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Abstract

In this paper, we approach the problem of
uncertainty quantification in deep learning
through a predictive framework, which cap-
tures uncertainty in model parameters by
specifying our assumptions about the pre-
dictive distribution of unseen future data.
Under this view, we show that deep en-
sembling (Lakshminarayanan et al., 2017) is
a fundamentally mis-specified model class,
since it assumes that future data are sup-
ported on existing observations only – a situ-
ation rarely encountered in practice. To ad-
dress this limitation, we propose MixupMP, a
method that constructs a more realistic pre-
dictive distribution using popular data aug-
mentation techniques. MixupMP operates
as a drop-in replacement for deep ensem-
bles, where each ensemble member is trained
on a random simulation from this predic-
tive distribution. Grounded in the recently-
proposed framework of Martingale posteriors
(Fong et al., 2023), MixupMP returns sam-
ples from an implicitly defined Bayesian pos-
terior. Our empirical analysis showcases that
MixupMP achieves superior predictive per-
formance and uncertainty quantification on
various image classification datasets, when
compared with existing Bayesian and non-
Bayesian approaches.

1Work done during an internship at Apple Machine
Learning Research.
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1 INTRODUCTION

Reliable uncertainty quantification and robust pre-
dictive performance are crucial to the deployment of
deep learning models in safety-critical applications,
e.g. medical diagnosis (Filos et al., 2019), autonomous
driving (Feng et al., 2018) and detection of adversar-
ial examples (Smith and Gal, 2018). Bayesian neu-
ral networks (BNNs, MacKay, 1992; Neal, 2012) have
been viewed as a principled approach to achieve this
goal. BNNs elicit a prior distribution over neural net-
work parameters θ. Given n observations z1:n, we es-
timate a posterior distribution over θ, which in turn
induces uncertainty in downstream predictions. How-
ever, exact posterior inference for θ in BNNs is typi-
cally intractable, requiring approximations (Blundell
et al., 2015; Daxberger et al., 2021). Moreover, it
can be challenging to design meaningful priors over
the neural network parameter space (Rudner et al.,
2022). In contrast, “non-Bayesian” approaches like
deep ensembles (DE, Lakshminarayanan et al., 2017)
have demonstrated promising performance in both un-
certainty quantification and prediction accuracy, while
maintaining simplicity in training and inference.

In this work, we take a data-driven view of uncertainty
quantification and posterior prediction for deep learn-
ing models by leveraging the assumptions on the fu-
ture data distribution. We build on the recent idea
of Martingale posteriors (MPs, Fong et al., 2023),
which transfers the prior uncertainty about parame-
ters θ to a representation of uncertainty about future
data. Concretely, MP specifies a predictive distribu-
tion P∞(zn+1:∞|z1:n) over future data zn+1:∞ given
the observed z1:n. The parameters fitted on a ran-
dom realization from P∞ can be viewed as a posterior
sample under some implicit prior (Doob, 1949). By
fitting separate models on different random realiza-
tions, we obtain an approximate posterior distribution
of parameters θ. For example, the Bayesian bootstrap
(BB, Rubin, 1981) is an instance of MP where each
training dataset is drawn from a random distribution
supported on existing observations. Unlike the explicit
prior over θ required for BNNs (which can be hard to
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specify), practitioners can leverage domain knowledge
about data to specify the predictive distribution P∞.

While MP offers a fresh alternative to standard
Bayesian inference, its application to deep learning has
mostly remained unexplored. One reason for this is
because deep learning is typically used for structured,
high dimensional data, such as images or text. The
predictive distributions P∞ used in MP tend to make
simple parametric assumptions about future observa-
tions that are inappropriate for structured data (Lyd-
don et al., 2018; Fong et al., 2019), or are not scalable
to high dimensional datasets (for example, the copula-
based method of Fong et al., 2023).

To fill in the gap between MPs and deep learning ap-
plications, we first show that the existing DE method
can be viewed as an MP approach by establishing its
functional equivalency to BB. However, the predictive
distribution P∞ in BB—and, by extension, DE— as-
sumes that all future data are random repetitions of
the observed data z1:n, making them fundamentally
mis-specified. While the empirical success of BB in
traditional underparametrized statistical models (e.g.
Neton and Raftery, 1994; Jin et al., 2001) suggests that
such mis-specification may be ignored in many cases,
this is not the case in a deep learning context: when
models are over-parameterized and data is separable,
BB is not sufficient to represent the uncertainty in the
underlying data distribution.

To address the above limitations, we propose a new

predictive distribution, P(MMP)
∞ , for deep learning mod-

els with a primary focus on the image modality. At a

high level, P(MMP)
∞ introduces uncertainty in the vicin-

ity of observations, which increases when future data
is more dissimilar from observations. To achieve this
goal, we take inspiration from the Dirichlet process,
which combines the empirical distribution of z1:n with
samples from some base measure H. We replace the
empirical component of Dirichlet process (which as-
sumes exact repeats of observations z1:n) with a ver-
sion that allows for augmented repeats of z1:n, thereby
adding plausible samples that are similar to each ob-
servation. We then specify the base measure in terms
of Mixup (Zhang et al., 2018), a data augmentation
technique that linearly interpolates random pairs of

images and their labels. Samples from P(MMP)
∞ yield

a diverse set of future observations with low label un-
certainty near our observations z1:n, and higher label
uncertainty as we move further from z1:n. Such behav-
ior is aligned with previous work that suggests that it
often suffices to impose uncertainty on the boundary of
the training data, rather than across the entire input
space (Lee et al., 2018; Hafner et al., 2020).

We show that P(MMP)
∞ can be used in a simple,

ensemble-like procedure which we call MixupMP, by
training multiple models on different future data

streams drawn from P(MMP)
∞ . Grounded by the MP

framework, the fitted parameters of each model can
be viewed as a valid posterior sample for θ. Addi-
tionally, we devise an efficient, single-model variant of
MixupMP that leverages implicit ensemble techniques
introduced by Gal and Ghahramani (2016).

To summarize our contributions, (1) we demonstrate
that, in a deep learning context, DE is equivalent to
BB, and therefore is a form of MP; however, we argue
that this form of MP is mis-specified for deep learn-
ing applications; (2) we develop MixupMP, a novel
MP formulation suitable for deep learning using im-
age data; (3) we show, through empirical study, that
MixupMP can outperform existing ensemble-based ap-
proaches and other approximate Bayesian methods in
predictive performance and uncertainty calibration.

2 Background

Setup and notation. We focus on the supervised
learning setting where we have i.i.d. samples {zi =
(xi, yi)}ni=1, with xi the input and yi the class label
belonging to one of the K classes. A model then learns
a parameterized distribution pθ(y = k|x) for k = 1 : K
by optimizing some loss function lθ(·) over the data.

2.1 Martingale posterior distributions

The martingale posterior (MP, Fong et al., 2023) is a
recently proposed uncertainty quantification technique
that offers an alternative to classical Bayesian infer-
ence. Rather than specify a prior over parameters,
they posit a distribution P∞ over unseen future ob-
servations zn+1:∞, given the observed data z1:n. The
martingale posterior is then defined as

πn(θ) =
∫
θ∗(z1:∞)dP∞(zn+1:∞|z1:n) (1)

where θ∗(z1:∞) is the estimator of the parameters of
interest θ given z1:∞, typically obtained by minimiz-
ing the loss ℓθ(z1:∞). If P∞ is a martingale, then πn(θ)
converges to the Dirac measure centered at the true θ
as n → ∞ (up to an equivalency set). Furthermore,
πn(θ) can be seen as a Bayesian posterior under some
(typically unknown) prior on θ, a result of Doob’s The-
orem (Doob, 1949; Fong et al., 2023).

The martingale requirement is satisfied if the sequence
zn+1:∞ is conditionally identically distributed (Berti
et al., 2004). A weaker requirement, that we use in this
paper, is that the sequence be infinitely exchangeable

— i.e., zi
iid∼ F∞ for i > n given some latent measure

F∞ (De Finetti, 1937). One convenient construction
for F∞ is the posterior of a Dirichlet process (DP)
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Algorithm 1: Dirichlet Process-based Martingale
Posterior (DP-MP)

Input: Observation z1:n; DP base measure H and
concentration parameter c, approximation
value T , # of simulations B, loss lθ(·)

Result: Posterior samples {θ(b)}Bb=1

1 for b = 1 to B do

2 Draw pseudo data z
(b)
n+1:n+T ∼ H

3 Draw weights

w
(b)
1:n+T ∼ Dirichlet(1, · · · , 1︸ ︷︷ ︸

length n

, c/T, · · · , c/T︸ ︷︷ ︸
length T

)

4 Compute θ(b) = argminθ
∑n+T

i=1 wilθ(zi)

with base measure H and concentration parameter c
(as proposed by Fong et al., 2019),

F∞ ∼ DP
(
c+ n,

cH+
∑n

i=1 δzi
c+n

)
, (2)

where F∞ :=
∑n

i=1 wiδzi +
∑∞

i=n+1 wiδϕi
, with ϕi ∼

H. For the first n weights (corresponding to the origi-
nal z1:n), we have E[wi] = 1/(n+c); for the tail we have

E
[∑∞

j=n+1 wj

]
= c/(n+c). This formulation captures

the idea that future data are likely to be a combination
of repeats of empirical observations z1:n, and samples
from a distribution H that captures prior beliefs or
some data-driven centering model, with r = c/n cap-
turing the ratio of the two.

