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Abstract

This work addresses learning online fair division
under uncertainty, where a central planner sequen-
tially allocates items without precise knowledge
of agents’ values or utilities. Departing from con-
ventional online algorithms, the planner here re-
lies on noisy, estimated values obtained after al-
locating items. We introduce wrapper algorithms
utilizing dual averaging, enabling gradual learn-
ing of both the type distribution of arriving items
and agents’ values through bandit feedback. This
approach enables the algorithms to asymptoti-
cally achieve optimal Nash social welfare in linear
Fisher markets with agents having additive utili-
ties. We also empirically verify the performance
of the proposed algorithms across synthetic and
empirical datasets.

1 INTRODUCTION

Ensuring an equitable distribution of limited resources
among individuals, or agents, is a crucial task, as it in-
volves reconciling competing interests among the agents.
In today’s society, there is a growing demand for efficient
and fair resource allocation. Given this context, the fair
division problem has attracted substantial interest from the
researchers. This problem involves the process of assigning
items to individuals with idiosyncratic preferences (Brams
and Taylor, 1996; Moulin, 2003). Many studies in fair di-
vision are treated as a static problem, assuming that all
information about the items is known beforehand. However,
in reality, it is uncommon for all items to arrive beforehand.
Online fair division address uncertainty about what type of
items can arrive dynamically, and the term "online" in this
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context means that items must be irrevocably assigned to an
agent (Aleksandrov and Walsh, 2020).

This paper introduces another layer of uncertainty regarding
the values or utilities that agents place on the items they
receive. Unlike traditional online algorithms, a central plan-
ner does not have exact knowledge of the agents’ utilities.
Instead, the planner relies on noisy, estimated utilities ob-
tained after the items have been allocated, as often assumed
in multi-armed bandit problems.

We propose wrapper algorithms employing dual averag-
ing (DA) (Xiao, 2009; Gao et al., 2021), enabling the
gradual learning of both the distribution of arriving item
types and the values attributed to these items by the agents
through bandit feedback. Gao et al. (2021) applied DA to
the Eisenbeg-Gale (EG) convex program (Eisenberg and
Gale, 1959; Jain and Vazirani, 2010). If items are divisible,
the solution aligns with competitive equilibrium with equal
income (CEEI) (Budish, 2011). CEEI ensures both envy-
freeness and Pareto optimality and coincides with an as-
signment that maximizes Nash social welfare (NSW) (Nash,
1950). Gao et al. (2021) derived a fair assignment, specifi-
cally an asymptotically envy-free and Pareto optimal online
assignment, assuming types of arriving items are drawn
independently and identically distributed (i.i.d.)1 and the
values for each agent must be precisely revealed before the
assignment in a round. However, as demonstrated in the
following examples, the precise observation of values is not
always possible, necessitating the handling of noisy feed-
back regarding the values for the agent who has received
the item.

Example 1. (Crowdsourcing) Consider the problem of allo-
cating tasks (items) to workers (agents), where each worker
has their own area of expertise and the quality of the task
may vary. In such a scenario, the importance of learning
becomes evident, as the expertise of each worker is typically
unknown before the task is assigned. If the aim is to maxi-
mize the quality of the task, there is a risk that only a small

1The i.i.d. assumption has recently been relaxed by Liao et al.
(2022) to some extent.
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group of workers will monopolize all the tasks. However, by
maximizing the NSW, task assignments can be distributed
more evenly among the workers.

Example 2. (Food recommendation on online food deliv-
ery) Consider recommending a restaurant (agent) to a user
(item). To do so, we need to estimate the user’s taste pref-
erences based on their past orders, such as whether they
have a preference for specific types of cuisines. If the goal
is solely to maximize social welfare, there is a risk that
a few popular restaurants may receive a large portion of
the orders, leading to delays or unfulfilled orders. Instead,
distributing the workload equitably among restaurants en-
hances the long-term efficiency (Wang et al., 2022).

Example 3. (Humanitarian aid) Consider the problem of
providing a limited number of items to disaster-stricken ar-
eas, where the supply arrives in real-time, and the prompt
distribution of the items is crucial. The value of the items
for each district can only be determined through actual feed-
back, which implies that the situation is an online problem.
In this context, the value of the items needs to be learned
and updated as the supplies are being distributed.

To address these challenges, we introduce two novel algo-
rithms: DA-Explore-then-Commit (DA-EtC) and DA-Upper
Confidence Bound (DA-UCB), which combine dual aver-
aging with multi-armed bandit strategies. These algorithms
gradually learn and explore the values of items through
bandit feedback and the resulting allocation approaches the
solution of the EG program as the number of items grows.
Our algorithms handle situations where agents do not pre-
cisely observe the values of allocated items by incorporating
estimated values into the DA process. First, analyzing DA-
EtC are intricate due to the need to create virtual values
fed into DA, ensuring compatibility with the i.i.d. property
assumed by Xiao (2009). We demonstrate that DA-EtC
achieves a regret of Õ(T 2/3)2 by meticulously dissecting
the regret into the estimation error of values and the on-
line learning error of DA, relative to the number of items T .
This indicates the rate at which it converges to the true CEEI
solution as the number of items grows.

Second, we introduce DA-UCB, which employs the upper
confidence bound and is designed to have better empirical
performance than DA-EtC. Analyzing DA-UCB is even
more complicated than DA-EtC due to the non-i.i.d. nature
of the virtual values, referred to here as UCB values. To
make the analysis tractable, we devise a variant of DA-UCB
where multiple instances of DA are executed, treating each
estimator matrix as constant. This preserves the structure of
DA-UCB, enabling the virtual values to be drawn in an i.i.d.
manner. Consequently, we establish a regret upper bound of
Õ(

√
T ), meeting the lower bound of Ω̃(

√
T ) applicable to

any algorithm.

2We use Õ to denote a Landau notation that disregards a poly-
logarithmic factor.

Let us explore the rest of the literature. Finding fair di-
vision closely relates to computing market equilibria or
competitive equilibria, which has been extensively studied
in algorithmic game theory, mainly for the prominent case
of Fisher markets (Vazirani, 2007; Codenotti and Varadara-
jan, 2007). This problem is highly challenging in general.
However, in a static setting, if agents have linear, additive
preferences, the problem can be reduced to an optimiza-
tion known as the EG convex program (Eisenberg and Gale,
1959; Jain and Vazirani, 2010). As we already noted, if the
items are divisible, the solution coincides with CEEI and an
assignment that maximizes NSW. In contrast, if the items
are indivisible, the compatibility no longer holds. However,
the solutions of the NSW maximization is considered to
have several plausible properties (Caragiannis et al., 2019).3

In online settings, even if items are divisible, envy-freeness
is not compatible with Pareto optimality. Some researchers
have taken a relaxed approach to envy-freeness, while oth-
ers have found an approximate solution through stochas-
tic approximation schemes: Kash et al. (2014) relax envy-
freeness for their online setting. Bateni et al. (2022) utilize
a stochastic approximation scheme and obtain an approx-
imate solution for the EG convex program. Sinclair et al.
(2022) examine the trade-off between envy-freeness and
Pareto optimality. The trade-off can be resolved if we allow
the number of items to be large, or if we approximate indi-
visible items as divisible ones. Our work aims to achieve
envy-freeness and Pareto optimality in the sense of asymp-
totically maximizing NSW as the number of items grows.

2 PROBLEM SETUP

This section introduces the notation for our paper. Sum-
marized notation is found in Appendix A. Let N =
{1, 2, ..., n} denote the set of agents, and M = {1, 2, ...,m}
denote the set of the types of items (|N | = n, |M | = m).
The ex ante (expected) value of each agent i on an item
of type j is denoted as vi,j ∈ R, which is unknown in
advance to a policymaker or an algorithm. Also, vi,j is non-
negative. At each round t = {1, 2, ..., T}, an (indivisible)
item j(t) ∈ M arrives and the policymaker allocates it to
agent i(t) ∈ N . The type j(t) ∈ M of item at t is drawn
from a certain probability distribution S = {s1, s2, ..., sm}
in an i.i.d. manner, where

∑
j∈M sj = 1 and sj ≥ 0

for all j ∈ M . When the agent i(t) receives the item
j(t), the agent observes the ex post (realized) utility of
ui(t) = vi(t),j(t)+εt, instead of directly observing vi(t),j(t).
The quantity εt is a sub-Gaussian random variable with its
radius σ2. Namely, it satisfies E[eλεt ] ≤ exp

(
λ2σ2/2

)
,

3First, an NSW solution is envy-free up to one item, meaning
that each agent (almost) prefers her allocation better than the others.
Second, it is Pareto optimal, meaning that no one can be better off
without sacrificing the utility of some other agents. Third, it also
has pairwise maximin share guarantee, meaning that the division
aligns with the intention of each agent.
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which implies εt to be mean zero.4 The cumulative utility
of each agent i in T rounds, assuming the agents’ values
are additive, is defined as: Ui(T ) =

∑
t:i(t)=i ui(t). The

additive assumption is common in fair division (Procaccia
and Wang, 2014; Caragiannis et al., 2019; Bouveret and
Lemaître, 2016).

This paper aims to asymptotically find a fair allocation in
this online setting. In the literature, there are several ways to
define fairness: Envy-freeness guarantees that no agent has
no envy toward another agent’s allocation; Maximin share
guarantees that the minimum value among allocated agents
is maximized. In general, both cannot be guaranteed in our
online setting (See also the extensive survey (Aleksandrov
and Walsh, 2020)). We concentrate on asymptotically maxi-
mizing NSW, defined as the geometric mean of the agents’
obtained values, which is known as empirically balancing
allocations between envy-freeness and Pareto efficiency.

For our noisy, online setting, we define the ex post no-
tion of NSW across time, which is equivalent to the
weighted geometric mean of realized utilities: NSW(T ) =∏

i∈N Ui(T )
Bi . The weights Bi > 0 indicate the priority

given to an agent, and they can be interpreted as her per-
round budget rate in a Fisher market, e.g., (Gao et al., 2021).
Without loss of generality, we assume

∑
i Bi = 1. We next

consider a hindsight optimal allocation as a benchmark. The
law of large numbers implies that, when we allocate an item
of type j to agent i many times the mean utility converges to
vi,j , and when the number of items is sufficiently large, we
can approximate the items to be divisible. By using these
facts, the hindsight optimal allocation is represented as the
EG convex program.

Let xi,j ∈ [0, 1] be the fraction of items j allocated to agent
i, consider the optimization per item:

maximize{xi,j}
∏
i∈N

∑
j∈M

sjvi,jxi,j

Bi

subject to ∀j ∈ M :
∑
i∈N

xi,j ≤ 1,

∀i ∈ N, ∀j ∈ M : xi,j ≥ 0.

(1)

We say an allocation optimal if it maximizes the objective
for the ex ante values and say the hindsight value of the
optimal allocation Optimal NSW (ONSW).

We adopt a metric Regret to measure the performance of an
online allocation. The regret is the difference between the
total hindsight utilities ONSW obtained from Eq. (1) and
the ex post NSW with time horizon T :

Regret(T ) = T ·ONSW −NSW(T ). (2)

4The class of sub-Gaussian distributions includes many light-
tail distributions. For example, it allows ui(t) to be a discrete
value such as {0, 1} (Bernoulli distributions), or {1, 2, 3, 4, 5}
(categorical distributions).

It is not very difficult to see that the maximization of social
welfare (SW)

∑
i Ui(T ) does not necessarily maximize the

NSW. For example, if there is an agent i with a very small
value vi,j for all types j, then the social welfare is maxi-
mized by allocating no item to the agent, which results in
zero NSW. Note also that, unlike SW, NSW is free from
normalization; multiplying a constant on an i-th row of a
matrix {vi,j} does not affect the optimal allocation. Without
loss of generality, the objective function of Eq. (1) can be
replaced with the sum of weighted logarithmic utilities, i.e.,∑

i∈N Bilog
∑

j∈M vi,jxi,j . We call the primal form PEG

and

its dual form DEG given as

minimize{βi},{pj}
∑
j∈M

sjpj −
∑
i∈N

Bilogβi

subject to ∀i ∈ N, ∀j ∈ M : pj ≥ βivi,j ,

∀j ∈ M : pj ≥ 0.

The value pj implies the price of item j. This program
has no duality gap and it belongs to a rational convex pro-
gram (Vazirani, 2012) where all parameters are rational
numbers and which always admits a rational solution. The
program, while being nonlinear, can be solved by algorithms
such as the ellipsoid method, e.g., (Vishnoi, 2021).

However, solving EG once is insufficient for our aim. This
is because (i) we do not know the values {vi,j}i,j and need
to update their estimates or empirical means for each round.
(ii) Allocating items in a greedy manner based on the current
estimates of {vi,j}i,j results in a suboptimal NSW. In the
following, we discuss ideas that address the issues above.

