
Large-Scale Gaussian Processes via Alternating Projection

Kaiwen Wu1 Jonathan Wenger2 Haydn Jones1 Geoff Pleiss3,4 Jacob R. Gardner1

1University of Pennsylvania 2Columbia University 3University of British Columbia 4Vector Institute

Abstract

Training and inference in Gaussian processes
(GPs) require solving linear systems with
n × n kernel matrices. To address the pro-
hibitive O(n3) time complexity, recent work
has employed fast iterative methods, like con-
jugate gradients (CG). However, as datasets
increase in magnitude, the kernel matrices
become increasingly ill-conditioned and still
require O(n2) space without partitioning.
Thus, while CG increases the size of datasets
GPs can be trained on, modern datasets
reach scales beyond its applicability. In this
work, we propose an iterative method which
only accesses subblocks of the kernel matrix,
effectively enabling mini-batching. Our algo-
rithm, based on alternating projection, has
O(n) per-iteration time and space complex-
ity, solving many of the practical challenges
of scaling GPs to very large datasets. Theo-
retically, we prove the method enjoys linear
convergence. Empirically, we demonstrate its
fast convergence in practice and robustness
to ill-conditioning. On large-scale benchmark
datasets with up to four million data points,
our approach accelerates GP training and in-
ference by speed-up factors up to 27× and
72×, respectively, compared to CG.

1 INTRODUCTION

Scaling Gaussian process (GP) models to large
datasets has been a central research topic in probabilis-
tic machine learning for nearly two decades. The pri-
mary challenge is the cubic complexity of computing
both the marginal log likelihood (MLL) during train-
ing and the predictive distribution at test time. Over

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

0 250 500 750 1000

iterations (epochs)

100

101

av
g

re
l

re
si

d
u

al
n

or
m CG

alt. proj.

(a) 3droad

0 250 500 750 1000

iterations (epochs)

10−1

100

101

102

av
g

re
l

re
si

d
u

al
n

or
m CG

alt. proj.

(b) house electric

Figure 1: Convergence of alternating projection and
(preconditioned) conjugate gradient. The x-axis is the
number iterations for CG and the number epochs for
alternating projection. Both methods are initialized at
zero, but CG increases the residual after the first iter-
ation. Left: While the asymptotic convergence rate of
CG can be faster than alternating projection, CG does
not find a better solution than alternating projection
in the first 1000 iterations. Right: CG struggles with
convergence due to ill-conditioning and does not reach
the tolerance ϵ = 1. In contrast, alternating projection
convergences. See §4 for more details.

the years, this problem has been addressed both from a
modeling perspective (e.g., Hensman et al., 2013, 2015;
Titsias, 2009; Snelson and Ghahramani, 2005; Salim-
beni et al., 2018; Jankowiak et al., 2020; Katzfuss and
Guinness, 2021) and from a numerical methods per-
spective (e.g., Cutajar et al., 2016; Pleiss et al., 2018;
Gardner et al., 2018; Wang et al., 2019; Maddox et al.,
2022), and contemporary work even unifies these per-
spectives to a degree (Artemev et al., 2021; Wenger
et al., 2022b). In recent years, numerical methods
have increasingly relied on matrix-free iterative meth-
ods, which access the kernel matrix through matrix-
vector multiplications. These iterations are suitable
for GPU acceleration (Gardner et al., 2018) and have
shown success on medium to moderately large datasets
(Wang et al., 2019), outperforming modeling-based ap-
proaches such as stochastic variational GPs (SVGP)
(Hensman et al., 2013).

Most GP training and inference approaches based
on iterative methods use classic general-purpose al-

Large-Scale Gaussian Processes via Alternating Projection

gorithms for matrix solves, such as conjugate gradi-
ents (CG) (Cutajar et al., 2016; Gardner et al., 2018;
Wang et al., 2019), MINRES (Pleiss et al., 2020), or
(stochastic) gradient descent (Lin et al., 2023). There
is reason to believe that such algorithms are subop-
timal for modern hardware-accelerated Gaussian pro-
cesses. For example, CG was purpose-built for sparse
linear systems that require high-precision solutions.
Neither of these properties applies to GP regression:
the necessary solves involve dense covariance matrices,
and tasks such as hyperparameter optimization can be
performed with extremely coarse-grained solves (Wang
et al., 2019; Maddox et al., 2022). These characteris-
tics of large-scale dense operations and low precision
amenability are in line with existing trends in machine
learning (Courbariaux et al., 2015; Micikevicius et al.,
2018), but ultimately place Gaussian processes at odds
with much of the literature on numerical methods.

Much in the way that deep learning has been rev-
olutionized by purpose-built optimizers that exploit
properties of neural networks (Kingma and Ba, 2015;
Loshchilov and Hutter, 2019), this paper aims to ac-
celerate GPs with a purpose-built method leveraging
(coarse-grained) covariance matrix solves on modern
hardware. We introduce an iterative method to com-
pute gradients of the marginal log-likelihood (MLL)
and the posterior mean, that improves over CG in the
following ways: 1) it requires O(n) computation per it-
eration rather than CG’sO(n2); 2) it converges rapidly
and monotonically in its early stages (but does not
necessarily obtain higher precision than CG); and 3)
it demonstrates improved numerical stability in float-
ing point arithmetic.

Contributions. We propose an iterative method for
Gaussian process training and inference. The method
computes the marginal log-likelihood derivative and
posterior mean via alternating projection. Each itera-
tion of the algorithm accesses a subblock of the kernel
matrix, has linear time and memory complexity, and
decreases the residual near-monotonically after every
epoch. We prove that the algorithm converges linearly
at a rate no slower than gradient descent, despite never
operating on the full kernel matrix. Empirically, our
method achieves a speed-up of up to 27× over CG-
based hyperparameter training and of up to 72× over
CG-based inference on a wide range of datasets. As a
demonstration of its scalability and robustness to ill-
conditioning, we are able to train Gaussian processes
on 4 million data points, the largest dataset reported
in the literature to-date without using inducing points
or similar modeling approximations—to the best of our
knowledge. We find that our method outperforms the
stochastic variational Gaussian process by a significant
margin at this scale.

2 SETUP AND BACKGROUND

Notation. Let (X,y) be a training set of n training
inputs X = (x1 · · · xn)

⊤ ∈ X ⊆ Rn×d and labels
y = (y1 · · · yn)

⊤ ∈ Rn. Let the set {1, 2, . . . , n}
be denoted by [n]. Given a matrix A ∈ Rn×n and an
index set I ⊆ [n], AI = AI,: is the |I|×n row-indexed
submatrix, A:,I the n×|I| column-indexed submatrix,
and AI,I is the |I| × |I| principal submatrix. We use
similar indexing notations for vectors.

Let E ∈ Rn×n be the identity matrix. EI denotes the
|I|×n submatrix formed by rows indexed by I. Notice
that multiplication with EI ∈ R|I|×n selects rows and
columns: EIA = AI and AE⊤

I = A:,I for any n × n
matrix A. For a vector u ∈ R|I|, left multiplying E⊤

I

maps u to a n-dimensional vector v, such that vI = u
and the entries outside I are zeros: v[n]\I = 0, where
[n] \ I is the complement of I.

Now, let f : X → R be a latent function, and let
kθ : X × X → R be a (known) positive definite
kernel function with hyperparameters θ. We write
f = f(X) = (f(x1) · · · f(xn))

⊤ ∈ Rn. Similarly,
kθ(X, ·) : X → Rn denotes the vector-valued function
given by (k(x1, ·) · · · k(xn, ·))⊤, and Kθ ∈ Rn×n is
the Gram matrix with [Kθ]ij = kθ(xi,xj). We omit
the subscript θ unless the context needs it.

Gaussian Process Regression. In supervised GP
regression, we assume a response-generating function
f that is Gaussian process distributed a priori—i.e.
f ∼ GP

(
µ, kθ). For simplicity of presentation, we as-

sume without loss of generality an exact observation
model—i.e. y = f(X).1 Given a finite test dataset
x∗
1, . . . ,x

∗
M , we can obtain a posterior distribution over

f(x∗
1), . . . , f(x

∗
M) using standard Gaussian condition-

ing rules with the posterior mean and covariance:

E[f∗ | f] = µ+K∗fK
−1(y − µ),

D[f∗ | f] = K∗∗ −K∗fK
−1Kf∗.

We refer the reader to Rasmussen and Williams (2006,
Ch. 2) for more details.

Hyperparameter Training. The hyperparameters
θ of the GP are learned by minimizing the negative
marginal log likelihood (MLL) ℓ(θ) := − log p(y;θ).
With a Gaussian process prior on f , we have p(y;θ) =
N (y;µ,Kθ), yielding the following minimization:

minimize
θ

ℓ(θ)
c
= 1

2

(
y⊤K−1

θ y + log det(Kθ)
)

(1)

1Note that we can easily recover an observational noise
model by setting kθ(x,x

′) = kbase(x,x
′) + σ21[x = x′] for

some kbase and σ > 0, where 1 is the indicator function.