A sample F
(b)
∞ =

∑n
i=1 w

(b)
i δzi +

∑∞
i=n+1 w

(b)
i δ

ϕ
(b)
i

from Equation (2) describes the empirical distribution

of a sampled sequence z
(b)
1:∞

2. One can further ob-
tain a sample θ(b) from the corresponding martingale

posterior as θ(b) = argminθ
∫
ℓθ(z1:∞)dF

(b)
∞ (z1:∞) =

argminθ
∑n

i=1 w
(b)
i δzi +

∑∞
i=n+1 w

(b)
i δ

ϕ
(b)
i
. In practice,

we can approximate the infinite F
(b)
∞ with a finite mea-

sure. The full procedure to to generate B posterior
samples from the DP-based martingale posterior (DP-
MP) is given in Algorithm 1.

Bayesian bootstrap. If c = 0 in the above con-
struction, we recover the Bayesian bootstrap (BB, Ru-

bin, 1981), where F
(b)
∞ =

∑n
i=1 w

(b)
i δzi , with

(w
(b)
1 , . . . , w(b)

n ) ∼Dirichlet(1, . . . , 1). (3)

We then optimize the weighted loss to obtain

θ(b) = argminθ
∑n

i=1 w
(b)
i lθ(zi). (4)

2Since n is finite, the distribution of z1:∞ is almost
surely equal to the distribution of zn+1:∞.

BB is a special case of the MP that assumes all future
observations are repeats of the n original observations.

2.2 Ensemble methods in deep learning

Deep ensembles. A deep ensemble (DE, Lakshmi-
narayanan et al., 2017) is a collection of B neural net-
works, typically with the same architecture, trained
from different random initializations of θ. Specifically,
each network obtains its set of parameters {θ(b)}Bb=1

by minimizing the empirical loss,

θ(b) = argminθ
∑n

i=1 lθ(zi). (5)

The prediction is then made by combining outputs
from individual networks, e.g. averaging their classifi-
cation logits. DE has been shown to perform similarly
to or better than alternative Bayesian neural networks
in uncertainty quantification, predictive accuracy and
robustness to distribution shifts (Ovadia et al., 2019).

Monte Carlo dropout. Monte Carlo dropout (MC
Dropout, Gal and Ghahramani, 2016) trains a single
neural network using the dropout technique (Srivas-
tava et al., 2014). During inference, MC Dropout sim-
ulates an ensemble of models by randomly activating
dropout in separate forward passes. This procedure
can be interpreted either as an approximation to DE
(Hara et al., 2016) or as a variational inference method
for BNN (Gal and Ghahramani, 2016).

2.3 Mixup

Mixup (Zhang et al., 2018) is a data augmentation
technique that samples an augmentation z′ = (x′, y′)
as a convex combination of two random observations
zi = (xi, yi) and zj = (xj , yj) from z1:n,

3

λ ∼ Beta(α, α)

zi, zj
iid∼ {z1, . . . , zn}

x′ = λxi + (1− λ)xj

y′ = λyi + (1− λ)yj

 z′ ∼ Mixup(z1:n;α)

(6)
for some α > 0. Directly training a model on
these augmented examples has been found to improve
test set accuracy and calibration performance (Zhang
et al., 2018; Thulasidasan et al., 2019). When used
in an ensemble, however, Mixup has been shown to
have worse uncertainty calibration performance than
the single-model Mixup or deep ensemble trained on
original data (Rahaman and Thiery, 2021; Wen et al.,
2021).

3In this paper, we assume a separate λ is generated for
each sample z′ ∼ Mixup(z1:n;α).
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3 An equivalency between DE and BB

In this section, we show that DE can be viewed as an
instance of martingale posteriors, through establishing
its equivalency to a finite approximation to the BB in
many practical deep learning scenarios; furthermore,
we reveal that the predictive distribution underlying
such martingale posteriors is mis-specified, motivating
the main methodology in the next section.

We first note that both BB and DE are carrying out
weighted empirical loss minimization, albeit with dif-
ferent sets of weights (Equations (4) and (5)). Re-
cent theoretical work has shown that, if training data
is separable and under certain conditions on the neu-
ral network, loss, and optimizer, a neural network will
converge to the L2 max margin solution (Lyu and Li,
2020; Wei et al., 2019; Nacson et al., 2019; Chizat and
Bach, 2020). Further, Xu et al. (2021) have shown that
this margin is invariant to replacing the empirical loss∑

i ℓθ(zi) with a weighted loss
∑

i wiℓθ(zi), where the
wi are bounded weight values.

Combining these observations leads to the following
proposition:

Proposition 1. (Informal) If a dataset z1:n is sepa-
rable under a given homogeneous neural network with
parameters θ, trained via stochastic gradient descent
using an exponentially tailed loss (e.g. cross-entropy)
with weak regularization, then any posterior sample of
θ obtained via an appropriately stabilized version of BB
could also have been obtained via DE, and vice versa.

See the formal statement, assumptions and proof, plus
definition of stabilized BB, in Appendix A.

This result extends previous empirical work (Nixon
et al., 2020) that shows the frequentist bootstrap (FB,
Efron, 1992) underperforms DE in deep learning ap-
plications. The authors attributed FB’s underperfor-
mance to the fact that each bootstrap sample only
contains 63.7% of the unique observations from the
training data, undermining the generalization power
of the learned model.

In BB, since all observations are represented in every
bootstrap sample, one might expect to avoid the pit-
fall of FB, and even outperform DE. However, Propo-
sition 1 suggests that it is not the case, as BB is func-
tionally equivalent to DE. In fact, Section 6.1 shows
that there is little difference in their empirical perfor-
mance.

Mis-specification of BB and DE. The success of
BB relies on the assumption that the predictive distri-
bution of future observations can be well approximated
by the empirical distribution. Clearly this assumption
is not true: the test set will not include only repeats

of the training data. In an underparametrized model,
this mis-specification can typically be ignored; since a
perfect training accuracy is rarely achieved, differently
weighted training set causes the model to focus on dif-
ferent regions, effectively capturing some uncertainty
in the input space.

Conversely, BB’s assumptions are fundamentally mis-
specified in the deep learning context. Overparame-
terized deep neural networks perfectly fits all train-
ing observations, and hence different weights do not
impact their convergent solutions (in the asymptotic
regime). However, realistic test cases involve novel
observations, and including these observations to the
training set which will impact the convergent solutions
of models. For this reason, we argue that BB — and
by extension of Proposition 1, DE — correspond to
mis-specified versions of martingale posteriors.

4 Mixup Martingale posteriors:
Incorporating prior knowledge
about the distribution of interest

Instead of concentrating on existing observations as in
BB or DE, a better choice of the predictive distribution
would allow for plausible additional observations that
reflect our beliefs and uncertainty about future data.
The DP-MP approach discussed in Section 2 adds in
such additional observations. For low-dimensional or
unstructured data we can obtain plausible new sam-
ples using relatively simple base measures (see Ap-
pendix B for examples). However, such measures do
not translate well to highly structured data such as im-
ages: sampling from a moment-matched Gaussian on
pixel space will not yield realistic images, for example.

Instead, we propose MixupMP, an MP method that
models the predictive uncertainty with data augmen-
tation techniques. We focus on image data, for
which data augmentation has proved highly successful
(Shorten and Khoshgoftaar, 2019), although the gen-
eral ideas could be extended to alternative modalities
(e.g., Feng et al., 2021; Meng et al., 2021).

We start from the DP-MP approach, which draws sam-
ples of future data that are either copies of previous
observations, or “new” observations from a base mea-
sure H. In practice we do not expect future data to
be exact copies of z1:n; instead we assume variations of
original data obtained by standard randomized label-
preserving data augmentation techniques such as ran-
dom cropping. Hence we replace the point masses δzi
in Equation (2) with a distributionH

(aug)
zi (·), such that

samples from H
(aug)
zi are generated by (i) sampling a

random augmentation from some set T aug, (ii) apply-
ing that augmentation to xi, and (iii) combining with
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Algorithm 2: MixupMP using mini-batches

Data: Data {zi = (xi, yi)}ni=1, concentration
ratio r := c/n, Mixup parameter α,
minibatch size nmb, pseudosample batch
size tmb, # of simulations B, loss lθ(·),
data loader dnmb

(z1:n)
Result: Posterior samples {θ(b)}Bb=1

1 for b = 1 to B do
2 Randomly initialize θ(b)

3 while not converged do

4 for z
(mb)
1:nmb

in dnmb
(z1:n) do

5 for i = 1 to nmb do

6 Sample z̃i ∼ H
(aug)

z
(mb)
i

7 for i = nmb + 1 to nmb + tmb do

8 Sample z̃i ∼ H
(Mixup)
z̃1:nmb;α

9 Update θ(b) by gradient descent on∑nmb

i=1 ℓθ(b)(z̃i) +

rnmb

tmb

∑nmb+tmb

i=nmb+1 ℓθ(b)(z̃i)

the original yi.

Second, we specify a data-driven base measure

H
(Mixup)
z1:n;α . We sample from H

(Mixup)
z1:n;α by first apply-

ing random augmentations to x1:n to get augmented
inputs x̃1:n, then sampling an observation z′ according
to Mixup(z̃1:n, α), where z̃i = (x̃i, ỹi) (Equation (6)).

Finally, we make a practical choice to replace the
weights {wi}∞i=1 sampled from the DP with their ex-
pectations, simplifying implementation. This choice
is further motivated by that randomized weights make
little difference in separable settings (see Section 3 and
Section 6.1). The resulting distribution takes the form

F
(MMP)
∞ (·) ∝

∑n
i=1 H

(aug)
zi (·) + rH

(Mixup)
z1:n;α (·), (7)

where r := c/n is the concentration ratio parameter

for some c ≥ 0. P(MMP)
∞ is then the future predictive

distribution implied by i.i.d. sampling from F
(MMP)
∞ .

