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Abstract

Persistence diagrams are one of the most pop-
ular types of data summaries used in Topolog-
ical Data Analysis. The prevailing statistical
approach to analyzing persistence diagrams is
concerned with filtering out topological noise.
In this paper, we adopt a different viewpoint
and aim at estimating the actual distribution
of a random persistence diagram, which cap-
tures both topological signal and noise. To
that effect, Chazal and Divol (2019) proved
that, under general conditions, the expected
value of a random persistence diagram is a
measure admitting a Lebesgue density, called
the persistence intensity function. In this
paper, we are concerned with estimating the
persistence intensity function and a novel, nor-
malized version of it – called the persistence
density function. We present a class of kernel-
based estimators based on an i.i.d. sample
of persistence diagrams and derive estimation
rates in the supremum norm. As a direct
corollary, we obtain uniform consistency rates
for estimating linear representations of per-
sistence diagrams, including Betti numbers
and persistence surfaces. Interestingly, the
persistence density function delivers stronger
statistical guarantees.
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1 INTRODUCTION

Topological Data Analysis (TDA) is a field at the in-
terface of computational geometry, algebraic topology
and data science whose primary objective is to extract
topological and geometric features from possibly high-
dimensional, noisy and/or incomplete data. See Chazal
and Michel (2021b) and references therein for a recent
review. The literature on the statistical analysis of
TDA summaries has primarily focused on separating
topological signatures from the unavoidable topological
noise resulting from the data sampling process. In most
cases, the primary goal of statistical inference methods
for TDA is to isolate points on the sample persistence
diagrams that are sufficiently far from the diagonal
to be deemed statistically significant, in the sense of
expressing underlying topological signals rather than
randomness. This paradigm is entirely natural when
the target of inference is one unobservable persistence
diagram, and the sample persistent diagrams are noisy
approximations to it. Towards that goal, practitioners
can now deploy a variety of statistical techniques for
identifying topological signals and removing topological
noise with provable theoretical guarantees.

On the other hand, empirical evidence has also demon-
strated that topological noise is not necessarily un-
structured or uninformative and, in fact, may also
carry expressive and discriminative power that can
be leveraged for various machine-learning tasks. In
some applications, the distribution of the topological
noise itself is of interest; in cosmology, see e.g., Wilding
et al. (2021). As a result, statistical summaries able to
express the properties of both topological signal and
topological noise in a unified manner have also been
proposed and investigated: e.g., persistence images and
linear functional of the persistence diagrams (Adams
et al., 2017).

Recently, Chazal and Divol (2019) derived sufficient
conditions to ensure that the expected persistent mea-
sure – the expected value of the random counting
measure corresponding to a noisy persistent diagram
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– admits a Lebesgue density, hereafter the persistence
intensity function. The significance of this result is
multifaceted. First, the persistent intensity function
provides an explicit and interpretable representation
of the entire distribution of the persistence homology
of random filtrations. Secondly, it allows for a straight-
forward calculation of the expected value of any linear
representation of a persistent diagram as a Lebesgue in-
tegral. Finally, the representation by the persistence in-
tensity function is of functional, as opposed to algebraic,
nature and thus can be estimated via well-established
theories and methods from the non-parametric statis-
tics functional estimation. Indeed, Chazal and Divol
(2019) analyzed a kernel-based estimator of the persis-
tence intensity function computed using a sample of
i.i.d. persistence diagrams and proved its L2 consis-
tency. Similar results were previously established by
Chen et al. (2015).

In this paper, we derive consistency rates of estimation
of the persistence intensity function and of a novel
variant called persistence density function in the ℓ∞
norm based on a sample of i.i.d. persistent diagrams.
As we argue below in Theorem 3.1, controlling the
estimation error for the persistence intensity function
in the ℓ∞ norm is stronger than controlling the optimal
transport measure OTq for any q > 0 and, under mild
assumptions, immediately implies uniform control and
concentration of any bounded linear representation of
the persistence diagram, including (persistent) Betti
numbers and persistence images. Our analysis and
results are different from and complement those results
of Chazal and Divol (2019) and Chen et al. (2015);
in particular, we seek to establish finite sample ℓ∞
estimation guarantees, a challenging task demanding
more sophisticated techniques.

We emphasize that the approach and methods con-
sidered in this paper are distinct from the prevailing
practices in statistical inference for TDA, which focus
on extracting topological signals. In contrast, we are
interested in capturing the overall randomness of per-
sistence diagrams and describing the topological noise
arising from sampling. That is, we aim to describe
the distribution of a random persistence diagram, not
any particular realization of it or a target persistence
diagram. A second notable point of departure from
mainstream TDA is that we assume the availability of
an i.i.d. sample of random persistent diagrams, and
the accuracy of our rates improve as the number of
persistent diagrams increases, not the size of the data
used to compute each diagram, which we hold fixed.
This type of asymptotics is of course markedly differ-
ent than the one traditionally considered by the TDA
literature, which has focussed on the large sample prop-
erties of one persistent diagram computed using one

Figure 1: Sample plots for the uniform distribution
(top) and power spherical distribution Cao and Aziz
(2020) (bottom) on the unit circle S1. The parameters
for the power spherical distribution are set to µ = π

2
and κ = 1. Each sample contains 1000 points generated
i.i.d. from the distributions on the unit circle corrupted
by a N(0, 0.052I2) additive error.

dataset. In both regards, our perspective is rather
separate from the current TDA paradigm and is not in-
tended as an alternative framework. As an illustrative
example, suppose that we are interested in the distribu-
tion of persistence diagrams originating from a uniform
distribution and from a non-uniform distribution on
the unit sphere, e.g. the power spherical distribution
(Cao and Aziz, 2020). The target topological signature
(corresponding to the homology of the unit sphere) is
the same in the two cases but the topological noise is
different. The sample plots in Figure 1 illustrate the
difference between the two distributions, and Figure 2
shows the estimated persistence intensities (for the
Vietoris-Rips filtration) based on a sample of 1000 i.i.d.
persistence diagrams. The difference in the distribu-
tions of the topological noise is apparent. In contrast,
such difference may not be discernible from inspecting
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Figure 2: Estimated persistence density functions for
the uniform distribution (top) and power spherical
distribution (bottom) with corresponding parameters
on the unit circle S1, based on 1000 diagrams.

individual persistence diagrams; see Figure 9 in the
supplementary material.

The approach to TDA adopted in this paper conforms
with common data-analytic practices used in machine
learning tasks. In many applications, persistence dia-
grams are deployed as feature maps, embedding the
data into a space with high expressive power, and are
then fed as inputs to machine learning and even deep
learning models. For example, an individual image,
the output of one set of simulations, a time series, a
protein, or a social network can each be represented
as persistence diagrams. For a list of related work and
comprehensive examples, we refer the reader to the
review papers Hensel et al. (2021) and Barnes et al.
(2021).

2 BACKGROUND AND
DEFINITIONS

In this section we introduce fundamental concepts from
TDA that we will use throughout. We refer the reader
to (Chazal and Michel, 2021a; Chazal and Divol, 2019)
for background and extensive references.

Persistence diagrams. A persistence diagram is a
locally finite multiset of points D = {ri = (bi, di) | 1 ≤
i ≤ N(D)} belonging to the set

Ω = Ω(L) = {(b, d) | 0 < b < d ≤ L} ⊂ R2, (1)

consisting of all the points on the plane in the positive
orthant above the identity line and of magnitude no
larger than a given constant L > 0. The restriction
that the persistence diagrams be contained in a box of
side length L is a technical assumption is widely used
in the TDA literature; see Divol and Lacombe (2021)
and the discussion therein. To simplify our notation,
we will omit the dependence on L, but we will keep
track of this parameter in our error bounds. Some
related quantities used throughout are

∂Ω := {(x, x) | 0 ≤ x ≤ L}; Ω := Ω ∪ ∂Ω;

Ωℓ :=
{
ω ∈ ∂Ω

∣∣∥x − ∂Ω∥2 := min
x∈Ω

∥ω − x∥2 ≥ ℓ

}
,

for ℓ ∈ (0, L/
√

2). (2)

That is, ∂Ω is a segment on the diagonal in R2 and Ωℓ

consists of all the points in Ω at a Euclidean distance
of ℓ or smaller from it.

The expected persistent measure and its normal-
ization. A persistence diagram D = {ri = (bi, di) ∈
Ω | 1 ≤ i ≤ N(D)} can be equivalently represented as
a counting measure µ on Ω given by

A ∈ B 7→ µ(A) =
N(D)∑
i=1

δri
(A),

where B = B(Ω) is the class of all Borel subsets of Ω
and δr denotes the Dirac point mass at r ∈ Ω. We
will refer to µ as the persistence measure corresponding
to D and, with a slight abuse of notation, will treat
persistence diagrams as counting measures. If D is a
random persistence diagram, then the associated per-
sistence measure is also random. We will also study
its normalized measure µ̃, which is the persistence mea-
sure divided by the total number of points N(D) in
the persistence diagram:

A ∈ B 7→ µ̃(A) = 1
N(D)

N(D)∑
i=1

δri
(A).
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The normalized persistence measure may be more ap-
propriate when the number of points N(D) in the
persistence diagram is not of direct interest but their
spatial distribution is. This is typically the case when
the persistence diagrams at hand contain many points
or are obtained from large random filtrations (e.g. the
Vietoris-Rips complex built on point clouds), so that
the value of N(D) will mostly account for noisy topo-
logical fluctuations due to sampling.

We will consider the setting in which the observed per-
sistence diagram D is a random draw from an unknown
distribution. Then, the (non-random) measures

A ∈ B 7→ E[µ](A) = E[µ(A)] and
A ∈ B 7→ E[µ̃](A) = E[µ̃(A)]

are well defined. We will refer to E[µ] and E[µ̃] as
the expected persistence measure and the expected per-
sistence probability, respectively. Neither is a discrete
measure (even though persistence measures are discrete
by definitions). Of course, the expected persistence
probability E[µ̃] is a probability measure.

The interpretations of E[µ] and of E[µ̃] are straightfor-
ward: for any Borel set A ⊂ Ω, E[µ](A) is the expected
number of points from the random persistence diagram
falling in A, while E[µ̃](A) is the probability that a
random persistence diagram will intersect A. Despite
their interpretability, the expected persistence measure
and probability are not yet standard concepts in the
practice and theory of TDA. As a result, they have not
been thoroughly investigated.

The persistence intensity and density functions
and linear representations. Recently, Chazal and
Divol (2019) derived conditions – applicable to a wide
range to problems – that ensure that the expected per-
sistence measure E[µ] and its normalization E[µ̃] both
admit densities with respect to the Lebesgue measure
on Ω. Specifically, under fairly mild and general condi-
tions detailed in Chazal and Divol (2019) there exist
measurable functions p : Ω → R≥0 and p̃ : Ω → R≥0,
such that for any Borel set A ⊂ Ω,

E[µ](A) =
∫

A

p(u)du, E[µ̃](A) =
∫

A

p̃(u)du. (3)

In fact, Chazal and Divol (2019) provided explicit ex-
pressions for p and p̃ (see Section E.8). Notice that, by
construction, p̃ integrates to 1 over Ω. We will refer to
the functions p and p̃ as the persistence intensity and
the persistence density functions, respectively. We re-
mark that the notion of a persistence intensity function
was originally put forward by Chen et al. (2015).

The persistence intensity and density functions “opera-
tionalize” the notions of expected persistence measure

and expected persistence probability introduced above,
allowing us to evaluate, for any set A ∈ B, E[µ](A) and
E[µ̃](A) in a straightforward way as Lebesgue integrals.
The main objective of the paper is to construct esti-
mators of the persistence intensity p and persistence
density p̃, respectively, and to provide high probabil-
ity error bounds with respect to the L∞ norm. As
we show below in Theorem 3.1,L∞-consistency for the
persistence intensity function is a stronger guarantee
than consistency in the OTp metric, for any p < ∞.

As noted in Chazal and Divol (2019), the persistence
intensity and density functions are naturally suited to
compute the expected value of linear representations of
random persistence diagrams. A linear representation
Ψ of the persistence diagram D = {ri = (bi, di) ∈
Ω | 1 ≤ i ≤ N(D)} with corresponding persistence
measure µ is a summary statistic of D of the form

Ψ(D) =
N(D)∑
i=1

f(ri) =
∫

Ω
f(u)dµ(u), (4)

for a given measurable function f on Ω. (An analogous
definition can be given for the normalized persistence
measure µ̃ instead). Then,

E[Ψ(D)] =
∫

Ω
f(u)dE[µ](u) =

∫
Ω
f(u)p(u)du, (5)

where the second identity follows from (3). Linear repre-
sentations include persistent Betti numbers, persistence
surfaces (Adams et al., 2017), persistence silhouettes,
Chazal et al. (2013) and persistence weighted Gaussian
kernels (Kusano et al., 2016). The persistence surface
is an especially popular linear representation. In detail,
for a kernel function K(·) : R2 → R and any x ∈ R2,
let Kh(x) = 1

h2K(x
h ), where h > 0 is the bandwidth

parameter1. The persistence surface of a persistence
measure µ is defined as

ρh(u) =
∫

Ω
f(ω)Kh(u − ω)dµ(ω), (6)

where f(ω) : R2 → R is the user-defined weighting
function, chosen to ensure stability of the representa-
tion. Our analysis allows us to immediately obtain
consistency rates for the expected persistence surface
in L∞ norm; see Theorem C.10 in the supplementary
material.

Betti and the persistent Betti numbers. The
Betti number at scale x ∈ [0, L] is the number of
persistent homologies that are in existence at “time"
x. Furthermore, the persistent Betti number at a

1(Adams et al., 2017) showed empirically that the band-
width does not have a major influence on the efficiency of
the persistence surface.
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certain point x = (x1, x2) ∈ Ω measures the number of
persistent homologies that are born before x1 and die
after x2. In our notation, given a persistence diagram D
and its associated persistence measure µ, for x ∈ [0, L]
and x = (x1, x2) ∈ Ω, the corresponding Betti number
and persistent Betti number are given by

βx = µ(Bx) and βx = µ(Bx),

respectively, where Bx = [0, x) × (x, L] and Bx =
[0, x1) × (x2, L]. Though Betti numbers are among
the most prominent and widely used TDA summaries,
relatively little is known about the statistical hardness
of estimating their expected values when the sample
size is fixed and the number of persistence diagrams
increases. Our results will yield error bounds of this
type. We will also consider normalized versions of the
Betti numbers defined using the persistence probability
µ̃ of the persistence diagram:

β̃x = µ̃(Bx) and β̃x = µ̃(Bx).