Wu, Wenger, Jones, Pleiss, Gardner

Equation (1) is commonly optimized with first-order
methods, which require an (unbiased) estimate of
∂ℓ(θ)
∂θ . Unfortunately, as (1) cannot be written in the

usual
∑n

i=1 ℓ(xi, yi) form common to many machine
learning algorithms, standard minibatching strategies
are not readily applicable. Following prior work (e.g.
Cutajar et al., 2016; Gardner et al., 2018; Wenger
et al., 2022a), we use the following unbiased estimate:

− 1
2y

⊤K−1
θ

∂Kθ

∂θ K−1
θ y + 1

2l

∑l
i=1

(
z⊤i K

−1
θ

)
∂Kθ

∂θ zi, (2)

where zi are i.i.d . stochastic trace samples with zero
mean E[zi] = 0 and identity covariance E[ziz⊤i] = E.
Note that the second term is an unbiased stochastic ap-
proximation of tr

(
K−1

θ
∂Kθ

∂θ

)
. Crucially, computing (2)

primarily involves computing linear solves with Kθ.

Linear Solves with Iterative Methods. When
the size of K is large, direct methods solving Kw = b
are prohibitively slow. Iterative methods, such as con-
jugate gradients (CG), offer reduced asymptotic com-
plexity (Cutajar et al., 2016), significant GPU acceler-
ation (Gardner et al., 2018), and memory savings if the
kernel matrix K is accessed in a map-reduce fashion
(Wang et al., 2019; Charlier et al., 2021).

CG minimizes the quadratic objective 1
2w

⊤Kw−b⊤w
by iteratively searching along conjugated directions.
Each iteration requires a O(n2) matrix-vector multi-
plication with K. In exact arithmetic, CG returns
an exact solution after n iterations. In practice for
ill-conditioned problems, CG is terminated once the
residual r = b−Kw is small enough, e.g., ∥r∥≤ ϵ∥b∥
for some predefined tolerance parameter ϵ.

For GP hyperparameter learning often large values of
the tolerance ϵ are used despite the potential for over-
fitting (Potapczynski et al., 2021). For instance, ϵ = 1
is used in practice (Wang et al., 2019; Maddox et al.,
2022) and has been the default tolerance of CG during
training in popular GP software packages, including
GPyTorch2 and GPflow3.

For hyperparameter training, each MLL derivative
evaluation requires a batched linear solve KW = B,
where B = (y z1 . . . zl) with zi are random sam-
ples for stochastic MLL derivative estimation in (2).

RKHS. Every kernel k : X ×X → R induces a func-
tion space H = span{k(x, ·) : x ∈ X} ⊆ RX , known
as a reproducing kernel Hilbert space (RKHS) where
its inner product ⟨·, ·⟩H satisfies ⟨k(x, ·), k(x′, ·)⟩H =
k(x,x′) for all x,x′ ∈ X .

2GPyTorch setting https://rb.gy/qi8er
3GPflow setting https://rb.gy/mozif

RKHS Projection. Given a set of indices I ⊆ [n],
define the finite dimensional linear subspaces of H:

V[n] := span{k(xi, ·) : i = 1, 2, · · · , n} ⊆ H,

VI := span{k(xi, ·) : i ∈ I} ⊆ V[n],
(3)

By definition these subspaces contain functions of the
form f(·) = ∑n

i=1 αik(xi, ·) and f(·) = ∑
i∈I αik(xi, ·)

respectively. We can map any f ∈ H onto these sub-
spaces using the projection operator.

Definition 1 (Projection Operator). Let V ⊆ H be a
closed linear subspace. The projection of any f ∈ H
onto V is given by the projection operator

projV (f) = argmin
g∈V

1
2∥f − g∥2H,

which is well-defined by the Hilbert space projection
theorem, i.e., the unique minimizer exists.

Intuitively, the projection operator finds the best ap-
proximation of f inside V , where the approximation
error is measured by the norm ∥·∥H. For V = V[n] and
V = VI , the projection operator has a simple form:

projV[n]
(f) = f(X)⊤K−1k(X, ·),

projVI
(f) = f(X)⊤E⊤

I K
−1
I,IEIk(X, ·).

(4)

Importantly, these projections only evaluate f and the
kernel k on the training data X (or subset XI). In
other words, it is unnecessary to evaluate f or k out-
side of X (or XI). The complexity of computing the
projection projV (f) depends on the dimension of the
subspace V . A projection to V[n] takes O(n3) time and
a projection to VI takes O(|I|3) time.

3 METHOD

In this section, we develop an iterative method for
computing solves K−1b by alternating projection.
The method supports batch linear solves with mul-
tiple right-hand sides, as required by estimating the
marginal log-likelihood (MLL) derivative (2), and is
amenable to GPU parallelism. We cast the linear solve
as a projection in the RHKS H and decompose the
projection into a sequence of small-scale subproblems.
Each subproblem is solved in O(n) time, allowing fre-
quent updates. An appealing feature of alternating
projection, as we will see later later, is that it typi-
cally makes rapid progress in the early stage and finds
a medium-precision solution quickly, which are already
good enough for GP training and predictions.

High Level Approach. Let k be strictly positive
definite and assume there is no duplicate data. Then
there exists g ∈ H interpolating b, i.e., g(X) = b. The

https://rb.gy/qi8er
https://rb.gy/mozif

Large-Scale Gaussian Processes via Alternating Projection

g = r(0)

k(x1, ·) k(x2, ·)

k(x3, ·)

s1

r(1)

0 250 500 750 1000

epochs

10−4

10−3

10−2

10−1

re
l

re
si

d
u

al
n

or
m

cyclic

random

GS

Figure 2: Left: Illustration of alternating projec-
tion. s(1) is the projection of g = r(0) onto the sub-
space spanned by k(x1, ·) and k(x2, ·). The residual
r(1) = g − s(1) will be projected to other coordinates
in the next iteration. Right: Gauss-Southwell block
selection rule results in faster convergence than ran-
dom and cyclic selection rules.

exact form of g is not important (or unique for that
matter); rather, we are interested in its projection onto
the subspace V[n], which by (4) is

projV[n]
(g) = b⊤K−1k(X, ·).

Thus, the solution K−1b can be obtained from the co-
efficients of the projection projV[n]

(g). At a first glance,
it is not even clear how to come up with this function
g, let alone computing its projection. As we will see
soon, we do not need an explicit representation of g.

Directly projecting g onto V[n] is computationally in-
feasible, as the time complexity is cubic in n. Instead,
we partition [n] into subsets P = {I1, I2, · · · , Im}. For
each subset I ∈ P, the projection to the linear sub-
space VI ⊆ V[n] is cheap, provided that |I| is small.
Thus, we construct the (full) projection projV[n]

(g) by
iteratively computing the projection onto the linear
subspaces VI where I ∈ P.

Starting from r(0) = g and s(0) = 0, the j-th iteration
selects an index set I ⊆ [n] and updates as follows

s(j+1) = s(j) + projVI

(
r(j)

)
(5)

r(j+1) = r(j) − projVI

(
r(j)

)
(6)

Intuitively, s(j) progressively approximates the true
projection projV[n]

(g), since (5) iteratively adds the
projection onto subspaces VI to the current approx-
imation s(j). Meanwhile, (6) accordingly updates the
residual—the difference bewteen g and s(j). As j →
∞, s(j) converges to the true projection b⊤K−1k(X, ·)
(Wendland, 2004). See Figure 2 (left panel) for an il-
lustration of alternating projection.

Store r(j) Implicitly. Crucially, in the updates (5)
and (6), the function r(j) is only ever accessed through
its evaluation on the training dataX (recall the projec-
tion formula (4)). Therefore, we only need to maintain

the residual vector r(j) = r(j)(X) ∈ Rn instead of the
entire function. The update (6) thus reduces to

r(j+1) = r(j) − projVI

(
r(j)

)
(X)

= r(j) −KE⊤
I K

−1
I,IEIr

(j)

= r(j) −K:,IK
−1
I,Ir

(j)
I , (7)

where we recall that EI denotes the rows of the iden-
tity matrix indexed by I.

Store s(j) by RKHS Bases. We prove by induction
that s(j) ∈ V[n] for every j and thus can be written as

a linear combination
∑n

i=1 w
(j)
i k(xi, ·) for some weight

w(j) ∈ Rn. At the 0-th iteration, we see that s(0) is
the zero function with the weight vector w(0) = 0. Let
I ⊆ [n] be the indices selected in the j-th iteration. By
the induction hypothesis, we have

s(j+1) = s(j) + projVI

(
r(j)

)
=

n∑
i=1

w
(j)
i k(xi, ·) + r(j)(X)⊤E⊤

I K
−1
I,IEIk(X, ·),

where the last line gives an explicit update on w:

w(j+1) = w(j) +E⊤
I K

−1
I,Ir

(j)
I .

Recalling the property of left multiplication with E⊤
I ,

only entries in w indexed by I need to be updated,
while keeping the entries outside I unchanged:

w
(j+1)
I = w

(j)
I +K−1

I,Ir
(j)
I ,

w
(j+1)
[n]\I = w

(j)
[n]\I .

(8)

Summary. The updates (7) and (8) yield iterations
on the residual r(j) and weight vector w(j) by simple
matrix operations. As j → ∞, we have s(j) converges
to projV[n]

(g). As a result, the residual vector r(j) con-

verges to zero and the weight vector w(j) → K−1b.
We summarize this approach in Algorithm 1. Note
that the algorithm can be adapted easily to perform
multiple right-hand solves in parallel by replacing vec-
tors w, r,b with matrices W,R,B.