We obtain posterior samples of θ by repeatedly sam-

pling a sequence of observations from F
(MMP)
∞ and then

minimizing the loss lθ with respect to this sequence.
We note that this sequence is exchangeable by con-
struction, and thus this procedure generates samples
from a well-defined martingale posterior. We call this
approach MixupMP, and summarize a practical pro-
cedure in Algorithm 2.

In Algorithm 2, we split the training sequence into
mini-batches, allowing it to effectively work with a se-
quence of unbounded length. Additionally, we use a
fixed dataloader (permuted in the beginning of every

(a) F
(MMP)
∞ sample from MixupMP with varying ratio r :=

c/n and H
(aug)
x := δx and α = 1.0. Dots represent samples

from observations and crosses are samples from the base
measure. The label space is extended to interval [0,K−1].

(b) The corresponding predictive uncertainty landscape.

Figure 1: Illustration of MixupMP on synthetic clas-
sification task (K = 5) with α = 1.0. As r increases,

F
(MMP)
∞ puts more uncertainty on the space between

observations, inducing higher predictive uncertainty.

training epoch) that cycles through the data rather
than randomly sampling. While the resulting sam-

ples are no longer exact samples from F
(MMP)
∞ (Equa-

tion (7)), we expect the practical impact would be min-
imal.

Relationship to other methods. If the concen-
tration ratio r = 0 in Equation (7), MixupMP reduces
to DE with standard augmentation. If, in addition,

H
(aug)
z := δz, we recover DE without augmentation.

If r = ∞ in Equation (7) and B = 1 in Algorithm 2,
we recover the original Mixup algorithm (Zhang et al.,
2018). And if r = ∞ with B > 1, we recover Mixup
Ensemble, as explored by Rahaman and Thiery (2021)
and Wen et al. (2021).

Illustration of the predictive distribution. We
illustrate the effect of the concentration ratio r in a
synthetic 5-class dataset in Figure 1. When r = ∞,

all samples from F
(MMP)
∞ are interpolations between

observations, as shown in the RHS of Figure 1a. How-
ever, as we decrease r, we see an increasing proportion
of samples that are close to the original empirical dis-
tribution. This behavior avoids over-smoothing and
ensures we are training on sufficient data points that
are close to actual observations, while still populating
regions between clusters. We can think of r as describ-
ing the extent to which we believe future observations
will look like our training data (small r) vs the Mixup
base measure (large r).

Figure 1b shows the corresponding uncertainty esti-
mates obtained using MixupMP (see Appendix B for
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details). The DE solution (r = 0) provides low uncer-
tainty across most of the space except around the clas-
sification boundary. As we increase r, we see increase
uncertainty in the regions between the original 5 clus-
ters of observations. And Mixup Ensemble (r = ∞)
provides excessive uncertainty even in the region when
observations are present.

The choice of the Mixup parameter α impacts how
close the novel samples from the base measure HMixup

are to the data. For small values, we tend to see sam-
ples close to original observations; for larger values, we
see more space-filling behavior. We repeat Figure 1 in
Appendix B using more values of α.

4.1 Approximate MixupMP

We propose an efficient approximation to MixupMP
using MC dropout, where a single neural network is
trained with a positive dropout rate using Algorithm 2
(i.e. B = 1), and dropout is used at test time to gener-
ate multiple samples. Since dropout is randomly acti-
vated in each training iteration, this procedure implic-
itly trains an ensemble of models over different draws

of data from F
(MMP)
∞ (see Section 2). We refer to this

approximation as MixupMP-MC.

5 Related works

Several works have applied bootstrapping-type meth-
ods to deep learning, some of which fall under the def-
inition of martingale posteriors. Osband et al. (2016)
use a frequentist bootstrap to perform inference in
deep Q-networks (DQN), improving performance over
a single DQN model. Shin et al. (2021) use a hyper-
network approach to approximately implement BB in
neural networks. Newton et al. (2021) and Osband
et al. (2018) modify the BB to incorporate a random-
ized prior term in the loss function. Lee et al. (2023)
specifically follow a MP approach, specifying P∞ using
an exchangeable generative neural network to quantify
uncertainty for neural processes (Garnelo et al., 2018);
however their approach is specific to neural processes
(Garnelo et al., 2018) rather than general neural net-
works. By comparison, MixupMP is data-driven and
applies to general architectures.

More broadly, several approximate inference methods
for BNNs have been proposed. In addition to DE
and MC Dropout (discussed in Section 2), options
include Monte Carlo methods (MacKay, 1992; Chen
et al., 2014; Zhang et al., 2020); variational inference
(Graves, 2011; Blundell et al., 2015); Laplace approxi-
mations (Daxberger et al., 2021); and expectation pro-
pogation (Hernández-Lobato and Adams, 2015). With
the exception of DE and Monte Carlo methods, these

approaches only explore a single mode of the poste-
rior. Sampling from multiple modes has been found
to improve the quality of posterior estimates (Wilson
and Izmailov, 2020), and the posterior estimate ob-
tained using DE has been shown to be closer to a “gold
standard” Monte Carlo estimate than variational ap-
proaches (Izmailov et al., 2021).

When r = ∞, MixupMP corresponds to a ensem-
ble of models trained using Mixup (which we refer to
as Mixup Ensemble). This setting has been shown
to yield underconfident predictions (Wen et al., 2021;
Rahaman and Thiery, 2021). Calibration-adjusted
Mixup (CAMixup, Wen et al., 2021) is a modification
of Mixup Ensemble that aims to reduce this under-
confidence by only applying mixup to classes where
the model is already over-confident (as assessed on
a validation set after each training epoch). Conse-
quently, all members of CAMixup need to be trained
simultaneously. In contrast, our approach allows in-
dividual training of each model, alleviating memory
constraints.

6 Experiments

In this section, we provide empirical results sup-
porting the equivalency of BB and DE, and empiri-
cally evaluate the performance of MixupMP. For code,
see https://github.com/apple/ml-MixupMP. Ex-
periments were carried out using Apple internal clus-
ters.

When comparing BB and DE, we look at two datasets:
MNIST (LeCun et al., 1998) and FMNIST (Xiao
et al., 2017), and do not use any data augmenta-
tions. For the analysis of MixupMP, we look at three
datasets: CIFAR10, CIFAR100 (Krizhevsky et al.,
2009), and FMNIST. For the CIFAR datasets, we spec-
ifyH(aug) using the augmentations RandomResizeCrop
and RandomHorizontalFlip in PyTorch (Paszke et al.,
2019); we also use these augmentations in competing
methods. For FMNIST, we do not use augmentations
since the images are centered and standardized. Unless
otherwise stated, we use B = 4 ensemble members for
all DE, Mixup Ensemble, BB and MixupMP experi-
ments to estimate the posterior mean, and B = 20
for implicit ensemble methods based on MC Dropout,
following Wen et al. (2021). We include additional im-
plementation details in Appendix D and Appendix E.

Evaluation Metrics. We use 0-1 accuracy (ACC)
and negative log likelihood (NLL) to evaluate pre-
dictive performance. For uncertainty quantification,
we consider expected calibration error (ECE, Naeini
et al., 2015), over-confidence error (OE), and under-
confidence error (UE); see Appendix C for details. Fi-
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Table 1: Comparing BB with DE. Models are either
randomly initialized (same set of seeds for DE and
BB), or initialized from a pretrained DE.

Dataset Method Init. Acc (%) ECE (%)

MNIST

DE random 99.33 0.41
BB random 99.17 0.24
DE DE 99.33 0.40
BB DE 99.33 0.41

FMNIST

DE random 91.52 2.32
BB random 91.21 2.01
DE DE 91.57 2.42
BB DE 91.55 2.37

nally, we assess the predictive entropy as a predictor
for uncertainty in the event of distribution shift.

6.1 Equivalency of BB and DE

In Section 3, we argued that, on separable datasets,
BB is equivalent to DE. Here, we demonstrate this
claim empirically. We compare test set performance
on MNIST and FMNIST under BB and DE, each with
B = 4 simulations. In every simulation, the model
is run until it achieves 100% training accuracy, plus
1000 further epochs, to ensure a separable setting is
achieved. The initializations were kept fixed between
the two approaches, either from a random initializa-
tion, or from a separately pretrained DE.

From Table 1, we see little difference between the two
methods in terms of test accuracy and ECE when the
initialization is set to a good solution provided by a
separately pretrained DE. Moreover, in Appendix D,
we show that the individual ensemble members within
BB and DE do not significantly differ in this scenario.

When DE and BB are randomly initialized, there is
a small difference between the two. We note that
Proposition 1 only concerns the convergent behavior;
it is possible that the weights added in BB nudge the
models to different basins of attraction during early-
stage training dynamics. We may be also seeing differ-
ences in convergence rate. This result supports Byrd
and Lipton (2019), who find that, while the effect of
importance weighting will ultimately vanish as train-
ing progresses, empirically “models with more extreme
weighting converge more slowly in decision boundary”.
In our case, it could take BB longer to converge due
to variation among the random weights, as composed
to the uniform weights used by DE.

6.2 Ablation study: Impact of
hyperparameters in MixupMP

The performance of MixupMP hinges on the ability

of F
(MMP)
∞ to capture uncertainty about future data.

This ability depends on the choices of random aug-
mentations in H(aug), the Mixup parameter α used in
Mixup, and the concentration ratio r of Mixup samples
to (augmented) observations.

In Figure 2, we look at the performance of MixupMP
on CIFAR10, across various values of α and r. Note
that when r = 0 we recover DE (which does not rely
on α), and when r = ∞, the Mixup Ensemble.

