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Abstract

Many existing object counting methods
rely on density map estimation (DME)
of the discrete grid representation by de-
coding extracted image semantic features
from designed convolutional neural net-
works (CNNs). Relying on discrete den-
sity maps not only leads to information loss
dependent on the original image resolution,
but also has a scalability issue when analyz-
ing high-resolution images with cubically in-
creasing memory complexity. Furthermore,
none of the existing methods can offer reli-
able uncertainty quantification (UQ) for the
derived count estimates. To overcome these
limitations, we design UNcertainty-aware,
hypernetwork-based Implicit neural repre-
sentations for Counting (UNIC) to assign
probabilities and the corresponding count-
ing confidence over continuous spatial co-
ordinates. We derive a sampling-based
Bayesian counting loss function and de-
velop the corresponding model training al-
gorithm. UNIC outperforms existing meth-
ods on the Remote Sensing Object Count-
ing (RSOC) dataset with reliable UQ and
improved interpretability of the derived
count estimates. Our code is available at
https://github.com/SiyuanXu-tamu/UNIC.

1 INTRODUCTION

As urban populations have surged and urbaniza-
tion has advanced swiftly, geographic entities like
buildings and cars have increasingly congregated and
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densely populated. Consequently, this has spurred
a growing research interest in scene comprehension
through the lens of object counting. Object counting
holds promising potential for handling similar tasks
in other domains too, including crowd counting for
security (Ma et al., 2019; Li et al., 2018), animal
crowd estimations (Ma et al., 2015), and cell count-
ing for biomedicine (Paul Cohen et al., 2017). Peo-
ple have achieved good performance by introducing
deep learning (Fu et al., 2015) and self-attention (Gao
et al., 2020) into counting tasks. The best-performing
methods are mostly based on density map estima-
tion (DME) (Ma et al., 2019; Gao et al., 2022). They
all train convolutional neural networks (CNNs) to gen-
erate discrete density maps, which faces the following
challenges: 1) The “ground-truth” density maps are
always generated by convolving the ground-truth dot
map with a Gaussian kernel (Wan and Chan, 2019),
which may lead to biased object count estimates due
to blurring effects dependent on image grid resolution
as the derived density maps are not continuous (Ma
et al., 2019); 2) Highly dense images often have sig-
nificantly overlapping objects so that accurate estima-
tion needs high-resolution density maps requiring ad-
ditional computing resources, making it hard to handle
high-resolution images; 3) There lacks reliable uncer-
tainty quantification, which is critical for consequent
decision making in many real-world applications.

To alleviate these issues, we design a new UNcertainty-
aware Implicit neural representation based Count-
ing (UNIC) method to learn a continuous function for
DME, which can calculate the density distribution for
any continuous spatial location in the image domain
to provide fine details not limited by the grid resolu-
tion but by the capacity of the underlying network
architecture. Besides, to preserve continuous infor-
mation as much as possible, improve scalability, and
enhance the model training convergence, we design a
Bayesian loss function and derive the training algo-
rithm for UNIC with sampling-based Bayesian count-
ing loss estimation. To further improve convergence,
we leverage hypernetworks (Skorokhodov et al., 2021)
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to directly learn the model parameters in UNIC, mak-
ing sure that the representation function for each im-
age is unique in an amortized fashion.

Our contributions include: 1) We design UNIC, a
novel hypernetwork-based implicit neural representa-
tion (INR) for object counting, which learns a con-
tinuous function for generating density maps instead
of typical discrete density maps; 2) We derive an effi-
cient model training scheme for counting tasks based
on a Bayesian counting loss estimated via sampling;
3) UNIC enables uncertainty quantification in object
counting; and 4) UNIC consistently outperforms other
counting methods across image resolutions in our ex-
periments.

2 RELATED WORK

Object counting: The original ideas (Lin et al.,
2001) for estimating crowd counts are based on
detecting or segmenting individual objects in the
scene. To sidestep the intricacies associated with
the more complicated detection problem, especially
with densely populated scenes, researchers have sug-
gested directly mapping image features to object
counts (Chan et al., 2008). Wang et al. (2015) adopted
the AlexNet (Krizhevsky et al., 2012) architecture to
predict the scalar count value as the output of the final
fully connected layer.

Since introduced by Lempitsky and Zisserman (2010),
counting via predicting a density map, or DME,
achieves higher counting accuracy because more im-
age information can be utilized. In this context, each
pixel’s value in the density map represents the esti-
mated likelihood of an object being present in the
corresponding area of the image. Subsequently, the
total count of objects can be determined by integrat-
ing over this density map. CNN-based DME methods
have been demonstrated to outperform conventional
object counting techniques using handcrafted image
features (Fu et al., 2015). The recently developed AS-
PDNet integrates attention and deformable convolu-
tion modules to address challenges in counting such
as complex cluttered background, viewing perspective,
object appearance, and size variability, with demon-
strated superior counting performance on their con-
structed the RSOC (Remote Sensing Object Count-
ing) dataset (Gao et al., 2020).

