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Abstract

Motivated by the computation of the non-
parametric maximum likelihood estimator
(NPMLE) and the Bayesian posterior in
statistics, this paper explores the problem
of convex optimization over the space of all
probability distributions. We introduce an
implicit scheme, called the implicit KL prox-
imal descent (IKLPD) algorithm, for dis-
cretizing a continuous-time gradient flow rel-
ative to the Kullback–Leibler (KL) diver-
gence for minimizing a convex target func-
tional. We show that IKLPD converges to
a global optimum at a polynomial rate from
any initialization; moreover, if the objective
functional is strongly convex relative to the
KL divergence, for example, when the tar-
get functional itself is a KL divergence as
in the context of Bayesian posterior compu-
tation, IKLPD exhibits globally exponential
convergence. Computationally, we propose a
numerical method based on normalizing flow
to realize IKLPD. Conversely, our numerical
method can also be viewed as a new approach
that sequentially trains a normalizing flow for
minimizing a convex functional with a strong
theoretical guarantee.

1 INTRODUCTION

Many problems in statistics and machine learning can
be formulated as minimizing a functional, denoted as
F , over the space of all probability distributions P(Θ)
on a (parameter) space Θ ⊂ Rd. Examples include
approximate Bayesian computation (Dai et al., 2016;
Yao and Yang, 2022), non-parametric estimation (Yan

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

et al., 2023), deep learning (Chizat, 2022; Chizat and
Bach, 2018; Nitanda et al., 2022), and single-cell anal-
ysis in mathematical biology (Lavenant et al., 2021).
Many recent studies consider addressing this optimiza-
tion problem by numerically realizing the so-called
Wasserstein gradient flow (WGF) for minimizing F ,
a continuous dynamics on P(Θ) that evolves in the
steepest descent direction of F in the Wasserstein met-
ric. WGFs inherit many appealing geometric inter-
pretations from the conventional gradient flows in the
Euclidean space Rd and extend them to P(Θ). How-
ever, a fast (e.g., exponential) convergence guarantee
for WGF usually requires the displacement convexity
of the objective functional F (i.e., convexity of F along
Wasserstein geodesics, see Appendix A.1 for a precise
definition), which may impose more stringent condi-
tions than the usual L2 convexity of F and therefore
may not hold in many applications (such as Examples
1 and 2 below). Several works instead consider relax-
ing the displacement convexity condition to a PL-type
inequality on F (Bolley et al., 2012, 2013; Cattiaux
et al., 2010; Chewi et al., 2020). However, a typical
PL-type inequality can only hold with some impracti-
cal assumptions being imposed (Nitanda et al., 2022);
moreover, it can be fairly difficult to verify even for
simple problems in the Euclidean setting (Wensing and
Slotine, 2020) as the inequality requires prior knowl-
edge on the global optimum.

In this paper, we instead explore the use of Kullback–
Leibler (KL) divergence gradient flow (KLGF) to min-
imize an L2 convex target functional F over the space
of all probability distributions P(Θ). In particular,
we will focus on the following two motivating exam-
ples, where the target functionals are L2 convex but
not necessarily displacement convex.

Example 1 (Non-parametric maximum likeli-
hood estimation): The computation of the non-
parametric maximum likelihood estimator (NPMLE)
naturally arises in estimating the mixing distributions
of mixture models and in using empirical Bayes meth-
ods to address compound decision problems. Con-
cretely, we assume that the conditional distribution
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of a random variable X given a parameter θ is p( · | θ),
where θ ∈ Θ is drawn from an unknown mixing dis-
tribution P ∗ in P(Θ). Given n i.i.d. copies Xn =
(X1, · · · , Xn) of X, the NPMLE of P ∗ is defined as

P̂n = argmin
ρ∈P(Θ)

Ln(ρ), with

Ln(ρ) :=
1

n

n∑
i=1

− log
(∫

Θ

p(Xi | θ) dρ(θ)
)
,

(1)

which minimizes the (averaged) negative log-likelihood
functional Ln : P(Θ) → R. Ln is obviously L2 convex
on P(Θ) but not generally displacement convex (see
Appendix A.1 for an example).

The concept of NPMLE was initially introduced
by Kiefer and Wolfowitz (1956). In this approach, the
mixing distribution is not confined to a discrete mea-
sure with a predetermined number of atoms; instead,
it is treated and estimated as an infinite-dimensional
object. For NPMLE, Koenker and Mizera (2014)
show that when the parameter space Θ is the one-
dimensional real line, P̂n is a discrete probability mea-
sure with no more than n atoms. Moreover, they
propose a numerical method for solving NPMLE in
R by utilizing a space discretization scheme to refor-
mulate (1) into a convex optimization problem. The
resulting convex problem can then be efficiently solved
using modern interior point methods. However, their
computational approach is susceptible to the curse of
dimensionality, making it computationally intensive
when handling multivariate parameters, as demon-
strated in our numerical comparison in Section 5.
When the true mixing distribution P ∗ is sub-Gaussian
on R and p(· | θ) = N (θ, 1), Polyanskiy and Wu (2020)

show that the number of atoms in P̂n decreases from
O(n) to O(log n). Soloff et al. (2021) further extend
the optimality analysis of NPMLE to the multivariate
and heteroscedastic normal observation model (with
known heteroscedasticity), showing that, despite po-
tential non-uniqueness when d ≥ 2, a solution with at
most n atoms exists. For the multivariate Gaussian
location mixture model where p(· | θ) = N (θ, Id), Yan
et al. (2023) propose an algorithm to solve (1) based
on discretizing a Wasserstein–Fisher–Rao (WFR) gra-
dient flow (Chizat et al., 2018; Gallouët and Monsain-
geon, 2017). This method is numerically implemented
using particle approximation.