For any fixed α, we observe MixupMP’s predictive per-
formance (ACC and NLL) with moderate value of r
improves upon both the r = 0 and r = ∞ solutions
(i.e., DE and Mixup Ensemble). For uncertainty cali-
bration, MixupMP with r = 0.1 achieves slightly bet-
ter ECE compared to DE (r = 0), but larger r can
greatly inflate the ECE, especially for Mixup Ensem-
ble (r = ∞). This poor calibration performance of
Mixup Ensemble also corroborates previous findings in
Wen et al. (2021). Looking at OE and UE, we observe
that increasing r tends to reduce the model’s over-
confidence but boosting the under-confidence. This
result is expected since we are increasing the relative
importance of uncertain training examples.

On the other hand, for moderate 0 < r < ∞, raising
α generally leads to improvements in ACC and NLL,
with only a marginal increase in ECE. However for
Mixup Ensemble (r = ∞), large values of α can signifi-
cantly hurt NLL and ECE, despite enhancing the accu-
racy. In theory, increasing α will shift the Mixup base
measure to higher uncertainty region, with α → ∞
leading to maximum uncertainty since pairs of obser-
vations are equally mixed. Such effect of large α can
be amplified with large r, explaining the uncertainty
calibration behavior of Mixup Ensemble.

We conclude that the optimal value of r should be
somewhere between the extremes of 0 and ∞. DE
(r = 0) assumes that all future data are copies of pre-
vious observations, which leads to overconfident esti-
mates and worse accuracy on new data points. Con-
versely, Mixup Ensemble (r = ∞) assumes that all
future data are uncertain, leading to underconfidence
despite an improved accuracy. MixupMP interpolates
between these two extremes, balancing the predictive
performance and uncertainty calibration. We include
additional analysis on CIFAR100 and FMNIST in Ap-
pendix E where we observe similar trends.
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Figure 2: Impact of α and r on test set performance of MixupMP on CIFAR10. r = 0 corresponds to DE; r = ∞
corresponds to Mixup Ensemble. Results for CIFAR100 and FMNIST are included in Appendix E.

Table 2: Performance comparison on three datasets. Bolded metrics are the best (within 2 standard errors,
omitted for space) in each group of {single model, explicit ensemble, implicit ensemble}; ∗ indicates the best
among all methods. Single model results are averaged over 6 independent runs and ensemble results are averaged
over 3 independent ensembles. We include all ablation results with standard errors in Appendix E

Dataset CIFAR10 CIFAR100 FMNIST
Metric ACC (%) NLL ECE (%) ACC (%) NLL ECE (%) ACC (%) NLL ECE (%)
Single model
NN 96.12 0.1473 2.02 80.82 0.7816 4.78 93.72 0.2181 2.89
Mixup (α=2.0) 96.88 0.1854 8.59 81.83 0.7614 8.54 94.15 0.1948 1.46
Laplace 96.04 0.1344 0.80 80.95 1.0107 22.96 89.67 0.4088 5.89
Explicit ensemble (B=4)
DE 96.83 0.1090 0.78 83.28 0.6413 3.14 94.30 0.1768 1.36
MixupMP (r=0.1, α=2.0) 97.13 0.0969 0.46∗ 84.46 0.6127 3.95 94.75∗ 0.1610∗ 1.27
MixupMP (r=1.0, α=2.0) 97.77∗ 0.0845∗ 1.67 85.98∗ 0.5548∗ 5.49 94.70∗ 0.1662 1.01
Mixup Ensemble (α=2.0) 97.55 0.1717 9.71 84.48 0.6768 13.30 94.74∗ 0.1776 2.47
Implicit ensemble (B=20)
MC Dropout 96.16 0.1315 1.46 80.83 0.7451 3.69 94.41 0.1806 1.90
MixupMP-MC (r=0.1, α=2.0) 96.58 0.1145 0.42∗ 82.42 0.7079 3.39 94.72∗ 0.1651 1.46
MixupMP-MC (r=1.0, α=2.0) 97.27 0.1005 1.21 83.58 0.6419 4.21 94.81∗ 0.1619∗ 0.97∗

Mixup-MC (α=2.0) 96.80 0.2084 10.98 81.75 0.7616 10.71 94.69 0.1796 2.84
CAMixup-MC (α=2.0) 96.11 0.1365 1.21 80.19 0.7780 2.14∗ 94.27 0.1818 1.04∗

6.3 Comparison with other uncertainty
quantification methods

Next, we evaluate how MixupMP performs relative
to standard neural networks, and to other Bayesian
and ensemble-based methods. These methods include
(1) NN, a single neural network; (2) Mixup, a sin-
gle neural network trained with Mixup augmentation;
(3) Laplace, a Laplace approximation to the BNN pos-
terior (Daxberger et al., 2021); (2) MC Dropout ; (3)
DE ; (4) Mixup Ensemble; (5) CAMixup-MC, an ef-
ficient version of CAMixup (Wen et al., 2021).4 See
Appendix E for details. Additionally, we consider
MixupMP-MC, an efficient approximation to Mix-
upMP as introduced in Section 4.1. Similarly we in-
clude Mixup-MC as an approximation to Mixup En-
semble (equivalent to MixupMP-MC with r = ∞). For
all the methods that use Mixup augmentation, we set
α = 2.0. We refer to the class of models that form
a distribution over parameters as probabilistic models.
All above methods methods except for single NN and
Mixup are probabilistic. The results are summarized

4While Wen et al. (2021) propose two other ensembling
versions of CAMixup, they either impose significant mem-
ory constrainst, or require modifications to the underlying
neural network.

in Table 2.

We first note that single NN underperforms proba-
blistic models in almost all cases, supporting find-
ings from earlier works (Izmailov et al., 2021; Ova-
dia et al., 2019). Among the probabilistic models, we
find that MixupMP with r = 1.0 outperforms Laplace,
MC Dropout, DE and Mixup Ensemble in terms of
accuracy and NLL, either using explicit ensemble or
implicit ensemble. MixupMP with r = 0.1 performs
slightly worse than r = 1.0 on these two metrics, but
is better than other approaches in ECE. In terms of
uncertainty calibration, MixupMP with r = 0.1 is the
best or close to the best among all methods.

We next examine the performance of MixupMP’s more
efficient variant, MixupMP-MC. While MixupMP-
MC performs slightly worse than MixupMP, it out-
performs MC Dropout, Laplace, and Mixup-MC on
all metrics. CAMixup-MC achieves good calibra-
tion performance—its primary goal—as it has a sep-
arate validation set to adjust calibration. How-
ever, CAMixup-MC underperforms MixupMP and
MixupMP-MC in terms of accuracy and NLL. These
observations highlight that MixupMP-MC can serve as
an efficient proxy with little performance compromise.
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6.4 Robustness to distribution shift

Lastly, we evaluate the generalization power and the
reliability of uncertainty estimates of MixupMP in dis-
tribution shift settings. We consider the CIFAR10-C
dataset which contain 19 types of corruptions to the
original CIFAR10 test set, each with 5 shift intensity
levels (Hendrycks and Dietterich, 2018).

Figure 3: Performance under distribution shift using
CIFAR10-C dataset. The distribution shift intensity
ranges from 0 to 5, where 0 indicates no shift.

In Figure 3, we compare the performance of DE, Mix-
upMP, and Mixup Ensemble, each with the Mixup pa-
rameter α = 2. For all methods, as the test data shift
intensity increases, both ACC and NLL deteriorate as
expected; however, performance deteriorates less for
MixupMP and Mixup Ensemble. There is a concur-
rent increase in the predictive entropy for all models,
suggesting that their uncertainty estimates are infor-
mative. In particular, the higher the concentration ra-
tio r for MixupMP, the higher the predictive entropy
for the same shift intensity (recalling that DE corre-
sponds to MixupMP with r = 0 and Mixup Ensemble
corresponds to r = ∞).

Regarding calibration, in alignment with our findings
in the in-distribution setting in Section 6.2, DE tends
to be over-confident and Mixup Ensemble tends to be
under-confident. Meanwhile, MixupMP with moder-
ate values of r avoids both pitfalls, achieving better
calibration in almost all cases.

Finally, we highlight that MixupMP with r = 1.0
achieves the best accuracy, NLL and ECE across all
shift intensity levels in Figure 2. We include addi-
tional results on CIFAR100-C dataset (Hendrycks and
Dietterich, 2018) and comparison to other methods in
Appendix E. Through this comprehensive study, we
show that MixupMP achieves superior performance in
various distribution shift settings.

7 Discussion

In this work, we show that the posterior distribution
implied by deep ensembles can be framed as a martin-
gale posterior, but caution that when viewed in this
light, it is misspecified in most settings. Instead, we
propose MixupMP, a novel martingale posterior ap-
proach that uses state-of-the-art data augmentation
techniques to better captures predictive uncertainty
in image data, leading to improved predictive per-
formance and uncertainty quantification. We hope
that this work will spark increased interests in predic-
tive approaches to quantify uncertainty for deep learn-
ing, and inspire future work on other structured data
modalities.
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Supplementary materials: A Predictive View of Uncertainty
Quantification in Deep Learning

A Formal statement and proof of Proposition 1

A.1 Both DE and stabilized BB converge to the max margin solution

Several works have considered the limiting margin behavior of homogeneous neural networks (Wei et al., 2019;
Lyu and Li, 2020; Ji and Telgarsky, 2020; Xu et al., 2021). The margin for a single datapoint zi = (xi, yi) is
defined as γi = yifθ(xi), and the margin for the entire dataset as γmin(θ) = mini γi. In the case of L-homogeneous
neural networks—i.e., networks where fcθ(x) = cLfθ(x) for some L > 0 and all c > 0—the margin γmin(θ) scales
linearly with ||θ||L2 , so we consider the normalized margin,

γ̃(θ) = γmin

(
θ

||θ||2

)
=

γmin(θ)

||θ||L2

Under certain conditions, this normalized margin has been shown to converge to a max-margin solution γ∗ (Wei
et al., 2019; Lyu and Li, 2020; Ji and Telgarsky, 2020). Xu et al. (2021) show that such behavior can also
be found when we incorporate weights in empirical loss minimization, where we have a loss of the form form
L(θ) =

∑
i wiℓθ(zi) + λ||θ||r for some r > 0 and λ → 0, referred to as weak regularization.