Notice that, by definition, β̃x ≤ 1. While their interpre-
tation is not as direct as the Betti numbers computed
using persistence diagrams, the expected normalized
(persistence) Betti numbers E[β̃x] = E[µ̃](Bx) are infor-
mative topological summaries while showing favorable
statistical properties (see Corollary 3.8 below).

3 RESULTS

3.1 On the OT distance and the L∞ distance
between intensity functions

We first show that the topology induced by the L∞ dis-
tance between intensity functions is stronger than the
one corresponding to the optimal transport distance,
a natural and very popular metric for persistence di-
agrams – and, more generally, locally finite Radon
measures such as normalized persistence measures and
probabilities; see, in particular, (Divol and Lacombe,
2021). In detail, for two Radon measures µ and ν sup-
ported on Ω, an admissible transport from µ to ν is
defined as a function π : Ω × Ω → R, such that for any
Borel sets A,B ⊂ Ω,

π(A× Ω) = µ(A), and π(Ω ×B) = ν(B).

Let adm(µ, ν) denote all the admissible transports from
µ to ν. For any q ∈ R+ ∪ {∞}, the q-th order Optimal
Transport (OT) distance between µ and ν is defined as

OTq(µ, ν) =
(

inf
π∈adm(µ,ν)

∫
Ω×Ω

∥x − y∥q
2dπ(x,y)

) 1
q

.

The OT distance is widely used for good reasons: by
transporting from and to the diagonal ∂Ω, it captures

the distance between two measures that have poten-
tially different total masses, taking advantage of the
fact that points on the diagonal have arbitrary multi-
plicity in persistent diagrams. It also proves to be stable
with respect to perturbations of the input to TDA al-
gorithms. It turns out that the L∞ distance between
intensity functions provides a tighter control on the dif-
ference between two persistent measures. Below, for a
real-valued function on Ω, we let ∥f∥∞ = supx∈Ω |f(x)|
be its L∞ norm.

Theorem 3.1. Let µ, ν be two expected persistent
measures on Ω with intensity functions pµ and pν re-
spectively. Then

OTq
q(µ, ν) ≤ 2

(q + 1)(q + 2)

(
L√
2

)q+2
∥pµ − pν∥∞.

Furthermore, there exist two sequences of expected per-
sistence measures {µn}n∈N and {νn}n∈N with inten-
sity functions {pµn}n∈N and {pνn}n∈N respectively such
that, as n → ∞,

OTq(µn, νn) → 0, while ∥pµn
− pνn

∥∞ → ∞.

The bottleneck distance For the case of q = ∞,
which corresponds to the bottleneck distance when
applied to persistence diagrams, there can be no mean-
ingful upper bound of the form of Theorem 3.1: we
show in Section E.1 of the supplementary material
that there exist two sequences of measures such that
their bottleneck distance converges to a finite number
while the L∞ distance between their intensity func-
tions vanishes. Existing contributions in the optimal
transport literature (Peyre, 2018; Nietert et al., 2021)
also upper bound the optimal transport distance by a
Sobolev-type distance between density functions. No-
tably, these bounds require, among other things, the
measures to have common support and the same total
mass, two conditions not assumed in Theorem 3.1.

3.2 Non-parametric estimation of the
persistent intensity and density functions

In this section, we analyze the performance of kernel-
based estimators of the persistent intensity function
and the persistent density function in the same set-
ting considered by Chazal and Divol (2019) and Chen
et al. (2015), where we observe n i.i.d. persistent mea-
sures (i.e. diagrams) µ1, µ2, . . . , µn. The proposed
procedures are inspired by kernel density estimators
for probability densities traditionally used in the non-
parametric statistics literature; see, e.g., Giné and Nickl
(2021). Specifically, we consider the following estimator
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for p and p̃, respectively:

ω ∈ R2 7→ p̂h(ω) := 1
n

n∑
i=1

∫
Ω
Kh(x − ω)dµi(x); (7a)

ω ∈ R2 7→ p̌h(ω) = 1
n

n∑
i=1

∫
Ω
Kh(x − ω)dµ̃i(x), (7b)

where K(·) is a kernel function, which we assume to
satisfy standard conditions used in non-parametric lit-
erature, discussed in detail in Section C.2 of the sup-
plementary material.

Assumptions. We require several regularity condi-
tions. Furthermore, we will implicitly assume through-
out that both p and p̃ (see 3) are well-defined as den-
sities with respect to the Lebesgue measure, though
this is not strictly necessary for our main results, The-
orems 3.4 and 3.7.

First, we assume a uniform bound on the q-th order
total persistence of the µi’s, though not on the total
number of points in the persistence diagrams. This can
be thought of as a basic moment existence condition
that, as elucidated in Cohen-Steiner et al. (2010) and
discussed in Divol and Polonik (2019) and Divol and La-
combe (2021), is a relatively mild assumption satisfied
by a broad variety of data-generating mechanisms.
Assumption 3.2 (Bounded total persistence). There
exists a constant M > 0, such that, for the value of q
as in Assumption 3.3, it holds that, almost surely,

max
i=1,...,n

∫
Ω

∥ω − ∂Ω∥q
2dµi(ω) < M.

We will denote with Zq
L,M the set of persistent measures

on ΩL satisfying Assumption 3.2.

Next, we impose key boundedness conditions on p and
p̃, which are needed to apply a concentration inequality
for empirical processes that deliver uniform control over
the variances of these estimators.
Assumption 3.3 (Boundedness). For some q > 0, let
p̄(ω) := ∥ω − ∂Ω∥q

2p(ω). Then,

∥p̄∥∞ = sup
ω∈Ω

∥ω − ∂Ω∥q
2p(ω) < ∞ and

∥p̃∥∞ = sup
ω∈Ω

p̃(ω) < ∞.

We remark that a bound on the L∞ norm of the in-
tensity function p is not a realistic assumption be-
cause the total mass of the persistence measure may
not be uniformly bounded in several common data-
generating mechanisms. Indeed, in light of existing
results, this condition would be likely violated in many
scenarios; see e.g. Divol and Polonik (2019)). Thus,

we only require that the weighted intensity function
p̄(ω) = ∥ω − ∂Ω∥q

2p(ω) has finite L∞ norm. Still, it is
not a priori clear that Assumption 3.3 for p̄ itself is real-
istic; in the supplementary material, we prove that this
is indeed the case for the Vietoris-Rips filtration built
on i.i.d. samples. On the other hand, assuming that
the persistence density p̃ is uniformly bounded poses
no problems. For a formal argument, see Theorems C.1
and C.2 in the supplementary material. This fact is the
primary reason why the persistence probability density
function – unlike the persistence intensity function –
can be estimated uniformly well over the entire set Ω -
see (3.4) below. We refer readers to Section C.1 of the
supplementary materials for details and a discussion
on this subtle but consequential point.

One of the main results of the paper are high proba-
bility uniform bounds on the fluctuations of the kernel
estimators around their expected values. For a fixed
value of the bandwidth h, they imply that the estima-
tors p̂h and p̌h concentrate around their expected value
at a parametric rate 1/

√
n.

Theorem 3.4. Suppose that Assumptions 3.2 and3.3
hold. Then,

(a) there exist positive constants C1, C2 depending on
M, ∥K∥∞, ∥K∥2, ∥p̄∥∞ and q such that for any
δ ∈ (0, 1), it can be guaranteed with probability at
least 1 − δ that

sup
ω∈Ω2h

ℓq
ω|p̂h(ω) − Ep̂h(ω)|

≤ max
{
C1

1
nh2 log 1

δh2 , C2

√
1
nh2

√
log 1

δh2

}
,

where ℓω := ∥ω − ∂Ω∥2 − h;

(b) there exist positive constants C1, C2 depending on
M, ∥K∥∞, ∥K∥2, ∥p̃∥∞ and q such that for any
δ ∈ (0, 1), it can be guaranteed with probability at
least 1 − δ that

sup
ω∈Ω

|p̌h(ω) − Ep̌h(ω)|

≤ max
{
C1

1
nh2 log 1

δh2 , C2

√
1
nh2

√
log 1

δh2

}
.

Remark. The dependence of the constants on prob-
lem related parameters is made explicit in the proofs;
see the supplementary material.

There is an important difference between the two
bounds in Theorem 3.4: while the variation of p̌h(ω)
is uniformly bounded everywhere on Ω, the variation
of p̂h(ω) is uniformly bounded only when ω is at least
2h away from the diagonal ∂Ω, and may increase as ω



Weichen Wu, Jisu Kim, Alessandro Rinaldo

approaches the diagonal. The difficulty in controlling
p̂h near the diagonal stems from the fact that we only
assume the total persistence to be bounded; in other
words, the number of points near the diagonal in the
sample persistent diagrams can be prohibitively large,
since their contribution to the total persistence is neg-
ligible. This is expected in noisy settings where the
sampling process will result in topological noise consist-
ing of many points in the persistence diagram near the
diagonal. We do not know whether this limitation of
the estimator p̂h is intrinsic to the problem or instead
an artifact of our proof techniques. Nonetheless, the
above result suggests that to achieve uniform control
over Ω, relying on density-based rather than intensity-
based representations of the persistent measures may
be preferable.

Bias-variance trade-off and minimax lower
bound. In order to measure how well p̂h and p̌h con-
centrate not just around their expectations but around
the target densities p and p̃, respectively, we will need
to further control their biases, as a function of the
bandwidth h. To that effect, we require some degree
of smoothness of both p and p̃, as it is standard in
non-parametric density estimation. We refer the reader
to the appendix for the definition of smooth function
spaces.
Assumption 3.5 (Smoothness). The persistence in-
tensity function p and persistence probability density
function p̃ are Hölder smooth of the order of s > 0 with
parameters Lp and Lp̃, respectively.

Using the above assumption and standard arguments,
we obtain that, uniformly over ω ∈ Ω, |E[p̂h(ω)] −
p(ω)| and |E[p̌h(ω)] − p̃(ω)| are both of order h2. See
Theorem C.6 in the appendix. Next, assuming that
the number n of persistent diagram grows unbounded,
it follows from Theorems C.6 and 3.4 that setting the
bandwidth to be h ≍ n− 1

2(s+1) will optimize the bias-
variance trade-off, yielding high-probability estimation
errors

sup
w∈Ω2h

ℓq
ω|p̂h(ω) − p(ω)| ≲ O

(
n− s

2(s+1)

)
, and

sup
w∈Ω

|p̌h(ω) − p̃(ω)| ≲ O
(
n− s

2(s+1)

)
.

In our next result, we show that the above rate is
minimax optimal for the persistence density function.
For brevity, we here omit a similar result for the per-
sistence intensity function (see Theorem C.9 in the
supplementary material).
Theorem 3.6. Let F denote the set of functions on
Ω with Besov norm bounded by B > 0:

F = {f : Ω → R, ∥f∥Bs
∞,∞

≤ B}.

Then,

inf
p̌n

sup
P

E
µ1,...,µn

i.i.d.∼ P
∥p̌n − p̃∥∞ ≥ O(n− s

2(s+1) ),

where the infimum is taken over estimator p̌n mapping
µ1, . . . , µn to an intensity function in F , the supremum
is over the set of all probability distributions on Zq

L,M

and p̃ is the intensity function of EP [µ̃].

3.3 Kernel-based estimators for linear
functionals of the persistent measure

The kernel estimators (7) can serve as a basis for esti-
mating bounded linear representations of the expected
persistence measure E[µ] and its normalized counter-
part E[µ̃]. Specifically, for R > 0, let F2h,R and F̃R

denote the set of linear representations of the form

F2h,R =
{

Ψ =
∫

Ω2h

fdE[µ]
∣∣∣∣f : Ω2h → R≥0,∫

Ω2h

ℓ−q
ω f(ω)dω ≤ R

}
, and

F̃R =
{

Ψ =
∫

Ω
fdE[µ̃]

∣∣∣∣f : Ω → R≥0,

∫
Ω
f(ω)dω ≤ R

}
.

Then, any linear representations Ψ ∈ F2h,R and Ψ̃ ∈
F̃R can be estimated by

Ψ̂h =
∫

Ω2h

f(ω)p̂h(ω)dω and Ψ̌h =
∫

Ω
f(ω)p̌h(ω)dω.

(8)

As a direct corollary of Theorem C.6, we obtain the fol-
lowing uniform high-probability bound on the variance
of Ψ̂h and Ψ̌h, which, for fixed h, yield 1/

√
n rates. In

the supplementary material, we also show that, not
surprisingly, the biases of both estimators are of order
hs under Assumption 3.5; see Theorem C.7 in the
supplementary material.
Theorem 3.7. Assume that Assumptions 3.2 and3.3
hold. Then,

(a) there exist constants C1, C2 depending on
M, ∥K∥∞, ∥K∥2, ∥p̄∥∞ and q such that for any
δ ∈ (0, 1), it can be guaranteed with probability at
least 1 − δ that

sup
Ψ∈F2h,R

∣∣∣Ψ̂h − E[Ψ̂h]
∣∣∣

≤ R · max
{
C1

1
nh2 log 1

δh2 , C2

√
1
nh2

√
log 1

δh2

}
;

(b) there exist constants C1, C2 depending on
M, ∥K∥∞, ∥K∥2, ∥p̃∥∞ and q such that for any
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δ ∈ (0, 1), it can be guaranteed with probability at
least 1 − δ that

sup
Ψ∈F̃R

∣∣∣Ψ̌h − E[Ψ̌h]
∣∣∣

≤ R · max
{
C1

1
nh2 log 1

δh2 , C2

√
1
nh2

√
log 1

δh2

}
.

It is important to highlight the fact that the above
bounds hold uniformly over the choice of linear repre-
sentations under only mild integrability assumptions.
We again stress the difference between the two upper
bounds: part (a) shows that for a linear functional
of the original persistent measure to have controlled
variation, we need to be at least 2h away from the
diagonal ∂Ω, a requirement that is not necessary for
linear functionals of the normalized persistent measure,
as is shown in part (b).