Example 2 (Bayesian posterior sampling): In
Bayesian statistics, a fundamental challenge involves
sampling from the posterior distribution to estimate
unknown parameters through the posterior mean and
to construct credible intervals. This computational
problem is especially relevant when exact computation
of the posterior distribution is impractical due to non-
conjugacy. Specifically, given a prior probability den-

sity function π(θ) for the unknown parameter θ ∈ Θ,
and n independent and identically distributed samples
Xn = (X1, . . . , Xn) drawn from a conditional distri-
bution p(· | θ) that defines the likelihood function, the
posterior density is πn(θ) ∝ π(θ)

∏n
i=1 p(Xi | θ). This

posterior density admits a variational characterization

πn = argmin
ρ∈P(Θ)

∫
Vn(θ) dρ(θ) +

∫
ρ log ρ,

with Vn(θ) = − log π(θ)−
n∑
i=1

log p(Xi | θ)
(2)

denoting the effective potential function. In other
words, the posterior can be identified as the global
minimizer of the KL divergence functionalDKL( · ∥πn)
up to an additive constant. The KL functional is al-
ways L2 convex on P(Θ); but the displacement con-
vexity requires more stringent conditions such as the
convexity of Vn.

In addition to classical Markov Chain Monte Carlo
(MCMC) algorithms (Tierney, 1994), recent advance-
ments in sampling from Bayesian posterior distribu-
tions have focused on discretizing certain gradient
flows in the space of all probability distributions. One
such method is based on the WGF, involving the
discretization of its associated stochastic differential
equation, specifically, the Langevin dynamics. For in-
stance, Dalalyan (2017b) introduced the (unadjusted)
Langevin Monte Carlo algorithm, which employs an
explicit scheme, the Euler–Maruyama method, to dis-
cretize the Langevin dynamics. However, this algo-
rithm is known to produce a non-vanishing asymp-
totic bias due to the explicit discretization (Dalalyan,
2017a; Wibisono, 2018), and was later improved to an
unbiased version using a forward-backward discretiza-
tion scheme by (Wibisono, 2018). Nevertheless, the
rapid convergence of these iterative algorithms, which
are based on discretizing the WGF, requires stringent
conditions on πn, such as log-concavity, isoperime-
try, or log-Sobolev inequalities (Chewi et al., 2021;
Dalalyan, 2017b; Wibisono, 2018). Along a different
track, Dai et al. (2016) proposed a stochastic parti-
cle mirror descent algorithm to iteratively approximate
the Bayesian posterior density.

Our contributions. In this work, we intro-
duce an implicit scheme, called the implicit KL
proximal descent (IKLPD) algorithm, for discretiz-
ing a continuous-time gradient flow relative to the
Kullback–Leibler divergence for minimizing a general
L2 convex functional F . We show that, under the
L2 convexity condition alone, IKLPD converges to a
global optimum at a polynomial rate from any ini-
tialization that admits a density; moreover, if F is
strongly convex relative to the KL divergence, for ex-
ample, when F itself is a KL divergence as in the
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context of Bayesian posterior computation, IKLPD
exhibits globally exponential convergence. The pro-
posed implicit scheme thus eliminates the need for
any smoothness condition on the L2-gradient of F ,
a condition typically needed by an explicit discretiza-
tion scheme. In particular, in explicit discretization
schemes, a low level of smoothness considerably limits
the maximum permissible learning rate (or step size)
of the algorithm. It is also crucial to note that while a
Lipschitz L2-gradient condition is generally not overly
stringent for functions over Euclidean space, it can ei-
ther exclude many commonly used functionals, such
as the KL divergence, or requires substantial effort to
verify. Additionally, our development can also be ex-
tended to a general (implicit) proximal mirror descent
algorithm with a Bregman divergence beyond the KL;
see Appendix A.2 for more details.

Computationally, we propose a numerical method
based on normalizing flow (Dinh et al., 2016; Kingma
and Dhariwal, 2018; Papamakarios et al., 2021;
Rezende and Mohamed, 2015) to implement IKLPD.
The compositional structure of normalizing flow is
well-suited to the iterative nature of our time-
discretization algorithm. In particular, we sequen-
tially stack local short normalizing flows, each learned
within an IKLPD iteration, to construct a global, lay-
ered normalizing flow, to approximate a minimizer of
F . Alternatively, our algorithm can be viewed as a
novel method that sequentially trains a normalizing
flow to minimize a convex functional F over P(Θ)
with a strong theoretical guarantee. When applied to
computing the NPMLE and Bayesian posteriors, our
numerical study suggests that the proposed method
demonstrates promising performance, outperforming
explicit schemes and other specialized competing al-
gorithms.

We also consider two extensions of our development.
In the first extension, we allow nonzero numerical error
to occur when solving each implicit step. We exam-
ine how these errors accumulate (Theorem 4), offering
insights for designing stopping criteria for the implicit
step. In the second extension, we introduce and ana-
lyze the convergence of a stochastic variant of IKLPD
(Theorem 5). This is particularly relevant in practical
scenarios with large sample sizes. To our knowledge,
this is the first study that analyzes a stochastic prox-
imal type algorithm for optimizing functionals on the
space of all probability distributions.

More related works. Ying (2020) applies a mir-
ror descent algorithm for minimizing an interacting
free energy over P(Θ) composed of a potential en-
ergy, a KL divergence, and a self-interaction energy;
however, they do not provide any convergence anal-
ysis. Aubin-Frankowski et al. (2022); Chizat (2021)

prove the explicit convergence rate of the mirror de-
scent for minimizing general (strongly) convex func-
tionals over the space of all probability distributions.
Chizat (2021) studies the convergence of the mirror de-
scent algorithm for minimizing a special class of com-
posite convex targets F whose primary component de-
pends on ρ ∈ P(Θ) through a linear functional. When
specializing the Bregman divergence to the KL, their
algorithm can be viewed as an explicit scheme to dis-
cretize the KL gradient flow. As a result, their the-
ory requires F to have a Lipschitz L2-gradient and
does not cover common f -divergences (Rényi, 1961)
such as the KL. Aubin-Frankowski et al. (2022) pro-
pose a different smoothness characterization called
relative smoothness, which is analogous to the Eu-
clidean case smoothness characterization via quadratic
bounds. However, they only verify their conditions
for the KL functional, with applications to the en-
tropic optimal transport and Expectation Maximiza-
tion (EM). In addition, their convergence bound di-
verges to infinity as the (global) minimizer of F be-
comes singular (i.e., does not admit a density). Last
but not least, these two papers (Aubin-Frankowski
et al., 2022; Chizat, 2021) do not provide concrete nu-
merical methods to implement their algorithms.