Implicit neural representations: Since Stanley
(2007) pioneered a neuroevolution-based model aug-
menting extracted deep image features leveraging spa-
tial coordinate information, Implicit Neural Represen-
tations (INRs) become well known after being applied
to 3D shape representation (Mescheder et al., 2019)
and other tasks, including texture analysis (Oechsle

et al., 2019) and medical image analysis (Barrow-
clough et al., 2021). More recently, Tancik et al.
(2020) and Sitzmann et al. (2020) further introduced
Fourier positional encoding and periodic activation
functions in INRs to learn high-frequency details and
better represent complex natural signals. When com-
bined with generative models including INRs, hy-
pernetworks (Sitzmann et al., 2020) that adaptively
generate parameters have further improved predic-
tion performances in classification (Ratzlaff and Fuxin,
2019), super-resolution (Klocek et al., 2019) and image
generation (Dupont et al., 2022; Koyuncu et al., 2023).
We here adopt a hypernetwork-based INR implemen-
tation in UNIC to achieve more stable and faster model
training for counting. Compared with existed image
generation model, our main focus is to model density
maps as a stochastic process, which is continuous and
enables uncertainty quantification (UQ).

Uncertainty in counting: In recent years, re-
searchers (Oh et al., 2020; Ranjan et al., 2020; Wang
et al., 2022) have attempted to develop crowd-counting
models with the uncertainty quantification capabil-
ity. Oh et al. (2020) proposed a scalable neural net-
work framework with quantification of decomposed un-
certainty using a bootstrap ensemble. Ranjan et al.
(2020) modeled the crowd density values using Gaus-
sian distributions and developed a CNN architecture
to predict these distributions, where an active sample
selection strategy guided by the quantified uncertainty
is used for reducing the amount of labeled data for
training. To the best of our knowledge, UNIC is the
first uncertainty-aware INR-based counting method
based on density map estimation, where we predict
the density distribution for any continuous spatial lo-
cation that scale and generalize better for counting
tasks across different image resolution.

3 UNIC

We propose UNIC, an object counting method utiliz-
ing hypernetwork-based implicit neural representation
(INR), which models density maps as stochastic pro-
cesses for accurate prediction and uncertainty quan-
tification. We first briefly review the density map esti-
mation (DME) based counting method in Section 3.1
and then introduce our continuous modeling of den-
sity map with INR and hypernetwork in Section 3.2.
We further model the density maps as stochastic pro-
cesses to quantify the uncertainties in object counting
tasks 3.3, with the variational inference based training
algorithm detailed in Section 3.4.

3.1 DME-based Counting

For a given image I, let the counting annotation map
DI = {(zn, yn)}N1 with a set of N labeled objects,
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Figure 1: Schematic diagram of UNIC. Given an input image It, the predicted latent features of the encoder
network are used to parameterize the decoder network for the test image, which predicts the count number
Eqθ [Ex [Dt(x)]] as well as the associated uncertainty Var [Ex [Dt(x)]] given the positional encoding of an arbitrary
location γ(x),x ∈ [0, 1]2.

where zn denotes the normalized image-coordinate-
based position of the n-th object, zn ∈ [0, 1]2 and
yn = n is the corresponding label for each object.
We focus on DME-based counting and this annota-
tion map is used to derive the object density map D
by convolution using a Gaussian kernel based on an-
notated object positions (Lempitsky and Zisserman,
2010; Wang et al., 2015; Fu et al., 2015; Paul Cohen
et al., 2017; Gao et al., 2020):

Dgt (xm)
def
=

N∑
n=1

N
(
xm; zn, σ

212×2

)
=

N∑
n=1

1√
2πσ

exp

(
−
∥xm − zn∥22

2σ2

)
,

(1)

where xm denotes the mth normalized pixel coordinate
in the estimated density map with M pixels, xm ∈
[0, 1]2, N

(
xm; zn, σ

212×2

)
denotes the 2D Gaussian

distribution with the mean zn and isotropic covariance
matrix σ212×2.

3.2 Density Maps as Continuous Functions

Instead of typical discrete density maps in existing
DME-based counting methods (Lempitsky and Zisser-
man, 2010; Wang et al., 2015; Fu et al., 2015; Paul Co-
hen et al., 2017; Gao et al., 2020), UNIC leverages INR
to predict a continuous density function. Such a model
design can better scale up DME-based counting and
reduce the counting bias due to potential blurring ef-
fects based on the input image resolution. To be more
specific, we represent the estimated density map of
image Ia as a continuous function Ha : [0, 1]2 → R≥0.