3 DUAL-AVERAGING FOR OUR
SETTING

DA is an iterative method for solving a convex optimization
problem5, Gao et al. (2021) have utilized DA for solving
the dual problem DEG. A variant of DA for our setting,
described in Algorithm 1, calls a subroutine (Algorithm 2)
to determine the winner at each round. Algorithm 2 uses a
multiplier βi ∈ R+ to balance the allocation of items among
agents and prevent any one agent from monopolizing the
allocation. As agent i receives more items, βi decreases.
Each iteration in DA corresponds to a round, which is an
analog of the arrival of an item, in the online fair division,
where an item with value v̂DA

i,j(t)(t) is allocated according
to a (virtual) first-price auction, where the bids of agents
are weighted by the multiplier βiv

DA
i . Here, the parameters

l, h, δ0 > 0 restrict the range of βi for the sake of stability.
At round t, the winner i(t) of the auction receives the item
and obtains the utility uDA

i (t). If the true values {vi,j(t)}
are available, they are used in {v̂DA

i,j(t)(t)} of the subroutine.

5The version of DA we consider involves a regularization term
and is sometimes referred to as regularized dual averaging.
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Algorithm 1 DA with true values {vi,j}

1: Initialize utility ūDA
i = 0 for each i.

2: for t = 1 to T do
3: Observe the type j(t) of an arriving item, drawn

from S.
4: Observe the value vi,j(t) of the item for each i.
5: Update the mean utilities {ūDA

i (t + 1)}i =
DA-Iter(t, {vi,j(t)}i, {ūDA

i (t)}i)
6: end for

Algorithm 2 DA-Iter

Require: t, {v̂DA
i,j(t)(t)}i, {ū

DA
i (t)}i

1: Define multiplier βi as

βi = Proj[Bi/(h(1+δ0)),(1+δ0)/l](Bi/ū
DA
i (t)) (δ0 > 0),

where Proj[a,b](x) = max(a,min(b, x)).
2: Agents bid βiv̂

DA
i,j(t)(t).

3: Winner is determined: i(t) = arg max
i

βiv̂
DA
i,j(t)(t),

where ties are broken arbitrarily.
4: Winner i(t) pays βi(t)v̂

DA
i,j(t)(t).

5: Each agent receives a utility: uDA
i (t) = I{i =

i(t)}v̂DA
i,j(t)(t).

6: Update mean utility for each agent as

ūDA
i (t+ 1) =

t− 1

t
ūDA
i (t) +

1

t
uDA
i (t)

7: return {ūDA
i }i (and i(t) for DA-EtC, DA-UCB)

This is the case of the PACE algorithm (Gao et al., 2021),
which has shown to have Õ(1/

√
T ) regret.

However, Algorithm 1 requires the true value vi,j(t) for
agent i receiving type j item at round t, which is not avail-
able in our setting. Instead, we consider plugging-in the
estimated value to the subroutine (Algorithm 2) as described
in the following section.

4 PROPOSED METHOD

4.1 DA-EtC

Algorithm 3 describes the procedure of DA-EtC. It begins
with a uniform exploration phase, where each agent tries
every item type equally for the first T0 rounds. At the
end of this phase, the algorithm generates an estimator
v̂EtC
i,j = v̂i,j(T0 + 1) of the expected value vi,j of each

item type j for each agent i as in line 7. Here, Ni,j(t) is
the number of times agent i received an item of type j up

Algorithm 3 DA-EtC

1: for t = 1 to T0 do
2: Observe the type j(t) of an arriving item, drawn

from S.
3: Give item j(t) to the agent who is chosen uniformly

at random.
4: The agent i(t) receives a utility ui(t)(t).
5: Update the cumulative utility: Ui(t+ 1) = Ui(t) +

I[i = i(t)]ui(t)(t) for each i.
6: end for
7: Fix the estimator:

v̂EtC
i,j =

∑
t:j(t)=j ui(t)(t)I[i = i(t)]

Ni,j(T0 + 1)

for each i, j.
8: Initialize the DA’s utility ūDA

i (1) = 0 for each i.
9: for t = T0 + 1 to T do

10: The type of item t is determined: j(t) ∼ S.
11: t′ = t− T0

12: Run DA-Iter to allocate an item: {ūDA
i (t′ +

1)}i, i(t) = DA-Iter(t′, {v̂EtC
i,j(t)}i, {ū

DA
i (t′)}i).

13: The agent i(t) receives a utility ui(t)(t).
14: Update the cumulative utility: Ui(t+ 1) = Ui(t) +

ui(t)(t)I[i = i(t)] for each i.
15: end for

to round t − 1:
∑

τ<t I[i(τ) = i ∧ j(τ) = j] where I[·]
is an indicator function. After the exploration phase, the
algorithm runs a DA algorithm for the remaining T − T0

rounds using the estimator {v̂EtC
i,j }. In each of the rounds,

the algorithm selects the winner i(t) and updates the mean
utilities ūDA

i (t+ 1).

To implement DA-EtC, a certain level of attention is re-
quired. Specifically, DA-EtC uses v̂EtC

i,j for v̂DA
i,j (t) in DA-

Iter and calculate ūDA
i (t). Note that the estimator v̂EtC

i,j is
fixed after round T0, primarily due to theoretical reasons to
derive Lemma 1.

4.2 DA-UCB

Despite being able to control the exploration duration T0

for minimizing regret, DA-EtC has limited adaptivity. The
largest limitation stems from the uniform exploration, which
may result in the unnecessary exploration of items with a sig-
nificantly low value. To mitigate this, we develop DA-UCB
in Algorithm 4, which employs an upper confidence bound
that holds with high probability and solves the exploration
and exploitation tradeoff more adaptively than DA-EtC. At
each round t, DA-UCB calculates the UCB value v̂UCB

i,j(t)(t)
for each agent i. This value is then provided to DA-Iter to
determine the winner i(t). Note that the utility with respect
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Algorithm 4 DA-UCB

1: Initialize the DA’s utility ūDA
i (1) = 0 for each i and

v̂UCB
i,j (1) = 1 for all i, j.

2: for t = 1 to T do
3: Observe the type j(t) of an arriving item, drawn

from S.
4: Calculate the UCB value

v̂UCB
i,j(t)(t) = min

(
1, v̂i,j(t)(t) +

√
log t/(2Ni,j(t)(t))

)
where min(1,+∞) = 1.

5: Run DA-Iter to allocate an item: {ūDA
i (t +

1)}i, i(t) = DA-Iter(t, {v̂UCB
i,j(t)(t)}i, {ū

DA
i (t)}i).

6: The agent i(t) receives a utility ui(t)(t).
7: Update the number of draws Ni(t),j(t)(t + 1) =

Ni(t),j(t)(t) + 1.
8: Update the cumulative utility: Ui(t+ 1) = Ui(t) +

ui(t)(t)I[i = i(t)] for each i.
9: Update the estimator:

v̂i(t),j(t)(t+ 1) =

∑
τ≤t:j(τ)=j ui(t)(τ)I[i = i(t)]

Ni,j(t+ 1)

10: end for

to DA, denoted as uDA
i (t), differs from the actual utility

ui(t) for both DA-EtC and DA-UCB. This is because the
estimated value is supplied to DA.

5 ANALYSIS

In this section, we analyze the regret bounds of the algo-
rithms. We begin by establishing a lower bound on the
regret, which represents the best performance that any al-
gorithm can achieve. Following that, we provide regret
upper bounds on DA-EtC and a variant of DA-UCB. This
is because directly analyzing DA-UCB poses significant
challenges.

5.1 Regret lower bound

Theorem 1. (Regret lower bound) There exists a model
where the expected regret of any algorithm is lower-bounded
as E[Regret(T )] = Ω(

√
mT ).

Proof Sketch of Theorem 1. We introduce the base model
where vi,j = 1/2 for all i, j. To maximize NSW, the algo-
rithm must allocate (approximately) T/n of items for each
agent. Let ji indicate the type of item that agent i receives
the least number of times during T . There exists a set of

n items {ji}i∈N such that,
∑

i Ni,ji ≤ T/m. We consider
an alternative model such that vi,ji is larger than 1/2 by√

m/T . To have a low regret in the alternative model, the
algorithm must choose arms {ji}i∈N frequently. However,
information-theoretic results imply that the algorithm can-
not differentiate the base model and the alternative model,
and thus suffers a large regret in the alternative model (Kauf-
mann et al., 2016).

5.2 Convergence on Dual Averaging

We state the convergence results of DA. The following
lemma is an extension of Theorem 4 in (Gao et al., 2021).
To be precise, Theorem 4 in (Gao et al., 2021) requires the
values to be normalized as

∑
j sjvi,j = 1 for each agent

i, and thus it is not directly applicable to the setting where
vi,j is unknown. Lemma 1 here generalized their results by
introducing l, h so that normalization is no longer required.
Lemma 1. Assume that: (a) we run DA for T rounds;
(b) let {vDA

i,j } be v̂DA
i,j(t)(t) for all t, and they are constant;

Let ūDA(T ) ∈ Rn be the mean utility vector of agents
at the end of round T and u∗,DA ∈ Rn be the solution
of the corresponding EG program with {vDA

i,j }. Then, the
following inequality holds for an arbitrary δ0 > 0:

E
[
∥ūDA(T )− u∗,DA∥2

]
≤ CDA 6 + log T

T
.

where ∥ · ∥ is a l2 norm vector and

CDA =
∥vDA∥2∞(1 + δ0)

6

l4 (mini∈N Bi)
4

(
h3∥vDA∥2∞

l

(
1

δ0

)2

+ h4

)
and ∥vDA∥∞ = maxi∈N ∥vDA

i ∥∞.

5.3 Regret upper bound of DA-EtC

Theorem 2. (Regret upper bound of DA-EtC) Assume Bi =
1/n and sj = 1/m for all i, j. Assume that 2l ≤ vi,j ≤ h/2
for all i, j. Then, for T0 that is sufficiently large such that√

8max(1,σ2)nm log(nmT )
T0

≤ min(1,2l)
2 holds, the expected

regret of DA-EtC is bounded as follows:

E[Regret(T )] = Õ

(
T0 +

√
nm

T0
T + nCDA

√
T

)
.

The Õ(nCDA
√
T ) term is non-leading with respect to

T . By focusing on the leading term in T and set-
ting T0 = T 2/3(nm)1/3, we obtain E[Regret(T )] =
Õ(T 2/3(nm)1/3).

Proof Sketch of Theorem 2. We decompose the
regret into two components. Let u∗,true =
(u∗,true

1 , u∗,true
2 , u∗,true

3 , . . . , u∗,true
n ) be the solution

of EG with true values, i.e., Eq. (1). Let

ūEtC
i =

∑T
t>T0

ui(t)I[i(t) = i]

T − T0
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be the mean utility during the exploitation rounds. u∗,DA
i

is the solution of EG where value matrix {v̂EtC
i,j }i,j Note

that ūDA
i is the mean utility in view of DA-Iter, which cor-

responds to ūEtC
i but ui(t) is replaced by v̂EtC

i,j(t). Then, we
demonstrate a novel decomposition for the regret-per-round
that boils it down into the following terms:

Regret(T )

T
=
∏
i

(u∗,true
i )Bi −

∏
i

(ūEtC
i )Bi +O(T0)

= (
∏
i

(u∗,true
i )Bi −

∏
i

(u∗,DA
i )Bi)

+ (
∏
i

(u∗,DA
i )Bi −

∏
i

(ūDA
i )Bi)

+ (
∏
i

(ūDA
i )Bi)−

∏
i

(ūEtC
i )Bi) +O(T0). (3)

Intuitively, The first term of Eq. (3) is due to the estimation
error of {vi,j}i,j , which depends on the quality of estimator
built at the end of the exploration phase. The second term of
Eq. (3) is the error due to the loss of DA, which we bound
via Eq. (1) and by converting the error on the l2-norm into
the error on the error of NSW. The third term is due to the
estimation error {vi,j}i,j as well as the random realization
of the samples in the commitment phase.

5.4 Regret upper bound of a variant of DA-UCB

This section analyzes a slightly modified version of DA-
UCB, which we call Repeated Dual Averaging UCB (RDA-
UCB, Algorithm 5) to demonstrate that DA-UCB may be
able to achieve the Õ(

√
T ) regret. In general, the regret

analysis depends on Lemma 1, which requires that inputs
for DA are drawn in an i.i.d. manner. DA-EtC inevitably sat-
isfies the requirement because it fixes a value matrix, whose
elements v̂EtC

i,j are the inputs for DA, at the end of the explo-
ration period. In contrast, DA-UCB by no means satisfies
the requirement, since it updates a UCB value v̂UCB

i,j at each
round. To overcome this, RDA-UCB executes multiple in-
stances of DA and each of the estimator matrices becomes
regarded as constant, so that it comes to satisfy the i.i.d.
assumption. Note that, in practice, RDA-UCB is clearly
outperformed by DA-UCB due to the complexity and thus
we perform only DA-UCB in the simulation section.

Let the projected UCB value when as

v̂RUCB
i,j (t) = Proj[l,h]

(
v̂i,j(t) +

√
log(T 2)

2Ni,j(t)

)
, (4)

where v̂i,j(t) is the empirical estimate of vi,j with Ni,j(t)
samples. Here, we define v̂UCB

i,j (1) = h for all i, j. The
RDA-UCB algorithm proceeds as follows. It begins by
fixing a value matrix (Line 4) based on the current UCB
value and then executes an instance of DA (Line 6). This
instance continues until an entry of the count matrix Ni,j(t)
reaches a power of 2 (Line 14), at which point the current

Algorithm 5 RDA-UCB
1: s = 1.
2: Initialize v̂RUCB

i,j (1) = h for all i, j.
3: while s ≤ T do
4: Fix the RUCB value matrix v̂RUCB

i,j (s) This RUCB
value remains the same during the inner loop.