As previously mentioned, Koenker and Mizera (2014),
Soloff et al. (2021), and Yan et al. (2023) have pro-
posed some advanced algorithms for numerically com-
puting the NPMLE. The WFR based method by Yan
et al. (2023) is limited to the Gaussian location mix-
ture model and lacks an explicit convergence rate guar-
antee. The convex optimization based algorithms by
Koenker and Mizera (2014); Soloff et al. (2021) ap-
proximate the target distribution through histograms
by space discretization, and therefore suffers from the
curse of dimensionality. In contrast, our method offers
a worst-case O(k−1) convergence guarantee after k it-
erations and tends to scale better to higher dimensions.
For Bayesian posterior computation, MCMC is known
for slow mixing in complex or high-dimensional prob-
lems. Most existing numerical algorithms based on
Langevin dynamics require stringent conditions such
as log-concavity, isoperimetry, or log-Sobolev inequal-
ities (Chewi et al., 2021; Dalalyan, 2017b; Wibisono,
2018) for fast convergence. In comparison, our algo-
rithm guarantees exponential convergence without im-
posing any conditions on the target posterior, provided
the implicit step can be efficiently implemented, which
holds true in our examples. Further literature review
on mirror descent and stochastic (proximal) mirror de-
scent in the Euclidean space, as well as optimization
algorithms on the space of all probability distributions,
is available in the Appendix.
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2 KL DIVERGENCE GRADIENT
FLOW AND IMPLICIT TIME
DISCRETIZATION

To begin with, we briefly introduce our notation and
some useful definitions. Let F : P(Θ) → R be a
lower semi-continuous functional and Pr(Θ) denote
the set of all probability distributions admitting a den-
sity on Θ. Under mild conditions (see Appendix A.1
for details), one can define the first variation of F at
ρ ∈ P(Θ) as a map δF

δρ (ρ) : Θ → R such that for any

perturbation χ = ρ′ − ρ with ρ′ ∈ Pr(Θ),

d

dε
F(ρ+ εχ)

∣∣∣∣
ε=0

=

∫
Θ

δF
δρ

(ρ) dχ.

Note that δFδρ (ρ) is only uniquely defined up to an addi-
tive constant. The first variation can be viewed as the
L2-gradient of F in P(Θ). A functional F is called λ-
relative strongly convex (relative to KL) if for any pair
of regular probability measures ρ, ρ′ ∈ P(Θ) (Pr(Θ)
when λ > 0) such that F(ρ) is finite,

F(ρ′) ≥ F(ρ) +

∫
δF
δρ

(ρ) d(ρ′ − ρ) + λDKL(ρ
′ ∥ ρ).

We simply say F to be (L2-)convex if F satisfies the
above inequality with λ = 0. Note that the NPMLE
example in Section 1 has a convex F , and the Bayesian
posterior example therein has a 1-relative strongly con-
vex F ; see Appendix D.7 for a proof.

Remark 1. The L2 convexity and the displacement
convexity are not directly comparable. For exam-
ple, the KL divergence functional in (2) is always
L2 convex but not displacement convex unless poten-
tial Vn is a convex function over Θ. Conversely, the
self-interaction energy functional W(ρ) =

∫
R2(x −

y)2 dρ(x)dρ(y) is displacement convex due to the con-
vexity of the square function (McCann, 1997); how-
ever, direct calculation yields 1

2

(
W(ρ) + W(ρ′)

)
−

W
(
1
2 (ρ+ρ

′)
)
= − 1

2

( ∫
R x d(ρ−ρ

′)(x)
)2 ≤ 0, indicating

that W is instead L2-concave.

Given an initialization ρ0 ∈ Pr(Θ), we consider the
following iterative scheme for minimizing F with step
size {τk : k ≥ 1},

ρk = argmin
ρ∈P(Θ)

F(ρ) +
1

τk
DKL(ρ ∥ ρk−1), k ≥ 1, (3)

which will be referred to as the implicit KL proxi-
mal descent (IKLPD) algorithm. In Section 4, we
propose using a normalizing flow (Kobyzev et al.,
2020) to numerically optimize the objective in the
implicit step (3). Note that this implicit step opti-
mization problem becomes easier as the step size τk

becomes smaller, as the optimal solution ρk is ex-
pected to become closer to the previous iterate ρk−1

(e.g., DKL(ρk ∥ ρk−1) = O(τk)), so that a few (stochas-
tic) gradient iterations are sufficient to produce a rel-
atively good solution. In contrast, as τk → ∞, imple-
menting the implicit step becomes as hard as solving
the original problem of minimizing F . We conduct
a numerical experiment in Section 5 to explore the
impact of the step size τk on the implicit step com-
putation and the overall convergence of the IKLPD
algorithm.

It is worth noting that IKLPD extends the implicit
gradient descent method for minimizing a function f
on Θ under Euclidean ℓ2 metric ∥ · ∥,

xk = argmin
x∈Θ

f(x) +
1

2τk
∥x− xk−1∥2, k ≥ 1,

which is also the proximal point method (Boyd and
Vandenberghe, 2004; Rockafellar, 1997) with convex
function 1

2∥ · ∥
2; in particular, IKLPD changes the dis-

crepancy measure 1
2∥x − xk−1∥2 with DKL(ρ ∥ ρk−1).