The discrete pixel-based density map can be obtained
by evaluating Ha over the discrete grids {xm}Mm=1.
This INR-based representation is not only more effi-
cient and scalable than the pixel-based representation
as detailed in the latter sections, but also allows us to
generate the density map of arbitrarily high resolution
by increasing the sampling frequency without the need
to re-train the model.

In order to efficiently represent the unique density
function by learning the corresponding density map
prediction model Ha for each image Ia, we first map
the input image Ia into a latent space through an en-
coder network fθ(·), and condition our density func-
tion Ha on latent representations ua = fθ(Ia) ∈
Rdc×dw×dh . Specifically, with Ha parameterized with
a decoder network h(·), we utilize the latent represen-
tations ua via a hypernetwork-based implementation:

Ha(·) = h(·,ua) = h(·, fθ(Ia)). (2)

One main challenge for adopting INR for the contin-
uous density representation is “spectral bias” (Tan-
cik et al., 2020), a phenomenon that the neural net-
work tends to learn only low-frequency features. To
predict the density map that retains the details of
the object location and size, we follow the previous
works (Tancik et al., 2020) and use the Fourier encod-
ing for the coordinate positions. Given a coordinate
position x = [x1, x2]T , the positional encoding for x:
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γ(x) is given as follows:

γ1(xi) = [sin 20πxi, . . . , sin 2Jπxi]T , i ∈ {1, 2},
γ2(xi) = [cos 20πxi, . . . , cos 2Jπxi]T , i ∈ {1, 2},
γ(x) = [γ1(x1)T , γ2(x1)T , γ1(x2)T , γ2(x2)T ]T ,

where log-linear spaced frequencies are used for each
dimension, and the degree J is a hyperparameter de-
termined by given tasks and datasets.

Note that we would like to derive a unique continu-
ous density function via Ha for each image Ia. In
our hypernetwork-based model, instead of using a de-
coder network hψ(·) parameterized by some learnable
parameters ψ taking coordinate positions x and latent
features ua as two separate inputs, it is more efficient
to directly use the latent features ua to parameterize
the decoder as a hypernetwork (Klocek et al., 2019).
In this case, the latent features ua can be rewritten
as ua = [W 1, . . . ,WL], and the density at coordi-
nate position x has the following expression, with the
hypernetwork-based decoder being a Multi-Layer Per-
ceptron (MLP) neural network:

Ha(x) = ϕL(W T
L . . .ϕ1(W T

1 γ(x))), (3)

where L is the number of the decoder network layers,
and ϕl(·) is the activation function at layer l. Here we
use the same notation W l to denote a 3-D matrix and
a 2-D matrix by flattening its last two dimensions. We
provide a schematic diagram of our UNIC framework
in Figure 1.

We would like to emphasize that because of our
hypernetwork-based continuous decoder implementa-
tion, it is easy to sample at arbitrary spatial locations
through the learned density map prediction model
Ha(·) dependent on the given input image. This en-
ables flexible stochastic training algorithms that can
take the best advantage of available information in
the training data and scale up DME-based counting
by sampling arbitrary-size coordinates for gradient es-
timates to update model parameters.

3.3 Uncertainty-aware Counting

In many real-world applications, we want to develop a
density map prediction model that provides count es-
timations and quantifies the associated uncertainties.
This motivates us to model the density map D(·) as
two-dimensional random process, rather than estimat-
ing only a deterministic density function. To learn the
posterior distribution of D(·) in a Bayesian paradigm,
we assume a variational distribution qθ(Da(·)|Ia) pa-
rameterized by θ through h(·, fθ(Ia)). With mild inde-
pendence assumptions, minimizing the KL divergence
between the variational distribution qθ(Da(·)|Ia) and

ground-truth density maps p(Da(·)|Ia,DIa) (DIa de-
notes the annotation map for image Ia) can be ap-
proximately solved by maximizing the following de-
rived Evidence Lower BOund (ELBO):

1

A

A∑
a=1

log p(DIa |Ia)

≥ 1

A

A∑
a=1

[log p(Dgt
a (·)|h(·, fθ(Ia)), Ia)

−DKL(qθ(Da(·)|Ia)∥pη(Da(·)|Ia))].