Below, we consider the binary classification setting, with yi ∈ {−1,+1}. Extension to the multi-class setting is
straightforward. Following Xu et al. (2021), we make the following assumptions:
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Assumptions

A1 The loss takes the form ℓθ(zi) = ℓ(yifθ(xi)), where ℓ(·) has exponential tail behavior s.t. limu→∞ℓ(−u) =
limu→∞ ∆ℓ(−u) = 0.

A2 fθ(xi) is L-homogeneous, i.e. fcθ(x) = cLfθ(x) for some L > 0, all c > 0, and all x and θ.

A3 f·(x) is β-smooth and l-Lipschitz on Rd for all x.

A4 The data are separable by fθ, and this condition can be reached via gradient descent. Further, yifθ∗(xi) ≥
γ∗ > 0 for each i.

A5 The weights wi are bounded, s.t. wi ∈ [1/M,M ] for some positive M .

Lemma 1 (Proposition 3 of Xu et al. (2021)). If Assumptions A1-A5 hold, then limλ→0 γ̃(θ) → γ∗, i.e. fθ
converges to the max margin solution.

Cross-entropy loss meets assumption A1; see Xu et al. (2021) for more general sufficient descriptions of ex-
ponential tail behavior. Assumption A2 is met by feedforward and convolutional neural networks with ReLU
activations and no bias terms. Assumption A4 is common in image datasets where we can achieve perfect train
set classification. This is often the case in practice; for example, the MNIST and FashionMNIST training datasets
used in this paper can be perfectly classified using a CNN with no bias terms.

DE trivially meets Assumption A5 since the weights are all 1/n. In the Bayesian bootstrap setting, we ensure
assumption A5 is met via the following definition of stabilized BB weights:

(w̃1, . . . , w̃n) ∼Dirichlet(1, . . . , 1)

wi =
w̃ + η

n+ η
,

where η = 1/(M − n) for some M > n.

It therefore follows from Lemma 1 that both DE and stabilized BB converge to the max margin classifier, provided
assumptions A2, A3 and A4 are met. As noted by Xu et al. (2021), in practice the smoothness condition in A3
is not met when using ReLU activations; however, they find that in practice using ReLU rather than a smoother
activation function makes little difference. Similarly, incorporating bias terms in a CNN with ReLU activations
violates the homogeneity assumption A2; however in practice we found little difference when bias terms are
included.

A.2 Equivalency of DE and stabilized BB

We restate Proposition 1 more formally:

Proposition 1. Assume A1-5 are met, and inference is run until convergence of the normalized max margin.
Then, any posterior sample obtained via stabilized BB could also have been obtained via DE, and vice versa.

This is a direct consequence of Lemma 1: Any classifier that minimizes the randomly weighted loss used in
stabilized BB will also minimize the unweighted loss.

Remark Proposition 1 implies that a sample from DE is a valid minimizer of stabilized BB. This is validated
empirically in Section 6.1 and Appendix D: when we initialize a BB sample using a pretrained DE sample, we
do not see any significant change in the resulting classifier.

However, Proposition 1 does not consider the probability of obtaining such a sample under the two schemes,
when trained from a random initialization. Lemma 1 only considers asymptotic behavior of the margin on the
training set; different weighting schemes will likely impact early-stage learning behavior which can impact which
local minima the optimization ends up in. Indeed, Xu et al. (2021) show that weights can have an impact on out-
of-sample performance in the finite-sample setting. In principle, this impact could lead to differing distributions
of fitted parameters under DE and BB.
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(a) F
(MMP)
∞ sample from different MGs. Left: Bayesian bootstrap

(BB); Middle: DP-MP with the base measure H being a perturbed
distribution; Right: DP-MP withH being a uniform measure. Dots
represent samples from observations and crosses are samples from
the base measure. The label indexing starts from 0 to K − 1.

(b) The corresponding predictive uncertainty landscape. BB and DP-
MP with perturbed H both have uncertainty centered around decision
boundary, with the later has greater uncertainty; DP-MP has high
uncertainty in region where observations are absent or scarce.

Figure A.1: Illustration of Martingale posteriors. Different specifications of the future predictive distribution
lead to different uncertainty quantification behaviors.

However, our experiments in Section 6.1 and Appendix D indicate that there is not a significant practical
difference. When BB samples are initialized using the same random initialization as DE samples, we do see some
variation in the resulting classifiers as a result of the different training dynamics; however the differences are
small. This finding is in line with previous empirical work that shows importance weighting has no impact on
the limiting behavior of neural networks, under exponentially-tailed losses (Byrd and Lipton, 2019; Wang et al.,
2022).

We note that this result does not necessarily imply that the distribution over solutions will be the same under
both paradigms: the weights before the loss terms will likely impact early-stage learning behavior which can
impact which local minima the optimization ends up in. Indeed, Xu et al. (2021) show that weights can have an
impact on out-of-sample performance in the finite-sample setting.

However, empirically we find there to be very little difference in the resulting behavior of neural networks
trained under Bayesian bootstrapping and deep ensembles (Table 1/Table D.1 and Figure D.1). This finding is
also supported by empirical work that shows importance weighting has no impact on the limiting behavior of
neural networks, under exponentially-tailed losses (Byrd and Lipton, 2019; Wang et al., 2022).

B Illustrations of Martingale posteriors and synthetic experiment details

B.1 Illustration of martingale posteriors

We use a 2D synthetic experiment to illustrate how different specifications of future predictive distributions P∞
can lead to different uncertainty quantification behaviors.

We randomly generate 5 clusters of 2D inputs of size [20, 50, 100, 200, 500], each corresponding to a class k ∈
[1, 2, 3, 4, 5]. We consider three specifications of P∞, all through specifying an exchangeable latent distribution
F∞ (see Section 2.1): (1) Bayesian Bootstrap (BB), (2) DP-MP with c = 1 and base measure H = “Perturbed”
– a data-driven model that injects random noise to observed inputs and preserves their labels, and (3) DP-MP
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with c = 1 and H = “Uniform” – an uninformative prior model that uniformly samples inputs and labels.

More specifically, in (2) the perturbed H generates a new pseudo sample z′ = (x′, y′) by choosing a random
observation z = (x, y) and then set x′ := x+ϵ with ϵ ∼ N (0, 4) and y′ := y; and in (3) the uniformH generates in-
dependent uniform pseudo samples z′ = (x′, y′) where x′ ∼ Uniform[−15, 15]2, and y′ ∼ Categorical(1, 2, 3, 4, 5).

We use a feed forward neural network with the hidden units size of [16, 32, 16]. We obtain their posterior samples
{θ(b)}Bb=1 according to Algorithm 1 with B = 10 and T = n, the total size of observations. In each simulation, the
network is trained from a random initialization with a learning rate of 0.5 for 10,000 epochs, and no mini-batch
is used.

The predictive uncertainty is computed as 1 −
∑K

k=1 p
2(y = k|z) (as suggested by Abe et al. (2022)) and is

re-scaled to [0, 1], where p(·|z) is evaluated by the mean of the B posterior predictive distributions.

Figure A.1a reflects a random sample of F∞ from the three specifications. The corresponding landscape of
predictive uncertainty is depicted in Figure A.1b. We can see that different specifications of future predictive
distributions lead to different uncertainty quantification behaviors; for example, if we expect the future data to
come from existing observations (as suggested by BB) or to be very similar to them (DP-MP with perturbed
H), then there will be minimal uncertainty mostly concentrated around the decision boundary; however, if we
expect almost “zero” prior knowledge (DP-MP with uniform H), then the uncertainty will be high except in the
area with abundant evidence.

It is critical to emphasize that there is no singular, correct specification of a Martingale posterior unless we have
complete knowledge of the true data generative process. The key takeaway from this synthetic example is to
illustrate that one can incorporate prior beliefs by defining a future predictive distribution, which will lead to a
more informed representation of uncertainty.

B.2 Experiment details for Figure 1 and results for varying α

In Figure 1, the synthetic data generation and the neural network architecture are the same as described in
Appendix B.1. We obtain their posterior samples {θ(b)}Bb=1 according to Algorithm 2 with B = 10 and tmb = nmb,
and no standard data augmentation is used (i.e. nmb = n). In each simulation, the network is trained from a
random initialization with a learning rate of 0.5 for 10,000 epochs, and no mini-batch is used.

Here we also include the illustration of MixupMP with varying mixup parameter α in Figure B.1.

C Uncertainty calibration metrics

For uncertainty calibration metrics used in Section 6, we consider the expected calibration error (ECE, Naeini
et al., 2015), over-confidence error (OE), and under-confidence error (UE).

ECE measures the difference between accuracy and confidence:

ECE =

M∑
m=1

|Bm|
n

|Acc(Bm)− Conf(Bm)| (8)

where for m = 1, · · · ,M

Acc(Bm) =
1

Bm

∑
xi∈Bm

1(ŷi = yi), Conf(Bm) =
1

Bm

∑
xi∈Bm

p̂i, (9)

each Bm is the mth bin of samples whose prediction confidence falls into interval (m−1
M , m

M ], ŷi is the prediction
and p̂i is the prediction conference. We use M = 15 throughout all experiments.