More generally, we may also consider a broader class
of implicit mirror descent algorithms by substituting
the KL with a general Bregman divergence, such as L2

distance, Itakura–Saito divergence (Savchenko, 2019),
and hyperbolic divergence (Ghai et al., 2020). The key
property of Bregman divergences used in the proof is
the “three-points identity” (e.g., Lemma 3.1 in (Chen
and Teboulle, 1993)), which connects the first vari-
ation of the objective (3) with the Bregman diver-
gence. However, our considered KL is often better
aligned with the information geometry inherent to sta-
tistical problems. In contrast, other common diver-
gences in statistics, such as the χ2 divergence and the
Rényi divergence are not Bregman divergences (see
Appendix A.2).

Analogous to gradient (or mirror) descent in the Eu-
clidean space (Krichene et al., 2015), which can be
interpreted as discretizing a continuous-time gradient
flow on Θ, IKLPD also corresponds to employing an
implicit discretization scheme for the KL gradient flow
(KLGF) on P(Θ), which is described by the ordinary
differential equation (ODE)

d

dt

(
log ρt

)
= −δF

δρ
(ρt) +

∫
Θ

δF
δρ

(ρt)(θ) dρt(θ). (4)

This dynamic is also known as the Fisher–Rao gradient
flow (Bauer et al., 2016; Yan et al., 2023). Let ρ∗ be
a global minimum of F . The following theorem shows
the convergence of KLGF for an L2 convex functional
F .

Theorem 1. Assume F to be a λ-relative strongly
convex functional with respect to the KL divergence
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and ρ∗ ∈ Pr(Θ). If λ > 0, then ρt satisfies

DKL(ρ
∗ ∥ ρt) ≤ e−

λt
2 DKL(ρ

∗ ∥ ρ0);

if λ = 0, then ρ̄t =
1
t

∫ t
0
ρs ds satisfies

F(ρ̄t)−F(ρ∗) ≤ 1

t
DKL(ρ

∗ ∥ ρ0).

3 THEORETICAL RESULTS

We analyze the convergence of IKLPD and two vari-
ants: an inexact IKLPD that permits non-zero nu-
merical errors when solving the implicit step (3), and
a stochastic version of IKLPD.

3.1 Convergence of IKLPD

We make the following assumptions.

Assumption 1 (Existence of IKLPD iterates). For
each k ≥ 1, the solution ρk in the k-th iteration of
IKLPD algorithm as defined by (3) exists.

Assumption 1 is typically verifiable by applying
Prokhorov’s Theorem (Prokhorov, 1956) when F is
continuous with respect to the weak topology of P(Θ).
The continuity of F holds for many models, including
the NPMLE discussed in Section 1.

Assumption 2 (Relative strong convexity). F is λ-
relative strongly convex on P(Θ) for λ ≥ 0.

Assuming some convexity condition is standard and
necessary in the convergence analysis of proximal type
algorithms (Aubin-Frankowski et al., 2022; Dragomir
et al., 2021).

Theorem 2. Suppose Assumptions 1 and 2 hold and
ρ∗ ∈ Pr(Θ).
(1) If λ > 0 and τk ≡ τ > 0, then we have

DKL(ρ
∗ ∥ ρk) ≤

(
1 +

λτ

2

)−k
DKL(ρ

∗ ∥ ρ0).

(2) If λ = 0, then we have

min
1≤ℓ≤k

F(ρℓ)−F(ρ∗) ≤ 1∑k
ℓ=1 τℓ

DKL(ρ
∗ ∥ ρ0).

Remark 2. Several remarks are in order. First,
when ρ∗ ∈ Pr(Θ), we do not need any extra con-
dition beyong the convexity to guarantee the conver-
gence of IKLPD. As we discussed in the introduc-
tion, this is different from the explicit discretization
scheme considered in (Aubin-Frankowski et al., 2022;
Chizat, 2021), which require additional smoothness
conditions. Second, our proof for the λ = 0 case
also implies the same convergence bound to hold for

the last iterate ρk and the weighted trajectory average

ρ̄k =
(∑k

ℓ=1 τℓ
)−1 ∑k

ℓ=1 τℓ ρℓ. Third, if λ = 0 and
τk = τ , then the IKLPD exhibits an O(k−1) conver-
gence rate after k iterations, which matches the con-
vergence rate of the Euclidean proximal mirror descent
algorithm for minimizing a smooth and convex func-
tion (e.g. Theorem 10.81 in (Beck, 2017)).

Theorem 2 requires ρ∗ to admit a density, so that the
initial KL divergence DKL(ρ

∗ ∥ ρ0) is finite. However,
in many applications, such as the NPMLE computa-
tion, ρ∗ can contain singular components or can even
be a discrete measure (Polyanskiy and Wu, 2020). In
these cases, Assumption 2 can only hold with λ =
0. To see this, we can apply the λ-relative strong
convexity to ρ = ρ0 for any ρ0 ∈ Pr(Θ) with a
bounded δF

δρ (ρ0), and ρ′ = ρσ = ρ∗ ∗ N (0, σ2Id) ∈
Pr(Θ), the convolution of ρ∗ with a normal distribu-
tion. This yields λDKL(ρ

σ ∥ ρ0) ≤ F(ρσ) − F(ρ0) −∫
δF
δρ0

(ρ0) d(ρ
σ − ρ0). As we let σ → 0+, the right-

hand side of this inequality is finite, while the KL term
DKL(ρ

σ ∥ ρ0) diverges when ρ∗ ̸∈ Pr(Θ), indicating
that λ = 0. To extend the convergence result to such
ρ∗ that does not admit a density, we need an additional
assumption about the continuity of F around ρ∗. Let
W1 denote the 1-Wasserstein metric; see Appendix A.1
for a precise definition.

Assumption 3 (LocalW1-continuity). There exists a
constant L > 0 such that

|F(ρ)−F(ρ∗)| ≤ LW1(ρ, ρ
∗), ∀ ρ ∈ P(Θ).

