamifar and Vidal, 2013, Liu et al., 2013a] for
single-view data.

3 NOTATIONS AND
PRELIMINARIES

In this section, we will introduce the notations and
give the basic definitions used throughout the paper.

3.1 Notations

For brevity, we summarize the notations in Table 1.
Throughout this paper, the fields of real number and
complex number are denoted as R and C, respectively.
The definitions of the identity tensor and the conju-
gate transpose of a tensor will be given in Section 3.2.
The frontal-slice-wise product of two third-order ten-

Table 1: Notational convention.
A A tensor. a A vector.
A A matrix. a A scalar.

In The identity matrix. AH The conjugate transpose of A.
Ai,j The (i, j)-th element of A. tr(A) The trace of A.
aj The j-th column of A. ‖A‖ The largest singular value of A.

aTj The j-th row of A. ‖A‖∗ Sum of singular values of A.

In The identity tensor. A(i) A(i) = A(:, :, i).
Ai,j,k The (i, j, k)-th entry of A.A(i) A(i) = A(:, i, :).

A(:, i, :)The i-th lateral slice of A.AH The conjugate transpose of A.
A(:, :, i)The i-th frontal slice of A.‖A‖2,1‖A‖2,1 =

∑
j ‖A(:, j, :)‖F .

A(i, j, :)The (i, j)-th tube of A. ‖A‖F ‖A‖F =
√∑

i,j,k |Ai,j,k|2.

PU (A) PU (A) = U ∗L UH ∗L A.PΘ The projection onto Θ.

PV (A) PV (A) = A ∗L V ∗L VH .P
Θ⊥ The projection onto Θc.

PLV (A) PLV (A) = V ∗L VH ∗L A.B(E) {Ẽ : Ẽ(:, i, :) =
E(:,i,:)
‖E(:,i,:)‖F

(i ∈ Θ);P
Θ⊥ Ẽ = 0}.

sors A ∈ Cn1×n2×n3 and B ∈ Cn2×n4×n3 , denoted
by A � B, is a tensor C ∈ Cn1×n4×n3 such that
C(i) = A(i)B(i), i = 1, . . . , n3 [Kernfeld et al., 2015].

3.2 Preliminaries

The third-order t-product under an invertible linear
transform L establishes the groundwork for the devel-
opment of our algorithm and its definition was first
given in [Kernfeld et al., 2015]. In this paper, the
transformation matrix L defining the transform L is
restricted to be orthogonal, i.e., L ∈ Cn3×n3 satisfying

LLH = LHL = τIn3 , (2)

where τ > 0 is a constant. We define the associ-
ated linear transform L(·) : Rn1×n2×n3 → Cn1×n2×n3

which gives A by performing a linear transform on any
A ∈ Rn1×n2×n3 along the 3rd dimension with inverse
mapping L−1(·) as

A = L(A) = A×3 L and L−1(A) = A×3 L
−1. (3)

Here, ×3 denotes the mode-3 tensor-matrix product
[Kolda and Bader, 2009], i.e., X ×3 A = fold3(A ·
unfold3(X )), where unfold3 : Cn1×n2×n3 →
Cn3×n1n2 is the mode-3 unfolding operator and fold3
is its inverse operator [Kolda and Bader, 2009].

Definition 1 (t-product [Kernfeld et al., 2015]). The
t-product of any A ∈ Cn1×n2×n3 and B ∈ Cn2×n4×n3

under the invertible linear transform L in (3), is de-
fined as C = A ∗L B ∈ Cn1×n4×n3 such that L(C) =
L(A)� L(B).

We denote A ∈ Cn1n3×n2n3 as

A = bdiag(A) =

A(1)

. . .

A(n3)

 ,
where bdiag is an operator which maps A to A. The
conjugate transpose of a tensor A ∈ Cn1×n2×n3 is
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the tensor AH ∈ Cn2×n1×n3 satisfying L(AH)(i) =
(L(A)(i))H , i = 1, 2, . . . , n3. The identity tensor
In ∈ Cn×n×n3 is a tensor such that each frontal
slice of L(In) = In is the identity matrix In. Then
In = L−1(In) gives the identity tensor under L.
A tensor Q ∈ Cn×n×n3 is orthogonal if it satisfies
Q ∗L QH = QH ∗L Q = In. A tensor is called f-
diagonal if each of its frontal slices is a diagonal matrix.
The spectral norm of A is defined as ‖A‖ = ‖A‖.
Definition 2 (t-SVD [Song et al., 2020]). Let L be
any invertible linear transform in (3). For any A ∈
Cn1×n2×n3 , it can be factorized as A = U ∗LS ∗LVH ,
where U ∈ Cn1×n1×n3 and V ∈ Cn2×n2×n3 are orthog-
onal, and S ∈ Cn1×n2×n3 is an f-diagonal tensor.

Definition 3 (Tensor tubal rank [Song et al., 2020]).
For any A ∈ Cn1×n2×n3 , the tensor tubal rank
rankt(A) under L in (3) is defined as the number of
nonzero singular tubes of S, i.e., rankt(A) = #{i :
S(i, i, :) 6= 0}, where S is from the t-SVD of A =
U ∗L S ∗L VH .

For computational simplicity, we use the skinny t-SVD
throughout this paper. For any A ∈ Cn1×n2×n3 with
tubal rank r, the skinny t-SVD is given by A = U ∗L
S ∗L VH , where U ∈ Cn1×r×n3 , S ∈ Cr×r×n3 , and
V ∈ Cn2×r×n3 , in which UH ∗L U = VH ∗L V = Ir.
Definition 4 (Tensor nuclear norm
[Song et al., 2020]). The tensor nuclear norm of
A ∈ Cn1×n2×n3 under L in (3) is defined as

‖A‖∗ = 1
τ

∑n3

i=1 ‖A(i)‖∗ = 1
τ ‖A‖∗.

Definition 5 (Tensor subspace [Zhou et al., 2021]).
Given a third-order tensor D = [D(1), . . . ,D(p)} ∈
Rn1×p×n3 in which the elements D(i)’s are linearly in-
dependent, i.e., there is not a nonzero C ∈ Rp×1×n3

satisfying D ∗L C = 0. Then the set Sn1
n3

= {Y |Y =
D ∗L C,∀C ∈ Rp×1×n3} is called a tensor subspace
of dimension dim(Sn1

n3
) = p. Here, D(1), . . . ,D(p) are

called the spanning basis of Sn1
n3

.

Definition 6 (Tensor column space
[Zhou and Feng, 2017]). For an arbitrary ten-
sor A ∈ Rn1×n2×n3 with tubal rank r, assume
the t-SVD of A is A = U ∗L S ∗L VH . Then
its column space Range(A) is the t-linear space
spanned by the columns of U ∈ Rn1×r×n3 , i.e.,
Range(A) = {Y |Y = U ∗L C,∀C ∈ Rr×1×n3}.

4 OUTLIER-ROBUST TLRR

In this section, we propose our OR-TLRR model
for tensor data clustering in the presence of outliers,
followed by the theoretical analysis on the recovery
guarantee of OR-TLRR. The optimization details and
proofs of all the Lemmas and Theorems are provided
in the supplementary material.

4.1 Formulation of OR-TLRR

Assume that we are given n2 data samples of size
n1 × n3, stored as lateral slices in a tensor X =
L0 + S0 ∈ Rn1×n2×n3 , where the columns in L0 be-
long to c distinct tensor subspaces and S0 is a tensor
corresponding to outliers. The challenge is to recover
the low-rank tensor L0 from X and segment the sam-
ples in L0 into c clusters. In many cases, the error
term E0 has sparse column supports compared to the
data size. This implies that the tensor `2,1-norm is ap-
propriate to characterize E0. Let L be any invertible
linear transform in (3) and it satisfies (2). Mathemat-
ically, the OR-TLRR model can be described as the
following optimization program based on the tensor
nuclear norm:

min
Z,E
‖Z‖∗ + λ‖E‖2,1 s.t. X = X ∗L Z + E, (4)

where Z ∈ Rn2×n2×n3 corresponds to a coefficient ten-
sor and λ > 0 is a parameter. In this work, we directly
use the raw tensor data X as the dictionary. In this
setting, the learned representation tensor Z depicts
the relations among samples and can be used for clus-
tering. Suppose we have an optimal solution (Z?,E?)
for (4). For clustering, we first perform outlier detec-
tion based on the magnitude of the residual E?, and we
use Θ to denote the indices of the “detected” outliers.
Then we compute an affinity matrix Ẑ ∈ R|Θc|×|Θc|

by setting Ẑ = 1
2n3

∑n3

k=1(|Z(k)
?[Θc,Θc]|+ |(Z

(k)
?[Θc,Θc])

H |),
where A[Θ,Θ] is a submatrix of A corresponding to
rows and columns indexed by Θ. Finally, clustering of
the “detected” normal samples can be carried out us-
ing existing tools such as Ncut [Shi and Malik, 2000].

4.2 Tensor Linear Representation

Before introducing the proposed algorithm for clus-
tering, we explain the connection between the tensor
linear representation X = A ∗L Z and canonical vec-
tor linear representation. We introduce two operators:
vec and ivec, where vec vectorizes each sample X (j)

to a vector xj of dimension n1n3 and ivec is its in-
verse operation. For each sample X (j), if its vectorized
version xj can be linearly represented by a dictionary
A ∈ Rn1n3×p as

xj = Azj , ∀j = 1, . . . , n2, (5)

then one can always find two tensors A ∈ Rn1×p×n3

and Z ∈ Cp×n2×n3 such that tensor linear representa-
tion X = A ∗L Z holds, as stated below.

Theorem 1. If (5) holds, then there exist two tensors
A ∈ Rn1×p×n3 and Z ∈ Cp×n2×n3 such that

X (j) = ivec(xj) = A ∗L Z(j), ∀j = 1, . . . , n2, (6)
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where A can be constructed from A by setting A(j) =

ivec(aj) and Z can be computed by Z = L−1(Z) in
which Z(:, j, k) = zj (k = 1, . . . , n3). However, if
there exists a tensor such that (6) holds, (5) may not
hold.

Theorem 1 implies that tensor linear representation
under linear transform can capture complex struc-
tures underlying the data which cannot be fully de-
scribed by vector linear representation. We would like
to emphasize that this result generalizes the one from
[Zhou et al., 2021, Theorem 1] which only considered
the DFT. In their proof, some special properties of
DFT were used, which lead to several key differences
between the two proofs.

4.3 Optimization of OR-TLRR

We can use Alternating Direction Method of Mul-
tipliers (ADMM) [Lin et al., 2011] to solve problem
(4). The major computation lies in the update of Z,
which requires computing n3 SVDs of n2 × n2 ma-
trices in the transform domain. Thus directly apply-
ing ADMM will be highly time consuming when the
number of data samples n2 is large. To reduce the
computational cost, we reformulate (4) as follows. As-
sume UX ∗L SX ∗L VH

X is the skinny t-SVD of X and
rX = rankt(X ). One can replace X and Z in (4) with
D = UX ∗L SX ∈ Rn1×rX×n3 and VX ∗L Z ′, respec-
tively, where Z ′ ∈ RrX×n2×n3 is one variable to be
updated. This gives the following equivalent formula-
tion:

min
Z′,E
‖Z ′‖∗ + λ‖E‖2,1 s.t. X = D ∗L Z ′ + E. (7)

After obtaining a solution (Z ′?,E?) to the problem
(7), the optimal solution to (4) can be recovered by
(VX ∗LZ ′?,E?). For any invertible linear transform L,
the per-iteration complexity is O(rXn1n2n3+rX (n1+
n2)n23). For some special transforms, e.g., DFT, the
per-iteration complexity is O(rXn1n2n3 + rX (n1 +
n2)n3 log(n3)).

4.4 Exact Recovery Performance Guarantee

Here we provide the theoretical performance guarantee
for OR-TLRR. The skinny t-SVD of X and L0 are
denoted as UX ∗L SX ∗L VH

X = X and U0 ∗L S0 ∗L
VH

0 = L0, respectively. We use Θ0 to denote the
column support of E0. For convenience, we denote
n(1) = max(n1, n2) and n(2) = min(n1, n2). To better
illustrate our intuition, we begin with the “ideal” case
where there is no outlier in the data, i.e., X = L0 and
E0 = 0. Then the OR-TLRR problem degenerates to

min
Z
‖Z‖∗ s.t. X = X ∗L Z. (8)

As shown in [Zhou et al., 2021, Yang et al., 2022], this
problem has a unique solution given by Z? = V0 ∗L
VH

0 , which suggests that the solution of OR-TLRR
identifies the row space of L0 in this special case.
When the data tensor is contaminated by outliers, we
expect the row space of L0 can still be exactly recov-
ered. We first establish the following lemma, which
states that the optimal solution to OR-TLRR always
locates within the row space of raw tensor data X .