We further inspect the over-confidence and under-confidence quantification:

OE =

M∑
m=1

|Bm|
n

max {Conf(Bm)−Acc(Bm), 0} (10)

UE =

M∑
m=1

|Bm|
n

max {Acc(Bm)− Conf(Bm), 0} (11)
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(a) F
(MMP)
∞ sample from MixupMP with varying α ∈ [0.1, 0.4, 1.0, 2.0], r = 1 and

H
(aug)
x := δx. Dots represent samples from observations and crosses are samples from

the base measure. The label space is extended to interval [0,K − 1].

(b) The corresponding predictive uncertainty landscape.

Figure B.1: Illustration of MixupMP on synthetic classification task (K = 5) with r = 1.0 and varying α. As α

increases, F
(MMP)
∞ samples are more concentrated on the middle of different data pairs, inducing wider predictive

uncertainty bands around the decision boundary.

The study of OE and UE metrics are motivated by Thulasidasan et al. (2019), where they propose another
version of over-confidence metric that weights each summand in Equation (10) by the confidence score.

D Equivalency of BB and DE: Details and additional results

D.1 Experimental details

To compare BB and DE, we looked at the behavior of ensembles of neural networks trained on separable data.
Specifically, we looked at the MNIST dataset (LeCun and Cortes, 2010, copyright the authors) and the Fashion
MNIST (FMNIST) dataset (Xiao et al., 2017, MIT license). Each ensemble contains 4 independently trained
neural networks. We used a convolutional neural network with two convolutional layers (with kernel size 5; 6
and 16 hidden channels; ReLU activation; and max pooling) and two fully connected layers (with 120 and 84
latent dimensions and ReLU activation).

For the “random” initialization results, each ensemble member was initialized using one of four randomly gen-
erated initializations. Initializations were paired between the two methods (e.g., the initialization of the first
DE ensemble member is the same of that of the first BB DE ensemble member). Models were trained using
stochastic gradient descent with a learning rate of 5e−4, for 1000 epochs beyond obtaining 100% accuracy on
the test set. These experiments were designed to explore the difference between BB and DE, given the same
initialization.

The “DE” initialization results were obtained using ensembles where each member was initialized to the output
of one of the DE “random” initialization ensemble members. These results were designed to assess Proposition 1,
which claims that a solution for DE is also a solution for BB. If this were not the case, we would expect the
BB solution to diverge from the DE solution. Since the initialization already achieves 100% training accuracy,
models were trained using stochastic gradient descent with a learning rate of 5e−4, for 1000 epochs.

Table D.1 (an extended version of Table 1, with additional metrics included) shows the performance of the
resulting ensembles. We see that there is a small difference between the BB and DE results with random
initialization, which we hypothesize is due to early training conditions. As expected, we see almost no difference
when initialized to a pre-trained DE solution.
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(a) MNIST

(b) FashionMNIST

Figure D.1: Comparing individual ensemble members. Each point represents a pair of ensemble members from
BB or DE with the same initialization (random or DE).

Figure D.1 shows the test set accuracies and losses of each ensemble member in the BB and DE ensembles,
pair-matched to have the same initialization. As in Table D.1, when randomly initialized, we see that the models
obtain similar solutions, but not exactly the same (left two plots of each row). However, when pre-initialized to
a DE solution, we see little deviation between the DE and BB individual ensemble members (right two plots of
each row).

Table D.1: Comparing Bayesian bootstrap (BB) with deep ensembles (DE). Models are either randomly initialized
(same set of seeds for DE and BB), or initialized using a pretrained DE

Dataset Method Init. ACC (%) ECE (%) OE (%) UE (%) NLL
MNIST DE random 99.33 0.4092 0.2224 0.1868 0.035111
MNIST BB random 99.17 0.2357 0.2133 0.0224 0.037333
MNIST DE DE 99.33 0.3997 0.2185 0.1812 0.036600
MNIST BB DE 99.33 0.4079 0.2195 0.1884 0.036653
FMNIST DE random 91.52 2.3240 2.1323 0.1917 0.571902
FMNIST BB random 91.21 2.0132 1.8851 0.1281 0.620820
FMNIST DE DE 91.57 2.4219 2.1655 0.2564 0.592023
FMNIST BB DE 91.55 2.3866 2.1616 0.2249 0.591654

E Empirical study of MixupMP: experiment details and additional results

E.1 Implementation details.

We list implementation details of experiments in Sections 6.2 to 6.4.

For CIFAR10 and CIFAR100 datasets (under MIT license), we use the Wide Resnet architecture with depth
28 and widen factor 10 for individual models (Zagoruyko and Komodakis, 2016), and the implementation from
https://github.com/meliketoy/wide-resnet.pytorch which is also under an MIT license. We follow the
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(a) Performance on CIFAR100 dataset

(b) Performance on FMNIST dataset (ResNet18)

(c) Performance on FMNIST dataset (CNN)

Figure E.1: MixupMP ablation study: Impact of α and r on test set performance on CIFAR100 (top row) and
FMNIST (mid row: with ResNet18 and bottom row: with CNN). DE corresponds to MixupMP with r = 0;
Mixup Ensemble corresponds to MixupMP with r = ∞. Solid lines are average values computed over 3 random
runs, with error bars denoting 2 standard errors. The result for CIFAR10 is depicted in Figure 2.

training details from the original paper: “We use SGD with Nesterov momentum and cross-entropy loss. The
initial learning rate is set to 0.1, weight decay to 0.0005, dampening to 0, momentum to 0.9 and minibatch size
to 128. Learning rate dropped by 0.2 at 60, 120 and 160 epochs and we train for total 200 epochs.”

For FMNIST dataset, we use the Resnet18 architecture (He et al., 2016), which is under an MIT license, and the
implementation from https://github.com/kefth/fashion-mnist/tree/master. We additionally include the
CNN architecture as an ablation (see results in Figure E.1c). Unless otherwise stated, the presented FMNIST
results are obtained with Resnet18. The remaining training details are the same as the CIFAR experiment.

For implicit ensemble methods (namely MC Dropout, MixupMP-MC, Mixup-MC, CAMixup-MC), a dropout
rate of 0.3 is used. All remaining methods do not use dropout.

CAMixup-MC requires using a validation set during training to evaluate the current ensemble’s calibration
behavior. We follow the practice from Wen et al. (2021) to separate 5% of data from the training set for
validation purpose.

For Laplace method, we use the implementation from the official codebase https://github.com/aleximmer/

Laplace.

For MixupMP and its variants, we set the pseudo sample batch size tmb to the data batch size nmb (described
in Algorithm 2) throughout all experiments. Specifically, we used a batch size of 128.

Lastly, for all ensemble methods (either explicit or implicit ensemble), predictions are computed as the average
of predictions of individual models.

E.2 Ablation study on hyperparameters and data augmentations

We include additional ablation results on varying ratio r and varying mixup parameter α on the other two
datasets in Figure E.1. We observe similar trends to those found in the result from the CIFAR10 dataset, as
is shown in Figure 2 and summarized in Section 6.2. However, the optimal choice of r and α with respect to
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Table E.1: Full in-distribution test results on CIFAR10, CIFAR100 and FMNIST with standard errors included
in the parenthesis. Bolded metrics are the best (within 2 standard errors) in each group of {single model,
explicit ensemble, implicit ensemble}; ∗ indicates the best among all methods. The blue shaded rows correspond
to results of our method MixupMP or its variants.

Dataset CIFAR10 CIFAR100 FMNIST
Metric ACC (%) NLL ECE (%) ACC (%) NLL ECE (%) ACC (%) NLL ECE (%)
Single model
NN 96.12(0.04) 0.1473(0.0012) 2.02(0.04) 80.82(0.08) 0.7816(0.0026) 4.78(0.08) 93.72(0.08) 0.2181(0.0024) 2.89(0.06)
MixupMP-single (r=0.1, α=0.1) 96.35(0.04) 0.1356(0.0010) 1.26(0.04) 81.30(0.06) 0.7712(0.0021) 3.66(0.11) 94.09(0.05) 0.1959(0.0010) 1.95(0.11)
MixupMP-single (r=0.1, α=0.4) 96.51(0.03) 0.1302(0.0009) 0.95(0.03) 81.85(0.08) 0.7535(0.0023) 3.54(0.06) 94.23(0.03) 0.1914(0.0012) 2.01(0.12)
MixupMP-single (r=0.1, α=1.0) 96.65(0.04) 0.1258(0.0012) 0.91(0.05) 82.22(0.06) 0.7322(0.0020) 3.23(0.08) 94.31(0.05) 0.1890(0.0011) 2.29(0.03)
MixupMP-single (r=0.1, α=2.0) 96.62(0.03) 0.1260(0.0008) 1.05(0.02) 82.47(0.06) 0.7201(0.0020) 3.24(0.11) 94.31(0.03) 0.1895(0.0009) 2.35(0.05)
MixupMP-single (r=1.0, α=0.1) 96.57(0.03) 0.1288(0.0010) 0.46(0.04) 82.09(0.05) 0.7352(0.0025) 2.72(0.09) 94.21(0.04) 0.1870(0.0010) 1.92(0.05)
MixupMP-single (r=1.0, α=0.4) 96.87(0.04) 0.1202(0.0011) 0.68(0.04) 82.86(0.07) 0.7046(0.0022) 1.66(0.08) 94.25(0.04) 0.1893(0.0010) 1.96(0.04)
MixupMP-single (r=1.0, α=1.0) 97.06(0.03) 0.1130(0.0008) 0.77(0.04) 83.27(0.05) 0.6769(0.0024) 1.28(0.09)