This local continuity condition on F is less stringent
than a typical smoothness condition assumed in the
analysis of explicit schemes that involves the first vari-
ation, and it is satisfied in our examples.

Theorem 3. If Assumptions 1, 2, and 3 hold with
λ = 0 and ρ∗ ∈ P(Θ), then for any ρ ∈ Pr(Θ),

min
1≤ℓ≤k

F(ρℓ)−F(ρ∗) ≤ DKL(ρ ∥ ρ0)∑k
ℓ=1 τℓ

+
L

2
W1(ρ, ρ

∗).

Remark 3. Theorem 3 suggests that when ρ∗ contains
singular components, the convergence rate of IKLPD
may depend on finer structures on the singularity of
ρ∗ as we want to construct some ρ to compensate for
the singularity. For example, if ρ∗ is a discrete mea-
sure, then the convergence rate is O(d log kk ); generally,
if ρ∗ is supported on a d′-dimensional hyperplane in
the ambient space Θ ⊂ Rd with d′ < d, then the con-

vergence rate becomes O( (d−d
′) log k
k ) (the support of a

discrete measure has an effective dimension d′ = 0);
see Appendix D.3 for a proof, where we choose ρ in the
theorem as the convolution of ρ∗ and a (d − d′)-dim
Gaussian distribution whose variance is optimized to
make the upper bound smallest, so that the convoluted
distribution admits a density.
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3.2 Convergence of Inexact IKLPD

For inexact IKLPD, we allow non-zero numerical er-
rors when solving the implicit step (3), and study
their impact on overall convergence and the design of
the implicit step stopping criterion. In practice, one
can use the first-order optimality condition δF

δρ (ρ) +
1
τk

log ρ
ρk−1

= constant to design stopping criterion and

monitor the convergence of the implicit step optimiza-
tion subproblem (3). Specifically, let {ρerrk : k ≥ 0}
denote the iterates from an inexact IKLPD, and let

ηk(·) :=
δF
δρ

(ρerrk )(·) + 1

τk
log

ρerrk
ρerrk−1

(·) (5)

denote the first variation (as a function over Θ) of
the target functional in the implicit step (3) evaluated
at ρerrk . Let {εk : k ≥ 1} denote a generic sequence
of error tolerance levels. For technical convenience,
we characterize the convergence of each implicit step
optimization via the oscillation of ηk, and make the
following assumption.

Assumption 4 (Uniform error control). For each k ≥
1 and εk ≥ 0, we have OscΘ(ηk) ≤ εk, where

OscΘ(ηk) := sup
θ,θ′∈Θ

∥ηk(θ)− ηk(θ
′)∥

is the oscillation of ηk over Θ.

There are also other types of inexact algorithms for op-
timizing functionals on the space of all probability dis-
tributions (Dai et al., 2016; Kent et al., 2021), some of
which are not implementable since they require knowl-
edge of unknown quantities, such as the exact solution
of the subproblem, to evaluate the tolerance metric. In
our context, one can also use other characterizations,
such as the variance of ηk under ρerrk−1 that is easier to
compute in practice.

The following theorem illustrates the impact of er-
ror tolerance level on the convergence rate of inexact
IKLPD when F is λ-relative strongly convex for λ > 0.
In particular, we consider two regimes: εk has either
an exponential decay or a polynomial decay in k; and
the inexact IKLPD exhibits different convergence pat-
terns under the two regimes.

Theorem 4. Suppose Assumption 2 holds with λ > 0
and Assumption 4 also holds, and consider τk ≡ τ .
(1) If εk ≤ κεk for some κ > 0 and 0 < ε < 1 sat-
isfying ε

√
1 + λτ/2 ̸= 1, then there exists a constant

C = C(τ, λ, ε) > 0 such that

DKL(ρ
∗ ∥ ρerrk ) ≤ Cκ2 + 2DKL(ρ

∗ ∥ ρ0)
(min{ε−2, 1 + λτ/2})k

;

(2) If εk ≤ εk−α for some ε, α > 0, then there exists

a constant C = C(τ, λ, α) > 0 such that

DKL(ρ
∗ ∥ ρerrk ) ≤ 2DKL(ρ

∗ ∥ ρ0)
(1 + λτ/2)k

+
Cε2

k2α

Remark 4. Similar to Theorem 3, Theorem 4 re-
quires ρ∗ to have a density when λ > 0. Our theorem
cannot cover the λ = 0 case, since in order to show
DKL(ρ

∗ ∥ ρerrk ) is decreasing in k, we need the relative
strong convexity to contribute a term that compensates
for the error caused by ηk. In addition, the current
proof of Theorem 4 can only be extended to cover a
Bregman divergence that dominates the L1 distance,
such as any divergences stronger than the KL, since
we need to use it to address an additional error term
that depends on the L1 distance between ρerrk and ρ∗.

3.3 Convergence of Stochastic IKLPD

In this section, we propose and analyze a stochastic
version of IKLPD, whose k-th iterate is given by

ρstock = argmin
ρ∈P(Θ)

Fξk(ρ) +
1

τk
DKL(ρ ∥ ρstock−1). (6)

Here Fξk is an unbiased estimator of F for any fixed
input in P(Θ), with ξk indicating the source of ran-
domness in iteration k. For example, in a statisti-
cal setting such as NPMLE, Fξk can be the negative
log-likelihood functional over a random selected mini-
batch. To prove the convergence, we make the follow-
ing Assumption.

Assumption 5 (Stochastic IKLPD). The stochastic
objective functional Fξ satisfies:
(1) (Unbiasedness) Eξ

[
Fξ(ρ)

]
= F(ρ).

(2) (Solution existence) A solution of (6) exists.
(3) (Randomness condition) {ξk : k ≥ 1} are indepen-
dently and identically distributed.
(4) (One-sided relative Lipschitz continuity) For some
L(ξ) with a finite second-order moment,

Fξ(ρ)−Fξ(ρ′) ≤ L(ξ)
√
DKL(ρ′ ∥ ρ)

holds for every ρ, ρ′ ∈ P(Θ).