Lemma 1. For any optimal solution (Z?,E?) to the
OR-TLRR problem (4), we have Z? ∈ PL

VX
.

This lemma states that the column space of Z? is a
subspace of VX . Thus, in order for Z? to exactly
recover V0, a necessary condition is that V0 is a sub-
space of VX , i.e., V0 ∈ PL

VX
. Intuitively, if some

outliers in E0 lie exactly on the span of the tensor
subspaces, then we can think of X as containing more
authentic samples than L0 and this condition will be
violated. To show how it can hold, we establish the
following lemma:

Lemma 2. If Range(L0) and Range(E0) are indepen-
dent to each other, i.e., Range(L0)∩Range(E0) = {0},
then V0 ∈ PL

VX
.

Next, similar to TLRR [Zhou et al., 2021], exactly
separating X as the low-rank term L0 plus the
column-sparse term E0 requires L0 is not column-
sparse and E0 is not low-rank. To characterize this
intuition, we need the following two mild conditions.

Incoherence Condition on Low-Rank Term: Let
L be any invertible linear transform in (3) and it satis-
fies (2). For L ∈ Rn1×n2×n3 , assume that rankt(L) =
r and it has the skinny t-SVD L = U∗LS∗LVH . Then
the tensor column-incoherence condition with param-
eter µ is defined as

µ ≥ n2τ

r
max

j=1,...,n2

‖V̂H ∗L e̊j‖2F , (9)

where e̊j is a tensor of size n2×1×n3 with the entries
of the (j, 1)-th tube of L(̊ej) equaling 1 and the rest
equaling 0. A small value of µ implies the low-rank
term L is not column-sparse.

Ambiguity Condition on Column Sparse Term:
Another identifiability issue arises if the outlier tensor
is both column-sparse and low-rank. To avoid this
pathological situation, we introduce an unambiguity
condition on E:

‖B(E)‖ ≤ log(n2)/θ (10)

for some constant θ ≥ 4. In fact, condition (10) holds
as long as the directions of the nonzero columns of
E scatter sufficiently randomly. Thus it guarantees
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that the tensor E cannot be low-rank when the col-
umn sparsity of E is comparable to n2. We have the
following exact recovery guarantee for problem (4).

Theorem 2. Suppose Range(L0) = Range(PΘ⊥0
(L0))

and E0(:, j, :) /∈ Range(L0) for j ∈ Θ0. Then any
solution (V0 ∗L VH

0 + H,E0 − X ∗L H) to (4) with
λ = θ

4
√

log(n(1))‖X‖
exactly recovers the row space of

L0 and the column support of E0 with a probability at
least 1− c1n−10(1) , where c1 is a positive constant, if the

column support set Θ0 is uniformly distributed among
all sets of cardinality |Θ0| and

rankt(L0) ≤ ρrn2
µn1n3‖X‖2

and |Θ0| ≤ ρsn2, (11)

where ρr and ρs are constants, X ∗L (V0 ∗L VH
0 +

PΘ0
PL

V0
(H)) satisfies the column-incoherence condi-

tion (9) and E0 −X ∗L PΘ0P
L
V0

(H) satisfies the un-
ambiguity condition (10).

The incoherence and ambiguity conditions on L̂ =
X ∗L Ẑ and Ê = E0 −X ∗L PΘ0

PL
V0

(H) is not sur-

prising, where Ẑ = V0 ∗L VH
0 + PΘ0

PL
V0

(H). In

fact, the column space of Ẑ is the same as the row
space of Range(L0) and Ê has the same column sup-

port as that of E0. Also, notice that X = X ∗L Ẑ + Ê.
So we can consider L̂ and Ê as the underlying low-
rank and sparse terms, and we assume incoherence and
ambiguity conditions on them instead of L0 and E0.
The above results demonstrate that with high proba-
bility OR-TLRR can exactly recover the row space of
PΘ0

(L0) and the support set Θ0 of E0.

5 OR-TLRR WITH MISSING
ENTRIES

Let us now consider the case where some entries of
the data tensor X are missing. Specifically, let W ∈
{0, 1}n1×n2×n3 be a binary matrix such that Wi,j,k =
1 if X i,j,k is observed and Wi,j,k = 0 otherwise. The
locations of the observed entries for the entire data
can be indexed by the set Ω = {(i, j, k) : Wi,j,k = 1}.
Given the observed entries of X , {X i,j,k}(i,j,k)∈Ω, our
goal is to segment the tensor columns of X into their
corresponding tensor subspaces in the presence of out-
liers. Since we do not have access to the complete data,
it is impossible to directly solve (4). One approach is
to fill the missing entries in X with 0s, i.e., to replace
X by Xmiss = W�X and then solve (4). As such, the
constraint in (4) will become Xmiss = Xmiss ∗L Z +E
and we essentially enforce the (i, j, k)-th entry of the
reconstructed tensor Xmiss ∗L Z to be close to zero
whenever Wi,j,k = 0, while this term should be not
penalized because we do not observe X i,j,k. Followed
by [Yang et al., 2015], we propose to incorporate the

Table 2: Exact recovery on random problems of vary-
ing sizes. The Discrete Fourier Transform (DFT) is
used as the invertible linear transform L.

ρ = 0.2, r` = 0.1n1, λ = 4/(
√

log(n(1))‖X‖)

n1 rankt(PΘ⊥0
(X̃))

‖PLV0
−PŨ‖F

‖PLV0
‖F

‖P
Θ⊥0

(L0)−P
Θ⊥0

(X̃)‖F

‖P
Θ⊥0

(L0)‖F
dist(Θ0, Θ̃)

60 30 2.5664e-15 2.7575e-09 0
100 50 2.7290e-15 4.0480e-09 0
150 75 3.0159e-15 1.0702e-08 0

ρ = 0.4, r` = 0.1n1, λ = 4/(
√

log(n(1))‖X‖)

n1 rankt(PΘ⊥0
(X̃))

‖PLV0
−PŨ‖F

‖PLV0
‖F

‖P
Θ⊥0

(L0)−P
Θ⊥0

(X̃)‖F

‖P
Θ⊥0

(L0)‖F
dist(Θ0, Θ̃)

60 30 2.5826e-15 1.5814e-27 0
100 50 2.8084e-15 2.7471e-27 0
150 75 3.0104e-15 5.5133e-27 0

constraint PΩ(Xmiss) = PΩ(Xmiss ∗LZ+E) into (4)
and solve the following problem:

min
Z,E
‖Z‖∗ + λ‖PΩ(E)‖2,1

s.t. PΩ(Xmiss) = PΩ(Xmiss ∗L Z + E), (12)

where PΩ : Rn1×n2×n3 → Rn1×n2×n3 is the orthogo-
nal projector onto the span of tensors vanishing out-
side Ω so that the (i, j, k)-th component of PΩ(A) is
equal to Ai,j,k if (i, j, k) ∈ Ω and zero otherwise. We

further assume that UX ∗L SX ∗L VH
X is the skinny

t-SVD of Xmiss and rX = rankt(Xmiss), (12) can then
be transformed into a simpler problem as follows:

min
Z′,E
‖Z ′‖∗ + λ‖PΩ(E)‖2,1

s.t. PΩ(Xmiss) = PΩ(D ∗L Z ′ + E), (13)

where D = UX ∗L SX . We refer the reader to the
supplementary material for deduction details. We dub
this approach Outlier-Robust Tensor LRR by Entry-
Wise Zero-Fill (OR-TLRR-EWZF). Note that we can
also robustify TLRR [Zhou et al., 2021] by replacing
λ‖PΩ(E)‖2,1 in (12) with λ‖PΩ(E)‖1, and we call the
resulting algorithm TLRR-EWZF in our experiments.

6 EXPERIMENTS

In this section, we perform extensive experiments on
both synthetic and real data to demonstrate the useful-
ness of the proposed algorithms. All experiments are
conducted using Matlab R2021b on an AMD Ryzen 9
5950X 3.40GHz CPU with 64GB RAM.

6.1 Synthetic Experiments

Here, we verify the recovery guarantee in Theorem 2
on randomly generated tensors. Three invertible linear
transforms L are adopted: (a) Discrete Fourier Trans-
form (DFT); (b) Discrete Cosine Transform (DCT);
(c) Random Orthogonal Matrix (ROM). We consider
c = 5 tensor subspaces and generate the random
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Table 3: Exact recovery on random problems of vary-
ing sizes. The Discrete Cosine Transform (DCT) is
used as the invertible linear transform L.

ρ = 0.2, r` = 0.1n1, λ = 40/(
√

log(n(1))‖X‖)

n1 rankt(PΘ⊥0
(X̃))

‖PLV0
−PŨ‖F

‖PLV0
‖F

‖P
Θ⊥0

(L0)−P
Θ⊥0

(X̃)‖F

‖P
Θ⊥0

(L0)‖F
dist(Θ0, Θ̃)

60 30 2.4522e-15 1.1794e-05 0
100 50 2.5648e-15 5.3367e-06 0
150 75 2.9294e-15 5.1267e-06 0

ρ = 0.4, r` = 0.1n1, λ = 40/(
√

log(n(1))‖X‖)

n1 rankt(PΘ⊥0
(X̃))

‖PLV0
−PŨ‖F

‖PLV0
‖F

‖P
Θ⊥0

(L0)−P
Θ⊥0

(X̃)‖F

‖P
Θ⊥0

(L0)‖F
dist(Θ0, Θ̃)

60 30 2.5582e-15 2.8832e-13 0
100 50 2.6576e-15 8.6553e-15 0
150 75 2.9046e-15 1.1909e-15 0

Table 4: Exact recovery on random problems of vary-
ing sizes. The Random Orthogonal Matrix (ROM) is
used as the invertible linear transform L.

ρ = 0.2, r` = 0.1n1, λ = 40/(
√

log(n(1))‖X‖)

n1 rankt(PΘ⊥0
(X̃))

‖PLV0
−PŨ‖F

‖PLV0
‖F

‖P
Θ⊥0

(L0)−P
Θ⊥0

(X̃)‖F

‖P
Θ⊥0

(L0)‖F
dist(Θ0, Θ̃)

60 30 3.7444e-14 1.0834e-05 0
100 50 4.2402e-14 6.0406e-06 0
150 75 4.0723e-14 5.6253e-06 0

ρ = 0.4, r` = 0.1n1, λ = 40/(
√

log(n(1))‖X‖)

n1 rankt(PΘ⊥0
(X̃))

‖PLV0
−PŨ‖F

‖PLV0
‖F

‖P
Θ⊥0

(L0)−P
Θ⊥0

(X̃)‖F

‖P
Θ⊥0

(L0)‖F
dist(Θ0, Θ̃)

60 30 3.4499e-14 1.2335e-07 0
100 50 3.9048e-14 3.4851e-15 0
150 75 3.7525e-14 1.2012e-15 0

tensor Q = [Q1, . . . ,Q5] ∈ Rn1×n2×n3 with Q` =
A` ∗L B`, where the entries of A` ∈ Rn1×r`×n3

and B` ∈ Rr`×s`×n3 are independently sampled from
N (0, 1/n1) distribution. We simply set s` = n1, hence
n2 = 5n1. Then the lateral slices are independently
sampled with probability ρ as outliers, and the entries
of these selected columns are randomly sampled from
i.i.d. N (0, ζ/(n1n3)) distribution, where ζ is the av-
eraged magnitude of the samples in Q. In this way,
the samples and outliers approximately have the same
magnitude. The remaining entries of E0 are 0s. We
denote the column support of E0 as Θ0. Finally, the
observed tensor X is generated by X = L0+E0, where
L0 is obtained by setting the lateral slices of Q corre-
sponding to nonzero columns of E0 to be 0s.