∗
94.27(0.04) 0.1913(0.0011) 2.03(0.03)

MixupMP-single (r=1.0, α=2.0) 97.27(0.03) 0.1055(0.0009) 0.62(0.05) 83.56(0.05) 0.6582(0.0012) 1.13(0.06)
∗

94.19(0.04) 0.1938(0.0009) 2.10(0.04)
Mixup (α=0.1) 96.40(0.03) 0.1354(0.0010) 0.82(0.05) 81.82(0.06) 0.7412(0.0029) 3.30(0.09) 94.48(0.03) 0.1833(0.0010) 1.79(0.03)
Mixup (α=0.4) 96.74(0.03) 0.1378(0.0011) 2.68(0.05) 82.69(0.05) 0.7156(0.0030) 5.11(0.20) 94.33(0.03) 0.1902(0.0008) 1.35(0.08)
Mixup (α=1.0) 96.88(0.04) 0.1566(0.0017) 5.36(0.18) 82.59(0.07) 0.7339(0.0021) 7.61(0.22) 94.20(0.04) 0.1933(0.0009) 0.81(0.03)
Mixup (α=2.0) 96.88(0.03) 0.1854(0.0016) 8.59(0.14) 81.83(0.09) 0.7614(0.0028) 8.54(0.19) 94.15(0.05) 0.1948(0.0008) 1.46(0.05)
Laplace 96.04(0.05) 0.1344(0.0010) 0.80(0.04) 80.95(0.18) 1.0107(0.0124) 22.96(1.02) 89.67(0.10) 0.4088(0.0045) 5.89(0.05)
Explicit ensemble (B=4)
DE 96.83(0.02) 0.1090(0.0007) 0.78(0.04) 83.28(0.08) 0.6413(0.0003) 3.14(0.15) 94.30(0.05) 0.1768(0.0009) 1.36(0.03)
MixupMP (r=0.1, α=0.1) 97.01(0.05) 0.1042(0.0007) 0.40(0.07)

∗
83.85(0.11) 0.6449(0.0023) 4.29(0.03) 94.53(0.03) 0.1684(0.0006) 0.85(0.13)

MixupMP (r=1.0, α=0.1) 97.17(0.02) 0.1014(0.0011) 1.13(0.07) 84.41(0.10) 0.6256(0.0030) 4.64(0.04) 94.65(0.05) 0.1625(0.0006) 0.88(0.09)
MixupMP (r=0.1, α=0.4) 97.04(0.03) 0.1009(0.0007) 0.55(0.03) 84.12(0.07) 0.6367(0.0008) 4.31(0.09) 94.73(0.03) 0.1630(0.0009) 0.79(0.19)

∗

MixupMP (r=1.0, α=0.4) 97.39(0.02) 0.0951(0.0015) 1.67(0.03) 85.12(0.13) 0.5962(0.0056) 5.19(0.16) 94.72(0.02) 0.1626(0.0006) 0.89(0.03)
MixupMP (r=0.1, α=1.0) 97.13(0.04) 0.0966(0.0016) 0.59(0.02) 84.38(0.15) 0.6222(0.0007) 4.27(0.14) 94.75(0.06) 0.1612(0.0012) 1.19(0.07)
MixupMP (r=1.0, α=1.0) 97.57(0.05) 0.0918(0.0004) 1.78(0.09) 85.62(0.04) 0.5687(0.0030) 5.45(0.12) 94.82(0.08)

∗
0.1644(0.0008) 0.85(0.07)

MixupMP (r=0.1, α=2.0) 97.13(0.03) 0.0969(0.0004) 0.46(0.03) 84.46(0.03) 0.6127(0.0021) 3.95(0.24) 94.75(0.05) 0.1610(0.0012) 1.27(0.04)
MixupMP (r=1.0, α=2.0) 97.77(0.02)

∗
0.0845(0.0010)

∗
1.67(0.08) 85.98(0.13)

∗
0.5548(0.0011)

∗
5.49(0.10) 94.70(0.07) 0.1662(0.0005) 1.01(0.00)

Mixup Ensemble (α=0.1) 97.03(0.02) 0.1099(0.0005) 1.91(0.05) 84.26(0.04) 0.6506(0.0029) 7.36(0.06) 94.90(0.03)
∗

0.1581(0.0013)
∗

0.78(0.03)
Mixup Ensemble (α=0.4) 97.32(0.09) 0.1178(0.0009) 3.86(0.02) 85.07(0.04) 0.6304(0.0048) 9.43(0.35) 94.85(0.05)

∗
0.1657(0.0010) 0.53(0.06)

∗

Mixup Ensemble (α=1.0) 97.47(0.01) 0.1395(0.0018) 6.55(0.12) 85.17(0.04) 0.6495(0.0018) 12.19(0.27) 94.66(0.07) 0.1727(0.0012) 1.56(0.05)
Mixup Ensemble (α=2.0) 97.55(0.02) 0.1717(0.0022) 9.71(0.18) 84.48(0.10) 0.6768(0.0036) 13.30(0.04) 94.74(0.10)

∗
0.1776(0.0010) 2.47(0.05)

Implicit ensemble (B=20)
MC Dropout 96.16(0.05) 0.1315(0.0011) 1.46(0.04) 80.83(0.25) 0.7451(0.0045) 3.69(0.07) 94.41(0.04) 0.1806(0.0004) 1.90(0.05)
MixupMP-MC (r=0.1, α=0.1) 96.49(0.10) 0.1204(0.0035) 0.72(0.11) 81.78(0.16) 0.7215(0.0012) 3.17(0.05) 94.57(0.06) 0.1711(0.0006) 1.42(0.06)
MixupMP-MC (r=1.0, α=0.1) 96.75(0.02) 0.1163(0.0014) 0.57(0.05) 82.08(0.22) 0.7102(0.0035) 2.76(0.33) 94.76(0.08)

∗
0.1646(0.0005) 1.27(0.06)

MixupMP-MC (r=0.1, α=0.4) 96.62(0.04) 0.1180(0.0010) 0.46(0.08)
∗

81.80(0.10) 0.7276(0.0019) 3.07(0.04) 94.65(0.16)
∗

0.1674(0.0025) 1.44(0.10)
MixupMP-MC (r=1.0, α=0.4) 97.09(0.03) 0.1103(0.0011) 1.12(0.04) 83.32(0.11) 0.6825(0.0057) 4.92(0.13) 94.81(0.05)

∗
0.1619(0.0005) 0.98(0.04)

MixupMP-MC (r=0.1, α=1.0) 96.77(0.01) 0.1132(0.0018) 0.35(0.06)
∗

82.50(0.07) 0.7067(0.0033) 3.55(0.07) 94.78(0.05) 0.1648(0.0008) 1.38(0.06)
MixupMP-MC (r=1.0, α=1.0) 97.15(0.08) 0.1063(0.0013) 1.20(0.10) 83.55(0.03) 0.6520(0.0020) 4.23(0.26) 94.86(0.05)

∗
0.1624(0.0012) 0.90(0.02)

MixupMP-MC (r=0.1, α=2.0) 96.58(0.05) 0.1145(0.0029) 0.42(0.02) 82.42(0.12) 0.7079(0.0045) 3.39(0.10) 94.72(0.07) 0.1651(0.0015) 1.46(0.02)
MixupMP-MC (r=1.0, α=2.0) 97.27(0.04) 0.1005(0.0006) 1.21(0.08) 83.58(0.05) 0.6419(0.0043) 4.21(0.10) 94.81(0.06)

∗
0.1619(0.0007) 0.97(0.04)

Mixup-MC (α=0.1) 96.55(0.06) 0.1272(0.0013) 1.43(0.07) 81.77(0.20) 0.7263(0.0025) 3.46(0.38) 94.84(0.05)
∗

0.1649(0.0007) 1.00(0.06)
Mixup-MC (α=0.4) 96.68(0.03) 0.1394(0.0013) 3.38(0.14) 82.52(0.06) 0.7235(0.0029) 7.49(0.21) 94.86(0.06)

∗
0.1656(0.0008) 0.55(0.05)

∗

Mixup-MC (α=1.0) 96.96(0.07) 0.1613(0.0012) 6.71(0.27) 82.26(0.05) 0.7331(0.0087) 8.98(0.76) 94.73(0.03) 0.1748(0.0007) 1.81(0.04)
Mixup-MC (α=2.0) 96.80(0.02) 0.2084(0.0045) 10.98(0.26) 81.75(0.08) 0.7616(0.0046) 10.71(0.20) 94.69(0.03) 0.1796(0.0007) 2.84(0.10)
CAMixup-MC (α=0.1) 95.82(0.05) 0.1529(0.0083) 1.86(0.85)

∗
79.83(0.44) 0.7942(0.0250) 2.44(0.40) 94.13(0.06) 0.1808(0.0025) 1.13(0.04)

CAMixup-MC (α=0.4) 95.72(0.05) 0.1571(0.0080) 2.52(0.68) 80.49(0.14) 0.7647(0.0071) 1.97(0.25) 94.19(0.04) 0.1817(0.0019) 0.86(0.14)
CAMixup-MC (α=1.0) 95.94(0.03) 0.1466(0.0076) 1.63(0.62) 80.21(0.19) 0.7739(0.0122) 2.05(0.20) 94.31(0.05) 0.1788(0.0012) 0.97(0.09)
CAMixup-MC (α=2.0) 96.11(0.10) 0.1365(0.0070) 1.21(0.08) 80.19(0.11) 0.7780(0.0061) 2.14(0.04) 94.27(0.04) 0.1818(0.0020) 1.04(0.14)

a specific metric may vary across datasets. In practice one can leave out an additional validation dataset to
determine those values.