The one-sided relative Lipschitz continuity condition
is also considered by Bertsekas (2011); Davis et al.
(2018), which was utilized to analyze the convergence
of stochastic proximal descent and stochastic proxi-
mal mirror descent in the Euclidean space. In our
proof, this condition is used to bound the difference of
Fξk(ρstock ) and Fξk(ρstock−1).

Theorem 5. Assume that Fξ is λ-relative strongly
convex for λ ≥ 0. Suppose Assumption 5 holds and
ρ∗ ∈ Pr(Θ). Let τ > 0 be a constant.
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(1) If λ = 0, then by taking τk = τ√
k+1

we have

min
0≤ℓ≤k−1

E
[
F(ρstocℓ )

]
−F(ρ∗)

≤ 4DKL(ρ
∗ ∥ ρ0) + τ2 log(k + 1)E[L(ξ1)2]

8τ(
√
k + 1− 1)

;

(2) If λ > 0, then by taking τk = 2
λ(k+1) we have

min
0≤ℓ≤k−1

EF(ρstocℓ )−F(ρ∗)

≤ 2λ2DKL(ρ
∗ ∥ ρ0) + log(k + 1)E[L(ξ1)2]

2λk
.

Remark 5. The convergence rates in our theorem
match those of stochastic gradient descent (Nemirovski
et al., 2009; Rakhlin et al., 2011) and stochastic (prox-
imal) mirror descent (Davis et al., 2018; Lan, 2020)
for minimizing (strongly) convex functions in the Eu-
clidean space. Additionally, when Assumption 3 holds,
the same smoothing argument as in the proof of The-
orem 3 can be carried over to deal with a singular
ρ∗ ̸∈ Pr(Θ).

4 COMPUTATION VIA
NORMALIZING FLOW

We use normalizing flow (NF) to solve the implicit step
optimization problem (3). Normalizing flows (Dinh
et al., 2016; Kingma and Dhariwal, 2018; Papamakar-
ios et al., 2021; Rezende and Mohamed, 2015) offer a
general mechanism for defining expressive probability
distributions through transforming a simple probabil-
ity distribution into a complex one using compositions
of invertible and differentiable transformations. For
simplicity, we will refer to the IKLPD steps as the
outer loop (iterations), and the (stochastic) gradient
steps for optimizing the NF parameters in the implicit
scheme problem (3) as the inner loop (iterations).

Given the shared compositional structure between our
iterative IKLPD algorithm and the NF, we propose se-
quentially stacking the local, short normalizing flows,
learned within each inner-loop iteration, to form a
global, layered normalizing flow for approximating ρ∗.
Concretely, we use T#ρ to denote the pushforward dis-
tribution of a distribution ρ ∈ P(Θ) through a trans-

port map T : Θ → Θ, and use T̂ (k) to denote the local
normalizing flow learned through solving (3), yielding

ρk = T̂
(k)
# ρk−1, where

T̂ (k) = argmin
T∈T

F
(
T#ρk−1

)
+

1

τk
DKL

(
T#ρk−1

∥∥ ρk−1

)
,

Here, T denotes a generic normalizing flow class.

Note that another benefit of using NF here is that
the KL term can be directly computed in terms of

a closed form expression of the log-density of T#ρk−1,
whereas other numerical methods based on particle ap-
proximation require the use of kernel density estima-
tion; further details of its numerical computation using
(stochastic) gradient descent and the reparametriza-
tion trick are provided in Appendix C. With these
local NF maps, we can use the telescoping trick to

express ρk = T̂
(k)
# ◦ · · · ◦ T̂ (1)

# ρ0, which defines a gener-
ative process for sampling from ρk. As k increases, to
maintain a fixed storage budget (e.g., keep at most k0
local NFs), one may employ a teacher-student archi-
tecture (Hinton et al., 2015; Hu et al., 2022) to distill
knowledge by utilizing a single NF to compress all his-
torical local NFs beyond the most recent (k0−1) ones;
see Appendix C for an illustration.

5 NUMERICAL RESULTS

For the implementation, we use the Python normflows

package (Stimper et al., 2023) based on PyTorch to im-
plement the real-valued non-volume preserving (real-
NVP) normalizing flow (Dinh et al., 2016) for our
method. We consider three examples: NPMLE for
Gaussian location mixture model, NPMLE for Gaus-
sian location scale mixture model, and sampling from
a distribution known up to a constant (Bayesian com-
putation). For NPMLE, we also consider two state-of-
the-art competing methods, the Wasserstein–Fisher–
Rao (WFR) gradient flow (Yan et al., 2023) and a con-
vex optimization based method (Koenker and Mizera,
2014) (referred to as the KW method). For the Bayesian
computation example, we compare our method with
the (unadjusted) Langevin Monte Carlo algorithm
(Langevin), which corresponds to an explicit dis-
cretization scheme to the Wasserstein gradient flow.
Due to space constraints, we defer the details about
the implementations and setup of each example below,
as well as additional plots and results, to Appendix C.

Gaussian location mixture model. We consider
a two-dimensional Gaussian location mixture model,
where for θ ∈ Θ = R2, the conditional distribution
p( · | θ) in the NPMLE formulation (1) is the density
of N (θ, I2). We set the true (mixing) distribution of θ
to be a bimodal two moon distribution (Stimper et al.,
2023) and use a sample size of n = 5000. For our
method (NF), we also implement the stochastic variant
(NF s) by using a randomly subsampled mini-batch of
size m = 500 to compute the stochastic gradient dur-
ing the training of the normalizing flow. We compare
our method with the previously mentioned WFR and
KW methods. Figure 1(a) displays the difference be-
tween Ln(ρk) − Ln(ρ̂ ) (in a logarithmic scale) as a
function of the iteration count k, where ρ̂ is a numeri-
cally optimal solution obtained by running our method
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(a) Location Mixture NPMLE (b) Location Scale Mixture NPMLE (c) KL Divergence for Posteriors

Figure 1: Numerical accuracy (with error bars) versus the iteration count k. For plots (a) and (b) (NPMLE), we
report log

(
Ln(ρk)−Ln(ρ̂ )

)
, where ρ̂ is the (numerically) optimal solution; and for (c), we report logW1(ρk, π),

with π denoting the target distribution. All results are based on 10 independent trials.

for a sufficient number of iterations. As can be seen,
for this relatively simple problem, all methods exhibit
rapid convergence. Our method with exact gradient
descent (NF) achieves the fastest convergence, while
our stochastic variant (NF s) shows slower convergence
compared to WFR.