(4)

Here pη(Da(·)|Ia) is the prior distribution of Da(·),
for which we can assume an uninformative prior, in-
dependent of Ia without loss of generality. We assume
the likelihood p(Dgt

a (·)|θ, I) implicitly defined by the
discrepancy between the contribution of Dgt

a to the n-
th object label cgtn,a(·) and the estimated contribution
cn,a(·), which has the following form:

p(Dgt
a (·)|θ, I) ∝

N∏
i=1

exp(−∥ci,a(·) − cgti,a(·)∥22). (5)

We detail the definitions and derivations of cgtn,a(·) and
cn,a(·) in Supplementary Materials Section A.1.

3.4 Stochastic Estimation of Expected ELBO

By Jensen’s inequality, the expression (4) can be fur-
ther lower bounded by the following expected ELBO:

Ex∼p(x)[
1

A

A∑
a=1

[log p(Dgt
a (x)|h(·, fθ(Ia)), Ia)

−DKL(qθ(Da(x)|Ia)∥pη(Da(x)|Ia))]],

(6)

where p(x) is any probability distribution of x. This
optimization objective makes it possible to train our
model with any existing stochastic optimization al-
gorithm. Without loss of generality, we can choose
p(x) to be a uniform distribution x ∼ Uniform[0, 1]2.
By further integrating (13) into (6) and deriving es-
timates by samples {xm}Km=1, we reach the following
minimization objective:

LELBO =
1

A

A∑
a=1

[

N∑
n=0

Ex∼Unif[0,1]2
[
∥cn,a(x) − cgtn,a(x)∥22

]
+ λ

A∑
a=1

DKL(q(Da(x)|Ia)∥pη(Da(x))|Ia))]

≈ 1

K

K∑
m=1

A∑
a=1

[

N∑
n=0

∥cn,a(xm) − cn,a(xm)gt ∥22

+ λDKL(q(Da(xm)|Ia)∥pη(Da(xm))|Ia))],

(7)
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where λ is a hyperparameter reflecting our belief be-
tween the observed data and prior, following Higgins
et al. (2016) and n = 0 denoting the background pixel
modeling in Ma et al. (2019). While we sample xm

uniformly from an S × S image grid, sampling strate-
gies with better efficiency can be developed with the
prior knowledge of object locations. We will also show
in Section 4.6 that the model trained with a larger S
can make density map prediction with better accuracy
and visual quality, which could be potentially useful for
developing high precision detection models leveraging
the derived density maps.

Given the optimized variational parameters θ∗ ob-
tained through model training and a test image It, we
derive count predictions and estimate the uncertain-
ties using the expectation Eqθ [Ex [Dt(x)]] and variance
Var [Ex [Dt(x)]] of the predicted count distribution re-
spectively, which can be easily estimated with the sam-
ples from qθ over the normalized image domain.

4 EXPERIMENTS

We evaluate our UNIC on the Remote Sensing Object
Counting (RSOC) dataset (Gao et al., 2020), whose
data splits and summary statistics of “building” subset
are provided in Section 4.1. We include the evaluation
metrics for both counting accuracy and uncertainty
quantification in Section 4.2, and training details with
chosen hyper-parameters in Section 4.3. We compare
our UNIC to baseline models and also visualize sev-
eral examples of the predicted density maps derived
by UNIC along with those by the baseline models in
Section 4.4. We further evaluate the potential count-
ing UQ capability in Section 4.5. Last but not least,
we also provide ablation studies analyzing the sensi-
tivity of different hyperparameters and sampling grids
in our model in Sections 4.6.

4.1 Dataset

The RSOC dataset (Gao et al., 2020) is a large-scale
image dataset for remote sensing count estimation,
which contains 3, 057 512 × 512 images with a total
of 286, 539 objects labeled with “buildings”, “ships”
“small vehicles” and “large vehicles”. We focus pri-
marily on estimating the number of buildings in this
paper and split 2, 468 images with an average of 30.3
building labels into training and test sets following Gao
et al. (2020). The training set contains 1, 205 images
and the test set contains 1, 263 images.

1We here adopt the sampling based Bayesian counting
loss as detailed in the text instead of the original loss in Ma
et al. (2019).

4.2 Evaluation Metrics

Evaluate Counting Accuracy: In our experi-
ments, different counting methods are assessed us-
ing two commonly utilized metrics: the Mean Abso-
lute Error (MAE) and the Root Mean Squared Error
(RMSE) defined as follows:

MAE =
1

A

A∑
a=1

∣∣∣CIa − Cpredict
Ia

∣∣∣ ,
RMSE =

√√√√ 1

A

A∑
a=1

∣∣∣CIa − Cpredict
Ia

∣∣∣2,
(8)

where CIa is the number of objects in Ia, A is the

total number of test images, and Cpredict
Ia

denotes the
predicted number of objects in Ia, calculated by the
expectation Eqθ [Ex [Da(x)]].