To verify that OR-TLRR can perform well for various
tensor sizes, we set n3 = 100, n1 = [60, 100, 150], r` =
0.1n1, and ρ = [0.2, 0.4]. We run every experiment for
20 times and the results reported here correspond to
the average of these 20 random trials. We set λ =
α/(
√

log(n(1))‖X‖) and empirically choose α from
[1, 2, 4, 8, 10] for DFT and from [5, 10, 20, 30, 40, 50] for

DCT and ROM. Note that X̃ denotes the recovered
tensor, Ũ is the column space of Z̃, and the recovered
outlier support set of Ẽ is denoted as Θ̃. Table 2 -
Table 4 respectively give the recovery results for the
three different choices of the linear transforms L. The
recovered tubal rank of PΘ⊥0

(X ) is exactly equal to

5r` and the relative errors ‖PL
V0
−P Ũ‖F /‖P

L
V0
‖F and

Table 5: Description of datasets.
Dataset #Class #Total image Size Type

ORL 40 400 32 × 32 Face
COIL20 20 1440 32 × 32 Object
Umist 20 575 56 × 46 Face

FRDUE 152 3040 25 × 22 Face
USPS 10 9298 16 × 16 Handwritten

(a) ORL (b) COIL20 (c) Umist

(d) FRDUE (e) USPS (f) Mirflickr-25k

Figure 1: Sample images from the datasets.

‖PΘ⊥0
(L0)−PΘ⊥0

(X̃ )‖F /‖PΘ⊥0
(L0)‖F are very small

(less than 10−4). The Hamming distance dist(Θ0, Θ̃)

between Θ0 and Θ̃ is always 0. Thus, the recov-
ery guarantee claimed in Theorem 2 has been fully
verified by these numerical results. We also investi-
gate the OR-TLRR-EWZF performance with missing
data, where we set the percentage of missing entries
δ to be 10% and 20%. We implement OR-TLRR-
EWZF with λ = 2/(

√
log(n(1))‖Xmiss‖) for DFT and

λ = 30/(
√

log(n(1))‖Xmiss‖) for DCT and ROM. The

resulting Hamming distance dist(Θ0, Θ̃) is again al-
ways 0, which suggests that our algorithm can detect
the outliers successfully in this setting.

6.2 Real-World Applications

In this subsection, the proposed algorithms are based
on two different linear transforms for all experiments,
i.e., DFT and DCT. The corresponding methods
of OR-TLRR and OR-TLRR-EWZF are called OR-
TLRR-DFT/OR-TLRR-DCT and OR-TLRR-EWZF-
DFT/OR-TLRR-EWZF-DCT, respectively for short.
We fix λ = 1/(

√
log(n(1))‖X‖) for OR-TLRR-

DFT and λ = 1/(
√

log(n(1))‖Xmiss‖) for OR-TLRR-

EWZF-DFT, and set λ = 100/(
√

log(n(1))‖X‖) for

OR-TLRR-DCT and λ = 100/(
√

log(n(1))‖Xmiss‖)
for OR-TLRR-EWZF-DCT. Table 5 gives the brief in-
troduction of five testing databases, including ORL1,
COIL202, Umist3, FRDUE4, and USPS [Hull, 1994].

1
http://cam-orl.co.uk/facedatabase.html

2
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.

php
3
https://www.visioneng.org.uk/datasets/

4
https://bamdevmishra.in/codes/tensorcompletion/

http://cam-orl.co.uk/facedatabase.html
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://www.visioneng.org.uk/datasets/
https://bamdevmishra.in/codes/tensorcompletion/
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Table 6: AUC of outlier detection and clustering results (ACC, NMI and PUR) on ORL-MIRFLICKR-25k and
COIL20-MIRFLICKR-25k datasets for complete data experiments.

Datasets (# Outlier) ORL-MIR-25k (100) COIL20-MIR-25k (100) COIL20-MIR-25k (200)
Methods AUC ACC NMI PUR AUC ACC NMI PUR AUC ACC NMI PUR
R-PCA 0.9734 0.4972 0.7115 0.5327 0.8732 0.6171 0.7301 0.6606 0.8444 0.6253 0.7215 0.6468

OR-PCA 0.9733 0.4972 0.7073 0.5328 0.8636 0.6228 0.7311 0.6663 0.8368 0.6130 0.7143 0.6510
LRR 0.7448 0.5058 0.6843 0.5360 0.8630 0.5002 0.6358 0.5956 0.8836 0.5252 0.6489 0.6114

TRPCA-DFT 0.9548 0.5549 0.7271 0.5806 0.7687 0.5679 0.7056 0.6441 0.7381 0.6087 0.7171 0.6581
TRPCA-DCT 0.9586 0.5522 0.7237 0.5779 0.7740 0.5344 0.6912 0.6308 0.7430 0.5740 0.7011 0.6377

OR-TPCA 0.7297 0.3851 0.5955 0.4098 0.0267 0.5675 0.6610 0.6027 0.0100 0.5750 0.6671 0.6085
TLRR-DFT 0.9550 0.5094 0.6812 0.5373 0.8219 0.5635 0.6479 0.6043 0.8049 0.5682 0.6454 0.6050
TLRR-DCT 0.9573 0.5488 0.7193 0.5753 0.7871 0.6222 0.7127 0.6647 0.7688 0.6624 0.7356 0.6947

OR-TLRR-DFT 0.9401 0.5915 0.7525 0.6184 0.7910 0.6700 0.7488 0.6967 0.7666 0.6725 0.7471 0.6966
OR-TLRR-DCT 0.9460 0.5691 0.7444 0.5969 0.7643 0.5552 0.6855 0.6245 0.7384 0.6087 0.7165 0.6583

Table 7: AUC of outlier detection and clustering results (ACC, NMI and PUR) on ORL-MIRFLICKR-25k
dataset for missing data experiments.

Methods
δ = 10% δ = 20%

AUC ACC NMI PUR AUC ACC NMI PUR
TNN+TRPCA-DFT 0.9552 0.5551 0.7260 0.5806 0.9535 0.5493 0.7224 0.5753
TNN+TRPCA-DCT 0.9581 0.5513 0.7241 0.5774 0.9583 0.5529 0.7244 0.5786

TNN+OR-TPCA-DFT 0.6970 0.3772 0.5871 0.4025 0.6752 0.3735 0.5820 0.3976
TNN+TLRR-DFT 0.9537 0.5077 0.6766 0.5336 0.9570 0.4847 0.6587 0.5105
TNN+TLRR-DCT 0.9580 0.5420 0.7136 0.5690 0.9578 0.5504 0.7175 0.5773

TNN+OR-TLRR-DFT 0.9384 0.5853 0.7475 0.6108 0.9376 0.5843 0.7481 0.6132
TNN+OR-TLRR-DCT 0.9445 0.5722 0.7441 0.6009 0.9450 0.5674 0.7409 0.5949

TLRR-EWZF-DFT 0.9549 0.5088 0.6760 0.5341 0.9544 0.4892 0.6590 0.5152
TLRR-EWZF-DCT 0.9568 0.5398 0.7128 0.5687 0.9568 0.5398 0.7128 0.5674

OR-TLRR-EWZF-DFT 0.9391 0.5813 0.7449 0.6089 0.9407 0.5802 0.7417 0.6080
OR-TLRR-EWZF-DCT 0.9456 0.5608 0.7382 0.5899 0.9468 0.5631 0.7331 0.5898

6.2.1 Application to Outlier Detection

Here we evaluate the effectiveness of OR-TLRR
on outlier detection and clustering tasks. For
the complete data experiments, we compare OR-
TLRR-DFT/OR-TLRR-DCT with other state-
of-the-art low-rank matrix/tensor factorization
methods including R-PCA [Candès et al., 2011], OR-
PCA [Zhang et al., 2015], LRR [Liu et al., 2013a],
TRPCA-DFT [Lu et al., 2020], TRPCA-DCT
[Lu, 2021], OR-TPCA [Zhou and Feng, 2017],
TLRR-DFT [Zhou et al., 2021] and TLRR-DCT
[Yang et al., 2022]. For TRPCA/OR-TPCA, let
the estimated clean “inlier” data be L. We first
compute a matrix L0 =

∑n3

k=1 L(k) and perform
SVD on L0 = U0S0V

T
0 . Then we apply spectral

clustering on V0V
T
0 to obtain the result. For the

case of data having missing entries, we compare
OR-TLRR-EWZF/TLRR-EWZF with a baseline
that first completes the unknown entries of X using
tensor nuclear norm based tensor completion model
[Lu et al., 2018, Lu et al., 2019b], and then do clus-
tering using TRPCA [Lu et al., 2020, Lu, 2021],
OR-TPCA [Zhou and Feng, 2017], TLRR
[Zhou et al., 2021, Yang et al., 2022], and OR-
TLRR with the same linear transform that is used
in the tensor completion step. The percentage of
missing entries δ is again set to be 10% and 20%.

Unless otherwise stated, all regularization parameters
involved in the competing methods were either tuned
or selected as suggested in the respective papers.

We create two datasets by combining ORL/COIL20
with the MIRFLICKR-25k dataset (containing 25,000
images) [Huiskes and Lew, 2008], which we call ORL-
MIRFLICKR-25k and COIL20-MIRFLICKR-25k, re-
spectively. For ORL-MIRFLICKR-25k, we randomly
select 100 images from MIRFLICKR-25k as outliers
and the random selection is repeated 20 times. Fig. 1
(a) and Fig. 1 (f) show some examples of ORL
and MIRFLICKR-25k, respectively. For COIL20-
MIRFLICKR-25k, the outliers consist of 100 or 200
images selected from MIRFLICKR-25k. Theorem 2
implies the optimal solution E can help detect outliers
in the data. Since all the methods have the sparse
component E, in this paper, we use k-means to clus-
ter all the ‖E(:, j, :)‖2F ’s into two classes (outliers vs.
non-outliers) for outlier detection. The performance
of outlier detection is evaluated by AUC. While in-
vestigating the segmentation performance, we first re-
move the outliers detected by k-means (some normal
samples may be removed, and these samples are given
wrong labels) and apply Ncut [Shi and Malik, 2000]
on the remaining samples (possibly include undetected
outliers) for clustering. We evaluate the clustering
performance of the normal samples using three met-
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Table 8: Clustering results (ACC, NMI and PUR) on Umist and FRDUE datasets for complete data experiments.
Dataset Metric R-PCA OR-PCA LRR SSC SSC-OMP TRPCA-DFT TRPCA-DCT OR-TPCA TLRR-DFT TLRR-DCT OR-TLRR-DFT OR-TLRR-DCT

Umist

ACC 0.4299 0.4155 0.3515 0.4972 0.4030 0.5774 0.5741 0.3454 0.5452 0.5007 0.6117 0.5125

NMI 0.5831 0.5786 0.4718 0.6818 0.5633 0.7282 0.7331 0.3930 0.6648 0.6573 0.7536 0.6756

PUR 0.4758 0.4661 0.4167 0.5897 0.5078 0.6374 0.6478 0.3871 0.6226 0.5743 0.6790 0.5652

FRDUE

ACC 0.6784 0.6760 0.7765 0.8200 0.4913 0.7058 0.7011 0.6807 0.8192 0.8109 0.8525 0.8231

NMI 0.8624 0.8619 0.9181 0.9399 0.7378 0.8804 0.8785 0.8757 0.9365 0.9321 0.9549 0.9403

PUR 0.7162 0.7131 0.8151 0.8649 0.5319 0.7435 0.7384 0.7243 0.8548 0.8403 0.8832 0.8578

Table 9: Clustering results (ACC, NMI and PUR) on Umist and FRDUE datasets for missing data experiments.
Datasets Umist FRDUE

Methods
δ = 10% δ = 20% δ = 10% δ = 20%

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
TNN+TRPCA-DFT 0.5715 0.7261 0.6319 0.5737 0.7267 0.6333 0.7134 0.8828 0.7496 0.7274 0.8883 0.7626
TNN+TRPCA-DCT 0.5730 0.7297 0.6379 0.5743 0.7308 0.6390 0.7153 0.8825 0.7515 0.7237 0.8865 0.7590

TNN+OR-TPCA-DFT 0.3524 0.4037 0.4014 0.3495 0.3995 0.3951 0.7285 0.8941 0.7653 0.7467 0.9006 0.7817
TNN+TLRR-DFT 0.5298 0.6512 0.6024 0.5261 0.6529 0.6064 0.8389 0.9460 0.8701 0.8476 0.9504 0.8775
TNN+TLRR-DCT 0.5020 0.6557 0.5751 0.4982 0.6507 0.5719 0.8195 0.9388 0.8525 0.8274 0.9439 0.8597

TNN+OR-TLRR-DFT 0.6017 0.7477 0.6707 0.6015 0.7476 0.6707 0.8577 0.9577 0.8873 0.8682 0.9625 0.8967
TNN+OR-TLRR-DCT 0.5048 0.6749 0.5611 0.5015 0.6722 0.5573 0.8339 0.9458 0.8650 0.8377 0.9487 0.8696

TLRR-EWZF-DFT 0.5704 0.7249 0.6461 0.5512 0.7112 0.6289 0.8616 0.9568 0.8928 0.8726 0.9624 0.9012
TLRR-EWZF-DCT 0.5071 0.6731 0.5795 0.5030 0.6776 0.5713 0.8520 0.9570 0.8831 0.8546 0.9573 0.8842

OR-TLRR-EWZF-DFT 0.5705 0.7215 0.6356 0.5554 0.7034 0.6203 0.8641 0.9626 0.8959 0.8893 0.9752 0.9160
OR-TLRR-EWZF-DCT 0.5079 0.6740 0.5639 0.5145 0.6787 0.5716 0.8496 0.9566 0.8820 0.8555 0.9579 0.8858

rics, including ACC, NMI [Vinh et al., 2010] and PUR
[Manning et al., 2010].