We apply our results to the analysis of persistence sur-
faces and persistence Betti numbers. Due to space
limitations, in the main text we focus on the latter and
refer the reader to Theorem C.10 in the supplementary
material for novel error rates in estimating persistent
surfaces. For any x ∈ Ω, the persistent Betti number
βx can be estimated in a straightforward way by inte-
grating p̂h or p̌h over Bx (which we recall we define to
be Bx = [0, x1) × (x2, L]):

β̂x,h =
∫

Bx

p̂h(ω)dω β̌x,h =
∫

Bx

p̌h(ω)dω. (9)

An immediate application of 3.7 yields 1/
√
n high-

probability concentration rates.
Corollary 3.8. There exist a constants C1, C2 depend-
ing on M, ∥K∥∞, ∥K∥2, ∥p̄∥∞, ∥p̃∥∞ and q > 2 such
that, for any δ ∈ (0, 1),

(a) for the persistent Betti numbers computed using
p̂h,

sup
x∈Ω: ℓx>h

ℓq−2
x

∣∣∣β̂x,h − E[β̂x,h]
∣∣∣

≤ max
{
C1

1
nh2 log 1

δh2 , C2

√
1
nh2

√
log 1

δh2

}

(b) for the persistent Betti numbers computed using
p̌h,

sup
x∈Ω

∣∣∣β̌x,h − E[β̌x,h]
∣∣∣

≤ L2

4 max
{
C1

1
nh2 log 1

δh2 , C2

√
1
nh2

√
log 1

δh2

}

It is also straightforward to see that the biases of both
β̂x,h and β̌x,h are of order hs, uniformly in x; see
Corollary C.8 in the supplementary material.

As noted before, the concentration rates of the esti-
mator of the persistence Betti numbers based on the
persistence density hold uniformly over Ω, thus sug-
gesting that the kernel-based estimator p̂h will not be
guaranteed to yield a stable estimation of the Betti
number βx. As remarked above, this issue arises as the
intensity function may not be uniformly bounded near
the diagonal. Indeed, in the supplementary material,
we describe an alternative proof technique based on an
extension of the standard VC inequality and arrive at
a very similar rate. On the other hand, this issue does
not affect the normalized Betti numbers β̃x.

An important consequence of the previous result is a
uniform error bound for the expected normalized Betti
curve

x ∈ (0, L) 7→ E[β̃x] = E[µ̃](Bx) =
∫

Bx

p̃(ω)dω,

where Bx = [0, x) × (x, L] and µ̃ is the normalized per-
sistent measure corresponding to a random persistence
diagram. In detail, for constants C1, C2 > 0 depend-
ing on the model parameters, with probability at least
1 − δ,

sup
x∈(0,L)

∣∣∣β̌x,h − E[β̃x]]
∣∣∣

≤ max
{
C1

1
nh2 log 1

δh2 , C2

√
1
nh2

√
log 1

δh2

}
+ hs

To the best of our knowledge, this is the first result of
this kind, as typically one can only establish pointwise
and not uniform consistency of Betti numbers.

4 NUMERICAL ILLUSTRATIONS

To illustrate our methodology and highlight the dif-
ferences between the persistence intensity and density
functions, we compare the persistence intensity and
density functions of 1000 data points drawn from the
uniform distribution and the power sphere distribution
Cao and Aziz (2020) on the unit circle S1. The density
functions shown in Figure 2 illustrate a clear difference
between the structure of topological noise generated by
the two distributions. We include plots of the sample
points, sample persistence diagrams and kernel-based
estimators of persistence intensity functions in Section
F of the supplementary material.

We also consider the MNIST handwritten digits
dataset and the ORBIT5K dataset. The ORBIT5K
dataset contains independent simulations for the
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linked twist map, dynamical systems for fluid flow as
described in Adams et al. (2017); see also Appendix
G.2 of Kim et al. (2020). In Section F of the
supplementary material, we show the estimated
persistence intensity and density functions computed
from persistence diagrams obtained over a varying
number of random samples from the ORBIT5K
datasets, for different model parameters. The figures
confirm our theoretical finding that the values of the
persistence density function near the diagonal are not
as high (on a relative scale) as those of the persistence
intensity function. An analogous conclusion can be
reached when inspecting the persistence intensity
and density functions for different draws of the
MNIST datasets for the digits 4 and 8. We further
include plots of the average Betti and normalized
Betti curves from the ORBIT5K dataset, along with
the curves of the empirical point-wise 5% and 95%
quantiles. These plots reveal the different scales of
the Betti curves and normalized Betti curves, and
of their uncertainty. All of our code can be accessed
through https://github.com/Weichen-Wu-CMU/
estimation_of_persistence_intensity_function.

5 DISCUSSION

In this paper, we have taken the first step towards
developing a new set of methods and theories for sta-
tistical inference for TDA based on i.i.d. samples of
persistence diagrams. Our main focus is on the estima-
tion of the persistence intensity function Chazal and
Divol (2019); Chen et al. (2015), a TDA summary of a
functional type that encodes the entire distribution of
a random persistence diagram and is naturally suited
to handle linear representations. We have analyzed
a simple kernel estimator and derived uniform consis-
tency rates that hold under very mild assumptions.
We also propose the persistence density function, a
novel functional TDA summary that enjoys stronger
statistical guarantees.

A notable advantage of deploying persistence intensity
and density functions to quantify the difference between
distributions of persistence diagrams compared to more
traditional approaches based on optimal transport dis-
tances is that our methodology is computationally fea-
sible. Indeed, computing kernel-based estimators of the
persistence intensity and density functions is a straight-
forward task even with very large sample sizes, and so
is to evaluate any Lp distanced between them. In con-
trast, computing optimal transport distances between
many persistence diagrams is typically computationally
prohibitive.

There remain various open problems worth pursuing. A
natural direction is the study of the topology over the

space of normalized persistence measures. For example,
based on our results from section 3, one may expect the
normalized persistence measure not to be continuous
for the vague topology with respect to the Hausdorff
distance. Similarly, it would also be interesting to fur-
ther investigate the topology induced by convergence
of the persistence densities in the L∞ norm. From the
statistical side, our results guarantee the consistency
of the proposed estimators. However, in order to carry
out statistical inference, it is necessary to develop more
sophisticated procedures that quantify the uncertainty
of our estimators. Toward that goal, it would be inter-
esting to develop bootstrap or other resampling-based
methods for constructing confidence bands for both the
persistence intensity and density functions.

https://github.com/Weichen-Wu-CMU/estimation_of_persistence_intensity_function
https://github.com/Weichen-Wu-CMU/estimation_of_persistence_intensity_function
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On the estimation of persistence intensity
functions and linear representations

of persistence diagrams: Supplementary Materials

A NOTATION

We use boldface small letters like u,x,ω to denote points in R2 and sub-scripted letters like x1, x2 to denote
their entries. Boldface capital letters like X,Y would be used to denote points on a Riemann manifold. For any
positive integer n, the symbol [n] refers to the set of all positive integers no larger than n, i.e., [n] := {1, 2, . . . , n}.
For any set S, the symbol 2S represents the power set of S, which contains all subsets of S as its elements. The
set of all non-negative real numbers would be denoted as R≥0. For any function f with domain A, the infinity
norm of f is denoted as ∥f∥∞ := supx∈A |f(x)|.

B BACKGROUND: THE PERSISTENCE DIAGRAM

In this section, we give a brief introduction to the persistence diagram. We refer readers to Chazal and Divol
(2019) for a detailed description. Consider a random point cloud X = (X1,X2, . . . ,XN ) ∈ MN where M is a
Riemann manifold; and a filtering function φ : 2[N ] × MN → R, which satisfies

φ(J,X) ≤ φ(J ′,X), ∀J ⊂ J ′ ∈ 2[N ],X ∈ MN .

A simplicial complex given X and φ at level α is defined as

Kα(X, φ) = {J ⊂ 2[N ] | φ(J,X) ≤ α}.

Two common examples are the Čech complex, where φ(J,X) equals the radius of the circumscribed ball of X[J ];
and the Vietoris-Rips complex, where φ[J,X] is chosen as the maximum distance between points in X[J ].

Throughout the paper, we assume that the filtering function φ takes its value in [0, L]. For all values α ∈ [0, L],
the sequence of simplicial complexes {Kα(X, φ)}α∈[0,L] forms a filtration denoted as F(X, φ), where Kα(X, φ) ⊆
Kα′(X, φ) whenever α ≤ α′.

Persistent homology is a method for computing topological features of a simplicial complex, and can be represented
by the persistence diagram. In the filtration F(X, φ), for any persistent homology that begins to appear at level
b and disappears at level d, we say that the homology is born at b and dies at d. With Ω defined as in (1), the
persistence diagram of the point cloud X is a multiset on Ω that summarizes the birth and death times of all
persistent homologies in the filtration F(X, φ):

Dgm(X, φ) = {(bi, di) : the i-th persistent homology in F(X, φ)
that is born at bi and dies at di}.
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C SUPPORTIVE THEORETICAL RESULTS

C.1 Validation of Assumption 3.3

In this part, we provide some common data-generating mechanisms where Assumption 3.3 can be validated.
Theorem C.1. Let q, d be two positive integers with q > d. Let κ be a density on [0, 1]d such that 0 < inf κ ≤
supκ < ∞. Suppose that XN be either a binomial process with parameters N and κ or a Poisson process of
intensity Nκ in the cube [0, 1]d. Denote p(u) as the intensity function for the k-dimensional expected persistent
measure induced by the Vietoris-Rips filtration. Then when N is sufficiently large, for u ∈ Ω, there exists a
polynomial function poly(·), such that

p(u) ≤ poly(N, d) supκ, (10)

and p(u) can be correspondingly bounded.
Theorem C.2. Let q, d be two positive integers with q > d. Let κ be a density on [0, 1]d×N such that 0 < inf κ <
supκ < ∞. Suppose that X1,X2, . . . ,XN ∈ [0, 1]d and that X = (X1,X2, . . . ,XN ) ∼ κ. Denote p̃(u) as the
persistence density induced by the Vietoris-Rips filtration of X. Then there exists a polynomial function (·), such
that

p̃(u) ≤ poly(N, d) supκ. (11)

Remark C.3. The bound in (10) seems to mismatch with Assumption 3.3, since the assumption is on p̄(u) =
∥u − ∂Ω∥q

2p(u) while (10) provides the polynomial bound on p(u) directly. So one can imagine that there is no
benefit on considering the assumption on p̄ instead of p. However, though not in the formal proof, we believe that
p̄(u) would have a polynomial bound with a slower growth order with respect to the sample size N . This is since
as the sample size N grows, the corresponding persistence diagram tends to have more points that are close to
the diagonal line, as observed in (Divol and Polonik, 2019). Hence the term ∥u − ∂Ω∥q

2 can suppress that effect
and p̄ can be bounded by a function with a slower growh order with respect to N .
Remark C.4. At first glance, comparing (10) and (11) seems to indicate that the persistence intensity function p
and the persistence density function p̃ have more or less similar asymptotic properties with respect to the sample
size N . However, this is mainly due to that the polynomial bound poly(N, d) is comprehensive; for example, N
and N10 are both in poly(N, d), hence the bound poly(N, d) only guarantees that the function does not blow up
too fast such as an exponential function. And we believe that, in fact, the growth order is different for p and p̃.
This is mainly due to that when the sample size N is large, the persistence diagram induced by X tends to have
more points N(D) in the persistence diagram, and hence the normalized measure µ̃(A) = 1

N(D)
∑N(D)

i=1 δri
(A)

and the corresponding persistence density function p̃ benefits from the term 1
N(D) lowering the growth order with

respect to N . In fact, in the proofs of Theorem C.1 and C.2 in Section E.8, the bounds poly(N, d) are N5d3 for
(10) and N4d3 for (11), although the bounds need not necessarily equal to the actual asymptotic orders of p and
p̃.

C.2 Clarification of Assumptions

In this part, we provide the details in the smoothness assumption of the persistence intensity and density functions,
and the regularization assumptions of the kernel function.

Hölder smoothness. Recall from Assumption 3.5 that we assume the persistence intensity function p(·) and
the persistence density function p̃(·) are Hölder smooth. A function f : Ω → R≥0 is Hölder smooth with parameter
Lf of oreder s > 0 if it is ⌊s⌋-times continuously differentiable and that for any x,x′ ∈ Ω,∣∣∣∣∣∣f(x′) − f(x) −

⌊s⌋∑
t=1

1
t!

∑
t1+t2=t,t1,t2≥0

dtf(x)
dxt1

1 dxt2
2

(x′
1 − x1)t1(x′

2 − x2)t2

∣∣∣∣∣∣ ≤ Lf ∥x′ − x∥s
2. (12)

Assumptions regarding the kernel function. Throughout the paper, we assume the kernel function K(·)
satisfies some properties that are commonly used in non-parametric statistics Giné and Nickl (2021). Specifically,
we make the following assumption.
Assumption C.5. The kernel function K : R2 → R satisfies the following conditions:
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(a) K(x) = 0 for all x with ∥x∥2 > 1;

(b) ∥K∥∞ := supx |K(x)| < ∞;

(c)
∫
R2 K(x)dx = 1;

(d) ∥K∥2
2 :=

∫
R2 K

2(x)dx < ∞.

(e) There exists a positive integer s, such that for all non-negative integers s1, s2 satisfying 1 ≤ s1 + s2 < s,∫
x∈R2

xs1
1 x

s2
2 K(x)dx = 0.

(f) K is LK-Lipchitz with respect to the ℓ2 norm on R2.

C.3 Upper bound for the bias of kernel-based estimators

In this section, we specify the upper bounds on the bias of our kernel-based estimators for the persistence
intensity/density function, the linear functionals of the persistent measure, and the persistence betti number in
Theorems C.6, C.7 and Corollary C.8 respectively.
Theorem C.6. Under Assumption 3.5, there exist constants Lp̃, Lp > 0 such that, for any ω ∈ Ω,

|E[p̂h(ω)] − p(ω)| ≤ Lph
s

∫
∥v∥2≤1

|K(v)|∥v∥s
2dv, and

|E[p̌h(ω)] − p̃(ω)| ≤ Lp̃h
s

∫
∥v∥2≤1

|K(v)|∥v∥s
2dv.

The following theorems provide uniform bounds on the bias and variation of these kernel-based estimators.
Theorem C.7. Under Assumption 3.5, there exist constants Lp̃, Lp > 0 such that

sup
Ψ∈F2h,R

∣∣∣E[Ψ̂h] − Ψ
∣∣∣ ≤ Lp

(
L√
2

)q

hs

∫
∥v∥2≤1

|K(v)|∥v∥2
2dv; and

sup
Ψ∈F̃R

∣∣∣E[Ψ̌h] − Ψ̃
∣∣∣ ≤ Lp̃h

sR

∫
∥v∥2≤1

|K(v)|∥v∥2
2dv.