Evaluate Uncertainty Quantification: A well-
calibrated model means that the predicted distri-
bution by the model matches perfectly with the
true data distribution. Here we use the Calibration
Curve (Kuleshov et al., 2018) to measure the cali-
bration performance of our predicted uncertainty in
UNIC. Intuitively, in a regression setting, the fre-
quency of the label to fall in the α% predicted confi-
dence interval should also be approximately α%. For-
mally, we say that the forecaster Cpredict is well cali-
brated if

q
def
=

T∑
i=1

I
{
Cpredict

It
≤ F−1

t (p)
}

T
= p,∀p ∈ [0, 1] ,

(9)
where T denotes the number of images on the test
dataset; I(x) = 1 when x = True, and I(x) = 0
when x = False; FIt(·) is the cumulative probability
distribution (CDF) with F−1

It
(p) denoting the corre-

sponding interval at the p confidence level. Denote
the value of q as the observed confidential level based
on our uncertainty-aware count estimation. Good un-
certainty quantification will have q close to p.

4.3 Model Settings and Training Details

We compare our UNIC with ASPDNet (Gao et al.,
2020) and PSGCNet (Gao et al., 2022), which are two
state-of-the-art (SOTA) counting models for remote-
sensing images, based on both MSE and Bayesian loss
functions (Ma et al., 2019) for model training. For fair
comparison, we use the same VGG-16 (Simonyan and
Zisserman, 2014) backbone for all of the ASPDNet,
PSGCNet and UNIC models. Our feature mapping
network consists of three convolution layers to generate
latent features and max-pooling layers to reduce the
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Table 1: Means and standard deviation values of counting accuracy on different random model running with
different input image sizes on the RSOC dataset. Our UNIC model consistently outperforms the SOTA counting
models for remote sensing images with different input image resolution. UNIC is consistently the best performing
model with their prediction errors highlighted in the bold font.

Method
Loss 64× 64 256× 256 512× 512

MSE. Bayes. MAE RMSE MAE RMSE MAE RMSE

PSGCNet ✓ 8.90±0.36 12.69±0.47 7.33±0.34 11.02±0.22 7.41±0.24 11.16±0.27
PSGCNet ✓ 7.92±0.27 11.43±0.21 7.18±0.11 10.98±0.13 7.30±0.16 10.91±0.22
ASPDNet ✓ 9.33±0.40 12.54±0.34 7.40±0.24 11.06±0.31 7.27±0.14 10.68±0.22
ASPDNet ✓ 8.19±0.19 12.07±0.11 7.59±0.19 11.07±0.25 7.21±0.13 10.58±0.27

UNIC ✓1 7.63±0.11 11.30± 0.08 6.83±0.23 10.42± 0.24 7.11±0.08 10.53±0.11

Figure 2: Predicted density maps by UNIC and other baseline models of three test images from RSOC. Three test
images are randomly sampled (INPUT) with the ground truth (GT). Density maps are generated by PSGCNet
with MSE loss (PSGCNet+MSE), PSGCNet with Bayesian counting loss (PSGCNet+Bayes), ASPDNet with
MSE loss (ASPD+MSE), ASPDNet with Bayesian counting loss (ASPD+Bayes), and UNIC (UNIC). Warmer
colors denote higher values while cooler colors denote lower values.

Table 2: Model complexity by the number of param-
eters with different input image sizes on the RSOC
dataset.

Method
# of Param.

64 × 64 256 × 256 512 × 512

PSGCNet ≈ 28.1M ≈ 28.1M ≈ 28.1M
ASPDNet ≈ 27.5M ≈ 27.5M ≈ 27.5M

UNIC ≈ 13.0M ≈ 18.0M ≈ 18.1M

size of feature maps. Our decoder network in UNIC
consists of four fully connected layers with residual
connection whose weights and biases are from latent
features, and one fully connected layer with learnable
parameters to output mean and standard deviation of
variational posterior, with the detailed parameteriza-

tion provided in Supplementary Materials Section B.

We use the Adam (Kingma and Ba, 2014) optimizer
for all the competing models with the learning rate of
1e−4. For simplicity, we adopt Gaussian distributions
for both prior and variational distributions. We initial-
ize our model parameters using random samples from a
Gaussian distribution N (0, 0.012), and set σ = 1

64 and
J = 100 unless specified. Especially, we set σ = 1

16
when input size = 64 to generate reasonable density
maps, we set S = 64 in Sections 4.4 and 4.5, and
S = 32 in Section 4.6 to visualize the effect of J and
σ. Except for the results in Table 1, we set input im-
age size to 256 × 256 for all the other experiments,
while the downsampling ratio is set to 8 in all baseline
methods. We augment the training data by randomly
flipping the input images both horizontally and ver-
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tically. All the experimental results are obtained on
a workstation with a NVIDIA V100 32GB GPU. The
best performing models that have the lowest MSE with
proper density maps in the first 1000 training epochs
are selected for reporting the results. We run our ex-
periments multiple times using the random seeds 0, 1,
64, and 123 and report the average performance for
reproducibility.