Block Selection. Selecting which block to update is
crucial for fast convergence. The simplest block selec-
tion rules are random selection (sample I uniformly
from P) and cyclic selection (the j-th iteration se-
lects the (j mod m)-th block), which usually converge
slowly (see Figure 2). A more sensible choice is select-
ing the block I with the largest residual norm

I = argmax
I∈P

∥RI,:∥2F. (9)

In the special case when R is an n× 1 vector, the se-
lection rule (9) reduces to the Gauss-Southwell (GS)

Wu, Wenger, Jones, Pleiss, Gardner

Algorithm 1: Alternating Projection

Input: A batched linear system KW=B
Output: The solution W∗ = K−1B

1 Initialize W = O and R = B
2 for t = 1, 2, · · · do // epoch

3 for j = 1, 2, · · · ,m do // mini-batch

4 select a block I ∈ P from the partition

5 WI = WI +K−1
I,IRI

6 R = R−K:,IK
−1
I,IRI

7 end
8 if ∥R∥ ≤ ϵ∥B∥ then
9 return W

10 end

rule (Nutini et al., 2015). When R is a matrix, how-
ever, the selection rule (9) is not the same as applying
the GS rule independently in each column, which may
select different blocks for different columns. Thus, the
convergence behavior of Algorithm 1 on multiple right
hand sides is not exactly the same as running the al-
gorithm on each right hand side independently.

Cached Cholesky Factors. Updating W and R
requires solving a linear system with the submatrix
KI,I . To avoid repeatedly inverting the same matrices,
we compute and cache the Cholesky factors of all prin-
cipal submatrices {KI,I : I ∈ P} once at the beginning
of Algorithm 1. Namely, we cache the Cholesky fac-
tors whenever the GP hyperparameters are updated,
i.e., once per gradient computation. To facilitate par-
allelism, we partition the blocks evenly so that every
block has the same size |I| = b (except for the last
block) and factorize all submatrices in a single batch
Cholesky call. Caching Cholesky factors costs O(nb2)
time and O(nb) memory.

Complexity. The block selection takes O(nb) time.
With the cached Cholesky factors available, updat-
ing the weights W takes O(b2) time and updating
the residual R takes O(nb) time. Each epoch runs
m = n/b inner iterations and thus takes O(nb + n2)
time in total—each epoch has the same complexity as
a single CG iteration. A more fine-grained analysis in
§F shows that each epoch has (2 + 3

b)n
2 + (2b + 1)n

floating point operations (FLOPs). Thus, for typical
batch sizes 1 ≪ b ≪ n, each epoch requires roughly
the same 2n2 FLOPs as a single CG iteration. In the
upcoming sections, we will compare the total number
of CG iterations and the total number of alternating
projection epochs, as a proxy of comparing FLOPs.
We note that every inner iteration in Algorithm 1 has
linear (in terms of n) time and memory complexity. In
particular, the peak memory complexity is O(nb).

0 250 500 750 1000

epochs

10−1

100

av
g

re
l

re
si

d
u

al
n

or
m b=6000

b=2000

b=1000

b=500

b=100

0 2000 4000 6000 8000

wall-clock time (s)

10−1

100

av
g

re
l

re
si

d
u

al
n

or
m b=6000

b=2000

b=1000

b=500

b=100

Figure 3: Convergence of alternating projection with
different batch sizes b on 3droad. Left: Smaller batch
sizes converge faster within the same epochs. Right:
However, smaller batch sizes result in more sequential
updates on the GPU and thus longer wall-clock time.

Connection with Coordinate Descent. It can be
shown that Algorithm 1 produces iterates equivalent to
block coordinate descent on the quadratic form (§B).
We will exploit this connection to give a convergence
rate. While block coordinate descent is arguably more
intuitive, we introduce this method as alternating pro-
jection for two reasons. First, unlike in coordinate
descent, the update rules based on alternating pro-
jection maintain the residual R incrementally, which
enables efficient block selection rules like (9) without
re-evaluating the residual. Ultimately, block coordi-
nate descent has to be implemented as Algorithm 1
for efficiency. Second, alternating projection can be
easily adapted to new settings. For instance, a par-
allel coordinate descent algorithm was discovered via
the connection with (Dykstra’s) alternating projection
(Boyle and Dykstra, 1986; Tibshirani, 2017) in the set-
ting of regularized least-squares, which hints that Al-
gorithm 1 may be distributed.

4 CONVERGENCE

Let λmax and λmin be the largest and smallest eigen-
values of K, κ = λmax/λmin its condition number, and
define λ′

max = maxI∈P λmax(KI,I) as the maximum
of the largest eigenvalues of the principal submatrices
{KI,I : I ∈ P}. By leveraging the connection with co-
ordinate descent (Nutini et al., 2022), we can prove an
explicit convergence rate for Algorithm 1 when applied
to a linear system with multiple right-hand sides.

Theorem 1. Let W∗ be the unique solution of the
linear system KW = B and W(t) its approximation
after t epochs of Algorithm 1 using the modified GS
rule (9). Then it holds that

∥W(t) −W∗∥2K ≤ exp
(
− t/κ′)∥W(0) −W∗∥2K,

where ∥W − W∗∥2K = tr
(
(W − W∗)⊤K(W − W∗)

)
and κ′ = λ′

max/λmin ≤ κ.

Large-Scale Gaussian Processes via Alternating Projection

The rate in Theorem 1 improves over gradient descent
despite only needing submatrices, for which the above
holds with exp(−t/κ), since generally κ′ ≤ κ. For
comparison, the convergence rate of (batched) CG is

4
(
(
√
κ− 1)/(

√
κ+ 1)

)2t ≈ 4 exp
(
− 4t/

√
κ
)
for a suf-

ficiently large condition number κ ≫ 1. The conver-
gence rate of alternating projection is asymptotically
faster than that of CG if κ′ ≤ 1

4

√
κ. In general, we

do not expect this condition to hold. However, alter-
nating projection has practical advantages despite a
slower asymptotic convergence rate. First, alternating
projection has n/b times more updates than CG with
the same number of floating point operations. More
frequent updates may leads to more progress especially
in the beginning of the optimization. Second, alternat-
ing projection generally decreases the residual in every
epoch, whereas CG residual is well-known to be non-
monotonic. Empirically, CG often increases the resid-
ual dramatically in the early stage and it takes time
for CG to enter the “linear convergence phase”.

Figure 1 demonstrates the above two points. This
figure is plotted using two checkpoints at the 50-th
epoch of GP training on the 3droad and house elec-
tric datasets respectively. The batched linear system
KW = B has 16 right-hand sides, where b0 = y − µ
is the difference between the training labels and prior
mean and {bi}15i=1 are i.i.d . stochastic trace samples.

Figure 2 right panel compares the convergence rates
of different block selection rules. We can show that
the random selection rule achieves a similar rate as
Theorem 1, but only in expectation (Nesterov, 2012).
In practice, the GS rule almost always converges faster
than random selection.

The batch size b affects the rate in Theorem 1 through
the ratio κ′ = λ′

max/λmin. Note that the largest eigen-
value of the principal submatrix is bounded by its trace
λmax(KI,I) ≤ tr(KI,I), where the trace grows linearly
in |I|. A small batch size b = |I| is likely to have a
small eigenvalue λ′

max and thus a faster convergence
rate (at least according to Theorem 1). Indeed, as
shown in Figure 3, we compare convergence rates of
different batch sizes in practice. Although small batch
sizes lead to faster convergence rates, they generally
have a longer running time due to more sequential
updates. Therefore, we recommend using the largest
batch size possible subject to memory constraints. In
addition, we note that the convergence rate in Theo-
rem 1 is loose for large batch sizes b. In the extreme
case where b = n, Algorithm 1 is equivalent to the
Cholesky decomposition on the full kernel matrix K
and thus converges to the exact solution in one update.
However, Theorem 1 does not reflect that. Hence, the
convergence rate in practice may be faster than the
theory predicts.

5 EXPERIMENTS

We evaluate the efficacy of the alternating projections
solver in a GP regression task. Our evaluation includes
a training dataset of n = 4M , which, to the best of
our knowledge, is considerably larger than any other
dataset where a GP has been applied without inducing
points or employing modeling approximations. Our
implementation is available at https://github.com/
kayween/alternating-projection-for-gp.

Experiments are performed on a single 24 GB NVIDIA
RTX A5000 GPUs with single precision floating point
arithmetic. All numerical algorithms and GP models
are implemented in PyTorch and GPyTorch (Gardner
et al., 2018). We use the KeOps library (Charlier et al.,
2021) to implement all matrix-free numerical methods
in a map-reduce fashion, thus eliminating the need to
store large n× n kernel matrices in memory.

5.1 Main Result: GP Regression

We first evaluate our method on large-scale Gaus-
sian process training tasks. We compare against GPs
trained with CG, which is the predominant matrix-
free GP training approach (Gardner et al., 2018; Wang
et al., 2019; Maddox et al., 2022).

Metrics. Our primary desiderata for GPs are 1) low
computational costs for training and 2) generalization.
Hence, we report the following metrics for each train-
ing method: 1) the wall-clock training time, and 2/3)
the trained model’sRMSE andNLLmeasured on the
test set. Additionally, for CG-trained and alternating
projection-trained GPs, we report the total number of
CG iterations and alternating projection epochs.

Datasets and Models. We conduct experiments on
UCI regression datasets, whose statistics are shown
in Table 5. Each dataset is split into 80% training
and 20% test. The labels are normalized so that they
have zero mean and unit variance. Almost all exper-
iments are averaged over 5 runs. Because of resource
constraints, we limit the two largest datasets—house
electric and gas sensors—to 3 and 1 run respectively.

We train GPs with ν = 2.5 Matérn kernels and a con-
stant prior mean. We optimize the following hyper-
parameters: a scalar constant for the prior mean, a
d-dimensional kernel lengthscale, a scalar outputscale,
and a scalar observational noise σ2. Experiments with
ν = 1.5 Matérn kernels are deferred to §E.