It is also straightforward to see that "the biases of both β̂x,h and β̌x,h are of order hs", uniformly in x; see
Corollary C.8 below.
Corollary C.8. Under Assumption 3.5, it holds that

sup
x∈Ω

∣∣∣E[β̂x,h] − βx

∣∣∣ ≤ Lph
sL

2

4

∫
∥v∥2≤1

K(v)∥v∥2
2dv, and

sup
x∈Ω

∣∣∣E[β̌x,h] − β̃x

∣∣∣ ≤ Lp̃h
sL

2

4

∫
∥v∥2≤1

K(v)∥v∥2
2dv

C.4 Minimax lower bound for estimating the persistence intensity function

Below we provide a minimax lower bound on the L∞ estimation error of the persistence intensity function by
levering well-known minimax arguments for estimating a smooth probability density function based on an i.i.d.
sample; see Giné and Nickl (2021) for details, as well for the definition of Besov norms.
Theorem C.9. Let F denote the set of functions on Ω with Besov norm bounded by B > 0:

F = {f : Ω → R, ∥f∥Bs
∞,∞

≤ B}.

Then,

inf
p̂n

sup
P

E
µ1,...,µn

i.i.d.∼ P
sup
ω∈Ω

∥ω − ∂Ω∥q
2|p̂n(ω) − p(ω)| ≥ O(n− s

2(s+1) ),

where the infimum is taken over estimator p̂n mapping µ1, . . . , µn to an intensity function in F , the supremum is
over the set of all probability distribution on Zq

L,M and p is the intensity function of EP [µ].
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C.5 Estimating the persistence surface

For estimating the persistence surface in (6), we directly generate the persistence surface from the empirical
averaged persistence measure µ̄n given by

A ∈ B 7→ µ̄n(A) = 1
n

n∑
i=1

µi(A).

Since µ̄n is unbiased for E[µ] and ρ is a linear transformation, ρh(µ̄n) is also unbiased for ρh(E[µ]). The following
theorem bounds its variation.
Theorem C.10. With the choice of the weight function

f(ω) = ∥ω − ∂Ω∥q
2,

when Assumptions 3.3(a) and 3.2 hold true, there exists a constant C depending on L,M,LK , ∥K∥∞ and ∥p̄∥∞,
such that for any δ ∈ (0, 1), it can be guaranteed with probability at least 1 − δ that

∥ρh(µ̄n) − ρh(E[µ])∥∞ ≤ C max
{

1
nh2 log 1

δh2 ,

√
1
nh2

√
log 1

δh2

}
.

C.6 Estimating the persistent betti number by the empirical averaged persistence measure

As an alternative to the kernel-based estimator for the persistent betti number in (9), we can directly use the
empirical persistent betti number as the estimator:

β̄x = µ̄n(Bx).

Since µ̄n is an unbiased estimator for E[µ], β̄x is an unbiased estimator for βx. As for the variation of the
estimator, we provide the following theorem.
Theorem C.11. Under Assumptions 3.5, 3.3(a) and 3.2, for any δ ∈ (0, 1), there exists a universal constant C
such that with probability at least 1 − δ , it can be guaranteed that

sup
x∈Ωℓ

|β̄x − βx| ≤ C

(
Mℓ−q

n

(
2 log(Mℓ−qn+ 1) + log 1

δ

)

+

√√√√min
{
M2ℓ−2q

n
,

√
2MLℓ1−2q ∥p̄∥∞

(q − 1)+n

}(√
2 log(Mℓ−qn+ 1) +

√
log 1

δ

))
,

where (q − 1)+ = max{q − 1, 0}.

D PRELIMINARY FACTS

In this section we present and prove various auxiliary results that are needed in the proofs of the main theorems.

D.1 Preliminary facts for the proof of Theorem C.1

Bounding the weighted intensity function as in Theorem C.1 requires a detailed exploration of the persistent dia-
gram for the Vietoris-Rips filtration. Throughout this section, we will consider the filtering function corresponding
to the Vietoris-Rips filtration

φ[J ](X) = min
i,j∈J,i ̸=j

∥Xi − Xj∥2.

Firstly, we state a form of the area formula given by (Morgan, 2016), which would be useful for a change of
variable in deriving the intensity function for the expected persistence measure.
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Theorem D.1. Denote L M as the M -dimensional Lebesgue measure and H M as the M -dimensional Hausdorff
measure. Consider a Lipchitz function f : RM → RN for M ≤ N . If h : RM → R is an L M -integrable function,
then ∫

RM

h(X)JXf(X)dL M (X) =
∫
RN

∑
X∈f−1{Y }

h(X)dH MY ,

where JXf(X) is the Jacobian determinant of the function f :

JXf(X) =

√√√√det
((

df
dX

)⊤( df
dX

))
.

Theorem D.1 directly implies the following corollary, the proof of which would be omitted.
Corollary D.2. Let ψ : RM → RN be a Lipchitz bijection with M ≤ N , and κ : RN → R be a function which
satisfies that h := κ ◦ ψ is L M -integrable. Then∫

RM

κ ◦ ψ(X)JXψ(X)dL M (X) =
∫
RN

κ(Y )dH M (Y ).

The following proposition considers two kinds of partitions of the unit cube [0, 1]d×N , with each part satisfying
some desired properties.
Proposition D.3. There exists a set S with cardinality card(S) = 4d2, such that for any J1, J2 ⊂ [N ] that
satisfies J1 ̸= J2, |J1| = |J2| = 2, bearing a zero-measured set, [0, 1]d×n can be partitioned as

[0, 1]d×n =
⋃
s∈S

W s
J1,J2

,

such that within each part W s
J1,J2

, there exists a diffeomorphism Ψs
J1,J2

: W s
J1,J2

→ R2 × [0, 1]nd−2, such that:

1. For every X ∈ W s
J1,J2

, Ψs
J1,J2

(X)1 = φ[J1](X) and Ψs
J1,J2

(X)2 = φ[J2](X);

2. The Jacobian determinant JXΨs
J1,J2

(X) ≥ 1
d .

Proof : Let S = [d]2 × {−1,+1}2, then it is easy to see that |S| = 4d2. For any J1, J2 ⊂ [n] with J1 ̸= J2
and |J1| = |J2| = 2, let denote J1 = {i1, j1}, J2 = {i2, j2} with j2 = max{j ∈ J2 : j /∈ J1}. For any
s = (k1, k2, s1, s2) ∈ S, let

W s
J1,J2

= {X :{k1} = argmaxk|Xk
i1

−Xk
j1

|, s1(Xk
j1

−Xk
i1

) > 0,
{k2} = argmaxk|Xk

i2
−Xk

j2
|, s2(Xk

j2
−Xk

i2
) > 0.}

Notice here that {k1} = argmaxk|Xk
i1

−Xk
j1

| means k1 is the only index for |Xk
i1

−Xk
j1

| to reach its maximum.

We begin by proving that {W s
J1,J2

}s∈S forms a partition of [0, 1]d×n bearing a zero-measured set. Firstly, for
s, s′ ∈ S with s ̸= s′, it is easy to see that W s

J1,J2
and W s′

J1,J2
are disjoint. Secondly, if

X ∈ [0, 1]d×n −
⋃
s∈S

W s
J1,J2

,

then by definition, there exists k, k′ ∈ [d], such that k ̸= k′ and that either

|Xk
j1

−Xk
i1

| = |Xk′

j1
−Xk′

i1
|

or
|Xk

j2
−Xk

i2
| = |Xk′

j2
−Xk′

i2
|.
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Notice that for any k, k′ ∈ [d] with k ̸= k′, the set{
X : |Xk

j1
−Xk

i1
| = |Xk′

j1
−Xk′

i1
|
}

=
{
X : Xk

j1
−Xk

i1
= |Xk′

j1
−Xk′

i1
|
}

∪
{
X : Xk

j1
−Xk

i1
= −|Xk′

j1
−Xk′

i1
|
}
,

where the sets {
X ∈ [0, 1]d×n : Xk

j1
−Xk

i1
= |Xk′

j1
−Xk′

i1
|
}

and{
X ∈ [0, 1]d×n : Xk

j1
−Xk

i1
= −|Xk′

j1
−Xk′

i1
|
}

are a subsets of (nd − 1) dimensional linear manifolds in [0, 1]d×n, and are therefore zero-measured in L nd.
Similarly, we can prove that the set [0, 1]d×n −

⋃
s∈S W

s
J1,J2

is the union of a finite number of subsets of (nd− 1)
dimensional linear manifolds in [0, 1]d×n. Consequently,⋃

s∈S

W s
J1,J2

is a partition of [0, 1]d×n bearing a zero-measured set.

Furthermore, define Ψs
J1,J2

as

Ψs
J1,J2

(X) =

φ[J1](X), φ[J2](X), {Xk
j } 1≤j≤n

1≤k≤d
(j,k)̸=(j1,k1)
(j,k)̸=(j2,k2)

 , ∀X ∈ W s
J1,J2

.

Then we can firstly notice that

Xk1
j1

= s1

√
u2

1 −
∑

k ̸=k1

(
Xk

j1

)2 +Xk1
i1

and

Xk2
j2

= s2

√
u2

2 −
∑

k ̸=k2

(
Xk

j2

)2 +Xk2
i2
,

for u1 = φ[J1](X) and u2 = φ[J2](X). This validates Ψs
J1,J2

as a diffeomorphism. The proof now boils down to
bounding the Jacobian of Ψs

J1,J2
. Towards this end, notice that the partial derivative of φ is bounded by∣∣∣∣∣∂φ[J1](X)

∂Xk1
j1

∣∣∣∣∣ =

∣∣∣∣∣∣ ∂

∂Xk1
j1

√√√√ d∑
k=1

(Xk
i1

−Xk
j1

)2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ Xk1
j1

−Xk1
i1√∑d

k=1(Xk
i1

−Xk
j1

)2

∣∣∣∣∣∣
≥ 1√

d
,

where in the last line we applied the fact that

∣∣∣Xk1
j1

−Xk1
i1

∣∣∣ = max
1≤k≤d

∣∣Xk
j1

−Xk
i1

∣∣ ≥

√√√√1
d

d∑
k=1

(Xk
i1

−Xk
j1

)2.

Similarly, ∣∣∣∣∣∂φ[J2](X)
∂Xk2

j2

∣∣∣∣∣ =

∣∣∣∣∣∣ ∂

∂Xk2
j2

√√√√ d∑
k=1

(Xk
i2

−Xk
j2

)2

∣∣∣∣∣∣ ≥ 1√
d
.
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Furthermore, since j2 /∈ J1, it is easy to see that

∂φ[J1](X)
∂Xk2

j2

= 0.

Therefore, the Jacobian determinant of Ψs
J1,J2

is bounded by

JXΨs
J1,J2

(X) =
∣∣∣∣det

(dΨs
J1,J2

(X)
dX

)∣∣∣∣
=

∣∣∣∣∣∣∣∣det




Ind−2 0(nd−2)×1 0(nd−2)×1
01×(nd−2)

∂φ[J1](X)
∂X

k1
j1

∂φ[J1](X)
∂X

k2
j2

01×(nd−2)
∂φ[J2](X)

∂X
k1
j1

∂φ[J2](X)
∂X

k2
j2



∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∂φ[J1](X)
∂Xk1

j1

· ∂φ[J2](X)
∂Xk2

j2

∣∣∣∣∣ ≥ 1
d
.

This completes the proof. ■

The following is important for representing of the persistence intensity function p and the persistence density
function p̃.
Proposition D.4. Bearing a zero-measured set, [0, 1]d×n can be partitioned as

[0, 1]d×n =
R⋃

r=1
Vr,

such that

1. For every X,X ′ ∈ Vr, J1, J2 ⊂ [n] with |J1| = |J2| = 2, it is guaranteed that φ[J1](X) ̸= φ[J2](X);
furthermore, if φ[J1](X) < φ[J2](X), then φ[J1](X ′) < φ[J2](X ′);

2. For every X,X ∈ Vr, J1, J2, J3, J4 ⊂ [n] with |J1| = |J2| = |J3| = |J4| = 2, it is guaranteed that
φ[J1](X)−φ[J2](X) ̸= φ[J3](X)−φ[J4](X); furthermore, if φ[J1](X)−φ[J2](X) > φ[J3](X)−φ[J4](X) > 0,
then φ[J1](X ′) − φ[J2](X ′) > φ[J3](X ′) − φ[J4](X) > 0.

3. For every r ∈ [R] and X ∈ Vr, there are Nr points in Dgm(X, φ); furthermore, all these points can be
ordered by their orthogonal distance to the diagonal, and the order is fixed for all X ∈ Vr.

Furthermore, the expected persistence measure E[µ] and its normalized counterpart E[µ̃] can be characterized such
that for any Borel set B ⊂ Ω,

E[µ](B) =
R∑

r=1

Nr∑
i=1

∫
x∈Φ−1[J1

ir
,J2

ir
](B)∩Vr

κ(X)dX and

E[µ̃](B) =
R∑

r=1

1
Nr

Nr∑
i=1

∫
x∈Φ−1[J1

ir
,J2

ir
](B)∩Vr

κ(X)dX

, in which
Φ[J1, J2](X) = (φ[J1](X), φ[J2](X)),

and J1
ir, J

2
ir are the simplicial complexes corresponding to the birth and death of the i-th persistence homology for

all X ∈ Vr.

Proof: For simplicity, we only give a sketch of the proof for this proposition. A weaker version of this proposition
is proved in (Chazal and Divol, 2019), where the second property of the partition is not required. Therefore, the



Weichen Wu, Jisu Kim, Alessandro Rinaldo

partition we aim to construct here is a refinement of the partition given in (Chazal and Divol, 2019). In order to
see that the second condition can be reached, we firstly prove that the set

A =
{
X ∈ [0, 1]d×n :∃J1, J2, J3, J4 ⊂ [n], s.t.

|J1| = |J2| = |J3| = |J4| = 2,
J1 ̸= J2, J3 ̸= J4, (J1, J2) ̸= (J3, J4),
φ[J1](X) − φ[J2](X) = φ[J3](X) − φ[J4](X)

}
is zero-measured. For this step, the technique in proving Lemma 4.1 in (Chazal and Divol, 2019) can be applied
to prove that A does not contain any open set, and all its points are singular.