5: Initialize the DA’s utility ūDA
i (1) = 0 for each i.

6: while true do
7: t = s.
8: Observe the type j(t) of an arriving item, drawn

from S.
9: Run DA-Iter to allocate an item:

{ūDA
i (t + 1)}i, i(t) = DA-Iter(t − s +

1, {v̂RUCB
i,j(t) (t)}i, {ūDA

i (t)}i).
10: The agent i(t) receives a utility ui(t)(t).
11: Update the number of draws Ni(t),j(t)(t + 1) =

Ni(t),j(t)(t) + 1.
12: Update the cumulative utility: Ui(t+1) = Ui(t)+

ui(t)(t)I[i = i(t)] for each i.
13: Update the estimator v̂i(t),j(t)(t) =

Ui(t+1)
Ni,j(t+1) .

14: if Ni(t),j(t)(t) ∈ {2, 22, 23, . . . , 2⌊log2 T⌋} then
15: s = t+ 1 and break the inner loop.
16: else if t ≥ T then
17: Terminate the algorithm.
18: end if
19: t = t+ 1.
20: end while
21: v̂RUCB

i,j (t) = Proj[l,h]

(
v̂i,j(t) +

√
log(T 2)
2Ni,j(t)

)
.

22: end while

instance of DA is terminated. Following the termination, a
new value matrix is created (Line 4), and another instance
of DA is run (Line 6). This process is repeated until the
number of rounds reaches T . The following theorem states
the optimality of the regret of RDA-UCB.

Theorem 3. (Regret bound of RDA-UCB) Assume that l, h
satisfies that l ≤ vi,j ≤ h for all i ∈ N, j ∈ M . Then, the
following inequality holds:

E[Regret(T )] ≤ Õ
(
poly(n,m)

√
T
)
, (5)

where poly(n,m) is a polynomial of n,m that is indepen-
dent of T .

5.5 Discussion on the rate of regret

In summary, our theoretical contributions are twofold: i)
DA converges in our setting where the values of agent-type
pairs are unobservable beforehand and ii) DA-EtC has the
upper and lower bound being dependent on the numbers of
agents and item types, as well as the time horizon. In what
follows, we will examine and discuss what these results
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imply. Theorem 2 provides DA-EtC has the regret upper
bound of Õ((nm)1/3T 2/3). The exponent on m here is
smaller than that of lower bound of Ω̃((mT )1/2) in Theo-
rem 1. This does not contradict because Theorem 2 assumes
the exploration per parameter T0/(nm) = Ω(1), or equiv-
alently T > nm. Thus, for any T, n,m such that T > m,
the upper bound is no smaller than the lower bound.

We consider giving an upper bound for DA-UCB is chal-
lenging mainly because the i.i.d. assumption is crucial for
deriving the performance bound in Lemma 1. However, if
we plug-in the UCB values at each round t to DA-Iter, it
no longer satisfy the assumption. Started from Xiao (2009),
most of existing results on DA require the data to be i.i.d. A
few notable exceptions are as follows: Agarwal and Duchi
(2013) used in DA for mixing process, but the application
of their results to a regularized version of DA such as ours
is highly non-trivial. Note also that the classes of non-
stationarity that Liao et al. (2022) consider are not directly
applicable to our settings. It might be possible to apply the
analyses by Xiao (2009); Liao et al. (2022) to our case. How-
ever, the online regret term6 is very challenging to bound
in our case. To avoid the nonstationarity, we invented a
theoretical algorithm that we call RDA-UCB. Although this
algorithm employs multiple instance of DA, the number of
instances is O(nm log(T )) = Õ(1) as a function of T , and
thus it does not matter to the leading term of

√
T . As a re-

sult, it achieves the optimal rate Õ(
√
T ) with respect to the

number of rounds T . We consider the dependence of RDA-
UCB to n,m (available in the appendix) to be suboptimal,
and a more practical algorithm is desired.

Let us finally compare our results with the rate of regret
in the partial monitoring problems (Bartók et al., 2014;
Komiyama et al., 2015). In particular, our results is Θ̃(T 1/2)
with respect to time horizon T . A partial monitoring prob-
lem is said to be easy if the chosen action itself defines
how many items are assigned, e.g., multi-armed bandit
problems (Lai and Robbins, 1985), which corresponds to
Θ̃(T 1/2) regret. Otherwise, the problem is hard, which
corresponds to Θ̃(T 2/3) regret. This categorization sug-
gests that numerous problems involving parameters that are
not directly observable from the optimal decision, such as
dynamic pricing, inevitably have a regret complexity of
Θ̃(T 2/3). Our results indicate that the problem we consider
belongs to the former (i.e., Õ(

√
T )) class of partial monitor-

ing. This is interesting because we have latent parameters
(coefficients (βi)i∈N ) that depend on all agents and thus
are not solely determined by the values of particular user
i. This instills hope that a large class of bandit optimiza-
tions that entails optimizing latent parameters can achieve
Õ(

√
T ) regret. We also note that the comparison with ban-

dit convex optimization and our problem is in Section B in
the appendix.

6Namely, Rt(w) in Section 4.1 of (Liao et al., 2022). Note that
this is different from the regret in our paper.

6 SIMULATIONS

This section evaluates DA-EtC and DA-UCB in several
synthetic and real datasets, Uniform, Jester, and Household.
The source code and the dataset is available at https://github.
com/nanahaku/DA-bandit. For all data sets, we assume
that the types of items are uniformly distributed. That is,
sj = 1/m for all j. We set the objective as Bi = 1/n
for all i. The projection range of βi in DA-Iter is set to
[Bi/(1 + 0.95), (1 + 0.95)], which is wide enough to cover
all datasets. The noise εt ∈ {0, 1} for realized utilities
is determined according to a Bernoulli distribution, whose
probability that the event εt = 1 occurs is specified by
each associated true value vi,j , since it is normalized in
[0, 1]. The length of the trial rounds T0 for DA-EtC is set
to T 2/3(nm)1/3. We adjust the numbers of agents (n) and
item types (m), as well as the time horizon (T ), according
to the dataset used. Figures 1 and 2 display the averaged
amounts of regrets over 20 problem instances with different
random seeds.

Benchmark algorithms: We have prepared three naive
algorithms called Random, UCB, and DA-Grdy. Random
allocates each of the arriving items to agents at uniformly
random. UCB allocates each one to the agent whose UCB
value is the highest for the item type. UCB values, or each
estimator v̂i,j , are initialized to one and are updated accord-
ing to the sampled pairs of an agent and an item type as
described in Line 8 in Algorithm 4. The UCB algorithm is
designed to find an allocation that maximizes social welfare.
As noted in Section 2, the resulting allocation from UCB is
expected to yield a lower NSW than DA-UCB since some
of the agents cannot receive enough amounts of items un-
der the SW maximizing allocation. DA-Grdy does not stop
updating the estimator v̂i,j(t) at each round, unlike DA-EtC.

Datasets: Uniform, Jester, and Household. First, to
generate the Uniform dataset, we drew a set of values
{vi,j} ∈ [0, 1]n×m at uniformly random, where we set
n = 10, m = 10. We ran algorithms up to time horizon
T = 100000.

Second, Jester dataset was built for recommender systems
and collaborative filtering studies (Goldberg et al., 2001).
We focus on the dataset that contains the ratings of 100 jokes
by about 25000 individuals. Among them, 7200 individuals
rate all 100 jokes (https://eigentaste.berkeley.edu/dataset/
jester_dataset_1_1.zip (Kroer et al., 2021)). We randomly
select 10 out of 7200 individuals and 50 out of 100 jokes
(n = 10 and m = 50). Time horizon T is set to 300000.
Since the values of ratings lie between −10 and 10, they are
normalized to [0, 1] for our simulation.

Finally, Household dataset consists of data from 2876 indi-
viduals regarding their estimated willingness-to-pay for 50
household items that were selected from an online review

https://github.com/nanahaku/DA-bandit
https://github.com/nanahaku/DA-bandit
https://eigentaste.berkeley.edu/dataset/jester_dataset_1_1.zip
https://eigentaste.berkeley.edu/dataset/jester_dataset_1_1.zip
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Figure 1: Regret of all algorithms.
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Figure 2: Regret of the three best algorithms, with the lines vertically enlarged to provide a clearer view of the data. The
numbers presented are the same as Figure 1.

site (Kroer et al., 2021).7 We herein randomly select 10 out
of 2876 individuals (n = 10 and m = 50). Time horizon
T is set to 300000 as well as Jester. Since the scores of
willingness-to-pay lies between 0 and 100, we normalized
it to [0, 1].

Results:

Figure 1 depicts Regret across the five algorithms for each
of three datasets. Random and UCB are designed as a naive
benchmark, and they incur significant regret compared to
the DA-based algorithms. Notably, UCB performs worse
than Random that is completely ignorant of the agents’ pref-
erences. This is because UCB maximizes social welfare
(the sum of agents’ utilities) instead of NSW (the product
of them), and it often assigns items unequally, resulting in
several agents receiving very small total utilities. Figure 2
depicts the same as Figure 1 except that the lines are ver-
tically enlarged for a clearer view of the data. Apparently,
DA-EtC and DA-UCB outperform DA-Grdy and achieve
lower regret in the long run, although they do not in the
short term. This is because DA-EtC and DA-UCB incur the
cost for exploration before exploitation, whereas DA-Grdy
attempts to exploit from the start.

DA-Grdy plug-ins empirical mean v̂i,j(t) to DA-Iter for
each round. This algorithm suffers underexploration. For

7The exact dataset was provided by (Kroer et al., 2021) upon
our request.

example, assume that v̂i,j(t) is 0 for some i, j at some
round t. DA is unlikely to assign future items of type j
to user i, which will prevent v̂i,j from being updated. If
such underestimation occurs with a probability of Θ(1) for
some (i, j), DA-Grdy can continue to approach an incorrect
optimization, which results in a regret of Θ(T ).

7 CONCLUSION

This paper has considered an online fair division problem
where the values of items are unknown beforehand. In this
problem, there is a natural notion of regret that measures
how fast we can find the optimal allocation that asymptoti-
cally maximizes NSW.

We proposed the algorithms to allocate items via dual av-
eraging with its utility estimated from the past obtained
utilities. We proposed two algorithms: DA-EtC and DA-
UCB. The former is designed to feed i.i.d., data to DA.
EA-EtC has the Õ((nm)1/3T 2/3) regret, and the latter does
not have such a regret bound but empirically performs bet-
ter. Furthermore, we derived a Õ((mT )1/2) regret lower
bound irrespective of which algorithm is chosen. A version
of DA-UCB called RDA-UCB achieves Õ(poly(n,m)

√
T )

regret, which is optimal with respect to T .

Our results call for subsequent research, including but not
limited to: deriving a regret bound for the DA-UCB, and
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investigating the efficacy of structural models, such as linear
models and factorized models.
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A NOTATION TABLE

Table 1 summarizes our notation.

Table 1: Major notation

symbol definition
N set of agents
M set of the types of items
vi,j ex ante (expected) value item of type j for agent i
T time horizon (the number of rounds)
t ∈ T each round in T

i(t) ∈ N winner, or agent who is allocated the item at round t

j(t) ∈ M item type which arrives at round t

sj ∈ S probability distribution where item type j is drawn
ui(t) ex post (realized) utility of agent i at round t

ϵt sub-Gaussian random variable with its radius σ2

Ui(T ) cumulative utility of agent i in T rounds
Bi priority or per-period budget rate given to agent i
xi,j fraction of item type j allocated to agent i in the EG program (Eq. (1))
pj price of item type j in DEG

βi multiplier in DA-Iter (Algorithm 2)
v̂DA
i,j(t) argument value vi,j in DA-Iter (Algorithm 2)
ūDA
i mean utility of uDA

i (t) (Algorithm 2)
T0 exploration rounds in DA-EtC (Algorithm 3)
v̂EtC
i,j Estimator in DA-EtC (Algorithm 3)
v̂UCB
i,j UCB value in DA-UCB (Algorithm 4)
Ni,j(t) number of times agent i received an item of type j up to round t− 1

u∗,DA solution of EG with estimators {v̂EtC
i,j }i,j

u∗,true utility of EG problem with vi,j
u∗,RUCB Defined in Eq. (28).
u∗,RUCB(k) utility of EG problem with corresponding UCB values of kth instance of DA
uDA,true mean utility that agents receive when we run the algorithm (Eq. (27))
uDA,RUCB Defined in Eq. (30)
uDA,RUCB(k) mean utility of the kth instance of Dual Averaging.
v̂EtC
i,j Estimator in DA-EtC (Algorithm 3)
v̂UCB
i,j (t) UCB value of round t in DA-UCB (Algorithm 4)
v̂RUCB
i,j (t) UCB value of round t in RDA-UCB (Algorithm 5)
Tk number of rounds in which kth instance of DA was run

B Relation with Bandit Convex Optimization

This section discusses the online optimization (i.e., regret minimization) in this paper and bandit convex optimization (BCO)
Hazan and Levy (2014), which is known to have an O(

√
T ) bound under some assumptions.