Table 6 summarizes the results for the complete
data experiments. From these results, we can find
that matrix-based algorithms seem to work better
than tensor-based ones in terms of outlier detec-
tion. OR-TLRR-DFT always achieves the best clus-
tering performance. On the widely used ACC met-
ric, OR-TLRR-DFT respectively improves by 3.9%,
7.6% and 1.5% over the runner-up on the three test-
ing cases (left-right). Such improvement can be at-
tributed to the reason that (1) it takes advantage of
the multi-dimensional structure of tensor data; (2)
it uses the `2,1 norm which can better depict out-
liers than the `1 norm. From Table 7 and Table 10
(in the supplementary material), we observe that
TNN+OR-TLRR-DFT outperforms all other meth-
ods in terms of clustering on the ORL-MIRFLICKR-
25k dataset, and it has very marginal improvement
over the second best, OR-TLRR-EWZF-DFT. As for
the COIL20-MIRFLICKR-25k dataset, OR-TLRR-
EWZF-DCT consistently achieves the best clustering
performance in ACC, NMI and PUR. This may be ex-
plained because the tensor completion step fails as the
data tensor is not low-rank.

6.2.2 Application to Image Clustering

Here, we conduct experiments on Umist and FRDUE
datasets for face clustering. Due to shadows and fa-
cial expressions on face images displayed in Fig. 1 (c)
and Fig. 1 (d), it can be argued that the `2,1 norm can
characterize the noise better than the `1 norm. Table 8

presents the clustering results for all the methods. As
can be seen from this table, OR-TLRR-DFT shows no-
ticeable improvement in all the metrics compared to
other algorithms. The accuracy outperforms the sec-
ond best by 5.9% and 3.6% on Umist and FRDUE
datasets, respectively. Similar to previous results,
we observe from Table 9 that TNN+OR-TLRR-DFT
performs the best on Umist dataset and OR-TLRR-
EWZF-DFT ourperforms other methods on FRDUE
dataset. Understanding the root cause behind this
phenomenon is the subject of future research. We
also examine the robustness of our methods for dealing
with sample-specific corruptions, and we include these
results in the supplementary material.

7 CONCLUSION

In this work, we proposed an outlier-robust tensor low-
rank representation method for tensor data clustering
in the presence of outliers. We proved that OR-TLRR
can recover the row space of the authentic data and
identify the outliers with high probability. We further
extended the proposed method to the missing data sce-
nario. Extensive numerical results on synthetic and
real data demonstrated the effectiveness of our algo-
rithms. In this work, we directly use the raw tensor
data as the dictionary. While the performance and the
corresponding theoretical guarantee of other possible
options for the dictionary, e.g., apply TRPCA on the
raw data and use the estimation of the clean data as
the dictionary, will be investigated in future work. Our
future work also includes learning the optimal linear
transform for different types of data.
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Supplementary Material:
Robust Data Clustering with Outliers via Transformed Tensor

Low-Rank Representation

A EXTENSION OF PRELIMINARIES

A.1 Notations

The operator norm of an operator on tensor is ‖L ‖ = sup‖A‖F=1 ‖L (A)‖F . The inner product between two

matrices A and B in Cn1×n2 is defined as 〈A,B〉 = tr(AHB), whereas the inner product between two tensors
A and B in Cn1×n2×n3 is defined as 〈A,B〉 =

∑n3

i=1〈A(i),B(i)〉. The dual norm of tensor `2,1 norm is the tensor
`2,∞ norm, which is defined as ‖A‖2,∞ = maxj ‖A(:, j, :)‖F . The infinity norm of A is ‖A‖∞ = maxi,j,k |Ai,j,k|.
Definition 7 (Tensor pseudo-inverse [Zhou et al., 2021]). For an arbitrary tensor A ∈ Cn1×n2×n3 , its pseudo-
inverse under L in (3) is defined as a tensor A† ∈ Cn2×n1×n3 which satisfies (i) A ∗L A† ∗L A = A, (ii)
A† ∗L A ∗L A† = A†, (iii) (A ∗L A†)H = A ∗L A†, and (iv) (A† ∗L A)H = A† ∗L A.

Definition 8 (Standard tensor basis [Lu et al., 2019b]). The tensor column basis with respect to the transform
L, denoted as e̊i, is a tensor of size n1 × 1× n3 with the entries of the (i, 1)-th tube of L(̊ei) equaling 1 and the
rest equaling 0. Similarly, the row basis e̊Hj is of size 1× n2 × n3 with the entries of the (1, j)-th tube of L(̊eHj )
equaling to 1 and the rest equaling to 0. The tube basis ėk is a tensor of size 1 × 1 × n3 with the (1, 1, k)-th
entry of L(ėk) equaling 1 and the rest equaling 0.

Denote ēijk as a unit tensor with only the (i, j, k)-th entry equaling 1 and others equaling 0. Based on Definition 8,
ēijk can be expressed as ēijk = L(̊ei∗L ėk ∗L e̊Hj ). Then for any tensor A ∈ Rn1×n2×n3 , we have Ai,j,k = 〈A, ēijk〉
and A =

∑
i,j,k〈A, ēijk〉ēijk.

Next, we define some commonly used operators in this document. Assume that UX ∗LSX ∗LVH
X , U0∗LS0∗LVH

0 ,
and U ∗L S ∗L VH are the skinny t-SVDs of X , L0 and Z, respectively. The projection onto the column space
U is given by PU (A) = U ∗L UH ∗L A, and similarly for the row space PV(A) = A ∗L V ∗L VH . Sometimes,
we need to apply PV on the left side of a tensor. This special operator is denoted by PL

V(A) = V ∗L VH ∗L A.
The tensor PΘ(A) is obtained from A by setting tensor column A(:, j, :) to zero for all j /∈ Θ. The projection
onto the space spanned by U and V is given by PT (A) = PU (A) +PV(A)−PUPV(A), where PUPV(A) =
U ∗L UH ∗L A ∗L V ∗L VH . The complementary operators, PU⊥ , PV⊥ , PL

V⊥ and PT ⊥ are defined as usual.
Finally, we use Θc to denote the complement of Θ and PΘ⊥ is the projection onto Θc.

A.2 Preliminaries

We consider the invertible linear transform L : Rn1×n2×n3 → Cn1×n2×n3 defined as follows:

A = L(A) = A×3 L, (14)

where ×3 denotes the mode-3 tensor-matrix product, and L ∈ Cn3×n3 is an arbitrary invertible matrix. In this
document, we always use L satisfying

LLH = LHL = τIn3 , (15)

where τ > 0. Using (15), we have the following properties:

‖A‖F =
1√
τ
‖A‖F =

1√
τ
‖A‖F and 〈A,B〉 =

1

τ
〈A,B〉 =

1

τ
〈A,B〉.
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B OPTIMIZATION DETAILS OF OR-TLRR

In this section, we elaborate the details of our optimization strategy to solve problem (7) in the manuscript. To
solve (7) in an efficient manner, we resort to “variable splitting” of Z ′, which transforms (7) into the following:

min
Z′,J ,E

‖Z ′‖∗ + λ‖E‖2,1 s.t. Z ′ = J ,X = D ∗L J + E. (16)

The augmented Lagrangian function of (16) is

L1(Z ′,J ,E,Y1,Y2, β) = ‖Z ′‖∗ + λ‖E‖2,1 + 〈Y1,Z ′ −J 〉+ 〈Y2,X −D ∗L J − E〉

+
β

2

(
‖Z ′ −J ‖2F + ‖X −D ∗L J − E‖2F

)
, (17)

where the tensors Y1 and Y2 comprise Lagrange multipliers and β > 0 is a penalty parameter. The optimization
of (17) can be done iteratively by minimizing L1 with respect to Z ′, J and E over one tensor at a time while
keeping the others fixed.

Updating Z ′: When other variables are fixed, the problem of updating Z ′ can be written as

Z ′(t+1) = arg min
Z′

‖Z ′‖∗ +
β(t)

2
‖B(t+1)

1 −Z ′‖2F ,

where B(t+1)
1 = J (t) − Y(t)

1

β(t) . We can optimize its equivalent problem:

Z′(t+1) = arg min
Z′

1

n3

(
‖Z′‖∗ +

β(t)

2
‖B(t+1)

1 − Z′‖2F
)
,

where B
(t+1)
1 = bdiag(B(t+1)

1 ) and B(t+1)
1 = L(B(t+1)

1 ). Since Z′ is a block diagonal matrix, we only need to

update all the diagonal block matrices Z′(k) by

Z′(k)
(t+1)

= Υ 1

β(t)
(B

(k)(t+1)

1 ), (18)

where Υζ(·) denotes singular value thresholding (SVT) operator [Cai et al., 2010]. Finally, we can compute

Z ′(t+1) = L−1(Z ′(t+1)).

Updating E: We can update E by solving

E(t+1) = arg min
E

λ‖E‖2,1 +
β(t)

2
‖B(t+1)

2 − E‖2F ,

where B(t+1)
2 = X −D ∗L J (t) +

Y(t)
2

β(t) . Then the closed-form solution for E is given by

E(t+1)
(j) =


‖B(t+1)

2(j)
‖F− λ

β(t)

‖B(t+1)

2(j)
‖F

B(t+1)
2(j) , if ‖B(t+1)

2(j) ‖F >
λ
β(t) ,

0, otherwise,

(19)

where B(t+1)
2(j) = B(t+1)

2 (:, j, :).

Updating J : Keeping other tensors in (17) fixed, the subproblem of updating J at the (t+ 1)-th iteration has
the form

J (t+1) = arg min
J

‖P(t+1)
1 −J ‖2F + ‖P(t+1)

2 −D ∗L J ‖2F

= (DH ∗L D + IrX )−1 ∗L
(
P(t+1)

1 + DH ∗L P(t+1)
2

)
, (20)
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where P(t+1)
1 = Z ′(t+1)+

Y(t)
1

β(t) and P(t+1)
2 = X −E(t+1)+

Y(t)
2

β(t) . We can transform (20) into the transform domain

and it can be shown that the k-th frontal slice of J (t+1), denoted by J(k)(t+1)

, has the following closed-form
solution:

J(k)(t+1)

= Q(k)
(
P

(k)(t+1)

1 + (D(k))HP
(k)(t+1)

2

)
, (21)

where Q = (DH ∗L D + IrX )−1. The update for J (t+1) can be expressed as J (t+1) = L−1(J (t+1)).

After obtaining a solution (Z ′?,E?) to the problem (7), the optimal solution to (4) in the manuscript can be
recovered by (VX ∗L Z ′?,E?). The ADMM framework for solving (4) in the manuscript can be summarized
in Algorithm 1. Since problem (16) is a convex problem, whose convergence behavior can be guaranteed by
leveraging the results in [Lin et al., 2011].