MLL Optimization. To compute the stochastic
MLL gradient (2), we use l=15 stochastic trace sam-
ples zi. Thus, all matrix-free methods solve a batched
linear system with 16 right-hand sides with b0 = y−µ

https://github.com/kayween/alternating-projection-for-gp
https://github.com/kayween/alternating-projection-for-gp

Wu, Wenger, Jones, Pleiss, Gardner

Table 1: Gaussian process training on UCI benchmark datasets. Metrics are computed across multiple runs
and reported with ± one standard deviation.

Dataset Method RMSE NLL CG iters/AP epochs Training time Speed up

sgemm
n = 241, 600

d = 14

CG 0.048± 0.000 −1.037± 0.001 551± 1 9.1m ±0.0
Alt. Proj. 0.046± 0.000 −0.999± 0.001 550± 0 12.2m ±0.2 0.7×
SVGP 0.086± 0.000 −0.934± 0.003 NA 14.8m ±0.1

air quality
n = 382, 168

d = 13

CG 0.261± 0.001 0.143± 0.004 2965± 19 33.5m ±1.5
Alt. Proj. 0.262± 0.001 0.137± 0.003 550± 0 16.9m ±0.5 2.0×
SVGP 0.363± 0.003 0.399± 0.006 NA 23.4m ±0.1

3droad
n = 434, 874

d = 3

CG 0.069± 0.000 1.324± 0.002 5128± 114 53.2m ±2.8
Alt. Proj. 0.076± 0.000 1.203± 0.001 676± 1 21.1m ±0.5 2.5×
SVGP 0.327± 0.002 0.320± 0.005 NA 26.1m ±0.1

song
n = 515, 345

d = 90

CG 0.747± 0.002 1.140± 0.003 4431± 110 13.8h ±0.8
Alt. Proj. 0.749± 0.002 1.132± 0.002 550± 0 2.7h ±0.1 5.1×
SVGP 0.790± 0.002 1.184± 0.002 NA 0.5h ±0.0

buzz
n = 583, 250

d = 77

CG 0.321∗ ± 0.144 0.669∗ ± 1.152 16726± 2724 31.1h ±5.4
Alt. Proj. 0.239± 0.001 0.018± 0.003 550± 0 2.0h ±0.1 15.6×
SVGP 0.259± 0.002 0.066± 0.006 NA 0.6h ±0.0

house electric
n = 2, 049, 280

d = 11

CG - - ⩾ 50441 ⩾ 11d
Alt. Proj. 0.030± 0.000 −1.148± 0.001 1100± 0 9.8h ±0.4 ⩾ 26.9×

SVGP 0.050± 0.000 −1.549± 0.001 NA 2.1h ±0.0

gas sensors
n = 4, 178, 504

d = 17

CG - - - -
Alt. Proj. 0.203 0.070† 1100 84.5h

SVGP 0.330± 0.001 0.339± 0.003 NA 8.7h ±0.03

* : At test time, CG does not reach the tolerance ϵ = 0.01 after 4000 iterations on some checkpoints.

- : CG does not finish GP training.

† : This predictive variance is calculated using only 500 Lanczos iterations to save time and avoid numerical instability.

and bi = zi for 1 ≤ i ≤ 15 in each training iteration.
On the first five datasets, the GPs are trained by 50
iterations of Adam with a step size 0.1. On house
electric and gas sensors, the GPs are trained by 100
iterations of Adam with a step size 0.1.

Alternating Projection Details. As discussed in
§4, a large batch size is preferred empirically. We use
the largest batch size that we can fit on a 24 GB GPU.
The batch sizes b are set as: 6000 on sgemm, air quality
and 3droad; 4000 on song and buzz; 1000 on house
electric; 500 on gas sensors. We use the sequential
partition P: the data points from (j − 1)b + 1 to jb
belong to the j-th block Ij for j = 1, 2, · · ·n/b.
The maximum CG iterations and the maximum num-
ber of alternating projection epoch is set to 1000. Fol-
lowing GPyTorch’s CG stopping criteria, we terminate
the alternating projection solves after (a) the average
relative residual norm is strictly smaller than the tol-
erance ϵ = 1 or (b) 1000 total epochs, whichever comes
first. In addition, we ensure that at least 11 epochs of
alternating projections have been run before termina-
tion (again following GPyTorch). We define the aver-

age relative residual norm as 1
l+1

∑l
i=0∥ri∥/∥bi∥ when

there are l + 1 right hand sides (b0 b1 · · · bl).

CG Details. We use GPyTorch’s implementation of
CG, which uses the same stopping criteria as our al-
ternating projection implementation. Following Wang
et al. (2019); Wenger et al. (2022a), we use a pivoted
Cholesky preconditioner of size 500 on all datasets ex-
cept: house electric uses a size 300 and gas sensors
uses a size 150 due to GPU memory overflow.

Prediction. At test time, the predictive mean is
computed by the same iterative method used for train-
ing, i.e., CG for the CG-trained GP, alternating pro-
jection for the AP-trained GP. A limitation of our
method is that it does not easily result in a cache for
predictive variances. Therefore, we use 1000 Lanczos
iterations as in Pleiss et al. (2018); Wang et al. (2019).

Results on 105 < n < 106 Datasets. In Table 5,
we compare the predictive performance and the train-
ing speed of CG-based versus alternating projection-
based GPs. Both training procedures produce GPs
with similar RMSE and NLL. We conjecture that this
similarity occurs because both approaches solve linear
systems up to the same tolerance, and thus find similar
hyperparameters. One exception is the buzz dataset:
CG struggles to converge during training, resulting in
considerably worse RMSE and NLL.

Large-Scale Gaussian Processes via Alternating Projection

0 20 40

Adam iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

lik
el

ih
oo

d
n

oi
se
σ

2 CG

alt. proj.

0 20 40

Adam iterations

20

40

60

80

100

120

C
G

it
er

s/
A

P
ep

oc
h

s CG

alt. proj.

Figure 4: GP training with Adam on air quality.
Left: As the likelihood noise σ2 decreases in training,
the kernel matrix K gets more ill-conditioned. Right:
The y-axis is the number of iterations for CG and the
number of epochs for alternating projection. CG is
sensitive to this increased ill-conditioning, while alter-
nating projections is robust.

The primary difference between the two methods is
training time. Alternating projection-based training
is up to 27× faster than CG. The only exception is
sgemm, which seems to be a well-conditioned dataset
since CG converges quickly.

For reference, we also report the training/test perfor-
mance of SVGPs with 1024 inducing points (see §E for
experimental design details). GPs trained by alternat-
ing projection achieve substantially lower RMSE and
comparable NLL compared with SVGP. We do note
that SVGPs have lower NLL on 3droad and house elec-
tric, which we suspect is a limitation of the Lanczos
predictive variance estimates. SVGP’s predictive vari-
ances can be computed exactly and do not make use
of the Lanczos estimator, while the predictive vari-
ances of CG/AP-trained GPs are approximated by
1000 Lanczos iterations. Indeed, in §E we find that
the NLL gap shrinks as we increase the rank of the
Lanczos variance estimator, suggesting that this gap
is not a fundamental limitation of the alternating pro-
jections training methodology.

Results on n ≥ 106 Datasets. Previous attempts
to train GPs using iterative methods on datasets with
n ≥ 106 examples have used a large noise constraint
σ2 ≥ 0.1 to improve the conditioning of the kernel
matrix (e.g., Wang et al., 2019; Maddox et al., 2022).
Since alternating projection is much less conditioning-
sensitive than CG (as we will see soon in §5.2), for the
first time, we are able to train the GP with a much
smaller noise constraint σ2 ≥ 10−4, the default in
GPyTorch for the Gaussian likelihood.4 Removing the
large noise constraint in hyperparameter optimization
yields much better predictive performance: the RMSE
0.030 is significantly lower than what can be achieved
with high-noise constraint models (cf. §E).

4GPyTorch likelihood setting https://rb.gy/fv41w

0 200 400 600 800

CG iterations/AP epochs

10−4

10−3

10−2

10−1

100

re
l

re
si

d
u

al
n

or
m

CG

alt. proj.

(a) air quality

0 250 500 750 1000

CG iterations/AP epochs

10−3

10−2

10−1

100

re
l

re
si

d
u

al
n

or
m

CG

alt. proj.

(b) buzz

Figure 5: Running CG and alternating projection on
test-time solves K−1(y−µ). The x-axis is the number
of iterations for CG and the number of epochs for alter-
nating projection. Left: CG has a faster asymptotic
convergence rate, but CG does not reach the test-time
tolerance ϵ = 0.01 much faster. Right: Alternating
projection reaches the tolerance ϵ = 0.01 faster despite
its slower asymptotic convergence rate.

We additionally train a GP on the gas sensors dataset
with 4 million data points. To the best of our knowl-
edge, this is the largest dataset trained on using GPs
without the use of inducing points or other model-
ing approximations. CG training appears to be in-
tractable on such a large dataset, requiring over a
month. In contrast, alternating projection finishes
training in 84.5 hours.

5.2 Effect of Kernel Matrix Conditioning

We observe empirically that alternating projection is
less sensitive to ill-conditioning than CG. Figure 4
shows this phenomenon, which depicts training on the
n ≈ 400K air quality dataset. Over the course of train-
ing, the observation noise parameter σ2 decreases for
both methods, resulting in increasingly ill-conditioned
kernel matrices (as λmin(K) ≈ σ2). At the end of
training, when σ2 ≈ 0.01, CG requires over 120 it-
erations to converge—10× as many iterations as the
beginning of training. In contrast, alternating projec-
tion consistently converges in 11 iterations despite the
decreasing noise and increasing condition number. See
more datasets in §E.