• BCO is more challenging than our optimization in the sense that the loss function is given adversarially. This means
that stochastic bandit algorithms, such as UCB, cannot be directly applied to BCO.

• On the contrary, our regret with respect to fair division optimizes latent parameters (βi) that depend on the data
sequence. This is challenging because we cannot directly observe the loss for each round.
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In summary, the difficulty of BCO and our setting cannot be directly compared. Therefore, our bounds (Õ(T 2/3) upper
bound and Ω̃(T 1/2) lower bound) are nontrivial.

C PROOFS ON DA-ETC

C.1 Proof of Theorem 1

Proof of Theorem 1. We consider the case in which the type of items is equally distributed; sj = 1/m for all j ∈ [M ], and
Bi = 1/n for all i ∈ [N ]. We consider the case where all feedback is binary. In this proof, we use the term “model” to denote
a value matrix {vi,j}i,j ∈ Rn×m. We consider the following classes of models, v : ∀i,j vi,j ∈ {1/2, 1/2(1 +

√
m/T )}nm.

We call v(0) : ∀i,j v(0)i,j = 1/2 the base model.

The following lemma, which is a version of Lemma 19 in Kaufmann et al. (2016), is used during the proof.

Lemma 2. (lower bound on any event) Let v(1), v(2) be two models. Let Ev(1) ,Ev(2) be the corresponding expectations and
Pv(1) ,Pv(2) be the corresponding probabilities, respectively. Then, the following inequality holds for any event E .∑

i∈[n],j∈[m]

Ev(1) [Ni,j(T + 1)] d(v
(1)
i,j , v

(2)
i,j ) ≥ d(Pv(1)(E),Pv(2)(E)), (6)

where d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) is the KL divergence between two Bernoulli distributions.

Let ji = arg min
j′

Ev(0) [Ni,j′(T + 1)] be the type of item that agent i receives the least number of times during T under the

base model. By definition,
∑

i Ni,ji(T + 1) ≤ T/m. Consider another model v(a) where vi,ji = (1 +
√
m/T )/2 for each

i ∈ N and vi,k = 1/2 for k ̸= ji. We have∑
i∈[n],j∈[m]

Ev(0) [Ni,j(T + 1)] d(v
(0)
i,j , v

(a)
i,j ) (7)

≤ (T/m)d(1/2, 1/2(1 +
√

m/T )) (8)

≤ (T/m)×O(m/T ) (by d(1/2, 1/2 + α) = O(α2)) (9)
= O(1). (10)

Consider the event

E =

{∑
i

Ni,ji(T + 1) ≤ 2T/m

}
.

By definition, Pv(0) [E ] ≥ 1/2. Lemma (2) and Eq. (10) implies that

d(Pv(0) [E ],Pv(a) [E ]) = O(1),

which implies that
Pv(a) [E ] = Ω(1).

Under event E on the alternative model, the regret is at least Ω(
√
mT ), which completes the proof.

C.2 Proof of Theorem 2

Proof of Theorem 2. Let l′ = 2l, h′ = h/2. EtC uniformly explores during the first T0 rounds, and the estimator v̂i,j =
v̂i,j(T0 + 1) is based on Ni,j(T0 + 1) ≈ T0/(nm) samples. Some care is needed because Ni,j(T0 + 1) itself is a random
variable. Let

A =
⋂
i,j

{
Ni,j(T0 + 1) ≥ T0

2nm

}
(11)

B =
⋂
i,j

|v̂i,j(T0 + 1)− vi,j | ≤

√
8σ2nm log(nmT )

T0

 . (12)
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Since Ni,j(T0 + 1) is a sum of T0 binary random variables with its mean 1/(nm) (i.e., item is of type j, and agent i won it),
by the multiplicative Chernoff inequality,

Ni,j(T0 + 1) <
T0

2nm

holds with probability at most exp(−T0/(8nm)) < 1/(nmT ), and Event A holds with probability at least 1 − 1/T by
considering the union bound of it over i ∈ N, j ∈ M .

Second, we show that B holds with a high-probability given A. Given n′ i.i.d. samples with its mean vi,j and sub-Gaussian
radius σ, we have

|v̂i,j(T0 + 1)− vi,j | ≤
√

4σ2 log(nmT )

n′

with probability at least 1− 1/(nmT )2. Union bound of this over possible random value n′ = Ni,j(T0 + 1) ∈ [T ] yields

|v̂i,j(T0 + 1)− vi,j | ≤

√
8σ2nm log(nmT )

T0

∣∣∣∣Ni,j(T0 + 1) ≥ T0

2nm

and taking its union bound over i ∈ N, j ∈ M yields B that holds with probability at least 1− 1/(nmT ) given A. In the
following steps, we assume B because the probability that B does not hold is O(1/T ), and the regret in this is at most
O(T )×O(1/T ) = O(1), which is negligible.

Assuming that B holds at the end of round T0, we bound the regret.

Regret(T )

T

=
∏
i

(u∗,true
i )Bi − 1

T

∏
i∈N

Ui(T )
Bi

≤
∏
i

(u∗,true
i )Bi − 1

T

∏
i∈N

((T − T0)ū
EtC
i )Bi (the sum of utility in the first T0 rounds is non-negative)

=
∏
i

(u∗,true
i )Bi − T − T0

T

∏
i∈N

(ūEtC
i )Bi (by

∑
i

Bi = 1)

=
T0

T

∏
i

(u∗,true
i )Bi +

T − T0

T

(∏
i

(u∗,true
i )Bi −

∏
i

(ūEtC
i )Bi

)

≤ T0

T

∏
i

(u∗,true
i )Bi +

∣∣∣∣∣∏
i

(u∗,true
i )Bi −

∏
i

(ūEtC
i )Bi

∣∣∣∣∣ . (13)

Here, the second term is bounded as∏
i

(u∗,true
i )Bi −

∏
i

(ūEtC
i )Bi =

(∏
i

(u∗,true
i )Bi −

∏
i

(u∗,DA
i )Bi

)
+

(∏
i

(u∗,DA
i )Bi −

∏
i

(ūDA
i )Bi

)
(14)

+

(∏
i

(ūDA
i )Bi −

∏
i

(ūEtC
i )Bi

)
. (15)

From the definition of u∗,DA
i , for any {xi,j},

∏
i(u

∗,DA
i )Bi ≥

∏
i

(∑
j∈M sj v̂i,j(T0 + 1)xi,j

)Bi

holds. Hence, we have∏
i

(u∗,true
i )Bi −

∏
i

(u∗,DA
i )Bi ≤

∏
i

(u∗,true
i )Bi −

∏
i

(û∗,DA
i )Bi ,

where û∗,DA
i =

∑
j∈M sj v̂i,j(T0 + 1)x∗

i,j and {x∗
i,j} be the solution of the optimization (Eq. (1)) with true {vi,j}. On the

other hand, under B,

|u∗
i − û∗,DA

i | =

∣∣∣∣∣∣
∑
j∈M

sjx
∗
i,j(vi,j − v̂i,j(T0 + 1))

∣∣∣∣∣∣ ≤
∑
j∈M

sjx
∗
i,j |vi,j − v̂i,j(T0 + 1)| ≤ Õ

(√
nm

T0

)
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Combining these inequalities and Lemma 3, under the assumption that u∗,true
i = Θ(1),∏

i

(u∗,true
i )Bi −

∏
i

(u∗,DA
i )Bi ≤ Õ

(√
nm

T0

)
. (16)

Moreover, Event B and assumptions imply that l′/2 ≤ v̂i,j(T0 + 1) ≤ h′ + l′/2 ≤ 2h′, and thus Lemma 4 with
l = l′/2, h = 2h′ states that

E

[∏
i

(u∗,DA
i )Bi −

∏
(ūDA

i )Bi

]
≤ Õ

(
nCDA

√
1

T

)
, (17)

where we consider l′, h′ > 0 to be constants.

DA gives at least Ω(T/(
∑

i(4h
′/l′)2)) = Ω((T/n) × 1) = Ω(T/n) items to each agent because if agent i2 receives

(2h′/(l′/2))2 times more items than agent i1, then the ratio βi2/βi1 is at least (2h′/(l′/2)), and agent i1 is prioritized
in the next allocation to agent i2 no matter what type of item is. Using this fact, we have ūDA

i = Θ(1). Applying
a concentration inequality to the samples during the exploitation phase, with probability at least 1 − 1/T , we have
ūEtC
i = Θ(1), |ūEtC

i − ūDA
i | = Õ(

√
nm/T0). Using this and Lemma 3, we have

(
∏
i

(ūDA
i )Bi)−

∏
i

(ūEtC
i )Bi) = Õ

(√
nm

T0

)
. (18)

In summary,

E
[
Regret(T )

T

]
=

T0

T
+ Õ

(√
nm

T0

)
+ nCDA

√
1

T
. (19)

C.3 Additional Lemmas on DA-EtC

Lemma 3. Let two vectors u(1) = (u
(1)
1 , . . . , u

(1)
n ) and u(2) = (u

(2)
1 , . . . , u

(2)
n ) be such that u(1)

i = Θ(1) an u
(2)
i ≥

u
(1)
i (1− ri), and r = maxi ri. Then, ∏

i

(u
(1)
i )Bi −

∏
i

(u
(2)
i )Bi ≤ O (r) . (20)

Proof of Lemma 3. ∏
i

(u
(1)
i )Bi −

∏
i

(u
(2)
i )Bi =

∏
i

(u
(1)
i )Bi −

∏
i

{
u
(1)
i (1− ri)

}Bi

(21)

≤
∏
i

(u
(1)
i )Bi −

∏
i

{
u
(1)
i (1−max

i′
ri′)
}Bi

(22)

= max
i′

ri′
∏
i

(u
(1)
i )Bi . (23)

Lemma 4. Assume that T0 = o(T ). Then, the following inequality holds:

E

[∏
i

(u∗,DA
i )Bi −

∏
i

(ūDA
i )Bi

]
≤ Õ

(
nCDA

√
1

T

)
. (24)

Proof of Lemma 4. Remember that ūDA
i is the regret-per-round during the exploitation rounds. Let T ′ = T − T0 = Θ(T ).

In view of DA, it is an online learning with T ′ rounds where the value of each item is {v̂i,j(t)}i.

Lemma 1 implies that

E
[
(u∗,DA

i − ūDA
i )2

]
≤ CDA log T ′

T ′ ,
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and Markov’s inequality implies that

Pr[|u∗,DA
i − ūDA

i | ≥ ϵ′] ≤ 1

ϵ′2
CDA log T ′

T ′ ,

and by letting ϵ′ = ϵu∗,DA
i we have

Pr

[
|u∗,DA

i − ūDA
i |

u∗,DA
i

≥ ϵ

]
≤ 1

(u∗,DA
i )2ϵ2

CDA log T ′

T ′ , (25)

Taking union bound of Eq. (25) over i ∈ N , we have

Pr

[
max

i

|u∗,DA
i − ūDA

i |
u∗,DA
i

≥ ϵ

]
≤ n

mini(u
∗,DA
i )2ϵ2

CDA log T ′

T ′ . (26)

Here, letting

R := max
i

u∗,DA
i − ūDA

i

u∗,DA
i

≤ 1,

then ūDA
i ≥ (1−R)u∗,DA

i for all i and we have∏
i

(u∗,DA
i )Bi −

∏
i

(ūDA
i )Bi ≤

∏
i

(u∗,DA
i )Bi −

∏
i

((1−R)u∗,DA
i )Bi

≤ R
∏
i

(u∗,DA
i )Bi . (by

∏
i

(x)Bi = x)

Using this, we have

E

[∏
i

(u∗,DA
i )Bi −

∏
i

(ūDA
i )Bi

]

≤ E

[
R
∏
i

(u∗,DA
i )Bi

]

≤
∫ 1

1/
√
T ′

∏
i

(u∗,DA
i )Bi Pr[R ≥ x]dx+

√
1

T ′

∏
i

(u∗,DA
i )Bi

=

∫ 1

1/
√
T ′

∏
i

(u∗,DA
i )Bi Pr[R ≥ x]dx+O

(√
1

T ′

)

≤
∫ 1

1/
√
T ′

∏
i

(u∗,DA
i )Bi

n

mini(u
∗,DA
i )2x2

CDA log T ′

T ′ dx+O

(√
1

T ′

)
(by Eq. (26))

= (u∗,DA
i )Bi

n

mini(u
∗,DA
i )2

CDA log T ′

T ′ [−1/x]1
1/

√
T ′ +O

(√
1

T ′

)

≤ (u∗,DA
i )Bi

n

mini(u
∗,DA
i )2

CDA log T ′
√
T ′

+O

(√
1

T ′

)

= Õ

(
nCDA

√
1

T ′

)
.