4.4 Comparison with Baseline Models

We compare the counting accuracy by UNIC and the
baseline models with different input image resolutions
on the RSOC dataset while keeping the model back-
bone fixed.

Table 1 reports the average counting accuracy along
with the standard deviation values over four ran-
dom runs, from which it can be observed that UNIC
consistently achieves the best counting performance
on the RSOC building benchmark with different res-
olutions. UNIC exhibits significant enhancements
over the second-best performing ASPDNet with the
Bayesian Loss and reduces MAE by 4.87% and RMSE
by 5.10% for the input resolution 256×256. While the
counting performance for all the tested models typi-
cally degrades with downsampled input images, due to
the potential information loss of image details, UNIC
not only maintains the overall best performance but
also provides more stable counting prediction accu-
racy with different input resolutions compared to other
baseline models. Compared to the case with input size
256×256, we observe larger prediction errors when the
input size is set to be 512 × 512. This is possibly due
to spectral bias(Tancik et al., 2020; Sitzmann et al.,
2020), a phenomenon that the neural network tends
to learn only low-frequency features. Although more
information is provided with the increasing input res-
olution, the model focuses more on low-frequency sig-
nals during training, which brings limited benefit to
the final counting accuracy.

We also provide several examples from the test im-
ages to visually compare the derived density maps by
UNIC and other baseline methods, including PSGC-
Net and ASPDNet, trained with both the traditional
MSE and Bayesian counting loss functions. From Fig-
ure 2, the baseline methods do not perform as well as
our UNIC when the objects’ appearance or illumina-
tion is complex. For example, in the first image, AS-
PDNet misses some buildings in the bottom half of the
image. UNIC also has fewer false positives in highly
dense object regions. In the second and third images,
regions (Zhang et al., 2022) where boundaries between
buildings and background are hard to distinguish ap-
pear in both ASPDNet and PSGCNet results, causing
typically larger count estimates than the ground-truth

labels. Compared with other methods, thanks to the
ability of INR to capture more detailed image informa-
tion, UNIC outputs higher-quality density maps while
achieving lower counting errors. To make the over-
estimation and under-estimation regions clearer, we
also provide information gain(IG) (Kümmerer et al.,
2015) maps in Supplementary Materials Section C.

Moreover, our hypernetwork-based decoder contains
drastically less parameters compared to the baseline
models, which is shown in Table 2. For example, our
UNIC with the VGG-16 backbone only uses ∼ 18.0M
model parameters when input size = 256× 256, which
is 34.5% less than ASPDNet models, with ∼ 27.5M pa-
rameters. For the case that the input size is 64×64, we
set dw = dh = 8 instead of 16, which makes the model
much smaller but still has constant performance. Be-
sides model complexity, for deriving the density map
given a 256 × 256 input image on our workstation,
our UNIC only takes 3.6ms, 75.8% less compared to
ASPDNet which takes 14.9ms, and 20.0% less com-
pared to PSGCNet which takes 4.5ms. Our UNIC can
achieve better computational and parameter efficiency
and scales better with larger input images.

4.5 Uncertainty Quantification

Our UNIC model also provides reasonable uncertainty
estimation in terms of both informativeness to pos-
sible erroneous prediction and prediction calibration.
To see this, we provide the scatter plot of the MAE
prediction error with respect to the quantified uncer-
tainty of each test image by UNIC in Figure 3, as well
as the calibration plot in Figure 4.

We can see in Figure 3 that the prediction error is
mostly small when UNIC derives confident counting
prediction. As the predicted uncertainty increases, the
model also exhibits a higher chance to make a count
prediction deviated from the ground-truth label. This
trend indicates the informativeness of the quantified
uncertainty to potential prediction error, which could
be important to safety-critical applications. We can
also observe in Figure 4 that the calibration curve of
our model is reasonably close to the y = x line, indi-
cating that the predicted α% confidence interval cov-
ers approximately α% of the ground truth of the test
data. The deviation of the calibration curve from the
perfect y = x line at the end is possibly caused by our
Gaussian variational distribution, which allows nega-
tive density map prediction and does not match per-
fectly with reality. Strategies like post-hoc calibration
or choosing a more complicated variational distribu-
tion can be applied to address this mismatch and po-
tentially increase the uncertainty quantification qual-
ity.
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Figure 3: Scatter of predictive error with respect to
the predicted counting standard deviation. The model
exhibit a higher chance to make a erroneous prediction
as the predicted standard deviation increase.