5.3 Alternating Projection at Test Time

Any linear solver can be used to compute the poste-
rior mean on the test data, by solving the linear system
K−1(y−µ). We explore alternating projection at test
time, shown in Table 2. With a test-time tolerance
ϵ = 0.01, the posterior mean computed by alternating
projection is practically the same as CG: the RMSE
computed by both methods are the same up to the 3rd
digit after the decimal point in most cases. While al-
ternating projection is slightly slower on medium-size

https://rb.gy/fv41w

Wu, Wenger, Jones, Pleiss, Gardner

Table 2: Compute the predictive mean of the same GP using CG and alternating projection.

Dataset
RMSE CG iterations/AP epochs Time

Speed up
CG Alt. Proj. CG Alt. Proj. CG Alt. Proj.

sgemm 0.046± 0.000 0.046± 0.000 95± 2 17± 0 35.0s ±1.1 13.5s ±0.3 0.4×
air quality 0.256± 0.001 0.256± 0.001 374± 33 388± 85 2.8s ±0.3 3.6s ±0.8 0.7×
3droad 0.076± 0.000 0.076± 0.000 1586± 31 1720± 79 5.8m ±0.4 9.6m ±0.6 0.6×
song 0.749± 0.002 0.749± 0.001 211± 7 86± 6 38.1m ±0.7 16.4m ±1.0 2.3×
buzz 0.241± 0.001 0.239± 0.001 579± 72 41± 10 1.2h ±0.6 4.4m ±1.2 17.2×

house electric 0.032± 0.000 0.030± 0.000 2111± 375 24± 0 5.6h ±0.6 4.7m ±0.2 72.3×
gas sensors 0.203 0.203 560 13 16.1h 27.7m 34.9×

datasets such air quality and 3droad, we observe strong
speed up on larger datasets. In particular, alternating
projection computes the posterior mean 17.2× faster
in wall-clock time than CG on buzz, and computes the
posterior mean on house electric in 5 min—72× faster
than CG.

Figure 5 plots the convergence CG and alternating
projection at test time. Even though CG has faster
asymptotic convergence rates, alternating projection
reaches the test-time tolerance ϵ = 0.01 faster. Note
that CG does find high precision solutions quicker, e.g.,
ϵ = 10−4, but they are seldom necessary for GP pre-
dictions (Wang et al., 2019; Maddox et al., 2022).

6 RELATED WORK

The early usage of conjugate gradients (CG) in GP
training and inference dates back at least to Gibbs
and MacKay (1997). Later, Yang et al. (2004); Shen
et al. (2005) proposed methods speeding up CG by
approximate matrix-vector multiplications. More re-
cently, CG has been revisited by Davies (2015); Cuta-
jar et al. (2016) on larger datasets with various precon-
ditioners. Then, a series of work (Pleiss et al., 2018;
Gardner et al., 2018; Wang et al., 2019; Artemev et al.,
2021) and software packages such as GPyTorch (Gard-
ner et al., 2018) and GPflow (Matthews et al., 2017)
have popularized CG for GP training and inference.

Alternating projection (Von Neumann, 1949) is a gen-
eral algorithm finding a point in the intersection of
convex sets. The method presented in §3 is a spe-
cial case in the reproducing kernel Hilbert space, and
has been applied to radial basis function interpolation
(Beatson et al., 2001; Wendland, 2004). The method
turns our to be equivalent to block coordinate descent
and we provide a self-contained explanation in §B. An
early work applying coordinate descent to GPs with
greedy block selection is done by Bo and Sminchisescu
(2008). However, the greedy block selection rule is not
parallelizable on modern hardware like GPUs due to
the inherent sequential nature of greedy selection.

Lin et al. (2023) have recently proposed an approx-
imate GP posterior sampling method. Their method
uses stochastic gradient descent (SGD) to minimize an
approximate objective based on random Fourier fea-
tures and inducing points approximation. SGD gener-
ally converges sublinearly due to stochastic noise, and
its step size requires manual tuning. Though, SGD
could have cheaper per iteration cost independent of
the data size n. In contrast, alternating projection en-
joys linear convergence with no parameters to tune,
and thus may be easier to use in practice. It would be
interesting to apply our method in sampling as well to
compare with Lin et al. (2023).

7 CONCLUSION

In this work, we propose an alternating projection
method with a linear convergence rate for solving
dense kernel linear systems and applied it to GP
training and inference. The method quickly reaches
commonly used tolerances faster than CG, requires
only linear time per iteration, and is more robust to
ill-conditioning. Experiments on several large-scale
benchmark datasets show that the method achieves
a speed-up of up to 27× over CG-based training and
of up to 72× over CG-based inference. We are able
to train and evaluate GPs on millions of data points
without artificially inflating the observation noise for
stability, leading to increased predictive performance.
In particular, this includes a dataset with 4 million
data points, to the best of our knowledge, the largest
dataset reported in the literature so far without induc-
ing point approximation.

Acknowledgements

The authors thank the anonymous reviewers for their
helpful comments. KW, HJ and JRG are supported
by NSF award IIS-2145644. JW was supported by
the Gatsby Charitable Foundation (GAT3708), the Si-
mons Foundation (542963), the NSF AI Institute for
Artificial and Natural Intelligence (ARNI: NSF DBI
2229929) and the Kavli Foundation.

Large-Scale Gaussian Processes via Alternating Projection

References

Artemev, A., Burt, D. R., and van der Wilk, M.
(2021). Tighter bounds on the log marginal likeli-
hood of Gaussian process regression using conjugate
gradients. In International Conference on Machine
Learning (ICML), volume 139, pages 362–372.

Beatson, R. K., Light, W. A., and Billings, S. (2001).
Fast solution of the radial basis function interpo-
lation equations: Domain decomposition methods.
SIAM Journal on Scientific Computing, 22(5):1717–
1740.

Bertin-Mahieux, T. (2011). YearPredictionMSD. UCI
Machine Learning Repository.

Bo, L. and Sminchisescu, C. (2008). Greedy block co-
ordinate descent for large scale Gaussian process re-
gression. In Conference on Uncertainty in Artificial
Intelligence (UAI).

Boyle, J. P. and Dykstra, R. L. (1986). A method
for finding projections onto the intersection of con-
vex sets in Hilbert spaces. In Advances in Or-
der Restricted Statistical Inference: Proceedings of
the Symposium on Order Restricted Statistical In-
ference, pages 28–47.

Charlier, B., Feydy, J., Glaunès, J. A., Collin, F.-
D., and Durif, G. (2021). Kernel operations on
the GPU, with autodiff, without memory overflows.
Journal of Machine Learning Research, 22(74):1–6.

Chen, S. (2019). Beijing Multi-Site Air-Quality Data.
UCI Machine Learning Repository.

Courbariaux, M., Bengio, Y., and David, J.-P. (2015).
BinaryConnect: Training deep neural networks with
binary weights during propagations. In Advances in
Neural Information Processing Systems (NeurIPS),
volume 28.

Cutajar, K., Osborne, M., Cunningham, J., and Fil-
ippone, M. (2016). Preconditioning kernel matri-
ces. In International Conference on Machine Learn-
ing (ICML), volume 48 of Proceedings of Machine
Learning Research, pages 2529–2538.

Davies, A. J. (2015). Effective implementation of
Gaussian process regression for machine learning.
PhD thesis, University of Cambridge.

Fonollosa, J. (2015). Gas sensor array under dynamic
gas mixtures. UCI Machine Learning Repository.

Gardner, J., Pleiss, G., Weinberger, K. Q., Bindel,
D., and Wilson, A. G. (2018). GPyTorch: Black-
box matrix-matrix Gaussian process inference with
GPU acceleration. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 31.

Gibbs, M. N. and MacKay, D. J. C. (1997). Efficient
implementation of Gaussian processes. Technical re-

port, Department of Physics, Cavendish Laboratory,
Cambridge University.

Hebrail, G. and Berard, A. (2012). Individual house-
hold electric power consumption. UCI Machine
Learning Repository.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013).
Gaussian processes for big data. In Conference on
Uncertainty in Artificial Intelligence (UAI).

Hensman, J., Matthews, A., and Ghahramani, Z.
(2015). Scalable variational Gaussian process clas-
sification. In International Conference on Artificial
Intelligence and Statistics (AISTATS), volume 38,
pages 351–360.

Jankowiak, M., Pleiss, G., and Gardner, J. (2020).
Parametric Gaussian process regressors. In Inter-
national Conference on Machine Learning (ICML),
pages 4702–4712.

Katzfuss, M. and Guinness, J. (2021). A general frame-
work for Vecchia approximations of Gaussian pro-
cesses. Statistical Science, 36(1):124–141.

Kaul, M. (2013). 3D Road Network (North Jutland,
Denmark). UCI Machine Learning Repository.

Kelly, M., Longjohn, R., and Nottingham, K. (2023).
The UCI machine learning repository.

Kingma, D. and Ba, J. (2015). Adam: A method for
stochastic optimization. In International Conference
on Learning Representations (ICLR).

Lin, J. A., Antorán, J., Padhy, S., Janz, D.,
Hernández-Lobato, J. M., and Terenin, A. (2023).
Sampling from Gaussian process posteriors using
stochastic gradient descent. In Advances in Neural
Information Processing Systems (NeurIPS).