Complexity Analysis. At each iteration, when updating J (t+1), the computational cost for the matrix product
and inverse transform is O(rXn1n2n3 + rX (n1 + n2)n23). The major cost of updating Z ′(t+1) includes n3 SVDs
on rX ×n2 matrices at the cost of r2Xn2n3 and computing the inverse transform at the cost of O(rXn2n

2
3). As for

updating E(t+1), the step of computing tensor product D ∗L J (t+1) takes O(rXn1n2n3 + rX (n1 + n2)n23). Thus
the total cost of Algorithm 1 is O(rXn1n2n3 + rX (n1 +n2)n23) per iteration. We conclude this section by noting
that for some special invertible linear transforms L, e.g., DFT, since the application of DFT on an n3-dimensional
vector requires O(n3 log(n3)) operations, the per-iteration complexity is O(rXn1n2n3 + rX (n1 + n2)n3 log(n3)).

Algorithm 1 Outlier-Robust Tensor LRR (OR-TLRR)

Input: Data tensor X ∈ Rn1×n2×n3 , linear transform L, and parameter λ.

Initialize: D = UX ∗LSX with the skinny t-SVD UX ∗LSX ∗LVH
X of X , Z(0) = J (0) = Y(0)

1 = 0 ∈ RrX×n2×n3 ,

E(0) = Y(0)
2 = 0 ∈ Rn1×n2×n3 , γ = 1.1, β(0) = 10−5, βmax = 108, ε = 10−5, and t = 0.

1: while not converged do
2: Fix other variables and update Z ′ via (18).
3: Fix other variables and update E via (19).
4: Fix other variables and update J via (21).
5: Update Lagrange multipliers:

Y(t+1)
1 = Y(t)

1 + β(t)(Z ′(t+1) −J (t+1)),

Y(t+1)
2 = Y(t)

2 + β(t)(X −D ∗L J (t+1) − E(t+1)).
6: β(t+1) = min(βmax, γβ

(t)).
7: Check the convergence conditions:

max


‖Z ′(t+1) −Z ′(t)‖∞, ‖J (t+1) −J (t)‖∞
‖E(t+1) − E(t)‖∞, ‖Z ′(t+1) −J (t+1)‖∞
‖X −D ∗L J (t+1) − E(t+1)‖∞

 ≤ ε.
8: t = t+ 1.
9: end while

Output: Z? = VX ∗L Z ′(t+1) and E? = E(t+1).

C OPTIMIZATION DETAILS OF OR-TLRR WITH MISSING ENTRIES

In this section, we present our algorithm to solve problem (13) in the manuscript. By introducing two auxiliary
variables J and H, we make the objective function of (13) separable and reformulate (13) as

min
Z′,J ,H,E

‖Z ′‖∗ + λ‖PΩ(E)‖2,1

s.t. Z ′ = J ,H = D ∗L J + E,PΩ(Xmiss) = PΩ(H). (22)
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The corresponding augmented Lagrangian function of (22) is

L2(Z ′,J ,H,E,Y1,Y2, β) = ‖Z ′‖∗ + λ‖PΩ(E)‖2,1 + ΨΩ(Xmiss −H) + 〈Y1,Z ′ −J 〉+ 〈Y2,H−D ∗L J − E〉

+
β

2

(
‖Z ′ −J ‖2F + ‖H−D ∗L J − E‖2F

)
, (23)

where ΨΩ(·) denotes the indicator function

ΨΩ(A−B) =

{
0, if AΩ = BΩ,
∞, otherwise.

The difference between the optimization of (23) and that of (17) mainly lies in the step of updating E and one
additional step for updating H. Concretely, the H-subproblem is

H(t+1) = arg min
H

‖H−D ∗L J (t) − E(t) +
Y(t)

2

β(t)
‖2F + ΨΩ(Xmiss −H). (24)

Thus, we have H(t+1) = PΩc(D ∗L J (t) +E(t)− Y(t)
2

β(t) ) + PΩ(Xmiss), where Ωc is the complement of Ω. On the

other hand, the variable E can be updated by solving

E(t+1) = arg min
E

λ‖PΩ(E)‖2,1 +
β(t)

2
‖B(t+1) − E‖2F , (25)

where B(t+1) = H(t+1) −D ∗L J (t) +
Y(t)

2

β(t) . Then the closed-form solution of E is given by

E(t+1)
(j) =


‖W(j)�B

(t+1)

(j)
‖F− λ

β(t)

‖W(j)�B
(t+1)

(j)
‖F

W(j) �B(t+1)
(j) + (1−W(j))�B(t+1)

(j) , if ‖W(j) �B(t+1)
(j) ‖F >

λ
β(t) ,

(1−W(j))�B(t+1)
(j) , otherwise,

where B(t+1)
(j) = B(t+1)(:, j, :). The implementation of the ADMM algorithm is outlined in Algorithm 2. We

dub this approach Outlier-Robust Tensor LRR by Entry-Wise Zero-Fill (OR-TLRR-EWZF). We conclude this
section by noting that we can also robustify TLRR [Zhou et al., 2021] by replacing λ‖PΩ(E)‖2,1 in (12) with
λ‖PΩ(E)‖1 as a means of performing TLRR with missing data. Effectively, the overall optimization process
also relies on Algorithm 2, with the difference being that the closed-form solution of E can now be computed by

E(t+1)
(j) = Π λ

β(t)

(
W(j) �B(t+1)

(j)

)
+ (1−W(j))�B(t+1)

(j) ,

where Π λ

β(t)
(·) is the soft-thresholding operator [Donoho, 1995]. We call the resulting algorithm TLRR-EWZF

in our experiments.

D PROOF OF THEOREM 1

Proof. Let xj = vec(X (j)) and Xj = squeeze(X (j)) ∈ Rn1×n3 . Then, we can obtain

xj =

Xje1

...
Xjen3

 ,
where eq ∈ Rn3 is the q-th standard basis of Rn3 whose q-th entry is 1 and the rest is 0. Next, we define a tensor
A ∈ Rn1×p×n3 with A(j) = ivec(aj), and let Aj = squeeze(A(j)) ∈ Rn1×n3 , j = 1, . . . , p. Then we can write
xj = Azj as its equivalent form: Xje1

...
Xjen3

 =

A1e1 . . . Ape1

...
. . .

...
A1en3

. . . Apen3

 zj .
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Algorithm 2 Outlier-Robust Tensor LRR by Entry-Wise Zero-Fill (OR-TLRR-EWZF)

Input: Partially observed data tensor PΩ(X ) ∈ Rn1×n2×n3 , linear transform L, and parameter λ.

Initialize: D = UX ∗L SX with the skinny t-SVD UX ∗L SX ∗L VH
X of Xmiss, Z(0) = J (0) = Y(0)

1 = 0 ∈
RrX×n2×n3 , E(0) = H(0) = Y(0)

2 = 0 ∈ Rn1×n2×n3 , γ = 1.1, β(0) = 10−5, βmax = 108, ε = 10−5, and t = 0.

1: while not converged do
2: Fix other variables and update H by solving (24).
3: Fix other variables and update Z ′ by solving:

Z ′(t+1) = arg min
Z′

‖Z ′‖∗ +
µ(t)

2
‖Z ′ −J (t) +

Y(t)
1

β(t)
‖2F .

4: Fix other variables and update E by solving (25).
5: Fix other variables and update J by solving:

J (t+1) = arg min
J

‖Z ′(t+1) −J +
Y(t)

1

β(t)
‖2F + ‖H(t+1) −D ∗L J − E(t+1) +

Y(t)
2

β(t)
‖2F .

6: Update Lagrange multipliers:

Y(t+1)
1 = Y(t)

1 + β(t)(Z ′(t+1) −J (t+1)),

Y(t+1)
2 = Y(t)

2 + β(t)(H(t+1) −D ∗L J (t+1) − E(t+1)).
7: β(t+1) = min(βmax, γβ

(t)).
8: Check the convergence conditions:

max


‖Z ′(t+1) −Z ′(t)‖∞, ‖J (t+1) −J (t)‖∞
‖E(t+1) − E(t)‖∞, ‖H(t+1) −H(t)‖∞
‖Z ′(t+1) −J (t+1)‖∞
‖H(t+1) −D ∗L J (t+1) − E(t+1)‖∞

 ≤ ε.

9: t = t+ 1.
10: end while

Output: Z? = VX ∗L Z ′(t+1) and E? = E(t+1).

For the s-th row of L (s = 1, . . . , n3), we have

Xjl
T
s,T =

n3∑
q=1

Ls,qXjeq

=

n3∑
q=1

Ls,q[A1eq, . . . ,Apeq]zj

= [A1, . . . ,Ap]

n3∑
q=1

Ls,q

eq
. . .

eq

 zj

= [A1, . . . ,Ap]

l
T
s,T

. . .

lTs,T

 zj

= [A1l
T
s,T , . . . ,Apl

T
s,T ]zj . (26)

We further define

Als,T = [A1l
T
s,T , . . . ,Apl

T
s,T ] ∈ Cn1×n3
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and a tensor Z ∈ Rp×n2×n3 with Z(:, j, k) = zj ∈ Rp, k = 1, . . . , n3. The tensor Z can be computed by setting

Z = L−1(Z). Note that the block diagonal matrix A can now be written as

A =

Al1,T

. . .

Aln3,T

 .
Let Xj = bdiag(L(X (j))) and Zj = bdiag(L(Z(j))), we can establish that

Xj =

Xjl
T
1,T

. . .

Xjl
T
n3,T



=

Al1,T

. . .

Aln3,T


zj

. . .

zj


= AZj .

So for any zj , we have

X (j) = A ∗L Z(j), ∀j = 1, . . . , n2. (27)

Conversely, for any tensor linear representation (27), Z(j) may not satisfy Z(:, j, k) = zj , i.e., there may not
exist zj such that xj = Azj . Thus, if the linear representation relationship in vector space holds, then there
exists a feasible solution such that the tensor linear representation also holds. However, there is no guarantee
that the reverse is also true.

E PROOFS OF LEMMA 1 AND LEMMA 2

Before proving Lemma 1, we first give the following lemma which is used in the proof.

Lemma 3. Let A ∈ Rn1×n4×n3 be a nonzero dictionary and X = A ∗L Z has feasible solutions, i.e., X ∈
Range(A). Then the following problem

min
Z
‖Z‖∗ s.t. X = A ∗L Z

has a unique minimizer defined by

Z? = A† ∗L X .

Proof. For the problem

min
Z
‖Z‖∗ s.t. X = A ∗L Z (28)

is equivalent to

min
Z

‖Z‖∗ s.t. X = AZ. (29)

Since X, A and Z are three block-diagonal matrices, (29) can be divided into n3 simple problems.

min
Z(k)

‖Z(k)‖∗ s.t. X(k) = A(k)Z(k), k = 1, . . . , n3. (30)

Since X ∈ Range(A), we have X(k) ∈ Span(A(k)), where Span(B) denotes the linear space spanned by the

columns of a matrix B [Liu et al., 2013a]. Then, by [Liu et al., 2013a, Theorem 4.1], we have that Z(k) =

(A(k))†X(k) is the unique optimal solution to (30). Hence, we can obtain the unique solution Z = (A)†X to
problem (29). Furthermore, the unique solution to (28) is Z = A† ∗L X . The proof is completed.
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E.1 Proof of Lemma 1

Proof. Note that OR-TLRR problem (4) always has feasible solutions, e.g., (Z = 0,E = X ). Thus, an optimal
solution, denoted as (Z?,E?), exists. By Lemma 3, we have

Z? = arg min
Z

‖Z‖∗ s.t. X − E? = X ∗L Z

= X † ∗L (X − E?),

which simply leads to Z? ∈ PL
VX

.

E.2 Proof of Lemma 2

Proof. Suppose the skinny t-SVDs of X , L0 and E0 are UX ∗LSX ∗LVH
X , U0 ∗LS0 ∗LVH

0 and UE ∗LSE ∗LVH
E ,

respectively. Let U⊥0 and U⊥E be the orthogonal complements of U0 and UE , respectively. Since Range(L0) and

Range(E0) are independent, Span(U
(k)
0 ) and Span(U

(k)
E ) are independent, ∀k = 1, . . . , n3, which further suggests

that [U
(k)⊥

0 ,U
(k)⊥

E ] spans the whole space. Thus the following system has feasible solutions Y
(k)
0 and Y

(k)
E :

U
(k)⊥

0 (U
(k)⊥

0 )HY
(k)
0 + U

(k)⊥

E (U
(k)⊥

E )HY
(k)
E = In1

.

Denote Y(k) = In1
−U

(k)⊥

0 (U
(k)⊥

0 )HY
(k)
0 , then it can be verified that

(L
(k)
0 )HY(k) = (L

(k)
0 )H and (E

(k)
0 )HY(k) = 0.