We can further define
F2

n = {(J1, J2) : J1, J2 ⊂ [n], |J1| = |J2| = 2, J1 ̸= J2}.

Since A is zero-measured, we can only consider the set [0, 1]d×n −A, on which

{∆φ[J1, J2](X) := φ[J1](X) − φ[J2](X)}(J1,J2)∈F2
n

must take different values for different (J1, J2) ∈ F2
n. Denote these values as r1 < r2 < ... < rL, and let Eℓ(X)

denote the element (J1, J2) ⊂ F2
n such that ∆φ[J1, J2](X) = rℓ. The sets E1(X), E2(X), ..., EL(X) then form a

partition of F2
n. With similar techniques as Lemma 4.2 in (Chazal and Divol, 2019), we can prove that the map

X 7→ A2(X) is locally constant almost surely everywhere. This essentially completes the proof.

■

The following lemma is a direct application of Proposition 4.6 in Divol and Polonik (2019), and guarantees that
the number of points in the persistence diagram Dgm(X, φ) that are far enough from the diagonal is upper
bounded in terms of the expectation.
Lemma D.5. Let κ be a probability density function on [0, 1]d that satisfies 0 < inf κ < supκ < ∞. Denote
Xn as a binomial process with parameters n and κ or a Poisson process with parameter nκ on [0, 1]d. In the
kth dimensional persistence diagram of the Vietoris-Rips filtration of Xn, let Nℓ be the number of points with
persistence of at least ℓ. Then there are some universal constant C that the expectation of Nℓ is upper bounded as

E [Nℓ] ≤ Cn exp
(
−Cnℓd

)
,

where C is a constant depends only on k.

Proof: Let µ be the persistence measure corresponding to the k-th dimensional persistence diagram of the
Vietoris-Rips filtration of Xn. From Proposition 4.6 in Divol and Polonik (2019),

P (µ(R × [ℓ,∞)) > t) ≤ c1 exp
(

−c2

(
nℓd + ( t

n
)1/(k+1)

))
.

And hence the expectation of µ(R × [ℓ,∞)) is bounded as

E [µ(R × [ℓ,∞))] ≤
∫ ∞

0
c1 exp

(
−c2

(
nℓd + ( t

n
)1/(k+1)

))
dt

= c1 exp
(
−c2(nℓd)

) ∫ ∞

0
exp

(
−c2( t

n
)1/(k+1)

)
dt

= c1 exp
(
−c2(nℓd)

) ∫ ∞

0
(k + 1)nuk exp (−c2u) du

= Cn exp
(
−Cnℓd

)
,

for some constant C that depends on k. Now, R × [ℓ,∞) contains all the homological features whose persistence
is at least ℓ, so

Nℓ ≤ µ(R × [ℓ,∞)).
And hence

E [Nℓ] ≤ Cn exp
(
−Cnℓd

)
.

■
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D.2 Uniform tail bounds

In this section, we provide some uniform tail bound theorems that are important for bounding the variation of
estimators. We will omit the proofs of these theorems in the paper.

The Talagrand’s inequality. The following form of the Talagrand’s inequality was shown in (Steinwart and
Christmann, 2008).
Theorem D.6. Let (Z,F , P ) be a probability space and (T, d) be a separable metric space. Consider a function
class G = {gt : t ∈ T} ∈ L0(Z), such that the function t 7→ gt(z) is continuous in t for all z ∈ Z. Furthermore,
suppose that there exists a constant B > 0, σ2 > 0 such that for all g ∈ G, E[g] = 0,E[g2] ≤ σ2, ||g||∞ ≤ B. Let
Z1, Z2, ..., Zn ∼ i.i.d. P , and define

G = sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1
g(Zi)

∣∣∣∣∣ .
Then for any δ ∈ (0, 1), with probability of at least 1 − δ,

G ≤ 4E[G] +
√

2σ2

n
log 1

δ
+ B

n
log 1

δ
. (13)

Theorem D.6 implies that the expectation of G is an important factor in bounding G. The following theorem
gives and upper bound of E[G] by the covering number of G.
Theorem D.7. Under the same conditions as in Theorem D.6, if for any η ∈ (0, B), there exists A > 0, ν > 0
such that for any probability measure Q on Z, the covering number is bounded as

N (G, L2(Q), η) ≤
(
AB

η

)ν

,

then there exists a constant C such that

E[G] ≤ C

(
νB

n
log
(
AB

σ

)
+

√
νσ2

n
log
(
AB

σ

))
.

Tail bound by polynomial discrimination. As an alternative to the Talagrand’s inequality, the following
theorem bounds G with high probability when the function class G has polynomial discrimination. The proof
applies the Bernstein’s inequality and a straightforward union bound argument.
Theorem D.8. Under the same conditions as in Theorem D.6, define

G(Zn
1 ) = {(g(Z1), g(Z2), ..., g(Zn)) : g ∈ G}. (14)

If the cardinality of the set G(Zn
1 ) is bounded by

Card(G(Zn
1 )) ≤ (An+ 1)ν (15)

for some ν > 0, then there exists a universal constant C such that with probability at least 1 − δ,

G ≤ C

(√
σ2

n

(√
ν log(An+ 1) +

√
log 1

δ

)
+ B

n

(
ν log(An+ 1) + log 1

δ

))
(16)

The following lemma shows that for persistent measures with bounded total persistence, the total mass of the set
away from the diagonal ∂Ω is upper bounded.
Lemma D.9. Let Ωℓ denote the set of points in Ω that are at least ℓ away from the diagonal:

Ωℓ = {ω ∈ Ω : ∥ω − ∂Ω∥2 ≥ ℓ}.

Then for a persistent measure µ, if Persq(µ) ≤ M , then µ(Ωℓ) ≤ Mℓ−q.
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The following theorem shown in Divol and Lacombe (2021) provides a standard lower bound for the minimax
rate of estimating a probability density function using independent samples. This is useful for deducting the
minimax rate for estimating the (weighted) intensity functions.
Theorem D.10. Let F denote the set of probability density functions on [0, 1]2 with Bounded Besov norm:

F = {f : [0, 1]2 → R,
∫

[0,1]2
f(x)dx = 1, ||f ||r∞,∞ ≤ B}.

Then for any estimator (measurable function)

f̂n : ([0, 1]2)n → F ,

there exists f ∈ F , such that if X1, X2, ..., Xn ∼ i.i.d. f , then

E∥f̂n(X1, X2, ..., Xn) − f∥∞ ≥ O
(
n− r

2r+2

)
.

E PROOF OF THEOREMS AND SUPPORTIVE PROPOSITIONS

E.1 Proof of Theorem 3.1

In order to prove Theorem 3.1, we firstly show the following supportive lemma.
Lemma E.1. Let Ω and ∂Ω be defined as in (1) and (2). Then for any q > 0,∫

Ω
∥x − ∂Ω∥q

2dx = 2
(q + 1)(q + 2)

(
L√
2

)q+2
.

Proof of Lemma E.1: Take the coordinate transformation{
y1 = x2−x1√

2 = ∥x − ∂Ω∥2;
y2 = x2+x1√

2 .

Then it can be easily verified that the determinant of the Jacobian matrix between x and y coordinates is 1, and
that the ℓ1 ball Ω can be represented using y coordinates by

Ω =
{

(y1, y2) : 0 < y1 ≤ L√
2
, y1 ≤ y2 ≤

√
2L− y1

}
.

Therefore, ∫
Ω

∥x − ∂Ω∥q
2dx =

∫ L√
2

0

(∫ √
2L−y1

y1

dy2

)
yq

1dy1

=
∫ L√

2

0
(
√

2L− 2y1)yq
1dy1

= 2
(q + 1)(q + 2)

(
L√
2

)q+2
.

With this lemma, we can now prove Theorem 3.1.

Proof of Theorem 3.1: The main idea of bounding the OT distance is to construct an admissible transport between
µ and ν, and then control the cost of this transport. We will separate the proof into three steps accordingly.

Step 1: Construct an admissible transport from µ to ν. Define π̂ as a measure on Ω × Ω such that for
any Borel sets A,B ⊂ Ω,
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π̂(A×B) =
∫

A∩B∩Ω
min{pµ(x), pν(x)}dx+∫

A∩Proj−1
∂Ω(B)∩Ω

[pµ(x) − pν(x)]+dx +
∫

B∩Proj−1
∂Ω(A)∩Ω

[pν(x) − pµ(x)]+dx.
(17)

Here, for any set A ⊂ Ω,

Proj−1
∂Ω(A) = {ω ∈ Ω : Proj∂Ω(ω) ∈ A}.

Intuitively, π̂ represents such a transport: at each point x ∈ Ω, if pµ(x) > pν(x), then we transport the mass of
pν from x to x, and the remaining mass from x to its projection onto ∂Ω; if pν(x) > pµ(x), then the opposite is
done.

Firstly, we prove that this is an admissible transport between µ and ν. Notice that for any Borel set A ⊂ Ω,
A ∩ Ω ∩ Ω = A, A ∩ Proj−1

∂Ω(Ω) ∩ Ω = A and Proj−1
∂Ω(A) = ∅. Therefore, by taking B = Ω in (17), we get

π̂(A× Ω) =
∫

A

min{pµ(x), pν(x)}dx +
∫

A

[pµ(x) − pν(x)]+dx + 0

=
∫

A

{
min{pµ(x), pν(x)} + [pµ(x) − pν(x)]+

}
dx

=
∫

A

pµ(x)dx = µ(A).

Similarly, we can prove that π̂(Ω ×B) = ν(B) for any Borel set B ⊂ Ω. Therefore, π̂ is an admissible transport
between µ and ν.

Step 2: Present dπ̂. In order to calculate the transport cost of π̂, we firstly need to present dπ̂. For this,
we would make use of pushforward measures. Define ı : Ω̄ → Ω̄ × Ω̄ by ı(x) = (x,x), and let ȷ : Ω̄ × Ω̄ → Ω̄ be
satisfying ȷ ◦ ı = id. Furthermore, let ı∗(λΩ) be the pushforward measure on Ω̄ × Ω̄ generated by ı. Then for any
Borel sets A,B ⊂ Ω, one has ı−1(A×B) = A ∩B, and the first term in (17) can be presented as∫

A∩B∩Ω
min {pµ(x), pν(x)} dx

=
∫

ı−1(A×B)
min {(pµ ◦ ȷ)(ı(x)), (pν ◦ ȷ)(ı(x))} dλΩ(x)

=
∫

A×B

min {(pµ ◦ ȷ)(x,y), (pν ◦ ȷ)(x,y)} dı∗(λΩ)(x,y).

For the second term in (17), we can similarly, define ı(1) : Ω̄ → Ω̄ × Ω̄ by ı(1)(x) = (x,Proj∂Ω(x)), let
ȷ(1) : Ω̄×Ω̄ → Ω̄ be satisfying ȷ(1)◦ı(1) = id, and consider the pushforward measure ı(1)

∗ (λΩ). Then (ı(1))−1(A×B) =
A ∩ Proj−1

∂Ω(B), and ∫
A∩Proj−1

∂Ω(B)∩Ω
[pµ(x) − pν(x)]+ dx

=
∫

(ı(1))−1(A×B)

[
(pµ ◦ ȷ(1))(ı(1)(x)) − (pν ◦ ȷ(1))(ı(1)(x))

]+
dλΩ(x)

=
∫

A×B

[
(pµ ◦ ȷ(1))(x,y) − (pν ◦ ȷ(1))(x,y)

]+
dı

(1)
∗ (λΩ)(x,y).

For the third term in (17), we can similarly define ı(2) : Ω̄ → Ω̄×Ω̄ by ı(2)(x) = (Proj∂Ω(x),x), let ȷ(2) : Ω̄×Ω̄ → Ω̄
be satisfying ȷ(2) ◦ ı(2) = id, and consider a pushforward measure ı(2)

∗ (λΩ). Then (ı(2))−1(A×B) = Proj−1
∂Ω(A) ∩B,
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and ∫
Proj−1

∂Ω(A)∩B∩Ω
[pµ(x) − pν(x)]+ dx

=
∫

(ı(2))−1(A×B)

[
(pµ ◦ ȷ(2))(ı(2)(x)) − (pν ◦ ȷ(2))(ı(2)(x))

]+
dλΩ(x)

=
∫

A×B

[
(pµ ◦ ȷ(2))(x,y) − (pν ◦ ȷ(2))(x,y)

]+
dı

(1)
∗ (λΩ)(x,y).

Combining these results, we can obtain the following presentation of dπ̂:

dπ̂ = min {(pµ ◦ ȷ)(x,y), (pν ◦ ȷ)(x,y)} dı∗(λΩ)

+
[
(pµ ◦ ȷ(1))(x,y) − (pν ◦ ȷ(1))(x,y)

]+
dı

(1)
∗ (λΩ)

+
[
(pµ ◦ ȷ(2))(x,y) − (pν ◦ ȷ(2))(x,y)

]+
dı

(2)
∗ (λΩ).

Step 3: Calculate the transportation cost of π̂ . Based on our presentation of dπ̂, the q-th order
transportation cost of π̂ is, by definition:

Cq
q (π̂) =

∫
Ω×Ω

∥x − y∥q
2dπ̂(x,y)

=
∫

Ω×Ω
∥x − y∥q

2 min {(pν ◦ ȷ)(x,y), (pµ ◦ ȷ)(x,y)} dı∗(λΩ)

+
∫

Ω×Ω
∥x − y∥q

2

[
(pµ ◦ ȷ(1))(x,y) − (pν ◦ ȷ(1))(x,y)

]+
dı(1)

∗ (λΩ)

+
∫

Ω×Ω
∥x − y∥q

2

[
(pµ ◦ ȷ(2))(x,y) − (pν ◦ ȷ(2))(x,y)

]+
dı(2)

∗ (λΩ). (18)

We now explore the three terms in (18). First of all, since ı∗(λΩ) is a pushforward measure generated by the
function ı(x) = (x,x), it is easy to see that

ı∗(λΩ)({(x,y) ∈ Ω × Ω : x ̸= y}) = 0.

Therefore, the first term in (18) is simply

∫
Ω×Ω

∥x − y∥q
2 min {(pν ◦ ȷ)(x,y), (pµ ◦ ȷ)(x,y)} dı∗(λΩ)

=
∫

(x,y)∈Ω×Ω,x=y

∥x − y∥q
2 min {(pν ◦ ȷ)(x,y), (pµ ◦ ȷ)(x,y)} dı∗(λΩ)

=
∫
x∈Ω

∥x − x∥q
2 min{pµ(x), pν(x)}dx = 0.