Loshchilov, I. and Hutter, F. (2019). Decoupled weight
decay regularization. In International Conference on
Learning Representations (ICLR).

Maddox, W. J., Potapcynski, A., and Wilson, A. G.
(2022). Low-precision arithmetic for fast Gaussian
processes. In Conference on Uncertainty in Artificial
Intelligence (UAI), volume 180, pages 1306–1316.

Matthews, A. G. d. G., van der Wilk, M., Nickson,
T., Fujii, K., Boukouvalas, A., León-Villagrá, P.,
Ghahramani, Z., and Hensman, J. (2017). GPflow:
A Gaussian process library using TensorFlow. Jour-
nal of Machine Learning Research, 18(40):1–6.

Micikevicius, P., Narang, S., Alben, J., Diamos, G.,
Elsen, E., Garcia, D., Ginsburg, B., Houston, M.,
Kuchaiev, O., Venkatesh, G., and Wu, H. (2018).
Mixed precision training. In International Confer-
ence on Learning Representations (ICLR).

Nesterov, Y. (2012). Efficiency of coordinate de-
scent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362.

Wu, Wenger, Jones, Pleiss, Gardner

Nutini, J., Laradji, I., and Schmidt, M. (2022).
Let’s make block coordinate descent converge faster:
Faster greedy rules, message-passing, active-set
complexity, and superlinear convergence. Journal
of Machine Learning Research, 23(131):1–74.

Nutini, J., Schmidt, M., Laradji, I., Friedlander, M.,
and Koepke, H. (2015). Coordinate descent con-
verges faster with the Gauss-Southwell rule than
random selection. In International Conference on
Machine Learning (ICML), volume 37, pages 1632–
1641.

Paredes, E. and Ballester-Ripoll, R. (2018). SGEMM
GPU kernel performance. UCI Machine Learning
Repository.

Pleiss, G., Gardner, J., Weinberger, K., and Wilson,
A. G. (2018). Constant-time predictive distribu-
tions for Gaussian processes. In International Con-
ference on Machine Learning (ICML), volume 80,
pages 4114–4123.

Pleiss, G., Jankowiak, M., Eriksson, D., Damle,
A., and Gardner, J. (2020). Fast matrix square
roots with applications to Gaussian processes and
Bayesian optimization. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 33,
pages 22268–22281.

Potapczynski, A., Wu, L., Biderman, D., Pleiss, G.,
and Cunningham, J. P. (2021). Bias-free scal-
able Gaussian processes via randomized truncations.
In International Conference on Machine Learning
(ICML), volume 139, pages 8609–8619.

Rasmussen, C. E. and Williams, C. K. (2006). Gaus-
sian processes for machine learning. MIT Press.

Salimbeni, H., Cheng, C.-A., Boots, B., and Deisen-
roth, M. (2018). Orthogonally decoupled variational
Gaussian processes. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 31.

Shen, Y., Seeger, M., and Ng, A. (2005). Fast Gaussian
process regression using kd-trees. In Advances in
Neural Information Processing Systems (NeurIPS),
volume 18.

Snelson, E. and Ghahramani, Z. (2005). Sparse Gaus-
sian processes using pseudo-inputs. In Advances in
Neural Information Processing Systems (NeurIPS),
volume 18.

Tibshirani, R. J. (2017). Dykstra's algorithm, admm,
and coordinate descent: Connections, insights, and
extensions. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 30.

Titsias, M. (2009). Variational learning of inducing
variables in sparse Gaussian processes. In Inter-
national Conference on Artificial Intelligence and
Statistics (AISTATS), volume 5, pages 567–574.

Von Neumann, J. (1949). On rings of operators. reduc-
tion theory. Annals of Mathematics, pages 401–485.

Wang, K., Pleiss, G., Gardner, J., Tyree, S., Wein-
berger, K. Q., and Wilson, A. G. (2019). Exact
Gaussian processes on a million data points. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 32.

Wendland, H. (2004). Scattered Data Approximation,
volume 17. Cambridge University Press.

Wenger, J., Pleiss, G., Hennig, P., Cunningham, J.,
and Gardner, J. (2022a). Preconditioning for scal-
able Gaussian process hyperparameter optimization.
In International Conference on Machine Learning
(ICML), volume 162, pages 23751–23780.

Wenger, J., Pleiss, G., Pförtner, M., Hennig, P., and
Cunningham, J. P. (2022b). Posterior and com-
putational uncertainty in Gaussian processes. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 35, pages 10876–10890.

Yang, C., Duraiswami, R., and Davis, L. S. (2004).
Efficient kernel machines using the improved fast
Gauss transform. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 17.

Yang, Z., Wilson, A., Smola, A., and Song, L. (2015).
A la Carte – Learning Fast Kernels. In Proceedings
of the Eighteenth International Conference on Ar-
tificial Intelligence and Statistics, volume 38, pages
1098–1106.

Large-Scale Gaussian Processes via Alternating Projection

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.

Yes.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.

Yes.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.

Yes.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results.

Yes.

(b) Complete proofs of all theoretical results.

Yes.

(c) Clear explanations of any assumptions.

Yes.

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL).

Yes.

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen).

Yes.

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times).

Yes.

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider).

Yes.

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator if your work uses ex-
isting assets.

Yes.

(b) The license information of the assets, if ap-
plicable.

Not applicable.

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable.

Not applicable.

(d) Information about consent from data
providers/curators.

Not applicable.

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content.

Not applicable.

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots.

Not applicable.

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable.

Not applicable.

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation.

Not applicable.

Wu, Wenger, Jones, Pleiss, Gardner

Large-Scale Gaussian Processes via Alternating Projection:

Supplementary Material

A Von Neumann’s Alternating Projection 14

B Connection between Coordinate Descent and Alternating Projection 14

C Proofs 15

D Descriptions of the UCI Datasets in the Experiments 17

E Additional Experiments 17

E.1 Further Experimental Details . 17

E.2 GP Training on House Electric with Large Noise Constraint σ2 ≥ 0.1 18

E.3 CG Iterations During Training . 18

E.4 Increasing Lanczos Iterations Improves NLL . 18

E.5 Training Gaussian Processes with Matérn ν = 1.5 . 19

F FLOPs in Algorithm 1 19

G Additional Discussions 19

Large-Scale Gaussian Processes via Alternating Projection

A Von Neumann’s Alternating Projection

This section shows that the method presented in §3 is indeed a special case of von Neumann’s alternting projection
(Von Neumann, 1949). Let g ∈ H be a function that interpolates the data, i.e., g(X) = b. Write g as an
orthogonal decomposition

g = projV[n]
(g) + projV ⊥

[n]
(g),

where V ⊥
[n] is the orthogonal complement of V[n]. Thus, computing projV[n]

(g) reduces to computing the projection

to the orthogonal complement V ⊥
[n]. Write the orthogonal complement in the form

V ⊥
[n] =

⋂
I∈P

V ⊥
I =

⋂
I∈P

{f ∈ H : f(xi) = 0∀i ∈ I},

which is an intersection of n convex sets. Starting from f (0) = g, the j-th iteration of alternating projection
selects a block I and computes a projection

f (j+1) = projV ⊥
I

(
f (j)

)
(10)

As j → ∞, we have f (j) → proj⊥V[n]
(g) and g−f (j) → projV[n]

(g). Recall the identity projV ⊥
I
(f) = f −projVI

(f).

Thus, (10) implies

f (j+1) = f (j) − projVI

(
f (j)

)
,

which is exactly the same as the update rule (6) on the residual r(j). As a result, g− f (j) is exactly the same as
s(j) in the update (5).

B Connection between Coordinate Descent and Alternating Projection

This section presents the connection between Algorithm 1 and coordinate descent, as shown in Algorithm 2.

Algorithm 2: Block Coordinate Descent

Input: A kernel linear system KW = B
Output: The solution K−1B

1 Initialize W = O
2 for i = 1, 2, · · · do // epoch

3 for j = 1, 2, · · · ,m do // mini-batch

4 select a block I ∈ {I1, I2, · · · , Im}
5 WI = K−1

I,I

(
BI −KI,¬IW¬I

)
6 end
7 if converged then
8 return W

9 end

Observe that the minimizer of the quadratic objective

h(W) =
1

2
tr
(
W⊤KW

)
− tr

(
B⊤W

)
(11)

is exactly the solution K−1B of the linear system KW = B.

Given a partition of indices {I1, I2, · · · , Im} where Ii ∩ Ij = ∅ for all i ̸= j and ∪m
i=1Ii = [n], coordinate descent

minimizes (11) by minimizing over a subset of variables WI = WI,: in each iteration. Taking the derivative
w.r.t . the subblock WI , we have

[∇h(W)]I = KIW −BI

=
(
KI,I KI,¬I

)(WI

W¬I

)
−BI ,

Wu, Wenger, Jones, Pleiss, Gardner

where the second line splits KI and W into two blocks. The index ¬I = [n] \ I denotes the complement of I.
Setting the derivative to zero gives the following update

W
(j+1)
I = K−1

I,I

(
B−KI,¬IW

(j)
¬I

)
which minimizes (11) over WI exactly. The full algorithm of coordinate descent is shown in Algorithm 2.

The following lemma shows the R matrix in Algorithm 1 is indeed the residual of the linear system. This lemma
will be useful in proving the equivalence between Algorithm 1 and Algorithm 2.