D PROOFS ON RDA-UCB

D.1 Proof of Theorem 3

Proof of Theorem 3. First, let u∗,true
i be the utility of EG problem with vi,j . Let

uDA,true
i = Ui(T )/T (27)
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be the empirical mean utility that each agent receives when we run the algorithm. Remember that RDA-UCB utilizes several
instances of DA. Let y be the number of the DA instances that appear in RDA-UCB. We use index k = 1, 2, . . . , y to
represent each instance of DA. Let Tk be the number of rounds where each DA was run. Note that each Tk, as well as y, are
the random variables. Let u∗,RUCB

i , uDA,RUCB
i be:

u∗,RUCB
i =

1

T
(T1u

∗,RUCB(1)
i + T2u

∗,RUCB(2)
i + · · ·+ Tyu

∗,RUCB(y)
i ), (28)

uDA,RUCB
i =

1

T

T∑
t=1

I[I(t) = i]v̂UCB
i(t),j(t),Ni,j(t)(s)

(29)

=
1

T
(T1u

DA,RUCB(1)
i + T2u

DA,RUCB(1)
i + · · ·+ Tyu

DA,RUCB(y)
i ). (30)

Namely, The value u∗,RUCB
i indicates the mean true utility and the random variable uDA,RUCB

i indicates the mean utility
over DA instances.

Moreover, let v̂RUCB
i,j,n is the empirical estimate of vi,j with n samples and two events be

G1 =
⋂
i,j,n

{v̂RUCB
i,j,n ≥ vi,j}, (31)

G2 =
⋂
i

{
T∑

t=1

v̂RUCB
i(t),j(t),Ni,j(t)(t)

≤
T∑

t=1

(vi(t),j(t) + ϵt) + C3nm
√
T

}
, (32)

where C3 = Õ(1) is defined later in Eq. (45).

From lemma 5, G := G1 ∩ G2 holds with probability at least 1−O(1/T ).

We have

I[G]Regret(T )
T

= I[G](
∏
i

(u∗,true
i )Bi −

∏
i

(u∗,RUCB
i )Bi) + I[G](

∏
i

(u∗,RUCB
i )Bi)−

∏
i

(uDA,RUCB
i )Bi)

+ I[G](
∏
i

(uDA,RUCB
i )Bi)−

∏
i

(uDA,true
i )Bi)

≤ I[G1 ∩ G2](
∏
i

(u∗,true
i )Bi −

∏
i

(u∗,RUCB
i )Bi) + |(

∏
i

(u∗,RUCB
i )Bi)−

∏
i

(uDA,RUCB
i )Bi)|

+ I[G1 ∩ G2]|(
∏
i

(uDA,RUCB
i )Bi)−

∏
i

(uDA,true
i )Bi)|

≤ 0 + |(
∏
i

(u∗,RUCB
i )Bi)−

∏
i

(uDA,RUCB
i )Bi)|+ Õ(

nm
√
T

T
), (33)

where we have used Lemmas 6 and 21 in the last transformation.

Therefore, the regret bound is:

E [Regret(T )] = E [I[G]Regret(T )] + E [I[Gc]Regret(T )] (34)
≤ E [I[G]Regret(T )] + T Pr [Gc] (35)

≤ E [I[G]Regret(T )] + T × Õ(
1

T
) (by Lemma 5) (36)

≤ E

[
T

∣∣∣∣∣∏
i

(u∗,RUCB
i )Bi)−

∏
i

(uDA,RUCB
i )Bi

∣∣∣∣∣
]
+ Õ(nm

√
T ) (by Eq. (33)) (37)

Lemma 20 bounds the first term on RHS of Eq. (37) bounded as

E

[
T

∣∣∣∣∣∏
i

(u∗,RUCB
i )Bi)−

∏
i

(uDA,RUCB
i )Bi

∣∣∣∣∣
]
= Õ

(
n4m2

√
T
)
, (38)

which completes the proof.
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D.2 Lemmas on the probability of event G

Lemma 5. Event G1 ∩ G2 holds with probability at least 1−O(1/T ).

Proof of Lemma 5. Subgaussian concentration inequality implies

⋂
i,j,n

∣∣v̂RUCB
i,j,n − vi,j

∣∣ ≤ σ

√
2 log(T 2)

n
(39)

holds with probability at least 1− 2/T 2 × nmT = 1−O(1/T ). Eq. (31) easily follows from the Eq. (39). Moreover,

T∑
t=1

(v̂RUCB
i(t),j(t),Ni(t),j(t)(t)

− (vi(t),j(t) + ϵt)) (40)

≤ 2h+
∑
i,j

log2 T∑
p=1

2p(v̂RUCB
i,j,2p − vi,j) + |

∑
t

ϵt| (41)

(by the fact that RDA-UCB resets once allocation (i, j) reaches Ni(t) = 2, 22, 23, . . . ,) (42)

≤ 2h+
∑
i,j

log2 T∑
p=1

2p(v̂RUCB
i,j,2p − vi,j) + σ

√
2 log(T 2)

√
T (by subgaussian concentration inequality on

∑
t

ϵ(t)) (43)

≤ 2h+ nm

log2 T∑
p=1

2p × σ

√
2 log(T 2)

2p
+ Õ(

√
T ) (by Eq. (39)) (44)

=: C3nm
√
T . (45)

D.3 Lemmas on the first term

Lemma 6. for any agent i ∈ N , with G1 ∩ G2 from lemma 5,

I[G1 ∩ G2](
∏
i

(u∗,true
i )Bi −

∏
i

(u∗,RUCB
i )Bi) ≤ 0. (46)

Proof of Lemma 6.
Let Tk be the number of rounds in which kth instance of DA was run and u∗,RUCB(k) be the mean utility of Dual Averaging
in the kth instance of DA. Let y be the index of the last instance of DA.

Recall that

u∗,RUCB
i =

1

T
(T1u

∗,RUCB(1)
i + T2u

∗,RUCB(2)
i + · · ·+ Tyu

∗,RUCB(y)
i ). (47)

Lemma 7 implies that the region

U =

{
(ui)i∈[N ] ∈ RN

∣∣∣∣ (∏
i

(u∗,true
i )Bi ≤ (

∏
i

(ui)
Bi)

}

is convex. Event G1 implies that u∗,RUCB(k) for each k lies in U . Since u∗,RUCB is a non-negative and Affine combination
of elements in U , u∗,RUCB ∈ U , which is Eq. (46).

Lemma 7. (Convexity of region) Let v, v1, v2 ∈ (R+)n be n-dimensional vectors. If
∏

i v
1
i ,
∏

i v
2
i ≥

∏
i vi, then for any

p ∈ [0, 1],
∏

i(pv
1
i + (1− p)v2i ) ≥

∏
i vi.
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Proof. Let c =
∏

i vi. Weighted inequality of arithmetic and geometric means states that

pv1i + (1− p)v2i ≥ (v1i )
p(v2i )

1−p (48)

for each i, and thus

∏
i

(pv1i + (1− p)v2i ) ≥

(∏
i

v1i

)p(∏
i

v2i

)1−p

≥

(∏
i

vi

)p(∏
i

vi

)1−p

=
∏
i

vi. (49)

D.4 Lemmas on the second term

The structure of this section is as follows. Section D.4.1 shows the results for each instance of DA. Section D.4.2 uses the
results for RDA-UCB, which uses multiple instances of DA. By using these lemmas, Section D.4.3 bounds the second term
in the main proof.

D.4.1 Auxiliary lemmas on a single instance of DA

This section introduces lemmas that apply for each instance of DA. For ease of notation, we drop the index k of the instances
in the context it is clear. For example, β∗ indicates the optimal solution of the dual EG problem for the kth instance of DA.
In this optimal solution, the value matrix is the corresponding UCB values v = v̂RUCB

i,j (tk), where tk is the first round of the
kth instance. Lemmas 8–12) are used to derive Lemma 13, and Lemma 13 is used in the subsequent lemmas. Lemmas
8–12 are the version of the similar results in Xiao (2009) (Theorem 1(b) therein) that are tailored for our version of DA.
During these lemmas, we use the notation of Xiao (2009). Namely, for a time step τ in view of DA, let f(β, j(τ)) be
maxi∈N vi,j(τ)βi and Ψ(β) be −

∑
i∈N Bi log βi. Let Rt(β) =

∑t
τ=1 (f(β

τ , j(τ))−Ψ(βτ )− f(β∗, j(τ)) + Ψ(β∗)) be

the online regret8 Xiao (2009), where βτ be the multiplier of DA at τ . Let St be −Rt(β) + C log T where C = ∥v∥2

σ2 , let
Ψ∗ be convex conjugate of Ψ and let σ be σ = l2 mini∈NBi

1+δ0
.

Lemma 8. Let βτ ∈ Rn be the solution of DA and β∗ ∈ Rn be the solution of the corresponding EG program. Then, the
following inequality holds for any t ≥ 1 and (j(τ))tτ=1:

σt

2
∥βt+1 − β∗∥2 ≤ tΨ∗

(
−1

t
st
)
+

t∑
τ=1

(⟨gτ , βτ ⟩+Ψ(βτ )) +

t∑
τ=1

(f(β∗, j(τ)) + Ψ(β∗)− f(βτ , j(τ))−Ψ(βτ )) ,

where gt ∈ ∂f(βt, j(τ)t).

Proof of Lemma 8. Let us define st =
∑t

τ=1 g
τ . From the first-order optimality condition for βt+1, there exist a subgradient

bt+1 ∈ ∂Ψ(βt+1) such that:

⟨st + tbt+1, β − βt+1⟩ ≥ 0, ∀β ∈ dom(Ψ). (50)

From the strong convexity of Ψ, we have:

Ψ(β) ≥ Ψ(βt+1) + ⟨bt+1, β − βt+1⟩+ σ

2
∥βt+1 − β∥2, ∀β ∈ dom(Ψ). (51)

By combining (50) and (51), we get:

σt

2
∥βt+1 − β∗∥2 ≤ ⟨st, β∗ − βt+1⟩+ tΨ(β∗)− tΨ(βt+1)

= ⟨−st, βt+1⟩+ tΨ(β∗)− tΨ(βt+1) + ⟨st, β∗⟩

= ⟨−st, βt+1⟩+ tΨ(β∗)− tΨ(βt+1) +

t∑
τ=1

⟨gτ , β∗⟩

= ⟨−st, βt+1⟩+ tΨ(β∗)− tΨ(βt+1) +

t∑
τ=1

⟨gτ , β∗ − βτ ⟩+
t∑

τ=1

⟨gτ , βτ ⟩.

8The online regret is different from the regret in our paper
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Then, from the convexity of f(·, j(τ)),
σt

2
∥βt+1 − β∗∥2

≤ ⟨−st, βt+1⟩+ tΨ(β∗)− tΨ(βt+1) +

t∑
τ=1

(f(β∗, j(τ))− f(βτ , j(τ))) +

t∑
τ=1

⟨gτ , βτ ⟩

= ⟨−st, βt+1⟩ − tΨ(βt+1) +

t∑
τ=1

(⟨gτ , βτ ⟩+Ψ(βτ )) +

t∑
τ=1

(f(β∗, j(τ)) + Ψ(β∗)− f(βτ , j(τ))−Ψ(βτ )) .

Since βt+1 = arg max
β

{⟨−st, β⟩ − tΨ(β)}, we have:

σt

2
∥βt+1 − β∗∥2 ≤ tΨ∗

(
−1

t
st
)
+

t∑
τ=1

(⟨gτ , βτ ⟩+Ψ(βτ )) +

t∑
τ=1

(f(β∗, j(τ)) + Ψ(β∗)− f(βτ , j(τ))−Ψ(βτ )) .

Lemma 9. We have for any t ≥ 1 and (zτ )
t
τ=1:

t∑
τ=1

(⟨βτ , gτ ⟩+Ψ(βτ )) ≤ −tΨ∗
(
−1

t
st
)
+Ψ(β2)−Ψ(β1) +

1

2σ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)
.

Proof of Lemma 9. We introduce the following lemma:

Lemma 10. Assume that a function v is closed and convex and its convex conjugate v∗ is differentiable. Then, the gradient
of v∗ is given by:

∇v∗(y) = arg max
x

{⟨y, x⟩ − v(x)}.