Figure 4: Calibration curve of the predicted uncer-
tainty. The x−axis represents the predicted confidence
interval and the y−axis represents the frequency of the
ground-truth counts falling into the predicted interval.
A well-calibrated model should have the calibration
curve close to y = x.

4.6 Ablation Studies

We further evaluate the sensitivity of the counting per-
formance of our UNIC model with respect to three
hyperparameters: 1) J , which is the hyperparameter
controlling the degree or dimension of the positional
encoding; 2) σ, which is the hyperparameter for gen-
erating the ground-truth density map; and 3) S, the
size of predefined grids from which we sample our den-
sity function for training.

Effect of J : We report the counting accuracy with
different J on the RSOC dataset in Table 3. The best-
performing model is achieved when J is set to be 100.
In Figure 5 we show three exemplar density maps with
different J along with the ground-truth density maps.
We observe sharper density maps and better counting
performance as J increases from 16 to 100.

Effect of σ: In Figure 6 we show the density maps
predicted by UNIC using two test images from RSOC

Table 3: Counting accuracy with different J for posi-
tional encoding on RSOC.

J (Input Size = 256) MAE RMSE

16 7.19 10.67
32 7.10 10.56
64 6.92 10.39
80 6.95 10.43
100 6.85 10.31

Figure 5: Predicted density maps with different J
along with the ground-truth density maps of three test
images from RSOC. Given example test images (IN-
PUT), it is observed that with increasing J from left
to right, UNIC can capture more detailed image infor-
mation with large enough J and derive sharper density
maps, similar as the ground truth (GT).

with σ = 1
64 and σ = 1

32 . We can see smaller σ values
lead to sharper density maps compared with larger σ.
UNIC also achieves consistent counting performance
with respect to different σ values.

Effect of S: We also report the prediction accuracy
and include the predicted density maps by our UNIC
trained with the loss estimated by sampling from the
grids of different size S in Table 4 and Figure 7. As S
increases from 32×32 to 128×128, our model can pre-
dict better density maps in terms of visual quality. A
possible explanation is that given a large enough num-
ber of samples T , we are providing the model with the
ground-truth density closer to a continuous 2D func-
tion as S increases. This will allow the model to cap-
ture the subtle boundary information helpful for de-
riving the density map with better visual quality. We
note that the counting prediction accuracy is stable
with different S, indicating that with a sufficient num-
ber of density function samples, UNIC can be trained
to achieve consistent superior counting performance.

5 CONCLUSION

In this paper, we develop UNIC with a hypernetwork-
based INR implementation for object counting, which
achieves the state-of-the-art counting performance and
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Figure 6: Predicted density maps with different σ val-
ues for two test images from RSOC.

Table 4: Counting accuracy with different sampling
grid sizes for training S on the RSOC dataset.

S (resolution of density map) MAE RMSE

32 × 32 6.85 10.31
64 × 64 6.83 10.42
128 × 128 6.82 10.32

enables uncertainty quantification. With efficient
model training by designing a sampling based Bayesian
counting loss function for stable and faster conver-
gence, UNIC has demonstrated superior counting per-
formance compared to existing methods but with sig-
nificantly reduced number of model parameters on the
RSOC dataset. Our experiments have showcased the
benefits of our proposed INR-based continuous de-
coder as well as the sampling based Bayesian loss in
UNIC, which has the potential to be easily incorpo-
rated into existing counting methods and other image
analysis tasks for further performance improvement.
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A SUPPLEMENTARY INFORMATION FOR MODEL TRAINING

A.1 Derivation of Log-likelihood log p(Dgt
a (·)|h(·, fθ(Ia)), Ia)

Here we describe how we derive log p(Dgt
a (·)|h(·, fθ(Ia)), Ia) with Bayesian-loss-like likelihood in the Section 3.3

of the Main Text. We omit the subscript a for image index for simplicity. We make similar assumptions as Ma
et al. (2019) and assume a random function y(·) : R2 → {1, · · · , N}, with y(x) denoting whether the location x
belongs to one of the N objects with a prior distribution p(y(·)). The posterior probability given annotations
DI = {(zn, yn)}N1 at an arbitrary location x can be derived by Bayes’ rule:

p (y(·) | DI) =
p (DI | y(·)) p (y(·))

p (DI)
=

p (DI | y(·)) p (y(·))∑N
i=1 p (DI | y(·) = i) p (y(·) = i)

. (10)