Gaussian location scale mixture model. Our sec-
ond example is a d-dimensional Gaussian location scale
mixture model, where for θ = (µ, σ2) ∈ Θ = Rd×Rd+,
the conditional distribution p( · | θ) is the density of
N (µ,Σ), with Σ = diag(σ2

1 , · · · , σ2
d); the true (mixing)

distribution P ∗ = P ∗
µ⊗P ∗

σ2 . We consider two settings,
one with d = 2 and the other with d = 3, both with a
sample size of n = 5000. Since WFR is applicable only to
the Gaussian location mixture model, our comparison
is limited to NF, NF s and KW. Figure 1(b) shows the re-
sults. As we can observe, the necessity for KW to dis-
cretize the parameter space into equally spaced grids
results in a non-vanishing bias term attributed to this
discretization. This bias becomes larger as the dimen-
sionality increases, owing to the curse of dimensional-
ity. In contrast, our methods, including the stochastic
variants, are relatively robust against dimensionality
increase, with the numerical error keeps decreasing as
the iteration count k increases.

Bayesian sampling. In this example, we set the true
target distribution to have density π(θ) ∝ e−

1
2α∥θ∥2α

for θ ∈ Θ = R2, which is known only up to a normal-
ization constant. The corresponding objective func-
tional is F(ρ) =

∫
1
2α∥θ∥

2α dρ(θ) +
∫
ρ log ρ. We con-

sider two settings: α = 2 and α = 3. Note that
α = 2 corresponds to a Lipschitz continuous poten-
tial function 1

2α∥ · ∥2α, as required by explicit dis-
cretization methods, while α = 3 violates this con-
dition. We compare our method (NF) with the (unad-

justed) Langevin method as a representative explicit
discretization method. As illustrated in Figure 1(c),
NF converges very rapidly for both values of α, in line
with the prediction of our Theorem 2 under λ = 1. In
contrast, Langevin exhibits significantly slower con-
vergence, especially when α = 3. For Langevin, we
manually selected a best step size without divergence,
ensuring the fastest convergence possible.

Impact of IKLPD step size τk. To examine the im-
pact of the step size τk on the IKLPD algorithm, we
conduct additional numerical experiments to compare
the inner loop iterations using a first-order optimiza-
tion algorithm and the outer loop iterations of IKLPD
under varying constant step sizes τk ≡ τ . Specifically,
in this experiment setting, we study the impact of step
size τ ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.50} and total in-
ner loop iteration N2 ∈ {4000, 6000} on the overall
convergence of IKLPD with N1 = 15 total outer loop
iterations. Further implementation details are pro-
vided in Appendix C.4. From Figure 2, we observe
that under a fixed inner iteration budget, increasing
the step size τ beyond certain threshold (i.e., τ = 0.20)
will make the IKLPD algorithm fails to converge to a
good solution or even diverge. Upon closer examina-
tion of these non-converging cases, we identified two
primary reasons for this failure, either the inner loop
is trapped in a local minimum that is not global for
problem (3), or it is unable to find a reasonably good
solution given a limited inner loop iterations. Figure 2
also shows that for small values of τ below this non-
convergent threshold, the subproblem (3) becomes eas-
ier as the inner loop needs fewer iterations to converge.
However, since the progress made by each IKLPD step
is smaller, the outer loop iterations converges slower.
Moreover, we also observed that for a smaller τ , the
normalizing flow architecture requires fewer parame-
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Figure 2: We study the impact of step size τ ∈
{0.05, 0.10, 0.15, 0.20, 0.25, 0.50} and total inner loop
iteration N2 ∈ {4000, 6000} on the convergence of
IKLPD with N1 = 15 total outer loop iterations. Tar-
get distribution ρ∗ is a mixture of M = 10 Gaussians
in R12 as described in Appendix C.3. A symmetric KL
divergence SymKL(ρk, ρ

∗), defined in equation (14), is
used as the error metric, and is plotted against the
outer loop iterations (in the log-scale).

ters to approximately compute the minimum of sub-
problem (3); e.g., see Figures 6 and 7 in Appendix C.4.
For the fixed budget of outer iterations N1 = 15 used
in this experiment, a medium step size (τ = 0.15) with
N2 = 6000 inner loop iterations leads to a best per-
formance, effectively balancing the convergence of the
inner and outer loops under a limited computational
budget. A more comprehensive study on the impact
of the step size τk is available in Appendix C.4.

Figure 3: KL divergence between computed solutions
and ρ∗ versus dimension D ∈ {2, 4, · · · , 12}. All num-
bers are averaged based on 3 independent trials.

Comparison with Wassersten gradient flows.
Finally, we compare the performance of our method
and recent methods based on discretizing the WGF.
These include the ICNN-JKO method (Mokrov et al.,
2021), which approximates the convex potential func-
tion defining an optimal transport map using in-
put convex neural networks (ICNN), and the Euler-
Maruyama (EM) method for discretizing the Langevin

dynamics associated with the WGF. We tested the EM
method using 103, 104, 5·104 particles (denoted as EM-
1K, EM-10K, EM-50K). We follow the same experi-
ment setting as Section 4.1 of (Mokrov et al., 2021),
where the target functional is F(ρ) = DKL(ρ ∥ ρ∗) with
ρ∗ = M−1

∑M
m=1 N (µm, ID) being a Gaussian mix-

tures with M components in RD. Here, we generate
µ1, · · · , µM ∼ Uniform([−5, 5]D), under M = D/2+ 4
with D ∈ {2, 4, . . . , 12}. As shown in Figure 3, a larger
D makes the problem harder; nevertheless, IKLPD
consistently achieves the best performance. Further
details and results are provided in Appendix C.3.