From Lemma 10 and the fact that βτ = arg max
β

{〈
− 1

τ−1s
τ−1, β

〉
−Ψ(β)

}
, we have:

∇Ψ∗
(
− 1

τ − 1
sτ−1

)
= βτ . (52)

Furthermore, since Ψ is σ-strongly convex, its convex conjugate is 1
σ -smooth, we get:

1

τ − 1

〈
∇Ψ∗

(
− 1

τ − 1
sτ−1

)
, gτ
〉

=

〈
∇Ψ∗

(
− 1

τ − 1
sτ−1

)
,− 1

τ − 1
sτ−1 +

1

τ − 1
sτ
〉

≤ Ψ∗
(
− 1

τ − 1
sτ−1

)
−Ψ∗

(
− 1

τ − 1
sτ
)
+

1

2σ

∥∥∥∥− 1

τ − 1
sτ−1 +

1

τ − 1
sτ
∥∥∥∥2

= Ψ∗
(
− 1

τ − 1
sτ−1

)
−Ψ∗

(
− 1

τ − 1
sτ
)
+

∥gτ∥2

2σ(τ − 1)2
. (53)

By combining (52) and (53), we have:

⟨βτ , gτ ⟩ = (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
− (τ − 1)Ψ∗

(
− 1

τ − 1
sτ
)
+

∥gτ∥2

2σ(τ − 1)

= (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
− (τ − 1)max

β

{〈
− 1

τ − 1
sτ , β

〉
−Ψ(β)

}
+

∥gτ∥2

2σ(τ − 1)

= (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
−max

β
{⟨−sτ , β⟩ − (τ − 1)Ψ(β)}+ ∥gτ∥2

2σ(τ − 1)

≤ (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
+ ⟨sτ , βτ+1⟩+ (τ − 1)Ψ(βτ+1) +

∥gτ∥2

2σ(τ − 1)

= (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
+ ⟨sτ , βτ+1⟩+ τΨ(βτ+1)−Ψ(βτ+1) +

∥gτ∥2

2σ(τ − 1)
.
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Since βτ+1 = arg min
β

{⟨sτ , β⟩+ τΨ(β)},

⟨βτ , gτ ⟩ ≤ (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
+min

β
{⟨sτ , β⟩+ τΨ(β)} −Ψ(βτ+1) +

∥gτ∥2

2σ(τ − 1)

= (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
−max

β
{⟨−sτ , β⟩ − τΨ(β)} −Ψ(βτ+1) +

∥gτ∥2

2σ(τ − 1)

= (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
− τΨ∗

(
−1

τ
sτ
)
−Ψ(βτ+1) +

∥gτ∥2

2σ(τ − 1)
.

Thus, for any τ ≥ 2:

⟨βτ , gτ ⟩+Ψ(βτ+1) ≤ (τ − 1)Ψ∗
(
− 1

τ − 1
sτ−1

)
− τΨ∗

(
−1

τ
sτ
)
+

∥gτ∥2

2σ(τ − 1)
(54)

Similarly, from Lemma 10 and the assumption that β1 = arg min
β

Ψ(β):

∇Ψ∗(0) = β1. (55)

Furthermore, from the smoothness of Ψ∗, we get:

⟨∇Ψ∗(0), g1⟩ = ⟨∇Ψ∗(−s0),−s0 + s1⟩

≤ Ψ∗(−s0)−Ψ∗(−s1) +
1

2σ
∥ − s0 + s1∥2

= Ψ∗(−s0)−Ψ∗(−s1) +
∥g1∥2

2σ
. (56)

By combining (55) and (56), we have:

⟨β1, g1⟩ ≤ Ψ∗(−s0)−Ψ∗(−s1) +
∥g1∥2

2σ
.

Thus, we have for τ = 1:

⟨β1, g1⟩+Ψ(β2) ≤ Ψ∗(−s0)−Ψ∗(−s1) +
∥g1∥2

2σ
+Ψ(β2). (57)

By summing (54) and (57) from τ = 1 to t, we have:

t∑
τ=1

(
⟨βτ , gτ ⟩+Ψ(βτ+1)

)
≤ Ψ∗(−s0)− tΨ∗

(
−1

t
st
)
+Ψ(β2) +

1

2σ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)

= −tΨ∗
(
−1

t
st
)
+Ψ(β2)−Ψ(β1) +

1

2σ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)
.

Since β1 = arg min
β

Ψ(β), we have Ψ(βt+1) ≥ Ψ(β1). Thus, adding Ψ(β1)−Ψ(βt+1) ≤ 0 to the above inequality yields:

t∑
τ=1

(⟨βτ , gτ ⟩+Ψ(βτ )) ≤ −tΨ∗
(
−1

t
st
)
+Ψ(β2)−Ψ(β1) +

1

2σ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)
.

Lemma 11. We have:

Ψ(β2)−Ψ(β1) ≤ 2

σ
∥g1∥2.
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Proof of Lemma 11. Since β2 = arg min
β

{⟨s1, β⟩+Ψ(β)}, we have:

⟨s1, β2⟩+Ψ(β2) ≤ ⟨s1, β1⟩+Ψ(β1),

and then:

Ψ(β2)−Ψ(β1) ≤ ⟨s1, β1 − β2⟩ ≤ ∥s1∥∥β1 − β2∥ = ∥g1∥∥β1 − β2∥.

On the other hand, by strong convexity of Ψ and the first-order optimality condition for β1, we have:

Ψ(β2) ≥ Ψ(β1) +
σ

2
∥β1 − β2∥2.

By combining these inequalities, we have:

σ

2
∥β1 − β2∥2 ≤ ∥g1∥∥β1 − β2∥,

and then:

∥β1 − β2∥ ≤ 2

σ
∥g1∥.

Therefore, we have:

Ψ(β2)−Ψ(β1) ≤ 2

σ
∥g1∥2.

Lemma 12. For any t ≥ 1 and (j(τ))tτ=1:

∥βDA,UCB(k) − β∗,UCB(k)∥2 ≤ O(
C log Tk −RTk

(β)

Tk
). (58)

where C = ∥v∥2

σ2

Proof of Lemma 12. From lemma 8 ,for any t ≥ 1 and (j(τ))tτ=1,

σt

2
∥βt+1 − β∗∥2 ≤ tΨ∗

(
−1

t
st
)
+

t∑
τ=1

(⟨vτ , βτ ⟩+Ψ(βτ )) +

t∑
τ=1

(f(β∗, j(τ)) + Ψ(β∗)− f(βτ , j(τ))−Ψ(βτ ))

(59)

= tΨ∗
(
−1

t
st
)
+

t∑
τ=1

(⟨vτ , βτ ⟩+Ψ(βτ ))−Rt(β). (60)

Rt(β) =
∑t

τ=1 (f(β
τ , j(τ))−Ψ(βτ )− f(β∗, j(τ)) + Ψ(β∗)).

By combining this inequality and lemma 9,

σt

2
∥βt+1 − β∗∥2 ≤ Ψ(β2)−Ψ(β1) +

1

2σ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)
−Rt(β). (61)

By combining this inequality and lemma 11,

σt

2
∥βt+1 − β∗∥2 ≤ 2

σ
∥g1∥2 + 1

2σ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)
−Rt(β). (62)

Thus,
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∥βt+1 − β∗∥2 ≤ 2

σ2t

(
2∥v1∥2 + 1

2

(
∥v1∥2 +

t∑
τ=2

∥vτ∥2

τ − 1

))
− 2

σt
Rt(β). (63)

This inequality implies that,

∥βt+1 − β∗∥2 ≤ O(
C log t−Rt(β)

t
). (64)

where C = ∥v∥2

σ2 .

Lemma 13. For any k,

∥uDA,RUCB(k) − u∗,RUCB(k)∥ ≤ O(
1

mini Bi

√
C log Tk −RTk

(β)

Tk
).

Proof of Lemma 13. From lemma 12,

∥βDA,UCB(k) − β∗,UCB(k)∥2 ≤ O(
C log Tk −RTk

(β)

Tk
), (65)

which implies

∥βDA,UCB(k) − β∗,UCB(k)∥ ≤ O(

√
C log Tk −RTk

(β)

Tk
). (66)

By definition of β,

β
∗,UCB(k)
i =

Bi

u
∗,RUCB(k)
i

(67)

β
DA,UCB(k)
i = O

(
Bi

u
DA,RUCB(k)
i

)
. (68)

By combining (66) and definition of β,

(min
i

Bi)∥
1

uDA,RUCB(k)
− 1

u∗,RUCB(k)
∥ ≤ O(

√
C log Tk −RTk

(β)

Tk
). (69)

Thus,

(min
i

Bi)∥
uDA,RUCB(k) − u∗,RUCB(k)

uDA,RUCB(k)u∗,RUCB(k)
∥ ≤ O(

√
C log Tk −RTk

(β)

Tk
). (70)

By ∥v∥∞ ≤ 1, we get 0 ≤ u
DA,RUCB(k)
i ≤ 1, 0 ≤ u

∗,RUCB(k)
i ≤ 1.

Thus, (70) imply that,

∥uDA,RUCB(k) − u∗,RUCB(k)∥ ≤ O(
1

mini Bi

√
C log Tk −RTk

(β)

Tk
) (71)

Moreover, combining this inequality and 0 ≤ u
DA,RUCB(k)
i u

∗,RUCB(k)
i ≤ 1,

∥uDA,RUCB(k) − u∗,RUCB(k)∥ ≤ O(
1

mini Bi

√
C log Tk −RTk

(β)

Tk
) (72)



Hakuei Yamada, Junpei Komiyama

The following lemma bounds the online regret Rτ uniformly over the rounds τ .

Lemma 14. (Martingale bound for DA) Assume that ∆t(β) ≤ C log T for all T . Then, for any a > 0

Pr[sup
τ
(−Rτ ) + C log T ≥ a] ≤ C log T

a
. (73)

Proof of Lemma 14. Since Rt ≤ C log T (Theorem 1 (a) in Xiao) and Rt is a submartingale, St = −Rt + C log T is a
non-negative supermartingale. Ville’s inequality implies for any supermartingale

Pr[sup
τ

Sτ ≥ a] ≤ S0

a
, (74)

which is Eq. (73).

Lemma 15. Let

Xka =

{
∥uDA,RUCB(k) − u∗,RUCB(k)∥ ≤ O(

1

mini Bi

√
a

Tk
)

}
. (75)

With probability at least 1− C log T
a , event Xka holds.

Proof of Lemma 15. The lemma immediately follows from Lemmas 13 and 14.

D.4.2 Auxiliary lemmas over the multiple instances of DA

Next, we introduce the following lemma:

Lemma 16. For any a > 0,

Pr[
⋃
k

Xka] ≤
nmC(log T )2

a
.

Proof of Lemma 16. DA-UCB-Reset resets the DA subroutine at most nm log2 T times. Thus, from union bound of Lemma
15 over all instances of DA yields

Pr[
⋃
k

Xka] ≤
∑
k

Pr[Xka] ≤
nmC(log T )2

a
. (76)

Next, We introduce the following lemma:

Lemma 17. For any a > 0, with
⋂

k X c
ka,

I[
⋂
k

X c
ka]|u

∗,RUCB
i − uDA,RUCB

i | ≤ Õ(

√
anm

T (mini Bi)2
).

Proof of Lemma 17. By definition,

I[Xka]∥uDA,RUCB(k) − u∗,RUCB(k)∥ ≤ O(
1

mini Bi

√
a

Tk
), (77)

which implies,

I[
⋂
k

X c
ka]|u

DA,RUCB(k)
i − u

∗,RUCB(k)
i | ≤ O(

1

mini Bi

√
a

Tk
). (78)
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By definition of u∗,RUCB
i and uDA,RUCB

i ,

u∗,RUCB
i =

1

T
(T1u

∗,RUCB(1)
i + T2u

∗,RUCB(2)
i + · · ·+ Tyu

∗,RUCB(y)
i ), (79)

uDA,RUCB
i =

1

T

T∑
t=1

I[I(t) = i]v̂UCB
i(t),j(t),Ni,j(t)(s)

(80)

=
1

T
(T1u

DA,RUCB(1)
i + T2u

DA,RUCB(2)
i + · · ·+ Tyu

DA,RUCB(y)
i ). (81)

Thus, from the triangle inequality,

I[
⋂
k

X c
ka]|u

∗,RUCB
i − uDA,RUCB

i | ≤ I[
⋂
k

X c
ka](

T1

T
|u∗,RUCB(1)

i − u
DA,RUCB(1)
i |+ T2

T
|u∗,RUCB(2)

i − u
DA,RUCB(2)
i |

(82)

+ · · ·+ Ty

T
|u∗,RUCB(y)

i − u
DA,RUCB(y)
i |). (83)

For all k = 1, 2, . . . , y, from (78),

I[
⋂
k

X c
ka]

Tk

T
|u∗,RUCB(k)

i − u
DA,RUCB(k)
i | ≤ O(

Tk

T mini Bi

√
a

Tk
) (84)

= Õ(

√
Tka

T mini Bi
). (85)

Thus, with
⋂

k X c
ka,

I[
⋂
k

X c
ka]|u

∗,RUCB
i − uDA,RUCB

i | ≤ T1

T
|u∗,RUCB(1)

i − u
DA,RUCB(1)
i |+ T2

T
|u∗,RUCB(2)

i − u
DA,RUCB(2)
i | (86)

+ · · ·+ Tk

T
|u∗,RUCB(k)

i − u
DA,RUCB(k)
i | (87)

≤ Õ(
a

1
2 (
√
T1 +

√
T2 + · · ·+

√
Tk)

T mini Bi
). (88)

Here, DA-UCB-Reset resets the DA subroutine at most |NM | log2 T times, and from Cauchy–Schwarz inequality,√
T1 +

√
T2 + · · ·+

√
Tk ≤

√
(nm log2 T )T (89)

(90)

Therefore,

I[
⋂
k

X c
ka]|u

∗,RUCB
i − uDA,RUCB

i | ≤ Õ(

√
a(
√
T1 +

√
T2 + · · ·+

√
Tk)

T mini Bi
) (91)

≤ Õ(

√
anmT

T mini Bi
) (92)

≤ Õ(

√
anm

T (mini Bi)2
). (93)

D.4.3 Bound on the second term

Lemma 18. Assume that Bi = 1/n. Let X = T |
∏

i u
∗,RUCB
i −

∏
i u

DA,RUCB
i |. Then, for any x > 0, we have

Pr[X ≥ x] ≤ min

(
1,

n4m2C3(log T )2T

x2

)
. (94)
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Proof of Lemma 18. Lemmas 16 and 17 with miniBi = 1/n imply there exists a constant C > 0 such that

Pr
[
X ≥ C

√
an3mT

]
≤ nmC(log T )2

a
. (95)

Substituting a = x2(n3mT )−1C−2, we can see that Eq. (95) is equivalent to

Pr [X ≥ x] ≤ n4m2C3(log T )2T

x2
. (96)

Moreover, Pr[X ≥ x] ≤ 1 by definition of probability. Combining this with Eq. (96) completes the lemma.