We have that (X(k))HY(k) = (L
(k)
0 )H , ∀k = 1, . . . , n3. Hence the system XH ∗L Y = LH

0 has a feasible solution

Y , which simply leads to VX ∗L S†X ∗L UH
X ∗L Y ∗L U0 ∗L S0 = V0 and thus V0 ∈ PL

VX
.

F PROOFS OF THEOREM 2

Now we prove Theorem 2 in manuscript. Section F.1 identifies the necessary and sufficient conditions (called
equivalent conditions) for any pair (Z,E) to produce the exact recovery results. Section F.2 gives the dual
conditions under which OR-TLRR succeeds. Then we construct a dual certificate in Section F.3 such that the
dual conditions hold. Section F.4 gives the proofs of some lemmas which are used in Section F.3. For convenience,
we consider the general Bernoulli sampling. Specifically, for Θ0 = {j|δj = 1}, δj are i.i.d. Bernoulli variables
and take value 1 with probability ρ and 0 with probability 1 − ρ. Thus, we denote the Bernoulli sampling by
Θ0 ∼ Ber(ρ).

F.1 Equivalent Conditions

Theorem 3. Let the pair (Z ′,E ′) satisfy X = X ∗LZ ′+E ′. Denote the skinny t-SVD of Z ′ as U ′ ∗LS ′ ∗LV ′H ,
and the column support of E ′ as Θ′. If PL

V0
(Z ′) = Z ′ and PΘ0

(E ′) = E ′, then U ′ ∗L U ′H = V0 ∗L VH
0 and

Θ′ = Θ0.

Proof. Since PL
V0

(Z ′) = Z ′ implies that U ′ is a subspace of V0, to prove U ′ ∗L U ′H = V0 ∗L VH
0 , it is sufficient

to prove rankt(Z ′) ≥ rankt(L0). Note that PΘ⊥0
(X ) = L0. We have

L0 = PΘ⊥0
(X ) = PΘ⊥0

(X ∗L Z ′ + E ′) = PΘ⊥0
(X ∗L Z ′) = X ∗L PΘ⊥0

(Z ′).

Therefore, we can establish that

rankt(L0) = rankt(X ∗L PΘ⊥0
(Z ′)) ≤ rankt(PΘ⊥0

(Z ′)) ≤ rankt(Z ′).

Next, since PΘ0
(E ′) = E ′ implies that Θ′ ⊆ Θ0, if we can prove Θ0 ∩ (Θ′)c = ∅, then we can have Θ′ = Θ0. In

order to do so, we first have

PΘ0
(L0) = 0⇒ U0 ∗L S0 ∗L PΘ0

(VH
0 ) = 0

⇒ PΘ0(VH
0 ) = 0

⇒ V0 ∗L PΘ0
(VH

0 ) = 0.
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Also, V0 ∈ PL
VX

implies that V0 ∗L VH
0 = V0 ∗L VH

0 ∗L VX ∗L VH
X , which then leads to V0 ∗L VH

0 ∗L VX ∗L
PΘ0

(VH
X ) = V0∗LPΘ0

(VH
0 ) = 0. Because Θ0∩(Θ′)c ⊆ Θ0, we can obtain V0∗LVH

0 ∗LVX ∗PΘ0∩(Θ′)c(V
H
X ) =

0. On the other hand, note that Θ0 ∩ (Θ′)c ⊆ (Θ′)c, we have the following:

X = X ∗L Z ′ + E ′

⇒PΘ0∩(Θ′)c(X ) = X ∗L PΘ0∩(Θ′)c(Z
′)

⇒UX ∗L SX ∗L PΘ0∩(Θ′)c(V
H
X )

= UX ∗L SX ∗L VH
X ∗L PΘ0∩(Θ′)c(Z

′)

⇒PΘ0∩(Θ′)c(V
H
X ) = V∗X ∗L PΘ0∩(Θ′)c(Z

′)

⇒V0 ∗L VH
0 ∗L VX ∗L PΘ0∩(Θ′)c(V

H
X )

= V0 ∗L VH
0 ∗L VX ∗L VH

X ∗L PΘ0∩(Θ′)c(Z
′)

⇒V0 ∗L VH
0 ∗L VX ∗L VH

X ∗L PΘ0∩(Θ′)c(Z
′) = 0

1©⇒V0 ∗L VH
0 ∗L PΘ0∩(Θ′)c(Z

′) = 0
2©⇒PΘ0∩(Θ′)c(Z

′) = 0,

where 1© holds because Z ′ ∈ PL
VX

and 2© holds because Z ′ = V0∗LVH
0 ∗LZ ′. It follows from X = L0+E0 that

PΘ0∩(Θ′)c(E0) = PΘ0∩(Θ′)c(X −L0) = PΘ0∩(Θ′)c(X ) = X ∗L PΘ0∩(Θ′)c(Z
′) = 0. Hence, Θ0 ∩ (Θ′)c = ∅.

This theorem implies that the exact recovery is equivalent to two constraints: PL
V0

(Z) = Z and PΘ0(E) = E.
As will be seen in the following, this can largely facilitate the proof of Theorem 2.

F.2 Dual Conditions

We now prove the dual conditions of the OR-TLRR problem (4).

Lemma 4 (Dual conditions for OR-TLRR). Assume that Range(L0) = Range(PΘ0(L0)), E0(:, j, :) /∈ Range(L0)

for j ∈ Θ0, and (Z?,E?) = (V0 ∗L VH
0 +H,E0−X ∗L H) is an arbitrary solution to (4). Let Ẑ = V0 ∗L VH

0 +

PΘ0P
L
V0

(H) and Ê = E0 − X ∗L PΘ0P
L
V0

(H). Suppose that ‖PΘ̂PV̂‖ < 1, λ > 2
√

µr
n2τ

, and L̂ = X ∗L Ẑ
obeys the tensor column-incoherence condition. Then the column space of Z? is the same as the row space of L0

and E? has the same column indices as those of E0, provided that there exists a pair (W ,F) obeying

W = λ(X ∗ ∗L B(E) + F),

with PV̂(W) = 0, ‖W‖ ≤ 1/2, PΘ̂(F) = 0 and ‖F‖2,∞ ≤ 1/2.

Proof. The subgradients of tensor nuclear norm and tensor `2,1 norm can be written as

∂Ẑ‖Z‖∗ = {Û ∗L V̂H + Q̂|P T̂ (Q̂) = 0, ‖Q̂‖ ≤ 1},

∂Ê‖E‖2,1 = {B(Ê) + Ĉ|PΘ̂(Ĉ) = 0, ‖Ĉ‖2,∞ ≤ 1}.

We denote the skinny t-SVDs of Ẑ and L̂ as Û ∗L Ŝ ∗L V̂H and U L̂∗LSL̂∗LVH
L̂ , respectively. Since L̂ = X ∗L Ẑ,

we have

VH
L̂ = S†

L̂
∗L UH

L̂ ∗L X ∗L Û ∗L Ŝ ∗L V̂H ,

which implies that the horizontal slices, i.e., the tensor rows of V̂H span the tensor rows of VH
L̂ . Notice that VH

L̂
is row orthonormal, there exists a row orthonormal tensor R such that V̂H = R ∗L VH

L̂ . Then we have

‖Û ∗ V̂H‖2,∞ = max
j
‖Û ∗L V̂H ∗L e̊j‖F = max

j
‖V̂H ∗L e̊j‖F

= max
j
‖R ∗L VH

L̂ ∗L e̊j‖F ≤ max
j
‖VH

L̂ ∗L e̊j‖F ≤
√

µr

n2τ
.
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Let H1 = PΘ0P
L
V0

(H) and H2 = PΘ⊥0
PL

V0
(H) + PΘ⊥0

PL
V⊥0

(H) + PΘ0P
L
V⊥0

(H). Note that (Ẑ, Ê) satisfies

X = X ∗L Ẑ + Ê, PL
V0

(Ẑ) = Ẑ and PΘ0
(Ê) = Ê. Then by Theorem 3, we have P Û = PL

V0
and Θ̂ = Θ0. We

can obtain that

‖Z?‖∗ + λ‖E?‖2,1 − ‖Ẑ‖∗ − λ‖Ê‖2,1
≥〈Û ∗L V̂H + Q̂,Z? − Ẑ〉+ λ〈B(Ê) + Ĉ,E? − Ê〉
=〈Û ∗L V̂H + Q̂,H2〉 − λ〈B(Ê) + Ĉ,XH ∗L H2〉

=〈Û ∗L V̂H ,PΘ⊥0
(H)〉+ 〈Q̂,PL

V⊥0
(H)〉 − λ〈B(Ê),X ∗L PL

V⊥0
(H)〉 − λ〈Ĉ,X ∗L PΘ⊥0

(H)〉

=〈Û ∗L V̂H ,PΘ⊥0
(H)〉+ 〈Q̂,PL

V⊥0
(H)〉 − λ〈XH ∗L B(Ê),PL

V⊥0
(H)〉 − λ〈XH ∗L Ĉ,PΘ⊥0

(H)〉.

By the duality between the tensor nuclear norm and the tensor spectral norm, there exists a tensor Q0 such that
〈Q0,PV̂⊥P

L
V⊥0

(H)〉 = ‖PV̂⊥P
L
V⊥0

(H)‖∗ and ‖Q0‖ = 1. We set Q̂ = PL
V⊥0

PV̂⊥(Q0) ∈ P T̂ ⊥ . Similarly, thanks

to the duality between the `2,1 norm and `2,∞ norm, we can pick Ĉ ∈ PΘ̂⊥ such that 〈XH ∗L Ĉ,PΘ⊥0
(H)〉 =

−‖PΘ⊥0
(H)‖2,1. On the other hand, we can establish that

|〈XH ∗L B(Ê),PL
V⊥0

(H)〉|

=|〈W − λF ,PL
V⊥0

(H)〉|

≤|〈W ,PL
V⊥0

(H)〉|+ λ|〈F ,PL
V⊥0

(H)〉|

≤1

2
‖PV̂⊥P

L
V⊥0

(H)‖∗ +
λ

2
‖PΘ̂⊥P

L
V⊥0

(H)‖2,1,

where the last inequality holds because W ∈ PV̂⊥ and F ∈ PΘ̂⊥ . Hence, we have

‖Z?‖∗ + λ‖E?‖2,1 − ‖Ẑ‖∗ − λ‖Ê‖2,1

≥‖PV̂⊥P
L
V⊥0

(H)‖∗ −
√

µr

n2τ
‖PΘ⊥0

(H)‖2,1 + λ‖PΘ⊥0
(H)‖2,1 −

1

2
‖PV̂⊥P

L
V⊥0

(H)‖∗ −
λ

2
‖PΘ̂⊥P

L
V⊥0

(H)‖2,1

=
1

2
‖PV̂⊥P

L
V⊥0

(H)‖∗ −
√

µr

n2τ
‖PΘ⊥0

(H)‖2,1 + λ‖PΘ⊥0
(H)‖2,1 −

λ

2
‖PΘ̂⊥P

L
V⊥0

(H)‖2,1

≥1

2
‖PV̂⊥P

L
V⊥0

(H)‖∗ +
(λ

2
−
√

µr

n2τ

)
‖PΘ⊥0

(H)‖2,1.

Note that (Z?,E?) = (V0 ∗L VH
0 + H,E0 − X ∗L H) is an arbitrary optimal solution, the above inequality

shows ‖PV̂⊥P
L
V⊥0

(H)‖∗ = ‖PΘ̂⊥P
L
V⊥0

(H)‖2,1 = ‖PΘ⊥0
(H)‖2,1 = 0, i.e., PL

V⊥0
(H) ∈ PV̂ ∩PΘ̂ and H ∈ PΘ0

.

By the assumption that ‖PΘ̂PV̂‖ < 1, we have PL
V⊥0

(H) = 0, and so H ∈ PL
V0

. Thus, the solution (Z?,E?)
also satisfies PL

V0
(Z?) = Z? and PΘ0

(E?) = E?. It can be concluded that the solution (Z?,E?) also exactly
recovers the row space of L0 and the column support of E0.

Lemma 4 implies that if we can find a dual certificate W obeying

(a) W ∈ PV̂⊥ ,

(b) PΘ̂(W) = λXH ∗L B(Ê),

(c) ‖W‖ ≤ 1/2,

(d) ‖PΘ̂⊥(W)‖2,∞ ≤ λ/2,

(31)

then we can exactly recover the row space of L0 and the column support of outlier tensor E0.