Here we adopt a discrete uniform prior p (y(·)) = 1
N for all y(·) and assume the Gaussian likelihood with the

isotropic covariance matrix p (DI | y(x) = n) = N
(
x; zn, σ

212×2

)
. We further simplify the posterior distribution:

p (y(·) = n | DI) =
N
(
·; zn, σ212×2

)∑N
i=1 N (·; zi, σ212×2)

. (11)

The contribution of Dgt to n-th label at each location can be computed as follows:

cgtn (·) = p (y(·) = n | DI)D
gt (·)

=
N
(
·; zn, σ212×2

)∑N
i=1 N (·; zn, σ212×2)

×
N∑
i=1

N
(
·; zn, σ212×2

)
= N

(
·; zn, σ212×2

)
,

(12)

which is a Gaussian density function centered at zn. We assume the likelihood p(Dgt(·)|θ, I) implicitly defined by
the discrepancy between cgtn (·) and estimated contribution cn(·) = p (y(·) = n | DI)Ha(·), which has the following
form:

p(Dgt(·)|θ, I) ∝
N∏
i=1

exp(−∥ci(·) − cgti (·)∥22). (13)

B SUPPLEMENTARY INFORMATION FOR NETWORK
PARAMETERIZATION

Given the latent features ua ∈ Rdc×dw×dh , we first split ua into F 1, . . . ,FL, with each F l ∈ Rdc(l)×dw×dh , where
dc(l) is the number of channels of F l with

∑L
l=1 dc(l) = dc. Each F l is further split into the weight matrix

W l ∈ Rdc(l)×dwdh and bias vector bl ∈ R1×dwdh with the last two dimensions flattened into one. We predict the
density at coordinate position x with the following expression:

Ha(x) = HWL,bL(. . . HW1,b1(γ(x))), (14)

where each HWl,bl(·) is a fully connected layer with activation function and residual connection. We always set
dc(1) = 4J and dc(l) = dwdh, l = 2, . . . , L to match the dimensionality. We set dw = dh = 8 when the input size
is 64 × 64 and dw = dh = 16 for input sizes 256 × 256 and 512 × 512.

C INFORMATION GAIN MAPS

Given a coordinate position xm = [x1
m, x2

m]T on images Ia, predictions of the model Da, and the ground truth Dgt
a .

Da and Dgt
a are firstly divided by the baseline model (prior) to get the “image-based prediction” map (Kümmerer

et al., 2015). Both maps are then log-transformed and multiplied by the ground truth to calculate information
gains IGmodel

a and IGgt
a . Subtracting the standard information gain IGgt

a from the model’s information gain
IGmodel

a yields a difference map IGdif
a of the possible information gain. The calculation of IGdif

a has the following
form:
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Figure 8: Information Gain (IG) maps by UNIC and baseline models of three test images from RSOC. Three
test images are the same as the ones in Figure 2. IG maps for baselines are generated by PSGCNet with MSE
loss (PSGCNet+MSE), PSGCNet with Bayesian counting loss (PSGCNet+Bayes), ASPDNet with MSE loss
(ASPD+MSE), ASPDNet with Bayesian counting loss (ASPD+Bayes), and UNIC (UNIC), where blue regions
denote over-estimation regions and red regions denote under-estimation regions. We can see UNIC makes fewer
errors than other methods.

Table 5: Results on the CARPK dataset.

Method MAE RMSE

ASPD-MSE 5.77 8.56
ASPD-Bayes 8.63 10.31
PCSG-MSE 5.48 7.98
PCSG-Bayes 6.94 9.30
UNIC 5.37 7.65

IGdif
a = log(Da/prior)Dgt

a − log(Dgt
a /prior)Dgt

a . (15)

In our experiments, we set a 2D Gaussian distribution map as the prior, whose mean equals 0 and standard
deviation equals 32.

IGdif
a clearly shows where and by how much the model’s predictions fail. In this case, the positive part in IGdif

a

shows the over-estimation region, and the negative part in IGdif
a shows the under-estimation region.

We provide IGdif
a in Figure 8, where the test images are the same as the ones in Figure 2. We can see that

UNIC has less over- or under-estimation compared with the baseline methods.

D EXPERIMENTS ON CARPK

We also test our methods on the Car Parking Lot Dataset (CARPK), which has 1448 images with 90,000 cars
from 4 different parking lots. The image resolution is 1280 × 720.

In this experiment, we resize all images into 512 × 512, four baseline methods have the same setting as the
experiments on the RSOC dataset. Since UNIC has better counting performance on processing 256 × 256 input
images, we randomly crop 256 × 256 pieces from the training images as our training data. For the test dataset,
We separate the test images into four 256 × 256 pieces and predict their counting number independently, then
add them together to get the total counting number.

The counting performance is shown in table 5, we can see Unic has the best counting performance compared
with four baseline models.
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