Lemma 19. (survival function)

Let X be non-negative random variable such that

P [X > x] ≤ Cmin

(
T

x2
, 1

)
(97)

for some C > 0. Then,
E[X] ≤ 2C

√
T . (98)

Proof of Lemma 19. Let Sub(x) be such that Pr[X > x] ≤ Sub(x). Then,

E[X] =

∫ ∞

0

Pr[X > x]dx (by def of survival function) (99)

≤
∫ ∞

0

Sub(x)dx (100)

≤ C

∫ ∞

0

min(T/x2, 1)dx (101)

≤ C

∫ ∞

√
T

T/x2dx+

∫ √
T

0

dx (102)

≤ C
(
[−T/x]∞√

T
dx+

√
T
)

(103)

≤ C
(√

T +
√
T
)
, (104)

which completes the proof of Lemma 19.

Lemma 20. We have

E

[
T

∣∣∣∣∣∏
i

(u∗,RUCB
i )Bi)−

∏
i

(uDA,RUCB
i )Bi

∣∣∣∣∣
]
= Õ

(
n4m2

√
T
)
. (105)

Proof of Lemma 20. Combining Lemmas 18 and 19 with C = n4m2C3(log T )2 yields Eq. (105).

D.5 Lemmas on the third term

Lemma 21. for any agent i ∈ N , with G1 ∩ G2 from lemma 5,

I[G1 ∩ G2]|(
∏
i

(uDA,RUCB
i )Bi)−

∏
i

(uDA,true
i )Bi)| = Õ

(
nm

√
T

T

)
. (106)

Proof of Lemma 21. The proof is immediately derived from the definition of G2.
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E PROOFS ON DA

Let vi = (vi,1, vi,2, . . . , vi,m) and s = (s1, s2, . . . , sm) be corresponding vectors of size m and ⟨vi, s⟩ be an inner product
of them. Let ei be the unit vector of the i-th coordinate. Let β = (β1, β2, . . . , βn) and its value at the beginning of t be βt.
Let B = (B1, B2, . . . , Bn) and 1 = (1, 1, . . . , 1).

E.1 Proof of Lemma 1

Proof of Lemma 1. Let us consider the following event that no projection occurs when updating βt+1
i for buyer i ∈ N and

t ≥ 1:

Vt
i :=

{
Bi

ūDA
i (t)

∈
[

Bi

h(1 + δ0)
,
1 + δ0

l

]}
.

From Lemma 22, whenever the complementary event (Vt
i )

c =
{

Bi

ūDA
i (t)

/∈
[

Bi

h(1+δ0)
, 1+δ0

l

]}
occurs, it holds that:

|βt+1
i − β∗,DA

i | > min

(
1 + δ0

l
− β∗,DA

i , β∗,DA
i − Bi

h(1 + δ0)

)
> 0.

Therefore, we have:

E
[
(βt+1

i − β∗,DA
i )2

]
= E

[
(βt+1

i − β∗,DA
i )2 | Vt

i

]
P(Vt

i ) + E
[
(βt+1

i − β∗,DA
i )2 | (Vt

i )
c
]
P((Vt

i )
c)

≥ E
[
(βt+1

i − β∗,DA
i )2 | (Vt

i )
c
]
P((Vt

i )
c)

≥
(
min

(
1 + δ0

l
− β∗,DA

i , β∗,DA
i − Bi

h(1 + δ0)

))2

P((Vt
i )

c).

Then, we get:

P((Vt
i )

c) ≤ 1(
min

(
1+δ0

l − β∗,DA
i , β∗,DA

i − Bi

h(1+δ0)

))2E [(βt+1
i − β∗,DA

i )2
]
. (107)

On the other hand, conditioning on Vt
i , we have

ūDA
i (t) =

Bi

βt+1
i

. (108)

Moreover, from Lemma 22 and the assumption that l ≤ ⟨vDA
i , s⟩, we get:

u∗,DA
i ≤ h =

h

l
l ≤ h

l
⟨vDA

i , s⟩ ≤ h

l
∥vDA

i ∥∞∥s∥1 =
h

l
∥vDA

i ∥∞, (109)

where the last inequality follows from Hölder’s inequality.



Hakuei Yamada, Junpei Komiyama

By combining (107), (108), and (109), we have:

E
[
(ūDA

i (T )− u∗,DA
i )2

]
= E

[
I{(VT

i )
c}(ūDA

i (T )− u∗,DA
i )2

]
+ E

[
I{VT

i }(ūDA
i (T )− u∗,DA

i )2
]

= E
[
I{(VT

i )
c}(ūDA

i (T )− u∗,DA
i )2

]
+ E

[
I{VT

i }
(

Bi

βT+1
i

− u∗,DA
i

)2
]

≤ E
[
I{(VT

i )
c}
(
max(u∗,DA

i , ∥vDA
i ∥∞)

)2]
+ E

[
I{VT

i }
(

Bi

βT+1
i

− u∗,DA
i

)2
]

≤ h

l
∥vDA

i ∥2∞E
[
I{(VT

i )
c}
]
+ (u∗,DA

i )2E

I{VT
i }

(
Bi

βT+1
i u∗,DA

i

− 1

)2


=
h

l
∥vDA

i ∥2∞P
[
(VT

i )
c
]
+ (u∗,DA

i )2E

I{VT
i }

(
β∗,DA
i

βT+1
i

− 1

)2


≤ h∥vDA
i ∥2∞

l
(
min

(
1+δ0

l − β∗,DA
i , β∗,DA

i − Bi

h(1+δ0)

))2E [(βT+1
i − β∗,DA

i )2
]
+

(
h(1 + δ0)u

∗,DA
i

Bi

)2

E
[
(βT+1

i − β∗,DA
i )2

]
,

where the first inequality follow from 0 ≤ ūDA
i ≤ ∥vDA

i ∥∞, and the third equality follows from β∗,DA
i = Bi

u∗,DA
i

by Theorem

1 in Gao et al. (2021). Since Bi

h ≤ β∗,DA
i ≤ 1

l from Lemma 22,

E
[
(ūDA

i (T )− u∗,DA
i )2

]
≤

 h∥vDA
i ∥2∞

l
(
min

(
δ0
l ,

Biδ0
h(1+δ0)

))2 +

(
h2(1 + δ0)

Bi

)2

E
[
(βT+1

i − β∗,DA
i )2

]

≤

((
(1 + δ0)

δ0

)2
h3∥vDA

i ∥2∞
lB2

i

+

(
h2(1 + δ0)

Bi

)2
)
E
[
(βT+1

i − β∗,DA
i )2

]
≤

((
(1 + δ0)

δ0

)2
h3∥vDA

i ∥2∞
l (mini∈N Bi)

2 +

(
h2(1 + δ0)

mini∈N Bi

)2
)
E
[
(βT+1

i − β∗,DA
i )2

]
,

where the second inequality follows from δ0
l ≥ δ0

h ≥ δ0
h(1+δ0)

≥ Biδ0
h(1+δ0)

. From Lemma 24, by summing up the above
inequality for i ∈ N , we have:

E
[
∥ūDA(T )− u∗,DA∥2

]
≤
∑
i∈N

((
(1 + δ0)

δ0

)2
h3∥vDA

i ∥2∞
l (mini∈N Bi)

2 +

(
h2(1 + δ0)

mini∈N Bi

)2
)
E
[
(βT+1

i − β∗,DA
i )2

]
≤

((
(1 + δ0)

δ0

)2
h3∥vDA∥2∞

l (mini∈N Bi)
2 +

(
h2(1 + δ0)

mini∈N Bi

)2
)
E
[
∥βT+1 − β∗,DA∥2

]
≤

((
(1 + δ0)

δ0

)2
h3∥vDA∥2∞

l (mini∈N Bi)
2 +

(
h2(1 + δ0)

mini∈N Bi

)2
)

G2

µ2T
(6 + log T ),

where G = ∥vDA∥∞ and µ = l2 mini∈N Bi

(1+δ0)2
.

F ADDITIONAL LEMMAS ON DA

Lemma 22. Assume that the values of items are given by the deterministic values {vDA
i,j }i∈N,j∈M . Furthermore, assume

that the parameters l, h in DA satisfies that l ≤
∑

j∈M sjv
DA
i,j ≤ h for all i ∈ N . Then, the equilibrium utilities satisfy

Bil ≤ u∗,DA
i ≤ h and hence Bi

h ≤ β∗,DA
i ≤ 1

l .
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Lemma 23. Ψ(β) := −
∑

i∈N Bi log βi is µ-strongly convex on [ B
h(1+δ0)

, 1+δ0
l 1] with µ = l2 mini∈N Bi

(1+δ0)2
.

Lemma 24. Assume that the values of items {vDA
i,j(t)} are deterministic. Furthermore, assume that l, h > 0 satisfies that

l ≤
∑

j∈M sjv
DA
i,j ≤ h for all i ∈ N , and β1 = arg min[

B
h(1+δ0)

,
1+δ0

l 1
]Ψ(β). Let β∗,DA be the optimal solution of (112). Then,

the following inequality holds for all t ≥ 1:

E
[
∥βt+1 − β∗,DA∥2

]
≤ G2

µ2t
(6 + log t),

where G = ∥vDA∥∞ := maxi∈N ∥vDA
i ∥∞ and µ = l2 mini∈N Bi

(1+δ0)2
.

F.1 Proof of Lemma 22

Proof of Lemma 22. For buyer i ∈ N , the largest utility is attainable when the entire set of items is allocated to i (given by
the supply s). Thus, from the assumption that

∑
j∈M sjv

DA
i,j ≤ h, we have:

u∗,DA
i ≤ ⟨vDA

i , s⟩ ≤ h. (110)

On the other hand, from Theorem 1 in Gao et al. (2021), we have for any market equilibrium (x∗,DA, p∗,DA):

⟨p∗,DA, x∗,DA
i ⟩ = β∗,DA

i ⟨vi, x∗,DA
i ⟩ = Bi.

By the assumption that
∑

i∈N Bi = 1 and market clearance ⟨p∗,DA, s−
∑

i∈N x∗,DA
i ⟩ = 0, we get:

⟨p∗,DA, s⟩ =
∑
i∈N

⟨p∗,DA, x∗,DA
i ⟩ =

∑
i∈N

Bi = 1.

Thus,

⟨p∗,DA, Bis⟩ = Bi.

This means that each buyer i can afford the proportional allocation x◦
i := Bis under the item price p∗,DA. Therefore, from

the buyer optimality of the market equilibrium and the assumption that l ≤
∑

j∈M sjv
DA
i,j , we have:

u∗,DA
i ≥ ⟨vDA

i , x◦
i ⟩ = Bi⟨vDA

i , s⟩ ≥ Bil. (111)

By combining (110) and (111), we get:

Bil ≤ u∗,DA
i ≤ h.

Moreover, since β∗,DA
i = Bi

u∗,DA
i

from Theorem 1 in Gao et al. (2021), we have:

Bi

h
≤ β∗,DA

i ≤ 1

l
.

F.2 Proof of Lemma 23

Proof of Lemma 23. The Hessian matrix of Ψ at β ∈
[

B
h(1+δ0)

, 1+δ0
l 1

]
is given by:

∇2Ψ(β) =


B1

β2
1

. . .
Bn

β2
n

 .

Thus, the minimum eigenvalue of ∇2Ψ(β) is lower bounded as:

λmin(∇2Ψ(β)) ≥ min
i∈N

Bi

β2
i

≥ l2 mini∈N Bi

(1 + δ0)2
.