F.3 Dual Certification via the Least Squares

Before we construct the dual certificate W , we first give some key lemmas, which will be proved in Section F.4.
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Lemma 5. Assume Θ̂ ∼ Ber(ρ). Then with probability at least 1− n−10(1) ,

‖PV̂ −
1

ρ
PV̂PΘ̂PV̂‖ ≤ ε,

provided that ρ ≥ c2µrn3 log(n(1))/(ε
2n2) for some numerical constant c2.

Corollary 1. Assume Θ̂ ∼ Ber(ρ). Then with probability at least 1− n−10(1) ,

‖PΘ̂PV̂‖
2 ≤ (1− ρ)ε+ ρ < 1,

provided that 1− ρ ≥ c2µrn3 log(n(1))/(ε
2n2) for some numerical constant c2.

Now we construct the dual certificate W and verify its validity.

Lemma 6. Suppose that Θ̂ ∼ Ber(ρ) and the assumptions in Theorem 2 are satisfied. Then with high probability,

W = λPV̂⊥

+∞∑
k=0

(PΘ̂PV̂PΘ̂)k(XH ∗L B(Ê))

obeys the dual conditions (31).

Proof. Note that by Corollary 1, we have ‖PΘ̂PV̂PΘ̂‖ = ‖PΘ̂PV̂‖
2 < 1. Thus, W is well defined. Now we

verify the four conditions in (31) in turn.

Proof of (a): It is easy to verify that W ∈ PV̂⊥ .

Proof of (b): By the construction of W , we have

PΘ̂(W) = λPΘ̂PV̂⊥

+∞∑
k=0

(PΘ̂PV̂PΘ̂)k(XH ∗L B(Ê))

= λPΘ̂(In2
−PV̂)

+∞∑
k=0

(PΘ̂PV̂PΘ̂)k(XH ∗L B(Ê))

= λPΘ̂(In2
−PΘ̂PV̂PΘ̂)

+∞∑
k=0

(PΘ̂PV̂PΘ̂)k(XH ∗L B(Ê))

= λPΘ̂

( +∞∑
k=0

(PΘ̂PV̂PΘ̂)k −
+∞∑
k=1

(PΘ̂PV̂PΘ̂)k
)

(XH ∗L B(Ê))

= λPΘ̂(XH ∗L B(Ê))

= λXH ∗L B(Ê).

Thus, W obeys the condition (31)(b).

Proof of (c): Let G =
∑+∞
k=0(PΘ̂PV̂PΘ̂)k. Since ‖B(Ê)‖ ≤

√
log(n2)/θ, we have

‖W‖ ≤ λ‖PV̂⊥‖‖G‖‖X‖‖B(Ê)‖ ≤ λ

1− σ2
‖X‖

√
log(n2)

θ
,

where σ =
√
ρ+ ε(1− ρ). If λ ≤ θ(1−σ2)

2‖X‖
√

log(n2)
, then ‖W‖ ≤ 1/2. Note that in Lemma 4, we require that

λ > 2
√

µr
n2τ

. Thus, λ ∈
(

2
√

µr
n2τ

, θ(1−σ2)

2‖X‖
√

log(n2)

]
.

Proof of (d): We can rewrite PΘ̂⊥(W) as

PΘ̂⊥(W) = λPΘ̂⊥PV̂⊥G(XH ∗L B(Ê))

= λPΘ̂⊥(In2
−PV̂)G(XH ∗L B(Ê))

= −λPΘ̂⊥PV̂G(XH ∗L B(Ê)).
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Note that ēijk is the unit tensor with the (i, j, k)-th entry equaling to 1 and the rest equaling to 0. Thus, the
(i, j)-th tube of ēijk is the only nonzero tube and it equals L(ėk), which further suggests that the (i, j)-th tube
of L(ēijk) equals L(L(ėk)). We have

max
j

∑
i,k

‖PV̂(ēijk)‖2F

= max
j

∑
i,k

‖L(̊ei ∗L ėk ∗L e̊Hj ) ∗L V̂ ∗L V̂H‖2F

= max
j

∑
i,k

‖L(̊ei ∗L ėk ∗L e̊Hj ) ∗L V̂‖2F

= max
j

∑
i,k

1

τ
‖L(̊ei)� L(L(ėk))� L(̊eHj )� L(V̂)‖2F

= max
j

∑
i,k

1

τ
‖L(L(ėk))� L(̊eHj )� L(V̂)‖2F .

Define Q = e̊Hj ∗L V̂ . Then ‖L(L(ėk)) � Q‖2F =
∑
q |Lq,k|2‖Q(:, :, q)‖2F ≤

∑
q(maxq |Lq,k|2)‖Q(:, :, q)‖2F ≤

τ
∑
q ‖Q(:, :, q)‖2F = τ‖Q‖2F = τ2‖Q‖2F . Hence,

max
j

∑
i,k

‖PV̂(ēijk)‖2F ≤ τ max
j

∑
i,k

‖̊eHj ∗L V̂‖2F =
µrn1n3
n2

.

Then, we can obtain

‖PV̂G(XH ∗L B(Ê))‖22,∞

= max
b

∑
i,k

〈
PV̂G(XH ∗L B(Ê)), ēibk

〉2
= max

b

∑
i,k

〈
XH ∗L B(Ê),GPV̂(ēibk)

〉2
= max

b

∑
i,k

∑
j

〈
XH ∗L B(Ê) ∗L e̊j ,GPV̂(ēibk) ∗L e̊j

〉2
≤max

b

∑
i,j,k

‖XH ∗L B(Ê) ∗L e̊j‖2F ‖GPV̂(ēibk) ∗L e̊j‖2F

≤max
b

∑
i,j,k

‖XH ∗L B(Ê)‖22,∞‖GPV̂(ēibk) ∗L e̊j‖2F

= max
b

∑
i,k

‖XH ∗L B(Ê)‖22,∞‖GPV̂(ēibk)‖2F

≤max
b

∑
i,k

‖X‖2‖G‖2‖PV̂(ēibk)‖2F

≤µrn1n3
n2

(
1

1− σ2
)2‖X‖2

≤1

4
,

where the last inequality holds because we require r ≤ n2(1 − σ2)2/(4µn1n3‖X‖2). In the meanwhile, when
proving Corollary 1, we require r ≤ (1− ρ)ε2n2/(c2µn3 log(n(1))). Thus, we can further obtain

‖PΘ̂⊥(W)‖2,∞ = λ‖PΘ̂⊥PV̂G(XH ∗L B(Ê))‖2,∞
≤ λ‖PV̂G(XH ∗L B(Ê))‖2,∞

=
λ

2
.
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So W obeys the condition (31)(d).

Checking the ranges of λ and r: When we prove Corollary 1 and bound ‖PΘ̂⊥(W)‖2,∞, we require

r ≤ min
( n2(1− σ2)2

4µn1n3‖X‖2
,

(1− ρ)ε2n2
c2µn3 log(n(1))

)
,

Thus we have r ≤ ρrn2

µn1n3‖X‖2 , where ρr is a constant. On the other hand, we require

λ ∈
(

2

√
µr

n2τ
,

θ(1− σ2)

2‖X‖
√

log(n2)

]
.

Let ρ ≤ 1/2− ε, we then have 2(1− σ2) ≥ 1. Accordingly, we can obtain

λ ∈
(

min
( 1
√
τn1n3‖X‖

,
2ε√

c2τn3 log(n(1))

)
,

θ

4
√

log(n2)‖X‖

]
.

So we can set λ = θ

4
√

log(n(1))‖X‖
. The proof is completed.

F.4 Proofs of Some Lemmas

We first introduce Lemma 7 which will be used in the proof of Lemma 5.

Lemma 7. [Tropp, 2012] Consider a finite sequence {Xi ∈ Rd1×d2} of independent, random matrices that satisfy
the assumption that E[Xi] = 0 and ‖Xi‖ ≤ ν. Let ω = max(‖

∑
i E[XiX

H
i ]‖, ‖

∑
i E[XH

i Xi]‖). Then, for any
t ≥ 0, we have

P
[
‖
∑
i

Xi‖ ≥ t
]
≤ (d1 + d2) exp

(
− t2

2ω + 2
3νt

)
≤ (d1 + d2) exp

(
− 3t2

8ω

)
, for t ≤ ω/ν.

F.4.1 Proof of Lemma 5

Proof. Define a set φ = {(Z1,Z2) | ‖Z1‖F ≤ 1,Z2 = ±Z1}. Since (ρ−1PV̂PΘ̂PV̂ − PV̂) is a self-adjoint
operator, we can use the variational form of the operator norm to compute its operator norm as follows:

‖1

ρ
PV̂PΘ̂PV̂ −PV̂‖

= sup
φ

∑
i,j,k

(δj
ρ
− 1
)
〈PV̂(Z1), ēijk〉〈PV̂(Z2), ēijk〉

= sup
φ

∑
i,j,k

δj − ρ
ρτ2

〈bdiag
(
PV̂(ēijk)

)
,Z1〉〈bdiag

(
PV̂(ēijk)

)
,Z2〉

=
∥∥∥∑
i,j,k

δj − ρ
ρτ

bdiag
(
PV̂(ēijk)

)
· bdiag

(
PV̂(ēijk)

)∥∥∥
=
∥∥∥∑

j

δj − ρ
ρτ

∑
i,k

bdiag
(
PV̂(ēijk)

)
· bdiag

(
PV̂(ēijk)

)∥∥∥,
where δj obeys i.i.d. Bernoulli distribution Ber(ρ). Define a set ψ = {(D1,D2) | ‖D1‖F ≤ 1,D2 = ±D1}. Note

that bdiag
(
PV̂(ēijk)

)
is a diagonal matrix and thus D1 and D2 are also diagonal matrices and there exist two

tensors D1 and D2 such that D1 = bdiag(L(D1)) and D2 = bdiag(L(D2)). For brevity, we further define

H̃j =
δj − ρ
ρτ

∑
i,k

bdiag
(
PV̂(ēijk)

)
· bdiag

(
PV̂(ēijk)

)
,
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and have

‖1

ρ
PV̂PΘ̂PV̂ −PV̂‖ = ‖

∑
j

H̃j‖.

By the above definitions, H̃j is self-adjoint and E[H̃j ] = 0. To prove the result by the non-commutative Bernstein

inequality, we need to bound ‖H̃j‖ and ‖
∑
j E[H̃jH̃

H
j ]‖. Firstly, we give an useful inequality:

‖PV̂(A)‖22,∞
= max

j

∑
i,k

〈A,PV̂(ēijk)〉2

= max
j

∑
i,k

〈A, L(̊ei ∗L ėk ∗L e̊Hj ) ∗L V̂ ∗L V̂H〉2

= max
j

∑
i,k

1

τ2
〈A, L(̊ei)� L(L(ėk))� L(̊eHj )� L(V̂)� L(V̂H)〉2

= max
j

∑
i,k

1

τ2
〈L(L(ėHk ))� L(̊eHi )�A, L(̊eHj )� L(V̂)� L(V̂H)〉2

≤max
j

∑
i,k

1

τ2
‖L(L(ėHk ))� L(̊eHi )�A‖2F ‖L(̊eHj )� L(V̂)� L(V̂H)‖2F

= max
j

∑
i,k

1

τ2
‖L(L(ėHk ))�A(i, :, :)‖2F ‖L(̊eHj )� L(V̂)‖2F

= max
j

∑
i,k

1

τ
‖L(L(ėHk ))�A(i, :, :)‖2F ‖̊eHj ∗L V̂‖2F

≤max
j

∑
i,k

‖A(i, :, :)‖2F ‖̊eHj ∗L V̂‖2F

= max
j
n3‖A‖2F ‖̊eHj ∗L V̂‖2F

=n3τ‖A‖2F max
j
‖̊eHj ∗L V̂‖2F

≤µrn3
n2
‖A‖2F .