Lemma 1. Let R(j) and W(j) be the residual and weight after j updates of Algorithm 1. Then, we have

R(j) = B−KW(j).

Proof. The proof is based on an induction on the number of updates j (the number of inner loops). At the
initialization j = 0, the equality holds trivially. Suppose after the j-th update we have R(j) = B−KW(j). All
we need to do is to verify this equality in the case of j + 1 by direct calculation:

B−KW(j+1) = B−K
(
W(j) +E⊤

I K
−1
I,IEIR

(j)
)

= R(j) −KE⊤
I K

−1
I,IEIR

(j)

= R(j+1)

where the first line uses the update rule (8) of W(j) and the last line uses the update rule (7) of R(j).

With Lemma 1, we are ready to show the equivalence between Algorithm 1 and Algorithm 2.

Lemma 2. Let W(j) be the weight produced by Algorithm 1 after j updates. Them, we have

W
(j+1)
I = K−1

I,I

(
BI −KI,¬IW

(j)
¬I

)
,

W
(j+1)
¬I = W

(j)
¬I ,

where ¬I = [n] \ I. Thus, Algorithm 1 produces the same iterates as Algorithm 2.

Proof. Recalling the update rule (8), we have

W(j+1) = W(j) +E⊤
I K

−1
I,IEIR

(j).

Recalling the property of left multiplication with E⊤
I , entries outside I are unchanged and thus W

(j+1)
¬I = W

(j)
¬I .

On the other hand, entries indexed by I satisfy W
(j+1)
I = W

(j+1)
I +K−1

I,IEIR
(j). Plug in R(j) = B−KW(j) by

Lemma 1 and thus we have

W
(j+1)
I = W

(j)
I +K−1

I,IEI

(
B−KW(j)

)
= W

(j)
I +K−1

I,I

(
BI −KIW

(j)
)

= W
(j)
I +K−1

I,I

(
BI −KI,IW

(j)
I −KI,¬IW

(j)
¬I

)
= K−1

I,I

(
BI −KI,¬IW

(j)
¬I

)
where the second line uses the definition of EI ; the third line split the matrixKI into blocksKI =

(
KI,I KI,¬I

)
;

the last line is straightforward algebra.

C Proofs

Lemma 3. The quadratic objective function (11) satisfies the Polyak- Lojasiewicz (PL) inequality

1

2
∥∇h(W)∥2F ≥ λmin(h(W)− h(W∗)),

where λmin > 0 is the smallest eigenvalue of K.

Large-Scale Gaussian Processes via Alternating Projection

Proof. If W has only a single column this follows directly from the strong convexity of the quadratic function.
When W has multiple columns, h is a separable function across each column. Therefore, h is also λmin strongly
convex which implies the PL inequality.

Lemma 4. For h(W) as in (11), it holds that h(W)− h(W∗) = 1
2∥W −W∗∥2K.

Proof. Plugging B = KW∗ into the expression of h, straightforward algebra gives

h(W)− h(W∗) =
1

2
⟨W,KW⟩ − ⟨B,W⟩ − 1

2
⟨W∗,KW∗⟩+ ⟨B,W∗⟩

=
1

2
⟨W,KW⟩ − ⟨KW∗,W⟩ − 1

2
⟨W∗,KW∗⟩+ ⟨KW∗,W∗⟩

=
1

2
⟨W,KW⟩ − ⟨KW∗,W⟩+ 1

2
⟨W∗,KW∗⟩

=
1

2
∥W −W∗∥2K.

Theorem 1. Let W∗ be the unique solution of the linear system KW = B and W(t) its approximation after t
epochs of Algorithm 1 using the modified GS rule (9). Then it holds that

∥W(t) −W∗∥2K ≤ exp
(
− t/κ′)∥W(0) −W∗∥2K,

where ∥W −W∗∥2K = tr
(
(W −W∗)⊤K(W −W∗)

)
and κ′ = λ′

max/λmin ≤ κ.

Proof. By straightforward algebra, the improvement on the objective h as in (11) after the j-th update is

h(W(j+1))− h(W(j)) = −1

2

∥∥R(j)
I,:

∥∥2
K−1

I,I

.

For any residual R matrix, note the following inequality

∥R∥2F =
∑
I∈P

∥RI,:∥2F ≤ |P| ·max
I∈P

∥RI,:∥2F = m ·max
I∈P

∥RI,:∥2F. (12)

Thus, the improvement on the objective h is bounded by

h(W(j+1))− h(W(j)) ≤ − 1

2λ′
max

∥R(j)
I,: ∥2F

≤ − 1

2mλ′
max

∥R(j)∥2F

where the first inequality is because 1
λ′
max

is the smallest eigenvalue of KI,I ; the second inequality is due to the

Gauss-Southwell selection rule and (12). Subtract h∗ = h(W∗) from both sides. Then, we have

h(W(j+1))− h∗ = h(W(j))− h∗ − 1

2mλ′
max

∥R(j)∥2F

≤
(
1− λmin

mλ′
max

)(
h(W(j))− h∗)

≤
(
1− 1

mκ′

)(
h(W(j))− h∗)

where the second line uses R(j) = B−KW(j) = −∇h(W(j)) by Lemma 1 and the PL inequality by Lemma 3.
Using the inequality (1− x)t ≤ exp(−tx), we obtain a convergence rate in the number of updates j:

h(W(j+1))− h∗ ≤ exp
(
− j

mκ′

)(
h(W(0))− h∗).

Wu, Wenger, Jones, Pleiss, Gardner

Since each epoch has m updates, the convergence rate in the number of epochs t is

h(W(t+1))− h∗ ≤ exp
(
− t

κ′

)(
h(W(0))− h∗).

By Lemma 4, the left and right hand sides can be written as ∥W(t) −W∗∥2K and ∥W(0) −W∗∥2K respectively,
which concludes the proof.

D Descriptions of the UCI Datasets in the Experiments

This section lists the relevant information of the datasets with citations. The datasets used in the papers are
sgemm GPU (Paredes and Ballester-Ripoll, 2018), air quality (Chen, 2019), 3droad (Kaul, 2013), song (Bertin-
Mahieux, 2011), buzz (Yang et al., 2015), house electric (Hebrail and Berard, 2012), and gas sensors (Fonollosa,
2015). All of them are downloaded from the UCI machine learning repository (Kelly et al., 2023).

E Additional Experiments

This section presents more experimental details and additional experiments.

E.1 Further Experimental Details

GP Training. All Gaussian processes, including stochastic variational Gaussian processes, use an observation
noise constraint σ2 ≥ 10−4, which is the default in GPyTorch. For the stochastic trace estimation (2), we use
ℓ = 15 random probe vectors. For CG, the probe vectors are sampled from N (0,P), where P is the pivoted
Cholesky preconditioner. Again, these settings are default in GPyTorch. For alternating projection, the probe
vectors are sampled from a Rademacher distribution.

Preconditioning. CG uses the pivoted Cholesky preconditioner both in training and test. During training,
the preconditioner size is 500 on sgemm, air quality, 3droad, song and buzz; 300 on house electric; 150 on gas
sensors. We decrease the preconditioner size on house electric and gas sensors due to GPU memory overflow.
During test, the preconditioner size is 500 on sgemm, air quality, 3droad, song, buzz and house electric; 300 on
gas sensors. Again, we decrese the preconditioner size on gas sensors due to GPU memory flow. See Table 3.

Alternating Projection Batch Size. The batch sizes during training and test are shown in Table 3.

SVGP Training. All SVGPs use 1024 inducing points and a batch size of 4096. On the first six datasets,
SVGPs are trained with 50 epochs of Adam with a step size 0.01 and another 150 epochs of Adam with a step
size 0.001. On gas sensors, we train the SVGP with 50 epochs of Adam with a step size 0.01 followed by 350
epochs of Adam with a step size 0.001.

Other Experimental Settings. The right panel of Figure 2 is produced on with an alternating projection-
trained GP on air quality with batch size 1000. The linear system solved in the figure is K−1y (without sub-
tracting the prior mean µ). Figure 3 is plotted with an alternating projection-trained GP on 3droad. The linear
system in the figure is K−1(y z1 z2 · · · z15) where zi are sampled from a standard Gaussian distribution.

Table 3: Preconditioner sizes and batch sizes during training and test.

method train/test sgemm air quality 3droad song buzz house electric gas sensors

CG preconditioner size
train 500 500 500 500 500 300 150
test 500 500 500 500 500 500 300

alt. proj. batch size
train 6000 6000 6000 4000 4000 1000 500
test 6000 6000 6000 4000 4000 1000 500

Large-Scale Gaussian Processes via Alternating Projection

E.2 GP Training on House Electric with Large Noise Constraint σ2 ≥ 0.1

We compare Gaussian processes on house electric trained with two different noise constraints σ2 ≥ 0.1 and
σ2 ≥ 10−4, as shown Table 4. We observe significant improvements on both RMSE and NLL when the noise
is smaller. In particular, the GP trained with small noise constraint σ2 ≥ 10−4 has 40% smaller RMSE and
significantly smaller NLL. This indicates that artificially inflating the observation noise σ2, while making the
kernel matrix well-conditioned, ultimately hurts the predictive performance.

With alternating projection, training the GP with a small noise constraint σ2 ≥ 10−4 is as fast as the GP with a
large noise constraint σ2 ≥ 10−1. The RMSE and NLL are computed with the same settings as the main paper.

Table 4: Comparison of GP training on the house electric dataset with large noise constraint σ2 ≥ 0.1 and
small noise constraint σ2 ≥ 10−4.