Therefore, Ψ is µ-strongly convex on [ B
h(1+δ0)

, 1+δ0
l 1] with µ = l2 mini∈N Bi

(1+δ0)2
.
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F.3 Proof Lemma 24

Proof of Lemma 24. Let us assume that l ≤ ⟨vi, s⟩ ≤ h for i ∈ N . Then, DEG can written as:

minimize
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
]
{
ϕ(β) := Ej∼s

[
max
i∈N

vi,jβi

]
−
∑
i∈N

Bilogβi

}
. (112)

Defining f(β, j) = maxi∈N vi,jβi and Ψ(β) = −
∑

i∈N Bi log βi, we have vi∗j ,je
(i∗j ) ∈ ∂f(β, j), where i∗j ∈

arg max
i∈N

vi,jβi. The update rule of DA is given as:

βt+1 =

 Proj
[

Bi
h(1+δ0)

,
1+δ0

l ]

(
Bi

1
t

∑t
τ=1 vi,j(τ)I{i = i∗j(τ)}

)
i∈N

,

= arg min
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
]
{
1

t

t∑
τ=1

⟨vi∗
j(τ)

,j(τ)e
(i∗j(τ)), β⟩ −

∑
i∈N

Bi log βi

}

= arg min
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
]
{
1

t

t∑
τ=1

⟨gτ , β⟩+Ψ(β)

}
, (113)

where gτ = vi∗
j(τ)

,j(τ)e
(i∗j(τ)).

From the first-order optimality condition for (113), there exist a subgradient bt+1 ∈ ∂Ψ(βt+1) such that

⟨
t∑

τ=1

gτ + tbt+1, β
∗,DA − βt+1⟩ ≥ 0, ∀β ∈

[
B

h(1 + δ0)
,
1 + δ0

l
1

]
. (114)

From Lemma 23, Ψ is µ-strongly convex with µ = l2 mini∈N Bi

(1+δ0)2
, and then we have for any β ∈

[
B

h(1+δ0)
, 1+δ0

l 1
]
,

Ψ(β) ≥ Ψ(βt+1) + ⟨bt+1, β − βt+1⟩+ µ

2
∥βt+1 − β∥2. (115)

By combining (114) and (115), we get:
µt

2
∥βt+1 − β∗,DA∥2

≤ ⟨
t∑

τ=1

gτ , β
∗,DA − βt+1⟩+ tΨ(β∗,DA)− tΨ(βt+1)

= ⟨−
t∑

τ=1

gτ , β
t+1 − β1⟩ − tΨ(βt+1) + tΨ(β∗,DA) + ⟨

t∑
τ=1

gτ , β
∗,DA − β1⟩

= ⟨−
t∑

τ=1

gτ , β
t+1 − β1⟩ − tΨ(βt+1) + tΨ(β∗,DA) +

t∑
τ=1

⟨gτ , βτ − β1⟩+
t∑

τ=1

⟨gτ , β∗,DA − βτ ⟩

= ⟨−
t∑

τ=1

gτ , β
t+1 − β1⟩ − tΨ(βt+1) +

t∑
τ=1

(
⟨gτ , βτ − β1⟩+Ψ(βτ )

)
+

t∑
τ=1

⟨gτ , β∗,DA − βτ ⟩+ tΨ(β∗,DA)−
t∑

τ=1

Ψ(βτ )

≤ ⟨−
t∑

τ=1

gτ , β
t+1 − β1⟩ − tΨ(βt+1) +

t∑
τ=1

(
⟨gτ , βτ − β1⟩+Ψ(βτ )

)
+

t∑
τ=1

(
f(β∗,DA, j(τ))− f(βτ , j(τ))

)
+ tΨ(β∗,DA)−

t∑
τ=1

Ψ(βτ )

= ⟨−
t∑

τ=1

gτ , β
t+1 − β1⟩ − tΨ(βt+1) +

t∑
τ=1

(
⟨gτ , βτ − β1⟩+Ψ(βτ )

)
+

t∑
τ=1

(
f(β∗,DA, j(τ)) + Ψ(β∗,DA)

)
−

t∑
τ=1

(f(βτ , j(τ)) + Ψ(βτ )) ,
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where the second inequality follows from the convexity of f(·, j(τ)). Here, let us define

V0(s) = max
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
]{⟨s, β − β1⟩ −Ψ(β)},

and for t ≥ 1,

Vt(s) = max
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
]{⟨s, β − β1⟩ − tΨ(β)}.

Since βt+1 = arg max
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
]{⟨−∑t

τ=1 gτ , β − β1⟩ − tΨ(β)},

µt

2
∥βt+1 − β∗,DA∥2

≤ Vt(−
t∑

τ=1

gτ ) +

t∑
τ=1

(
⟨gτ , βτ − β1⟩+Ψ(βτ )

)
+

t∑
τ=1

(
f(β∗,DA, j(τ)) + Ψ(β∗,DA)

)
−

t∑
τ=1

(f(βτ , j(τ)) + Ψ(βτ )) .

(116)

For τ ≥ 2, we have:

Vτ (−
τ∑

s=1

gs)− Vτ−1(−
τ∑

s=1

gs) ≤ ⟨−
τ∑

s=1

gs, β
τ+1 − β1⟩ − τΨ(βτ+1)− ⟨−

τ∑
s=1

gs, β
τ+1 − β1⟩+ (τ − 1)Ψ(βτ+1)

= −Ψ(βτ+1).

Therefore,

Vτ (−
τ∑

s=1

gs) + Ψ(βτ+1) ≤ Vτ−1(−
τ∑

s=1

gs) = Vτ−1(−
τ−1∑
s=1

gs − gτ ). (117)

Here, since tΨ(·) is µt-strongly convex, the convex conjugate of tΨ(·) is 1
µt -smooth. Thus,

Vτ−1(−
τ−1∑
s=1

gs − gτ ) ≤ Vτ−1(−
τ−1∑
s=1

gs)− ⟨∇Vτ−1(−
τ−1∑
s=1

gs), gτ ⟩+
∥gτ∥2

2µ(τ − 1)
. (118)

On the other hand, the gradient of Vτ is given as:

∇Vτ−1(−
τ−1∑
s=1

gs) = ∇ max
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
]
{
⟨−

τ−1∑
s=1

gs, β⟩ − (τ − 1)Ψ(β)

}
− β1

= βτ − β1. (119)

By combining (117), (118), and (119), we have for τ ≥ 2:

⟨βτ − β1, gτ ⟩+Ψ(βτ+1) ≤ Vτ−1(−
τ−1∑
s=1

gs)− Vτ (−
τ∑

s=1

gs) +
∥gτ∥2

2µ(τ − 1)
. (120)

Similarly, for τ = 1, we have:

V1(−g1) = V0(−g1) ≤ V0(0)− ⟨∇V0(0), g1⟩+
∥g1∥2

2µ
,

and

∇V0(0) = ∇ max
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
] {⟨0, β⟩ −Ψ(β)} − β1

= ∇ max
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
] {−Ψ(β)} − β1

= β1 − β1 = 0.
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Thus,

⟨β1 − β1, g1⟩+Ψ(β2) ≤ V0(0)− V1(−g1) +
∥g1∥2

2µ
+Ψ(β2). (121)

By summing (120) and (121) for τ = 1, · · · , t,

t∑
τ=1

(
⟨βτ − β1, gτ ⟩+Ψ(βτ+1)

)
≤ V0(0)− Vt(−

t∑
τ=1

gτ ) + Ψ(β2) +
1

2µ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)

= −Vt(−
t∑

τ=1

gτ ) + Ψ(β2)−Ψ(β1) +
1

2µ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)
.

Since β1 = arg min
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
]Ψ(β), Ψ(βt+1) ≥ Ψ(β1) holds. Thus, adding the inequality Ψ(β1)−Ψ(βt+1) ≤ 0 to the

above inequality, we get:

t∑
τ=1

(
⟨βτ − β1, gτ ⟩+Ψ(βτ )

)
=

t∑
τ=1

(
⟨βτ − β1, gτ ⟩+Ψ(βτ+1)

)
+Ψ(β1)−Ψ(βt+1)

≤ −Vt(−
t∑

τ=1

gτ ) + Ψ(β2)−Ψ(β1) +
1

2µ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)
. (122)

Adding (116) and (122) yields:

µt

2
∥βt+1 − β∗,DA∥2

≤ Ψ(β2)−Ψ(β1) +
1

2µ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)
+

t∑
τ=1

(
f(β∗,DA, j(τ)) + Ψ(β∗,DA)

)
−

t∑
τ=1

(f(βτ , j(τ)) + Ψ(βτ )) .

(123)

Since β2 = arg min
β∈

[
B

h(1+δ0)
,
1+δ0

l 1
] {⟨g1, β⟩+Ψ(β)}, we have:

⟨g1, β2⟩+Ψ(β2) ≤ ⟨g1, β1⟩+Ψ(β1).

Thus, from the Cauchy–Schwarz inequality,

Ψ(β2)−Ψ(β1) ≤ ⟨g1, β1 − β2⟩ ≤ ∥g1∥∥β1 − β2∥.

On the other hand, by strong convexity of Ψ and the first-order optimality condition for β1, we have:

Ψ(β2) ≥ Ψ(β1) +
µ

2
∥β1 − β2∥2.

By combining the above inequalities, we have:

µ

2
∥β1 − β2∥2 ≤ ∥g1∥∥β1 − β2∥,

and then:

∥β1 − β2∥ ≤ 2

µ
∥g1∥.

Therefore, we have:

Ψ(β2)−Ψ(β1) ≤ 2∥g1∥2

µ
. (124)
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By combining (123) and (124), we get:

∥βt+1 − β∗,DA∥2 ≤ 2

µt

(
2∥g1∥2

µ
+

1

2µ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

))

+
2

µt

(
t∑

τ=1

(
f(β∗,DA, j(τ)) + Ψ(β∗,DA)

)
−

t∑
τ=1

(f(βτ , j(τ)) + Ψ(βτ ))

)
. (125)

Since the random variables (j(1), · · · , j(t)) is i.i.d, the expectation of f(βτ , j(τ)) + Ψ(βτ ) is given as:

E(j(s))ts=1
[f(βτ , j(τ)) + Ψ(βτ )] = E(j(s))τ−1

s=1

[
E(j(s))ts=τ

[
f(βτ , j(τ)) + Ψ(βτ ) | (j(s))τ−1

s=1

]]
= E(j(s))τ−1

s=1

[
Ej(τ) [f(β

τ , j(τ))] + Ψ(βτ )
]

= E(j(s))τ−1
s=1

[ϕ(βτ )].

Similarly, the expectation of f(β∗,DA, j(τ)) + Ψ(β∗,DA) is given by:

E(j(s))ts=1

[
f(β∗,DA, j(τ)) + Ψ(β∗,DA)

]
= Ej(τ)

[
f(β∗,DA, j(τ)) + Ψ(β∗,DA)

]
= ϕ(β∗,DA).

Thus, the expected regret is upper bounded as:

E(j(s))ts=1

[
t∑

τ=1

(
f(β∗,DA, j(τ)) + Ψ(β∗,DA)

)
−

t∑
τ=1

f(βτ , j(τ)) + Ψ(βτ )

]
=

t∑
τ=1

(
ϕ(β∗,DA)− E(j(s))τ−1

s=1
[ϕ(βτ )]

)
≤ 0.

(126)

From (126), the expectation of (125) is given by:

E(j(s))ts=1

[
∥βt+1 − β∗,DA∥2

]
≤ 2

µt
E(j(s))ts=1

[
2∥g1∥2

µ
+

1

2µ

(
∥g1∥2 +

t∑
τ=2

∥gτ∥2

τ − 1

)]

=
2

µt

2Ej(1)[∥vDA
i∗
j(1)

,j(1)e
(i∗j(1))∥2]

µ
+

1

2µ

Ej(1)[∥vDA
i∗
j(1)

,j(1)e
(i∗j(1))∥2] +

t∑
τ=2

E(j(s))τs=1
[∥vDA

i∗
j(τ)

,j(τ)e
(i∗j(τ))∥2]

τ − 1


=

2

µt

(
2maxi∈N Ej∼s[(v

DA
i,j )2]

µ
+

1

2µ

(
max
i∈N

Ej∼s[(v
DA
i,j )2] +

t∑
τ=2

maxi∈N Ej∼s[(v
DA
i,j )2]

τ − 1

))

≤ G2

µ2t

(
5 +

t∑
τ=2

1

τ − 1

)
=

G2

µ2t

(
5 +

t−1∑
τ=1

1

τ

)
≤ G2

µ2t
(6 + log t).

G MORE DETAILS ON THE EXPERIMENTS

In this section, we provide the result of Household (n=50) in Figure 3 and the l2-loss of utilities ||ūi − u∗
i || in Table 2.

Figure 3 depicts regrets with n = 50 for the Household dataset. Inevitably, the same tendency retains as in Figures 1 and 2.
Table 2 illustrates the l2-loss of utilities ||ūi − u∗

i ||. This metric measures the disparity between the true and the resulting
utilities. DA-EtC or DA-UCB outperformed the others. The inconsistency of DA-Grdy was more apparent than the regret
indicated in the figures. This observation implies that the estimated values in DA-Grdy are more inaccurate than those of
DA-EtC and DA-UCB.
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Figure 3: Regret in Household with a larger number of agents (n = 50).

Table 2: Loss of utilities per round. Type boldface indicates the minimum loss at the dataset.

Uniform Jester Household Household
(n = 10) (n = 50)

Random 0.041 0.031 0.033 0.006
UCB 0.073 0.073 0.070 0.019
DA-Grdy 0.010 0.008 0.015 0.006
DA-EtC 0.004 0.007 0.005 0.004
DA-UCB 0.002 0.008 0.004 0.003
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