As for the second term, notice that ı(1)
∗ (λΩ) is a pushforward measure generated by the function ı(1)(x) =

(x,Proj∂Ω(x)). Therefore by definition,

ı
(1)
∗ (λΩ)({(x,y) ∈ Ω × Ω : y ̸= Proj∂Ω(x)}) = 0.
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Hence, the second term in (18) is equal to∫
Ω×Ω

∥x − y∥q
2

[
(pµ ◦ ȷ(1))(x,y) − (pν ◦ ȷ(1))(x,y)

]+
dı(1)

∗ (λΩ)

=
∫

(x,y)∈Ω×Ω,y=Proj∂Ω(x)
∥x − y∥q

2

×
[
(pµ ◦ ȷ(1))(x,Proj∂Ω(x)) − (pν ◦ ȷ(1))(x,Proj∂Ω(x))

]+
dı(1)

∗ (λΩ)

=
∫
x∈Ω

∥x − Proj∂Ω(x)∥q
2

[
(pµ ◦ ȷ(1) ◦ ı(1))(x) − (pν ◦ ȷ(1) ◦ ı(1))(x)

]
dx

=
∫

Ω
∥x − ∂Ω∥q

2 [pµ(x) − pν(x)]+ dx.

Similarly, we can obtain that the third term of (18) is equal to∫
Ω×Ω

∥x − y∥q
2

[
(pµ ◦ ȷ(2))(x,y) − (pν ◦ ȷ(2))(x,y)

]+
dı(2)

∗ (λΩ)

=
∫

Ω
[pν(x) − pµ(x)]+∥x − ∂Ω∥q

2dx.

Combining these results, we obtain

Cq
q (π̂) =

∫
Ω

[pµ(x) − pν(x)]+∥x − ∂Ω∥q
2dx +

∫
Ω

[pν(x) − pµ(x)]+∥x − ∂Ω∥q
2dx

=
∫

Ω
|pµ(x) − pν(x)|∥x − ∂Ω∥q

2dx

≤ ∥pµ − pν∥∞

∫
Ω

∥x − ∂Ω∥q
2dx = 2

(q + 1)(q + 2)

(
L√
2

)q+2
∥pµ − pν∥∞.

Notice that the last equality uses Lemma E.1.

Finally, since π̂ is an admissible transport from µ to ν, the optimal transport distance between µ and ν, OTq(µ, ν),
should be at most Cq(π̂). The bound in Theorem 3.1 follows naturally.

Example of converging OT distance while intensity functions diverge. Consider the following sequences
of intensity functions

pµn
= 4n

L21

{
∥x − un∥1 <

√
2L

2n+1

}
pνn = 4n

L21

{
∥x − dn∥1 <

√
2L

2n+1

}
,

in which

un =
(√

2L
4 ,

√
2L
4 +

√
2L

2n+1

)
dn =

(√
2L
4 −

√
2L

2n+1 ,

√
2L
4

)
.

Essentially, µn and νn are uniform distributions on two adjacent ℓ1 balls. It is easy to verify that the total mass
of both µn and νn is 1, and the optimal transport distance between µn and νn is upper bounded by

OTq(µn, νn) ≤ L

2n
→ 0;
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on the other hand, the ℓ∞ distance between the intensity functions clearly diverges as n → ∞:

∥pµn
− pνn

∥∞ ≥ |pµn
(un) − pνn

(un)| = 4n

L2 → ∞.

■

A remark on the bottleneck distance. We argue that there can be no meaningful upper bound for the bottleneck
distance OT∞ by the ℓ∞ distance between the intensity or density functions. Consider the following example:
define Th as an upper-left triangle in Ω:

Th :=
{
ω ∈ Ω | ∥ω − ∂Ω∥2 ≥ L− h√

2

}
,

and T ′
h as a triangle tangent to the diagonal:

T ′
h :=

{
ω ∈ Ω |

∥∥∥∥ω −
(
L

2 ,
L

2

)∥∥∥∥
∞

≤ h

2

}
.

We define µh as the uniform distribution on Th, so that

pµh
(ω) = 2

h21{ω ∈ Th};

on the other hand ν is very similar to µ but has a small part of its mass on T ′
h:

pνh
(ω) =

(
2
h2 − h

)
1{ω ∈ Th} + h1{ω ∈ T ′

h}.

As h → 0, it is easy to verify that ∥pµh
− pνh

∥∞ = h → 0, while OT(µh, νh) → L/
√

2. This is because although
the densities for µ and ν becomes very close, there is always a small part of the mass of µ in Th that has to be
transported to T ′

h; since the bottleneck distance only considers the maximum transport cost, it would converge to
the limiting distance between Th and T ′

h, which is L/
√

2. It is easy to generalize this example to the case where
pµh

and pνh
are smooth.

E.2 Proof of Theorem C.6

Both theorems are classic results on the bias of kernel estimators and are proved by the smoothness of the target
functions as supposed by Assumption 3.5. We here provides the proof of Theorem C.6 (a), and part (b) can be
proved in a completely similar fashion.

We firstly clarify the specific smoothness condition proposed by Assumption 3.5. It guarantees Hence, we can
represent the bias of E[p̂h(ω)] as an integral. Since µ̄n is an unbiased estimator for E[µ],

E[p̂h(ω)] − p(ω) = E
[∫

x

1
h2K

(
x − ω

h

)
dµ̄n

]
− p(ω)

=
∫
x

1
h2K

(
x − ω

h

)
dE[µ̄n] − p(ω)

=
∫
x

1
h2K

(
x − ω

h

)
p(x)dx − p(ω)

=
∫
x

1
h2K

(
x − ω

h

)
[p(x) − p(ω)]dx,

where in the last line we applied the property that the kernel function K(·) integrals to 1. We can then apply the
smoothness of p(·) as in (12) and obtain that

|E[p̂h(ω)] − p(ω)|

≤

∣∣∣∣∣
∫
x

1
h2K

(
x − ω

h

) s−1∑
t=1

1
t!

∑
t1+t2=t

dtp(ω)
dωt1

1 dωt2
2

(x1 − ω1)t1(x2 − ω2)t2dx

∣∣∣∣∣
+
∫
x

1
h2

∣∣∣∣K (x − ω

h

)∣∣∣∣Lp∥x − ω∥s
2dx
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By taking a change of variable v = x−ω
h , the first term can be represented as

s−1∑
t=1

1
t!

∑
t1+t2=t

dtp(ω)
dωt1

1 dωt2
2

∫
∥v∥2≤1

K(v)htvt1
1 v

t2
2 dv.

The zero-moment condition of the kernel function in Assumption C.5 guarantees that this term equals to 0.
Hence,

|E[p̂h(ω)] − p(ω)| ≤
∫
x

1
h2

∣∣∣∣K (x − ω

h

)∣∣∣∣Lp∥x − ω∥s
2dx

v=(x−ω)/h========= Lph
s

∫
∥v∥2≤1

|K(v)|∥v∥s
2dv.

E.3 Proof of Theorem 3.4 (a)

A useful claim. The following claim can be applied for easing calculation in Theorem 3.4.
Claim E.2. For q ∈ R and x ∈ [0, 1],

1 − xq ≤ (q ∨ 1)(1 − x),

where q ∨ 1 = max{q, 1}.

Proof of Claim E.2. If q ≥ 1 or q ≤ 0, let f(x) = 1 − xq. Then f ′(x) = −qxq−1 and f ′′(x) = −q(q − 1)xq−2,
so f ′′(x) ≤ 0 for x ∈ [0, 1] and f is concave on [0, 1]. Then by Jensen’s inequality,

1 − xq = f(x) ≤ f(1) + f ′(1)(x− 1) = q(1 − x).

If q ∈ [0, 1], then xq ≥ x implies

1 − xq ≤ 1 − x.

Hence combining these gives

1 − xq ≤ (q ∨ 1)(1 − x).

■

This proof applies the Talagrand’s inequality. For this purpose, we firstly define an auxiliary family of functions,
and then verify the conditions in Theorems D.6 and D.7 .

Defining an auxiliary function class. Let µ1, µ2, ...., µn be i.i.d. random measures in Zq
L,M , ℓω = ∥ω −

∂Ω∥2 − h and gω be defined as

gω(µ) = ℓq
ω

(∫
Ω

1
h2K

(
x − ω

h

)
dµ−

∫
Ω

1
h2K

(
x − ω

h

)
dE[µ]

)
, (19)

and K satisfy Assumption C.5. Take Z = Zq
L,M , (T, d) = (Ω2h, ∥ · ∥2), and for all µ ∈ Zq

L,M , define G = {gω : ω ∈
Ω2h}. By definition, gω(µ) has zero mean and the variation of the kernel estimator p̂h(·) can be represented by

sup
ω∈Ω2h

ℓq
ω|p̂h(ω) − E[p̂h(ω)]| = sup

ω∈Ω2h

∣∣∣∣∣ 1n
n∑

i=1
gω(µ)

∣∣∣∣∣ .
Hence, in order to apply the Talagrand’s inequality, we need to bound ∥gω(µ)∥∞, E[gω(µ)2] and the covering
number of G. We provide these upper bound accordingly in the following paragraphs.
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Bounding∥gω(µ)∥∞ and E[gω(µ)2]. Notice that since K vanishes outside the unit circle of R2, for any
x /∈ Ωℓω , we have

∣∣∣∣x−ω
h

∣∣∣∣
2 > 1 and therefore K

(
x−ω

h

)
= 0. Hence, for all ω ∈ Ω2h,

|gω(µ)| = ℓq
ω

∣∣∣∣∫
Ω

1
h2K

(
x − ω

h

)
dµ−

∫
Ω

1
h2K

(
x − ω

h

)
dE[µ]

∣∣∣∣
≤ ℓq

ω max
{∣∣∣∣∫

Ω

1
h2K

(
x − ω

h

)
dµ
∣∣∣∣ , ∣∣∣∣∫

Ω

1
h2K

(
x − ω

h

)
dE[µ]

∣∣∣∣}
= ℓq

ω max
{∣∣∣∣∣
∫

Ωℓω

1
h2K

(
x − ω

h

)
dµ

∣∣∣∣∣ ,
∣∣∣∣∣
∫

Ωℓω

1
h2K

(
x − ω

h

)
dE[µ]

∣∣∣∣∣
}

≤ ℓq
ω

∥K∥∞

h2 max {(µ(Ωℓω ),E[µ](Ωℓω ))}

≤ ℓq
ω

∥K∥∞M

h2ℓq
ω

= ∥K∥∞M

h2 (20)

where in the last inequality we used Lemma D.9. On the other hand, the variance of gω is bounded by

E[gω(µ)2] = ℓ2q
ω E

∣∣∣∣∫ 1
h2K

(
x − ω

h

)
dµ−

∫ 1
h2K

(
x − ω

h

)
dE[µ]

∣∣∣∣2
≤ ℓ2q

ω E

∣∣∣∣∣
∫

Ωℓω

1
h2K

(
x − ω

h

)
dµ

∣∣∣∣∣
2

≤ ℓ2q
ω E

{
µ(Ωℓω ) ·

∫
Ωℓ

1
h4K

2
(
x − ω

h

)
dµ
}

= ℓ2q
ω µ(Ωℓ)

∫
Ωℓω

1
h4K

2
(
x − ω

h

)
dE[µ] (21)

≤ ℓ2q
ω · M

ℓq
ω

∫
∥x−ω∥2≤h

1
h4K

2
(
x − ω

h

)
p(x)dx

v=(x−ω)/h========= ℓq
ωM

∫
∥v∥2≤1

1
h2K

2(v)p(ω + vh)dv

≤ ℓq
ωM

1
h2

∥p̄∥∞

ℓq
ω

∫
∥v∥2≤1

K2(v)dv = M∥p̄∥∞∥K∥2
2

h2 . (22)

Bounding the covering number of G. For any probability measure Q on Zq
L,M and any η ∈ (0, ∥K∥∞M

h2 ), we
aim to bound the covering number of G with respect to L2(Q) distance. This requires relating the L2(Q) distance
in G and the ℓ2 distance in R2. Specifically, for any ω,ω′ ∈ Ω2h and µ ∈ Zq

L,M , we can assume without loss of
generality that ℓω ≤ ℓω′ . In this case, we firstly observe that∣∣∣∣ℓq

ω

∫
K

(
x − ω

h

)
dµ− ℓq

ω′

∫
K

(
x − ω′

h

)
dµ
∣∣∣∣

≤
∣∣∣∣∫ ℓq

ω

[
K

(
x − ω

h

)
−K

(
x − ω′

h

)]
dµ
∣∣∣∣+
∣∣∣∣∫ (ℓq

ω − ℓq
ω′)K

(
x − ω′

h

)
dµ
∣∣∣∣

≤ ℓq
ω

∫
Ωℓω

Lk

h
∥ω − ω′∥2dµ+

∫
Ωℓ

ω′

(ℓq
ω′ − ℓq

ω)∥K∥∞dµ

≤ ℓq
ω

Lk

h
∥ω − ω′∥2µ(Ωℓω ) + ∥K∥∞(ℓq

ω′ − ℓq
ω)µ(Ωℓω′ )

≤ MLk

h
∥ω − ω′∥2 +M∥K∥∞

[
1 −

(
ℓω
ℓω′

)q]
. (23)

Since ℓω ≥ ℓω′ − ∥ω − ω′∥2, the last term of (23) can be bounded by using Claim E.2 and ℓω ≥ ℓω′ − ∥ω − ω′∥2
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as

1 −
(
ℓω
ℓ′
ω

)q

≤ (q ∨ 1)
(

1 − ℓω
ℓ′
ω

)
≤ q ∨ 1

ℓ′
ω

∥ω − ω′∥2

≤ q ∨ 1
h

∥ω − ω′∥2. (24)

Notice that in the last line, we applied the fact that since ω′ ∈ Ω2h, ℓω′ = ∥ω − ∂Ω∥2 − h ≥ h.

From now on, we use q′ to denote q ∨ 1 for simplicity. Equations (23) and (24) imply that

∣∣∣∣ℓq
ω

∫
K

(
x − ω

h

)
dµ− ℓq

ω′

∫
K

(
x − ω′

h

)
dµ
∣∣∣∣ ≤ M(Lk + q′∥K∥∞)

h
∥ω − ω′∥2.