E.3 Comparison to other methods

To complement the study in Section 6.3, we summarize the in-distribution test results for all methods with
ablations on hyperparameters in Table E.1. In additional to the methods listed in Section 6.3, we include
MixupMP-single, which is a single sample from MixupMP by running Algorithm 2 with B = 1.

We observe that MixupMP (including its variants MixupMP-single and MixupMP-MC) are the best or compa-
rable to the best in terms of ACC and NLL in their corresponding group. The ECE performance of our method
is either the best or close to best in each group, except that MixupMP-MC (r = 0.4) on FMNIST dataset and
CAMixup-MC (α = 0.1, 0.4 or 1.0) have better ECE. Among all methods, MixupMP via the explicit ensemble
approach strikes the best balance in predictive performance and calibration.

E.4 Robustness to distribution shift

We conduct a comprehensive study of MixupMP in distribution shift / OOD (out-of-distribution) settings. For
models trained on CIFAR10, we evaluate on CIFAR10-C (Hendrycks and Dietterich, 2018) which contain 19
corruption datasets, each with 5 intensity levels; For models trained on CIFAR100, we evaluate on CIFAR100-C
(Hendrycks and Dietterich, 2018), which contain 21 corruption datasets, each with 5 intensity levels. Due to the



Luhuan Wu, Sinead Williamson

Figure E.2: Performance under distribution shift on CIFAR100. We plot various metrics against the distribution
shift intensity ranging from 0 to 5, where 0 indicates no shift.

large size of the test set, we only report results using a single run of each model.

For MixupMP and its special cases DE and Mixup Ensemble, we investigate their performance under different
shift levels. The results for CIFAR10-C are summarized in Figure 3, and the results for CIFAR100-C are
summarized in Figure E.2. We observe similar trends in both plots; see detailed discussion in Section 6.4.

Full comparison. In Table E.2 we include a full comparison to all other methods listed in Section 6.3 and ap-
pendix E.3.

Across all methods, MixupMP with large values of r and α have superior OOD test performance in all metrics.
Additionally, Mixup (single-model) and Mixup-MC also have favorable performance, especially in terms of ECE
(they achieve the best ECE within their corresponding method group); however, Mixup Ensemble with a large
α value (e.g. 1 or 2) can suffer from inflated ECE. Such results are expected, since with a large r, MixupMP
(including Mixup Ensemble as a special case of r = ∞) has the prior belief that the future test data comes from
a more uncertain domain away from the observations, which is the case in distribution shift settings.

While CAMixup-MC does well in in-distribution test set as shown in Table E.1, its OOD test performance is worse
than MixupMP and Mixup Ensemble in most cases, especiallly in terms of ECE. This observation corroborates
the findings in Wen et al. (2021). CAMixup adjusts the calibration behavior using only in-distributoin validation
dataset, explaining its performance does not generalize well to OOD settings.

Lastly, we note that Laplace has inferior performance across all metrics, only slightly better than a single Neural
Network (NN) and MixupMP-single with small r and α (in which case is a very close model to NN).

F Time and space complexity of methods described in the paper

On a per-epoch basis, the time and memory complexity of the MP methods described in this paper are of the
same order of magnitude as the corresponding DE method. In the case of MixupMP, each minibatch is of length
tmb+nmb, increasing the time and memory complexity by a constant factor. For BB, we have the same minibatch
sizes as in DE; the additional cost of adding in weights is negligible.
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Table E.2: Full out-of-distribution test results. Bolded values indicate the best result within the group in { single
model, explicit ensemble, implicit ensemble}, and ∗ indicates the best among all methods. The blue shaded rows
correspond to results of our method MixupMP or its variants.

Dataset CIFAR10-C CIFAR100-C
Metric ACC (%) NLL ECE (%) ACC (%) NLL ECE (%)
Single model
NN 75.50 1.1287 16.03 50.81 2.4562 15.93
MixupMP-single (r=0.1, α=0.1) 77.21 0.9422 12.91 53.31 2.2401 12.60
MixupMP-single (r=0.1, α=0.4) 78.78 0.8188 10.55 54.03 2.1875 10.96
MixupMP-single (r=0.1, α=1.0) 79.67 0.7787 9.95 55.41 2.0825 9.29
MixupMP-single (r=0.1, α=2.0) 80.38 0.7479 9.29 55.60 2.0860 9.94
MixupMP-single (r=1.0, α=0.1) 79.96 0.7725 9.33 54.88 2.0636 8.24
MixupMP-single (r=1.0, α=0.4) 81.42 0.7134 7.97 57.31 1.9141 6.57
MixupMP-single (r=1.0, α=1.0) 81.95 0.6887 7.48 58.49 1.8216 5.79
MixupMP-single (r=1.0, α=2.0) 83.02 0.6324 6.06 58.94 1.7755 5.67
Mixup (α=0.1) 80.77 0.7046 6.96 54.65 2.0589 7.72
Mixup (α=0.4) 81.66 0.6625 4.11 57.24 1.8749 4.78
Mixup (α=1.0) 82.04 0.6286 2.34 57.52 1.8255 1.63
Mixup (α=2.0) 80.75 0.6786 4.70 57.99 1.7932 2.16
Laplace 75.87 0.8933 11.98 51.26 2.3194 15.53
Explicit ensemble (B=4)
DE 77.03 0.8968 10.29 53.84 2.1383 7.65
MixupMP (r=0.1, α=0.1) 78.79 0.7410 7.01 56.35 1.9735 4.78
MixupMP (r=1.0, α=0.1) 81.64 0.6174 3.99 57.82 1.8428 1.60
MixupMP (r=0.1, α=0.4) 80.53 0.6512 4.70 56.86 1.9375 3.94
MixupMP (r=1.0, α=0.4) 83.46 0.5558 1.82 60.39 1.7103 1.12∗

MixupMP (r=0.1, α=1.0) 81.24 0.6281 4.76 58.17 1.8669 2.72
MixupMP (r=1.0, α=1.0) 83.90 0.5371 1.61 61.82 1.6101 1.82
MixupMP (r=0.1, α=2.0) 82.02 0.6036 4.12 58.30 1.8550 3.28
MixupMP (r=1.0, α=2.0) 85.12∗ 0.4840∗ 1.03∗ 62.43∗ 1.5632∗ 2.43
Mixup Ensemble (α=0.1) 82.80 0.5649 1.30 57.65 1.8422 1.29
Mixup Ensemble (α=0.4) 83.91 0.5468 3.27 60.56 1.6720 2.81
Mixup Ensemble (α=1.0) 84.05 0.5378 5.43 61.44 1.6322 7.17
Mixup Ensemble (α=2.0) 82.94 0.5886 9.30 62.18 1.6021 9.37
Implicit ensemble (B=20)
MC Dropout 82.87 0.6778 8.72 50.58 2.4267 15.68
MixupMP-MC (r=0.1, α=0.1) 77.17 0.8627 10.66 52.73 2.2254 10.52
MixupMP-MC (r=1.0, α=0.1) 79.55 0.7213 7.32 54.27 2.1069 8.31
MixupMP-MC (r=0.1, α=0.4) 78.21 0.7938 8.94 53.42 2.1588 8.59
MixupMP-MC (r=1.0, α=0.4) 81.49 0.6429 4.94 56.24 1.9447 4.81
MixupMP-MC (r=0.1, α=1.0) 79.28 0.7276 7.47 54.30 2.1346 8.80
MixupMP-MC (r=1.0, α=1.0) 81.56 0.6472 4.60 57.40 1.8638 4.72
MixupMP-MC (r=0.1, α=2.0) 79.60 0.7324 7.58 54.71 2.0705 7.69
MixupMP-MC (r=1.0, α=2.0) 81.58 0.6619 5.40 57.82 1.8104 3.27
Mixup-MC (α=0.1) 79.50 0.7097 5.71 53.65 2.1018 7.61
Mixup-MC (α=0.4) 81.49 0.6356 2.37 55.75 1.9766 3.09
Mixup-MC (α=1.0) 80.86 0.6581 2.98 56.54 1.8723 2.33
Mixup-MC (α=2.0) 80.27 0.6964 6.19 56.47 1.8432 2.77
CAMixup-MC (α=0.1) 78.33 0.7711 6.22 52.86 2.1693 10.39
CAMixup-MC (α=0.4) 77.72 0.8392 7.44 53.07 2.1843 11.49
CAMixup-MC (α=1.0) 78.68 0.7890 7.11 52.28 2.2467 11.96
CAMixup-MC (α=2.0) 79.52 0.7728 8.49 52.68 2.2535 11.94
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Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes] See
Section 4

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes] See
Appendix F

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.
[Yes] https://github.com/apple/ml-MixupMP.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Yes] See Appendix A.

(b) Complete proofs of all theoretical results. [Yes] See Appendix A

(c) Clear explanations of any assumptions. [Yes] See Appendix A.

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [Yes] https://github.com/apple/ml-MixupMP.

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes] See relevant
sections of the appendix

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). [Yes] The metric definitions and the number of runs are
described in the experiment section and appendix. The error bars in figures denote 2 standard errors.

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). [Yes] Experiments were carried out using Apple internal clusters. We do not include full
compute information for privacy reasons; however none of our results require a specific infrastructure.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Yes] See Appendix D and Appendix E.

(b) The license information of the assets, if applicable. [Yes] See Appendix D and Appendix E.

(c) New assets either in the supplemental material or as a URL, if applicable. [No]

(d) Information about consent from data providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.
[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if
applicable. [Not Applicable]

(c) The estimated hourly wage paid to participants and the total amount spent on participant compensa-
tion. [Not Applicable]