Dataset Method RMSE NLL CG iterations/AP epochs Time

house electric
n = 2, 049, 280

d = 11

CG (σ2 ≥ 10−1) 0.050± 0.000 −0.196± 0.000 1200± 8 9.6h ±0.6
Alt. Proj. (σ2 ≥ 10−1) 0.053± 0.000 −0.197± 0.000 1100± 0 9.8h ±0.4
Alt. Proj. (σ2 ≥ 10−4) 0.030± 0.000 −1.148± 0.001 1100± 0 9.8h ±0.4

E.3 CG Iterations During Training

Figure 4 in the main paper is produced on air quality. This section presents figures on more datasets, as shown in
Figure 6. We observe a similar phenomenon: as the noise decreases during training, the number of CG iterations
increases; in contrast, alternating projection converges steadily.

0 20 40

Adam iterations

0.0

0.2

0.4

0.6

lik
el

ih
oo

d
n

oi
se
σ

2 CG

alt. proj.

0 20 40

Adam iterations

10.75

11.00

11.25

11.50

11.75

12.00

12.25

C
G

it
er

s/
A

P
ep

oc
h

s CG

alt. proj.

(a) sgemm GPU

0 20 40

Adam iterations

0.0

0.2

0.4

0.6

lik
el

ih
oo

d
n

oi
se
σ

2 CG

alt. proj.

0 20 40

Adam iterations

0

50

100

150

200

250

300

C
G

it
er

s/
A

P
ep

oc
h

s CG

alt. proj.

(b) 3droad

0 20 40

Adam iterations

0.2

0.3

0.4

0.5

0.6

lik
el

ih
oo

d
n

oi
se
σ

2 CG

alt. proj.

0 20 40

Adam iterations

25

50

75

100

125

C
G

it
er

s/
A

P
ep

oc
h

s

CG

alt. proj.

(c) song

0 20 40

Adam iterations

0.1

0.2

0.3

0.4

0.5

0.6

lik
el

ih
oo

d
n

oi
se
σ

2 CG

alt. proj.

0 20 40

Adam iterations

0

200

400

600

800

1000

C
G

it
er

s/
A

P
ep

oc
h

s CG

alt. proj.

(d) buzz

Figure 6: The observation noise σ2 and the number of CG iterations/alternating projection epochs during
training. Top: The observation noisea σ2 decreases as the training goes. Bottom: CG takes more iterations to
converge as the observation noise decreases during training. However, alternating projection is less sensitive to
the decrease of observation noise.

E.4 Increasing Lanczos Iterations Improves NLL

In the experiments, we use 1000 Lanczos iterations to compute the predictive variance and the test negative log
likelihood (NLL). This section investigates the relation between test NLL and the Lanczos iterations, as shown
in Figure 7. We empirically observe that increasing the Lanczos iterations always decreases the test NLL. This
suggests that the true NLL of the GPs may be even lower than what is reported in Table 5.

Wu, Wenger, Jones, Pleiss, Gardner

500 1000 1500 2000

Lanczos iterations

−1.1

−1.0

−0.9

−0.8

−0.7
N

L
L

(a) SGEMM

500 1000 1500 2000

Lanczos iterations

0.05

0.10

0.15

0.20

0.25

0.30

N
L

L

(b) air quality

500 1000 1500 2000

Lanczos iterations

1.1

1.2

1.3

1.4

1.5

N
L

L

(c) 3droad

500 1000 1500 2000

Lanczos iterations

1.132

1.134

1.136

1.138

N
L

L

(d) song

500 1000 1500 2000

Lanczos iterations

0.02

0.03

0.04

0.05
N

L
L

(e) buzz

250 500 750 1000 1250

Lanczos iterations

−1.2

−1.1

−1.0

−0.9

−0.8

N
L

L

(f) house electric

Figure 7: Test negative log likelihood (NLL) vs. the number of Lanczos iterations. Empirically, the test NLL
decreases as the number of Lanczos iterations increases on all datasets.

E.5 Training Gaussian Processes with Matérn ν = 1.5

Lastly, we report results using Matérn ν = 1.5. The experimental settings are exactly the same as Matérn
ν = 2.5 GPs. We observe a similar phenomenon: while CG-trained GPs and alternating projection-trained GPs
have similar RMSE and NLL, alternating projection achieves 1.4× to 27.2× speed up against CG.

F FLOPs in Algorithm 1

The following table gives floating point operations (FLOPs) and memory complexity of Algorithm 1. There is
no hidden constant in the leading term. Throughout, we assume l ≪ n and 1 ≪ b ≪ n. Note that the peak
memory consumption is 2nb. We use this to estimate the largest batch b that fits in a GPU.

G Additional Discussions

The alternating projection method presented in this paper is not easy to parallel on multiple GPUs. Indeed, the
update for each block is sequential. When multiple GPUs are available, CG might be more beneficial as explored
by Wang et al. (2019). Another limitation of alternating projection is that it does not yield an estimate of the
marginal log-likelihood (MLL). Therefore, one cannot monitor the convergence progress by plotting the MLL. A
workaround is to instead monitor the observation noise σ2. Typically, the observation noise σ2 diminishes during
training, and a small update in σ2 is usually a good indication of convergence.

Artemev et al. (2021) utilize CG to construct a better variational lower bound for variational GPs (Titsias,
2009). Different from the stochastic variational GP (Hensman et al., 2013), this method cannot be trained by
mini-batch stochastic optimization, since they plug in the closed-form solution of the variational distribution.
Interestingly, they show that warming up CG for the linear solve K−1y yield a significant speed-up. This trick
might be useful in CG-based and alternating projection-based training as well.

Large-Scale Gaussian Processes via Alternating Projection

Table 5: Gaussian process training on UCI benchmark datasets with Matérn ν = 1.5. Metrics are computed
across multiple runs and reported with ± one standard deviation.

Dataset Method RMSE NLL CG iters/AP epochs Training time Speed up

SGEMM
n = 241, 600

d = 14

CG 0.048± 0.000 −1.071± 0.001 550± 0 8.9m ±0.2
Alt. Proj. 0.048± 0.000 −1.060± 0.001 550± 0 12.1m ±0.2 0.7×
SVGP 0.085± 0.000 −0.932± 0.001 NA 18.3m ±0.1

air quality
n = 382, 168

d = 13

CG 0.227± 0.002 0.131± 0.003 1825± 26 22.5m ±1.2
Alt. Proj. 0.253± 0.001 0.033± 0.002 550± 0 16.1m ±0.5 1.4×
SVGP 0.358± 0.002 0.387± 0.005 NA 28.8m ±0.1

3droad
n = 434, 874

d = 3

CG 0.065± 0.001 1.062± 0.003 6086± 142 44.4m ±2.2
Alt. Proj. 0.069± 0.001 0.896± 0.002 572± 1 16.5m ±0.3 2.7×
SVGP 0.319± 0.002 0.294± 0.007 NA 32.4m ±0.1

song
n = 515, 345

d = 90

CG 0.743± 0.001 1.135± 0.003 4393± 159 13.7h ±0.6
Alt. Proj. 0.746± 0.002 1.129± 0.002 550± 0 2.6h ±0.0 5.3×
SVGP 0.790± 0.002 1.184± 0.002 NA 0.6h ±0.0

buzz
n = 583, 250

d = 77

CG 0.238± 0.000 0.027± 0.002 13608± 2299 25.4h ±4.7
Alt. Proj. 0.238± 0.001 0.002± 0.004 550± 0 1.9h ±0.1 13.4×
SVGP 0.255± 0.002 0.049± 0.009 NA 0.7h ±0.0

house electric
n = 2, 049, 280

d = 11

CG - - - ⩾ 11d
Alt. Proj. 0.029± 0.000 −1.321± 0.000 1100± 0 9.7h ±0.1 ⩾ 27.2×
SVGP 0.048± 0.000 −1.580± 0.003 NA 2.6h ±0.0

gas sensors
n = 4, 178, 504

d = 17

CG - - - -
Alt. Proj. 0.201 0.245† 1100 42h∗

SVGP 0.311± 0.002 0.286± 0.004 NA 10.6h ±0.1

† : This predictive variance is calculated using only 500 Lanczos iterations to save time and avoid numerical instability.

* : Time measured on a A100 GPU.

Table 6: FLOP Counting in Algorithm 1.

Operation FLOPs Memory

Cache Cholesky decomposition of {KI,I : I ∈ P} 1
3nb

2 nb

GS rule I = argmaxI∈P ∥RI,:∥2F 2nl -

WI = WI +K−1
I,IRI (b2 + b)l -

R = R−K:,IK
−1
I,IRI (b2 + 2nb+ n)l nb

total FLOPs of a single epoch
(
(2 + 3

b)n
2 + (2b+ 1)n

)
l 2nb

	INTRODUCTION
	SETUP AND BACKGROUND
	METHOD
	CONVERGENCE
	EXPERIMENTS
	Main Result: GP Regression
	Effect of Kernel Matrix Conditioning
	Alternating Projection at Test Time

	RELATED WORK
	CONCLUSION
	Von Neumann's Alternating Projection
	Connection between Coordinate Descent and Alternating Projection
	Proofs
	Descriptions of the UCI Datasets in the Experiments
	Additional Experiments
	Further Experimental Details
	GP Training on House Electric with Large Noise Constraint 2 0.1
	CG Iterations During Training
	Increasing Lanczos Iterations Improves NLL
	Training Gaussian Processes with Matérn = 1.5

	FLOPs in alg:alternatingprojection
	Additional Discussions