Therefore, the difference between gω(µ) and gω′(µ) can be bounded by

|gω(µ) − gω′(µ)| ≤
∣∣∣∣ℓq

ω

∫ 1
h2K

(
x − ω

h

)
dµ− ℓq

ω′

∫ 1
h2K

(
x − ω′

h

)
dµ
∣∣∣∣

+
∣∣∣∣ℓq

ω

∫ 1
h2K

(
x − ω

h

)
dE[µ] − ℓq

ω′

∫ 1
h2K

(
x − ω′

h

)
dE[µ]

∣∣∣∣
≤ 2M(Lk + q′∥K∥∞)

h3 ∥ω − ω′∥2.

In this way, we have related the distance between gω and gω′ to the distance between ω and ω′. Now, for any
η ∈ (0, ∥K∥∞M

h2 ), we can set ϵ = ηh3

2M(LK +q′∥K∥∞) . It is easy to verify that

ϵ <
h3

2M(LK + q′∥K∥∞)
∥K∥∞M

h2 = ∥K∥∞

2(LK + q′∥K∥∞)h < h.

Hence, we can construct a ϵ-covering of Ω2h in the ℓ2 distance, denoted as S. It is easy to show that the covering
number

N (Ω2h, ∥ · ∥2, ϵ) ≤ 2L2

ϵ2
.

By definition, for any ω ∈ Ω2h, there exists ω′ ∈ S, such that ∥ω − ω′∥2 ≤ ϵ < h < ℓω′ . Therefore, for any
measure Q on Zq

L,M ,

∥gω(µ) − gω′(µ)∥L2(Q) ≤ sup
µ∈Zq

L,M

|gω(µ) − gω′(µ)|

≤ 2M(LK + q′∥K∥∞)
h3 ∥ω − ω′∥2 ≤ 2M(LK + q′∥K∥∞)

h3 ϵ = η.

In conclusion,

N (G, L2(Q), η) ≤ N
(

Ω2h, ∥ · ∥2,
ηh3

2M(LK + q′∥K∥∞)

)
<

(
4LM(LK + q′∥K∥∞)

ηh3

)2
. (25)

Completing the proof. With ∥gω(µ)∥∞, E[gω(µ)2] and the covering number of G bounded as in (20), (21)
and (25), we can apply Theorems D.6 and D.7 with

AB = 4LM(LK+q′∥K∥∞)
h3 ;

B = ∥K∥∞M
h2 ;

σ2 = M∥p̄∥∞
h2 ∥K∥2

2;
ν = 2.
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This gives us the conclusion that with probability at least 1 − δ,

sup
ω∈Ω2h

∣∣∣∣∣ 1n
n∑

i=1
gω(µ)

∣∣∣∣∣ ≲ 2∥K∥∞M

nh2 log
(

4L(LK + q′∥K∥∞)
δh2∥K∥2

√
M

∥p̄∥∞

)
+

√
2M∥p̄∥∞

n

∥K∥2

h

√√√√log
(

4L(LK + q′∥K∥∞)
δh2∥K∥2

√
M

∥p̄∥∞

)
.

■

E.4 Proof of Theorem 3.4(b)

Part (b) of Theorem 3.4 can be proved in a similar, though slightly easier, fashion to part (a). We therefore
provide a sketch of the proof and omit the details.

Defining an auxiliary function class. For every µ̃ and ω ∈ Ω, define

gω(µ̃) =
∫

Ω

1
h2K

(
x − ω

h

)
dµ̃−

∫
Ω

1
h2K

(
x − ω

h

)
dE[µ̃],

and let G = {gω : ω ∈ Ω}. It is easy to verify that E[g] ≡ 0 for all ω ∈ Ω, and that

∥p̌h(ω) − p̃(ω)∥ = sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1
g(µi)

∣∣∣∣∣ .
Bounding ∥g∥∞ and E[g2]. Since µ̃ and E[µ̃] are normalized measures with a total mass of 1, ∥g∥∞ can be
bounded by

∥g∥∞ ≤ ∥K∥∞

h2 ;

in the mean time, Assumption 3.3 (b) guarantees that E[gω(µ̃)2] can be bounded by

E[gω(µ̃)2] ≤ ∥p̃∥∞∥K∥2
2

h2 .

Bounding the covering number of G. We again apply the Lipchitz property of the kernel function K(·) to
conclude that for any ω,ω′ ∈ Ω,

|gω(µ̃) − gω′(µ̃)| ≤ 2LK

h3 ∥ω − ω′∥2.

Hence, using a similar reasoning to the proof of part (a), we can bound the covering number of G by

N (G, L2(Q), η) <
(

4LLK

ηh3

)2
.

Completing the proof. Theorem 3.4 (b) is a direct corollary of Theorems D.6 and D.7 with the following
choice of parameters: 

AB = 4LLK

h3 ;
B = ∥K∥∞

h2 ;
σ2 = ∥p̃∥∞

h2 ∥K∥2
2;

ν = 2.
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E.5 Proof of Theorems 3.6 and C.9

In this section, we provide the proof of Theorem C.9, which gives a minimax lower bound for estimating the
weighted persistence intensity function. Theorem 3.6, which gives the minimax lower bound for estimating the
persistence density function, can be proved in a similar while simpler fashion, so we omit its proof for brevity.

The main idea of this proof is to build a connection of weighted intensity function p̄(·) and a probability density
function. First of all, we can observe the conclusion of Theorem D.10 holds true also when the support for the
density function is Ω instead of [0, 1]2. Now, notice that for any x ∈ Ω, we can define the following measure:

µx = Mδx||x − ∂Ω||−q
2 . (26)

It is easy to verify that Persq(µx) = M , so µx ∈ Zq
L,M . Therefore, for any estimator p̂n : (Zq

L,M )n → F , we can
construct the following estimator f̂n:

f̂n(x1,x2, ...,xn) = p̂n(µx1 , µx2 , ..., µxn
).

Theorem D.10 states that there exists a probability density function f : Ω → R with ||f ||r∞,∞ ≤ B such that
when X1, X2, ..., Xn ∼ i.i.d. f ,

E||f̂n(X1, X2, ..., Xn) − f ||∞ ≥ O
(
n− r

2r+2

)
.

We can apply the probability density function f to construct a probability measure on Zq
L,M . First, define a

map Φ : Ω → Zq
L,M by Φ(x) = µx in (26). Impose a measure structure on Zq

L,M by pushforwarding the measure
structure on Ω, i.e. Y ⊂ Zq

L,M is measurable if and only if Φ−1(Y) is measurable in Ω. Define a probability
measure P on Zq

L,M as a pushforward measure, i.e., for any measurable set Y ⊂ Zq
L,M ,

P (Y) =
∫

Φ−1(Y)
f(x)dx.

Then from the change of variables, ∫
Y
g(µ)dP (µ) =

∫
Φ−1(Y)

g(Φ(x))f(x)dx.

Now, the intensity for P can be represented as follows: let p(·) be the intensity function for E[µ] when µ ∼ P ,
then for all u ∈ Ω,

p̄(u) := ∥u − ∂Ω∥q
2p(u) = Mf(u). (27)

To see this fact, consider any Borel set A ⊂ Ω. By definition, the expected measure E[µ] satisfies

E[µ](A) = E[µ(A)] =
∫

Zq
L,M

µ(A)dP (µ)

=
∫

Φ−1(Zq
L,M

)
Φ(x)(A)f(x)dx

=
∫

Ω
µx(A)f(x)dx

=
∫

Ω
M ||x − ∂Ω||−q

2 1{x ∈ A}f(x)dx

=
∫

A
M ||x − ∂Ω||−q

2 f(x)dx.

Since A can be any Borel set, we get p(u) = M ||u − ∂Ω||−q
2 by definition, and Equation (27) follows naturally.

Since the ℓ∞ difference between f̂nand f is lower bounded, we can obtain

EP sup
ω∈Ω

∥ω − ∂Ω∥q
2|p̂n(ω) − p(ω)| = MEf ∥f̂n − f∥∞ ≥ O

(
n− r

2r+2

)
.

■
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E.6 Proof of Theorems and Corollaries regarding linear representations of the persistence
measure

The theoretical results regarding linear representations of the persistence measure in Section 3.3 are rather direct
applications of the theoretical results on estimating the persistence intensity and density functions. We therefore
combine their proofs in this section.

Proof of Theorem C.7. First, consider the bias of Ψ̂. For any Ψ ∈ F2h,R, the bias of Ψ̂ is upper bounded by∣∣∣E[Ψ̂] − Ψ
∣∣∣ =

∣∣∣∣∫
ω∈Ω2h

f(ω)(E[p̂h(ω)] − p(ω))dω
∣∣∣∣

≤
∫
ω∈Ω2h

f(ω) |E[p̂h(ω)] − p(ω)| dω

≤ sup
ω∈Ω2h

|E[p̂(ω)] − p(ω)|
∫
ω∈Ω2h

f(ω)dω.

Then under Assumption 3.5, Theorem C.6 gives an upper bound as∣∣∣E[Ψ̂] − Ψ
∣∣∣ ≤ Lph

s

∫
ω∈Ω2h

f(ω)dω
∫

∥v∥2≤1
|K(v)| ∥v∥2

2 dv.

And then, the definition of F2h,R implies∫
ω∈Ω2h

f(ω)dω ≤
(
L√
2

)q ∫
ω∈Ω2h

ℓ−q
ω f(ω)dω ≤

(
L√
2

)q

R,

Hence it gives a further upper bound for the bias
∣∣∣E[Ψ̂] − Ψ

∣∣∣ as∣∣∣E[Ψ̂] − Ψ
∣∣∣ ≤ Lp

(
L√
2

)q

hsR

∫
∥v∥2≤1

|K(v)| ∥v∥2
2 dv.

Second, consider the bias of Ψ̌. For any Ψ ∈ F̃R, the bias of Ψ̌ is upper bounded by

∣∣∣E[Ψ̌] − Ψ
∣∣∣ =

∣∣∣∣∫
ω∈Ω

f(ω)(E[p̌h(ω)] − p̃(ω))dω
∣∣∣∣

≤
∫
ω∈Ω

f(ω) |E[p̌h(ω)] − p̃(ω)| dω

≤ sup
ω∈Ω

|E[p̌h(ω)] − p̃(ω)|
∫
ω∈Ω

f(ω)dω.

Then under Assumption 3.5, Theorem C.6 and the definition of F̃R give the upper bound as∣∣∣E[Ψ̌] − Ψ
∣∣∣ ≤ Lp̃h

sR

∫
∥v∥2≤1

|K(v)| ∥v∥2
2 dv.

Proof of Theorem 3.7. The upper bound for the variation of Ψ̂ is a direct corollary of Theorem 3.4 (a) and
the fact that

sup
Ψ∈F2h,R

∣∣∣Ψ̂ − E[Ψ̂]
∣∣∣ = sup

Ψ∈F2h,R

∣∣∣∣∫
ω∈Ω2h

f(ω)[p̂h(ω) − E[p̂h](ω)]dω
∣∣∣∣

≤
∫
ω∈Ω2h

ℓ−q
ω f(ω)dω · sup

ω∈Ω2h

ℓq
ω |p̂h(ω) − E[p̂h](ω)|

≤ R · sup
ω∈Ω2h

ℓq
ω |p̂h(ω) − E[p̂h](ω)| ;
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The upper bound for the variation of Ψ̌ follows from Theorem 3.4 (b) and a similar relation:

sup
Ψ̃∈FR

∣∣∣Ψ̌ − E[Ψ̌]
∣∣∣ ≤ R · sup

ω∈Ω
|p̌h(ω) − E[p̌h(ω)]|.

Proof of Corollaries C.8 and 3.8(a). For every x ∈ Ω2h, define

fx(ω) = 1 {ω ∈ Bx} ,

and let

F2h,R =
{

Ψ =
∫

Ω2h

fx(ω)dE[µ]
∣∣∣∣x ∈ Ω2h

}
.

Corollary C.8 follows from Theorem C.7 and the fact that∫
ω∈Ω2h

fx(ω)dω ≤ L2

4

for every x ∈ Ω2h. Similarly, Corollary 3.8 follows from Theorem 3.7 and the fact that∫
ω∈Ω2h

ℓ−q
ω fx(ω)dω ≤ Cℓ2−q

x ,

for a constant C.

Proof of Corollary 3.8(b). For every x ∈ Ω, we define

fx(ω) = 1 {ω ∈ Bx} ,

and let

F̃R =
{

Ψ̃ =
∫

Ω
fx(ω)dE[µ̃]

∣∣∣∣x ∈ Ω
}
.

Corollary C.8(b) follows directly from Theorem 3.7 and the fact that for every x ∈ Ω,∫
ω∈Ω

fx(ω)dω ≤ L2

4 .

E.7 Proof of Theorem C.10

This proof again involves the Talagrand’s inequality, and therefore takes a similar shape to the proof of Theorem
3.4. We begin by defining an auxiliary function class.

Defining the auxiliary function class G. Recall that we choose the weight function as f(ω) = ∥ω − ∂Ω∥q
2.

Therefore, for any persistence measure µ ∈ Zq
L,M , its corresponding persistence surface is characterized by

ρh(µ)(u) =
∫

Ω
∥ω − ∂Ω∥q

2
1
h2K

(
u − ω

h

)
dµ(ω);

hence, by defining

gu(µ) =
∫

Ω
∥ω − ∂Ω∥q

2
1
h2K

(
u − ω

h

)
d (µ− E[µ]) (ω)

and letting G = {gu(µ) : u ∈ Ω}, we observe that E[g] = 0 for all g ∈ G and

∥ρh(µn) − E[ρh(µ)]∥∞ = sup
g∈G

∥∥∥∥∥ 1
n

n∑
i=1

g(µi)

∥∥∥∥∥ .
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Bounding ∥g∥∞ and E[g2]. Assumptions 3.2 and C.5 directly implies that for any g ∈ G and any u ∈ Ω,

|gu(µ)| ≤ ∥K∥∞

h2 max
{∫

Ω
∥ω − ∂Ω∥q

2dµ,
∫

Ω
∥ω − ∂Ω∥q

2dE[µ]
}

= ∥K∥∞

h2 max {Persq(µ),Persq(E[µ])} ≤ M∥K∥∞

h2 .