Then we can bound ‖H̃j‖ in the following:

‖H̃j‖

= sup
ψ

δj − ρ
ρτ

∑
i,k

〈bdiag
(
PV̂(ēijk)

)
,D1〉〈bdiag

(
PV̂(ēijk)

)
,D2〉

≤ sup
ψ

τ

ρ
|δj − ρ|

∑
i,k

|〈D1,PV̂(ēijk)〉||〈D2,PV̂(ēijk)〉|

= sup
ψ

τ

ρ
|δj − ρ|

∑
i,k

|〈PV̂(D1), ēijk〉|2

≤ sup
ψ

τ

ρ

∑
i,k

〈PV̂(D1), ēijk〉2

≤ sup
ψ

τ

ρ
‖PV̂(D1)‖22,∞

≤ sup
ψ

τ

ρ

µrn3
n2
‖D1‖2F

≤µrn3
ρn2

:= ν.
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Note that E[(ρ−1δj − 1)2] = ρ−1(1− ρ) ≤ ρ−1. We further obtain

‖
∑
j

E[H̃jH̃
H
j ]‖

= sup
ψ

∑
j

E[(ρ−1δj − 1)2]τ2
(∑
i,k

〈D1,PV̂(ēijk)〉〈D2,PV̂(ēijk)〉
)2

≤τ
2

ρ
sup
ψ

∑
j

(∑
i,k

|〈D1,PV̂(ēijk)〉||〈D2,PV̂(ēijk)〉|
)2

=
τ2

ρ
sup
ψ

∑
j

(∑
i,k

〈D1,PV̂(ēijk)〉2
)2

=
τ2

ρ
sup
ψ

∑
j

‖PV̂(D1)‖22,∞
(∑
i,k

〈D1,PV̂(ēijk)〉2
)

=
τ2

ρ

µrn3
τn2

sup
ψ

∑
j

(∑
i,k

〈D1,PV̂(ēijk)〉2
)

=
τµrn3
ρn2

sup
ψ

∑
j

(∑
i,k

〈D1,PV̂(ēijk)〉2
)

≤τµrn3
ρn2

sup
ψ
‖D1‖2F

≤µrn3
ρn2

:= ω.

Since ε is small, ω/ν = 1 > ε. By Lemma 7, we have

P
(
‖PV̂ −

1

ρ
PV̂PΘ̂PV̂‖ > ε

)
=P
(
‖
∑
j

E[H̃j ]‖ > ε
)

≤(n1 + n2)n3 exp
(
− 3ε2

8ω

)
≤(n1 + n2)n3 exp

(
− 3ε2ρn2

8µrn3

)
.

Let ρ ≥ c2µrn3 log(n(1))/(ε
2n2). Then the following inequality holds.

P
(
‖PV̂ −

1

ρ
PV̂PΘ̂PV̂‖ ≤ ε

)
=1−

(
‖PV̂ −

1

ρ
PV̂PΘ̂PV̂‖ > ε

)
≥1− (n1 + n2)n3 exp

(
− 3ε2ρn2

8µrn3

)
≥1− 2n3(n(1))

− 3c2
8 +1.

By choosing an appropriate c2, we have P(‖PV̂ −
1
ρPV̂PΘ̂PV̂‖ ≤ ε) ≥ 1− n−10(1) . The proof is completed.

F.4.2 Proof of Corollary 1

Proof. From Lemma 5 we have

‖PV̂ −
1

1− ρ
PV̂PΘ̂PV̂‖ ≤ ε,
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provided that 1− ρ ≥ c2µrn3 log(n(1))/(ε
2n2). Note that I = PΘ̂ + PΘ̂⊥ , we have

‖PV̂ −
1

1− ρ
PV̂PΘ̂⊥PV̂‖ =

1

1− ρ
‖ρPV̂ −PV̂PΘ̂PV̂‖.

Then, by the triangular inequality

‖PV̂PΘ̂PV̂‖ ≤ ‖PV̂PΘ̂PV̂ − ρPV̂‖+ ‖ρPV̂‖ ≤ (1− ρ)ε+ ρ.

The proof is completed by using ‖PΘ̂PV̂‖
2 = ‖PV̂PΘ̂PV̂‖.

G ADDITIONAL EXPERIMENTS

G.1 Application to Outlier Detection

Here, we provide results for the missing data experiments on the COIL20-MIRFLICKR-25k dataset in Table 10.

Table 10: AUC of outlier detection and clustering results (ACC, NMI and PUR) on COIL20-MIRFLICKR-25k
dataset for missing data experiments.

# Outlier 100 200

Methods
δ = 10% δ = 20% δ = 10% δ = 20%

AUC ACC NMI PUR AUC ACC NMI PUR AUC ACC NMI PUR AUC ACC NMI PUR
TNN+TRPCA-DFT 0.7686 0.5661 0.7055 0.6422 0.7676 0.5621 0.7021 0.6407 0.7393 0.5942 0.7092 0.6499 0.7374 0.5905 0.7087 0.6467
TNN+TRPCA-DCT 0.7739 0.5354 0.6907 0.6322 0.7726 0.5428 0.6923 0.6343 0.7442 0.5740 0.7028 0.6395 0.7422 0.5732 0.6976 0.6339

TNN+OR-TPCA-DFT 0.0218 0.5613 0.6566 0.5980 0.0158 0.5708 0.6621 0.6049 0.0070 0.5780 0.6675 0.6089 0.0050 0.5734 0.6646 0.6048
TNN+TLRR-DFT 0.8170 0.5554 0.6417 0.5997 0.8158 0.5616 0.6505 0.6080 0.8032 0.5600 0.6396 0.5986 0.8009 0.5675 0.6488 0.6069
TNN+TLRR-DCT 0.7871 0.6268 0.7188 0.6711 0.7876 0.6251 0.7177 0.6695 0.7670 0.6692 0.7415 0.7036 0.7694 0.6680 0.7432 0.7036

TNN+OR-TLRR-DFT 0.7888 0.6667 0.7499 0.6935 0.7841 0.6653 0.7474 0.6923 0.7653 0.6657 0.7409 0.6868 0.7604 0.6636 0.7408 0.6867
TNN+OR-TLRR-DCT 0.7657 0.5757 0.6970 0.6376 0.7617 0.5798 0.6980 0.6405 0.7361 0.6038 0.7119 0.6546 0.7351 0.6116 0.7156 0.6608
TLRR-EWZF-DFT 0.8095 0.5438 0.6255 0.5849 0.7933 0.5160 0.6132 0.5621 0.7923 0.5682 0.6380 0.6034 0.7752 0.5497 0.6182 0.5757
TLRR-EWZF-DCT 0.7610 0.6446 0.7512 0.6781 0.7269 0.6618 0.7518 0.6913 0.7065 0.6391 0.7482 0.6712 0.6648 0.6742 0.7505 0.6931

OR-TLRR-EWZF-DFT 0.7919 0.6430 0.7346 0.6719 0.7905 0.6051 0.7153 0.6434 0.7658 0.6685 0.7426 0.6885 0.7630 0.6489 0.7299 0.6753
OR-TLRR-EWZF-DCT 0.8382 0.6750 0.7586 0.7118 0.7955 0.6763 0.7548 0.6981 0.8225 0.6803 0.7598 0.7042 0.7496 0.6887 0.7603 0.7038

G.2 Application to Image Clustering

Table 11: Clustering results (ACC, NMI and PUR) on the noisy Umist dataset.

Methods
σ2 = 0.1 σ2 = 0.2 σ2 = 0.3 σ2 = 0.4

ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
R-PCA 0.4252 0.5825 0.4739 0.4230 0.5820 0.4712 0.4185 0.5794 0.4679 0.4215 0.5835 0.4724

OR-PCA 0.3955 0.5762 0.4544 0.3985 0.5776 0.4558 0.3950 0.5703 0.4504 0.3975 0.5740 0.4554
LRR 0.3400 0.4358 0.3952 0.3255 0.4044 0.3748 0.3178 0.3924 0.3643 0.3170 0.3898 0.3634
SSC 0.4848 0.6662 0.5762 0.4810 0.6618 0.5727 0.4846 0.6631 0.5767 0.4762 0.6595 0.5706

SSC-OMP 0.4144 0.5670 0.5093 0.4062 0.5573 0.5006 0.4203 0.5668 0.5105 0.4094 0.5574 0.5061
TRPCA-DFT 0.5701 0.7186 0.6324 0.5683 0.7129 0.6305 0.5581 0.7037 0.6219 0.5624 0.7052 0.6258
TRPCA-DCT 0.5747 0.7218 0.6389 0.5692 0.7167 0.6358 0.5649 0.7104 0.6324 0.5673 0.7090 0.6336

OR-TPCA 0.3240 0.3642 0.3648 0.3170 0.3556 0.3588 0.3170 0.3508 0.3570 0.3195 0.3530 0.3565
TLRR-DFT 0.4437 0.5426 0.5143 0.4216 0.5100 0.4810 0.4198 0.5057 0.4778 0.4177 0.5020 0.4729
TLRR-DCT 0.4956 0.6425 0.5657 0.4834 0.6300 0.5573 0.4712 0.6087 0.5458 0.4720 0.6045 0.5437

OR-TLRR-DFT 0.5992 0.7429 0.6667 0.5955 0.7408 0.6628 0.5820 0.7320 0.6525 0.5902 0.7317 0.6570
OR-TLRR-DCT 0.4930 0.6618 0.5493 0.4907 0.6583 0.5452 0.4909 0.6581 0.5448 0.4984 0.6595 0.5546

In order to study the robustness of our methods for dealing with sample-specific corruptions, we add white
Gaussian noise to 20% of the images in the Umist dataset, and we use Θ to denote the indices of the selected
images. We use X noise to denote the noisy samples. For each sample X noise(:, j, :), j ∈ Θ, X noise(:, j, :) can
be expressed as X noise(:, j, :) = ivec(vec(X (:, j, :)) + ϕj), where ϕj ∈ Rn1n3 is additive white Gaussian noise
with zero mean and variance σ2‖X (:, j, :)‖2F . In this experiment, σ2 ranges from 0.1 to 0.4 and for each σ2,
we generate X noise 10 times. We can again observe from Table 11 that OR-TLRR-DFT achieves the highest
clustering accuracy, which suggests the effectiveness of the proposed method for clustering the corrupted data.
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Table 12: Clustering results (ACC, NMI and PUR) on the noisy USPS dataset.

Methods
SR = 0.3 SR = 0.5 SR = 0.7

ACC NMI PUR ACC NMI PUR ACC NMI PUR
R-PCA 0.4633 0.4100 0.4912 0.4572 0.4044 0.4876 0.4566 0.3999 0.4816

OR-PCA 0.4489 0.4015 0.4807 0.4482 0.4014 0.4806 0.4468 0.3953 0.4773
LRR 0.2911 0.2146 0.3111 0.2503 0.1603 0.2632 0.2540 0.1375 0.2664
SSC 0.3890 0.4065 0.4618 0.4025 0.4119 0.4670 0.4266 0.4125 0.4690

SSC-OMP 0.1424 0.0984 0.1939 0.1623 0.1149 0.2147 0.2105 0.1517 0.2624
TRPCA-DFT 0.3417 0.2902 0.3767 0.3362 0.2797 0.3744 0.3506 0.2756 0.3739
TRPCA-DCT 0.3399 0.2903 0.3768 0.3380 0.2795 0.3748 0.3564 0.2817 0.3781

OR-TPCA 0.3219 0.2533 0.3468 0.3342 0.2685 0.3573 0.3588 0.2787 0.3754
TLRR-DFT 0.2762 0.1624 0.2892 0.2129 0.0899 0.2233 0.1795 0.0518 0.1870
TLRR-DCT 0.3526 0.2688 0.3965 0.3203 0.2190 0.3557 0.2610 0.1386 0.2802

OR-TLRR-DFT 0.4876 0.4228 0.5251 0.5055 0.4263 0.5348 0.4929 0.4252 0.5317
OR-TLRR-DCT 0.4069 0.3452 0.4460 0.4074 0.3532 0.4555 0.4246 0.3519 0.4638

We finally consider the USPS dataset, which contains 9298 images of 16 × 16 handwritten digits. In this
experiment, 100 images are randomly selected from each of the 10 digits; hence n2 = 1000. For each image,
we randomly shift the digit horizontally with respect to the center by 3 pixels either side (left or right). Then
we generate noisy data by adding white Gaussian noise to different percentages of the shifted image samples,
where the sampling rate (SR) is set to be 0.3, 0.5 and 0.7. The noise level σ2 is now fixed to be 0.2. One can
infer from Table 12 that OR-TLRR-DFT consistently outperforms other compared methods. By introducing
column-sparse noise, the robustness of the proposed method is also verified.