Regarding the variance of g, Assumption 3.3 implies that

E[gu(µ)2] ≤ ∥g∥∞ ·
∫

Ω
∥ω − ∂Ω∥q

2
1
h2

∣∣∣∣K (u − ω

h

)∣∣∣∣dE[µ]

≤ M∥K∥∞

h2

∫
Ω

1
h2

∣∣∣∣K (u − ω

h

)∣∣∣∣ ∥ω − ∂Ω∥q
2p(ω)dω

≤ M∥K∥∞

h2

∫
∥v∥2≤1

|K(v)| dv · sup
ω∈Ω

∥ω − ∂Ω∥q
2p(ω)

≤ M∥K∥1∥K∥∞∥p̄∥∞

h2 ,

where in the third line we applied the change of variable v = (u − ω)/h, and let

∥K∥1 :=
∫

∥v∥2≤1
|K(v)| dv.

Covering number of G. Similar to the proof of Theorem 3.4, we bound the covering number of G by the
Lipchitz property of the kernel function K. For any two points u,u′ ∈ Ω, Assumption C.5 guarantees that∣∣∣∣K (u − ω

h

)
−K

(
u′ − ω

h

)∣∣∣∣ ≤ LK∥u − u′∥2

h
.

Therefore, it is easy to verify that

|gu(µ) − gu′(µ)| ≤ MLK∥u − u′∥2

h3 .

A similar reasoning to the proof of Theorem 3.4 yields that the covering number of G is upper bounded by

N (G, L2(Q), η) ≤ N
(

Ω, ∥ · ∥2,
ηh3

MLK

)
≤ 2

(
LMLK

ηh3

)2
.

Completing the proof. Theorem C.10 is a direct application of Theorems D.6 and D.7 with the following
choice of parameters: 

AB = 2LMLk

h3 ;
B = M∥K∥∞

h2 ;
σ2 = M∥K∥1∥K∥∞∥p̄∥∞

h2 ;
ν = 2.

E.8 Proof of Theorems C.1 and C.2

Observe that the persistence diagram of the Vietoris-Rips filtration of X = (X1,X2, ...,XN ) is decided purely
by {φ[J ](X)}J⊂[N ],|J|=2, in which

φ[J ](X) = ∥Xi − Xj∥2,

for J = {i, j}. In what follows, we firstly focus on the proof of Theorem C.1, and apply the techniques to that of
Theorem C.2 in a similar manner.
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Proof of Theorem C.1. Propositions D.4 and D.3 imply that for any Borel set B ⊆ Ω,

E[µ](B) =
R∑

r=1

Nr∑
i=1

∑
s∈S

∫
Vr∩W s

J1
ir

,J2
ir

∩Φ[J1
ir

,J2
ir

]−1(B)
κ(X)dX

=
R∑

r=1

Nr∑
i=1

∑
s∈S∫

Ψs

J1
ir

,J2
ir

(Vr∩W s

J1
ir

,J2
ir

∩Φ[J1
ir

,J2
ir

]−1(B))
κ((Ψs

J1
ir

,J2
ir

)−1(u, y))J [Ψs
J1

ir
,J2

ir
]−1(u,Y )dY du,

where in the second line we change the variable from X ∈ [0, 1]d×n to (Y ,u) with Y ∈ [0, 1]nd−2 and u ∈ Ω.
Now, a change of order of summation gives

E[µ](B) =
∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

R∑
r=1

Nr∑
i=1

I(J1
ir = J1, J

2
ir = J2)

×
∫

Ψs
J1,J2

(Vr∩W s
J1,J2

∩Φ[J1,J2]−1(B))
κ((Ψs

J1,J2
)−1(u,Y ))J [Ψs

J1
ir

,J2
ir

]−1(u, y)dY du

≤
∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

R∑
r=1

Nr∑
i=1

I(J1
ir = J1, J

2
ir = J2)

×
∫

Ψs
J1,J2

(Vr∩W s
J1,J2

∩Φ[J1,J2]−1(B))
d supκdY du

≤
∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

N(B)
∫

Ψs
J1,J2

(W s
J1,J2

∩Φ[J1,J2]−1(B))
d supκdY du, (28)

where N(B) is the number of persistent homology points in B, and in the second line we use the facts that
{Vr}R

r=1 are disjoint, κ ≤ supκ and J [Ψs
J1

ir
,J2

ir
]−1 ≤ d. Hence, bounding E[µ](B) boils down to characterizing the

domain of integration on the right hand side of (28). For this, notice that by definition,

(Y ,u) ∈ Ψs
J1,J2

(W s
J1,J2

∩ Φ[J1, J2]−1(B))
↔ ∃X ∈ W s

J1,J2
, such that Φ[J1, J2](X) ∈ B,Ψs

J1,J2
(X) = (Y ,u)

→ ∃X ∈ W s
J1,J2

, such that Φ[J1, J2](X) ∈ B,Φ[J1, J2](X) = u, and Y ∈ [0, 1]Nd−2

→ u ∈ B, and Y ∈ [0, 1]Nd−2.

Hence, E[µ](B) is upper bounded by

E[µ](B) ≤ N(B)
∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

∫
u∈B,Y ∈[0,1]Nd−2

d supκdY du

= d supκN(B)
∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

∫
[0,1]Nd−2

dY
∫

B

du

= d supκN(B)
∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

∫
B

du.
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This effectively means that the intensity function p(u) is upper bounded by

p(u) ≤ E [N({u})] d supκ
∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

1

< E [N({u})] card(S)|{(J1, J2) : |J1| = |J2| = 2, J1 ̸= J2, J1 ⊂ [N ], J2 ⊂ [N ]}|d supκ.

Now, N({u}) ≤ Nℓ, so Lemma D.5 implies E [N({u})] ≤ CN . And card(S) ≤ 4d2 and |{(J1, J2) : |J1| = |J2| =
2, J1 ̸= J2, J1 ⊂ [N ], J2 ⊂ [N ]}| ≤ N4

4 , so

p(u) ≤ (CN) · (4d2) ·
(
N4

4

)
· d supκ

= C ′N5d3 supκ.

Theorem C.1 follows with the choice of

poly(N, d) = N5d3.

Proof of Theorem C.2. Propositions D.4 and D.3 imply that for any Borel set B ⊆ Ω, the normalized
persistence measure of B is expressed by

E[µ̃](B) =
R∑

r=1

1
Nr

Nr∑
i=1

∑
s∈S

∫
Vr∩W s

J1
ir

,J2
ir

∩Φ[J1
ir

,J2
ir

]−1(B)
κ(X)dX

≤
R∑

r=1
max

1≤i≤Nr

∑
s∈S

∫
Vr∩W s

J1
ir

,J2
ir

∩Φ[J1
ir

,J2
ir

]−1(B)
κ(X)dX.

Hence, same techniques can be applied to show that the persistence density function is upper bounded by

p̃(u) ≤ d supκE
[
N({u})
N({u})

]∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

1

≤ d supκ max
1≤i≤N(u)

∑
s∈S

∑
J1,J2⊂[N ]

|J1|=|J2|=2
J1 ̸=J2

1

≤ card(S)|{(J1, J2) : |J1| = |J2| = 2, J1 ̸= J2, J1 ⊂ [N ], J2 ⊂ [N ]}|d supκ

≤ (4d2) ·
(
N4

4

)
· d supκ.

Theorem C.2 follows from choosing

poly(N, d) = N4d3.

E.9 Proof of Theorem C.11

In this proof, we firstly define an auxiliary family of functions, and then verify the conditions in Theorem D.8.

Defining the auxiliary function class. For every x ∈ Ωℓ and µ ∈ Zq
L,M , define

gx(µ) = µ(Bx) − E[µ](Bx), (29)

and let G = {gx : x ∈ Ωℓ}. It is easy to verify that E[gx(µ)] = 0 for all x ∈ Ωℓ, and that

sup
x∈Ωℓ

∣∣∣β̂x − E[β̂x]
∣∣∣ =

∣∣∣∣∣sup
g∈G

1
n

n∑
i=1

g(µi)

∣∣∣∣∣ .
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Bounding ||gx||∞ and E[gx(µ)2]. For any x ∈ Ωℓ , the set Bx is contained in Ωℓ. Hence for any µ ∈ Zq
L,M ,

µ(Bx) and E[µ](Bx) can be bounded as

µ(Bx) ≤ µ(Ωℓ) ≤ ℓ−qPersq(µ) ≤ Mℓ−q,

E[µ](Bx) ≤ E[µ](Ωℓ) ≤ ℓ−qPersq(E[µ]) ≤ Mℓ−q. (30)

Hence ∥gx∥∞ can be bounded as

∥gx∥∞ ≤ sup
µ∈Zq

L,M

max {µ(Bx),E[µ](Bx)} ≤ Mℓ−q. (31)

As for the variance of gx(µ), we firstly observe that

E[gx(µ)2] ≤ ||gx||∞E[µ](Bx) (32)

Now, apart from using the bound E[µ](Bx) ≤ Mℓ−q from (30), we can also have tighter bound with respect to ℓ
when q > 1. To do this, we again take the coordinate transformation{

y1 = x2−x1√
2 = ∥x − ∂Ω∥2,

y2 = x2+x1√
2 .

It can be easily verified that the determinant of the Jacobian matrix between x and y coordinates is 1, and that
the Ωℓ can be represented using y coordinates by

Ωℓ =
{

(y1, y2) : ℓ < y1 ≤ L√
2
, y1 ≤ y2 ≤

√
2L− y1

}
.

Then, we have a tighter bound with respect to ℓ of E[µ](Bx) when q > 1 as

E[µ](Bx) ≤ E[µ](Ωℓ) =
∫

Ωℓ

p(u)du

=
∫

Ωℓ

∥u − ∂Ω∥−q
2 p̄(u)du

≤ ∥p̄∥∞

∫ L√
2

ℓ

(∫ √
2L−y1

y1

dy2

)
y−q

1 dy1

≤ ∥p̄∥∞

∫ L√
2

ℓ

√
2Ly−q

1 dy1

≤
√

2Lℓ1−q ∥p̄∥∞
q − 1 .

Hence when we let (q − 1)+ = max{q − 1, 0},

E[µ](Bx) ≤ min
{
Mℓ−q,

√
2Lℓ1−q ∥p̄∥∞
(q − 1)+

}
. (33)

And hence by applying (33) to (32), the variance of gx(µ) can be upper bounded as

E[gx(µ)2] ≤ ∥gx∥∞ E[µ](Bx)

≤ min
{
M2ℓ−2q,

√
2MLℓ1−2q ∥p̄∥∞

(q − 1)+

}
(34)

Polynomial discrimination of G. By definition, the empirical persistent measure µi can be represented as

µi =
∑

j

δrij
,
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in which rij = (bij , dij) represents the j-th point in the corresponding persistent diagram, with bij and dij being
its birth and death weight respectively . Without loss of generality, we can sort the points in descending order
of their distance to the diagonal ∂Ω. Let Ni = µi(Ωℓ), then we have Ni ≤ Mℓ−q. Hence, for every x with
||x − ∂Ω||2 = ℓ, µi(Bx) can be represented as

µi(Bx) =
Ni∑

j=1
1(bij < x1)1(dij > x2). (35)

With this expression, we are ready to bound the cardinality of G(µn
1 ). Notice that for any fixed x, the value of

the tuple (gx(µ1), ..., gx(µn)) is completely decided by the Cartesian product of indicator functions

{1(bij < x1)}i∈[n],j∈[Ni] × {1(dij > x2)}i∈[n],j∈[Ni] := Sb × Sd.

It is easy to see that with the variation of x = (x1, x2), the number of different values taken by Sb and Sd can be
bounded by

1 +
n∑

i=1
Ni ≤ 1 + n ·Mℓ−q.

Hence, the cardinality of G(µn
1 ) is bounded by

Card(G(µ)) ≤
(
Mℓ−qn+ 1

)2
. (36)

Completing the proof. The theorem is a direct result for applying Theorem D.8 with the following parameters:
A = Mℓ−q;
B = M ;
σ2 = min

{
M2ℓ−2q,

√
2MLℓ1−2q∥p̄∥∞

(q−1)+

}
;

ν = 2.

F EXPERIMENTAL DETAILS

Figure 3 shows two ORBIT5K simulations with different values of r (2.5 and 4) and the corresponding persistent
diagrams. Figure 4 displays the kernel intensity functions for the ORBIT5K simulations set with r = 2.5 and
r = 4 for varying sample sizes, while Figure 5 shows persistence density functions. Figures 6 and 7 show the Betti
curves and estimated Betti curves using the kernel density function for the ORBIT5K simulations for r = 2.5 and
r = 4.

Figure 8 displays the estimated persistence density functions computed over random draws of varying size of the
digits “4" and “8" from the MNIST dataset.

Finally, Figure 9 shows the sample plots, sample persistent diagram, and the kernel-based estimators for the
persistence intensity and density functions calculated from 1000 samples of 1000 data points drawn from the
uniform distirbution and the power sphere distribution on the unit circle.
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Figure 3: Top row: sample orbits from the ORBIT5K data set with r = 2.5 (left) and r = 4.0 (right). Bottom
row: sample persistent diagrams.
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Figure 4: Kernel estimators for the persistence intensity function from the ORBIT5K data set with r = 2.5 (left)
and r = 4.0 (right) and sample sizes 10, 100 and 1000 (top to bottom).



Running heading title breaks the line

Figure 5: Kernel estimators for the persistence density function from the ORBIT5K data set with r = 2.5 (left)
and r = 4.0 (right) and sample size n = 1000.

Figure 6: Empirical betti curves (left) and normalized betti curves (right) from the ORBIT5K data set with
r = 2.5 and r = 4.0. Solid lines show sample average and the shades depict the lower and upper 2.5 percentiles.

Figure 7: Kernel-based betti curves (left) and normalized betti curves (right) from the ORBIT5K data set with
r = 2.5 and r = 4.0. Solid lines show sample average and the shades depict the lower and upper 2.5 percentiles.
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Figure 8: Kernel estimators for the persistence density function from the MNIST data set for the digits 4 (left
column) and 8 (right column) based on random draws of sample sizes 100, 1000 and 5000 (top to bottom).
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Figure 9: Sample persistence diagram, kernel-estimated persistence intensity and density functions (top to bottom)
for the uniform distribution (left) and the power spherical distribution Cao and Aziz (2020) (right) on the unit
circle S1. The parameters for the power spherical distribution are set to µ = π

2 and κ = 1. Each sample contains
1000 points generated in an i.i.d. manner from the corresponding distributions on the unit circle and each
perturbed by an additive noise term, sampled i.i.d. from the N(0, 0.052I2) distribution. The intensity and density
functions are estimated through 1000 independent samples.
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