6 DISCUSSION

In this work, we proposed an implicit KL proxi-
mal descent (IKLPD) algorithm, which discretized
a continuous-time gradient flow relative to the
Kullback–Leibler divergence for minimizing a convex
functional defined over the space of all probability
distributions. We utilized the proposed method to
address two statistical applications, specifically, non-
parametric maximum likelihood estimation (NPMLE)
and Bayesian posterior computation. We demon-
strated that our implicit method has multiple advan-
tages compared to its explicit counterpart: 1. it did
not require a Lipschitz L2-gradient, thus allowing for
larger step sizes and fewer iterations to converge; 2.
it was more robust and did not need kernel density
estimation in order to approximately compute the L2-
gradient as in the explicit method, making the explicit
method suffer from the curse of dimensionality. Com-
putationally, we proposed a numerical method based
on normalizing flow to implement IKLPD, and utilized
a teacher-student architecture to maintain constant
space complexity. Conversely, our numerical method
could also be viewed as a novel approach that sequen-
tially trains a normalizing flow for minimizing a convex
functional with strong theoretical guarantees. Some
potential future directions include: 1. applying and
analyzing IKLPD for other more complicated statisti-
cal applications, such as training Bayesian neural net-
works and variational inference with structural con-
straints; 2. extending the KL to a general Bregman
divergence and identifying examples where using a par-
ticular Bregman divergence is beneficial; 3. analyzing
the optimization landscape of the normalizing flow for
solving each implicit step optimization problem in the
IKLPD.
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APPENDIX

In this Appendix, we provide more background knowledge and useful results about optimizing a functional
over the space of all probability distributions, including some of their connections with optimal transport (e.g.,
displacement convexity) and a more broader framework of the proximal mirror descent algorithm that allows
an extension from the KL divergence to general Bregman divergences. We also review additional literature
on mirror descent and stochastic (proximal) mirror descent in the Euclidean space, along with some further
optimization algorithms on the space of all probability distributions. Moreover, we detail the implementation of
the algorithms and the numerical experiments showcased in the main paper, and we provide additional numerical
results. Finally, this Appendix includes all the proofs related to the main theoretical results presented in the
paper, including the verification of the L2-convexity of the target functionals in both the NPMLE and the
Bayesian posterior computation examples.

A BACKGROUNDS AND FACTS

In this appendix, we provide additional background and facts related to optimization over the space of probability
distributions, the non-parametric maximum likelihood estimation (NPMLE), and extensions of our developments
to more general proximal mirror descent algorithms. However, as we mentioned in the main paper, our considered
KL is often better aligned with the information geometry inherent to statistical problems; see, for example, the
two motivating examples of NPMLE and Bayesian posterior computation considered in the paper.

A.1 Some Definitions and Consequences

First variation. We first provide a formal definition of first variations; more details can be found, e.g., in
Section 7.2 of (Santambrogio, 2015). Let F : P(Θ) → R be a lower semi-continuous functional and Pr(Θ)
denote the set of all probability measures absolutely continuous with respect to the Lebesgue measure on Θ. A
measure ρ ∈ P(Θ) is called regular for F if F

(
ερ + (1 − ε)ρ′

)
< ∞ for all ε ∈ (0, 1) and any ρ′ ∈ Pr(Θ) that

has compact support and bounded density. If ρ is regular for F , one can define the first variation of F at ρ as
a map δF

δρ (ρ) : Θ → R such that for any perturbation χ = ρ′ − ρ, where ρ′ ∈ Pr(Θ) has bounded density and
compact support,

d

dε
F(ρ+ εχ)

∣∣∣∣
ε=0

=

∫
Θ

δF
δρ

(ρ) dχ.

Pushforward. Let X be a measurable space, and T : X → Θ be a measurable function. The pushforward ρ
of a measure µ ∈ P(X ) under T , denoted by ρ = T#µ, is a measure on Θ defined as

ρ(A) = T#ρ(A) = ρ
(
T−1(A)

)
, ∀A ⊂ Θ is measurable.

Wp distance and coupling. Let π0, π1 : Θ×Θ → Θ be the projection functions defined as π0(θ, θ
′) = θ and

π1(θ, θ
′) = θ′, and define πt = (1− t)π0 + tπ1. For any ρ, ρ

′ ∈ P(Θ), γ is called a coupling of ρ and ρ′, denoted
by Π(ρ, ρ′), if (π0)#γ = ρ and (π1)#γ = ρ′. Then, the Wp distance between ρ and ρ′ is defined as

W p
p (ρ, ρ

′) = inf
γ∈Π(ρ,ρ′)

∫
Θ×Θ

∥θ − θ′∥p dγ(θ, θ′) (7)

By the above definition, it is clear that the Wp distance can also be defined through

W p
p (ρ, ρ

′) = inf
θ∼ρ,θ′∼ρ′

E
[
∥θ − θ′∥p

]
.

We say γ∗ is an optimal coupling of ρ and ρ′, denoted by Πo(ρ, ρ
′), if

W 2
2 (ρ, ρ

′) =

∫
Θ×Θ

∥θ − θ′∥2 dγ∗(θ, θ′),

i.e. the infimum in (7) is achieved at γ∗.
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Wasserstein Geodesics, and (strong) convexity along geodesics. A (constant-speed Wasserstein)
geodesics connecting ρ0 and ρ1 is a curve {ρt : 0 ≤ t ≤ 1} on P(Θ), such that there exists γ∗ ∈ Πo(ρ0, ρ1)
satisfying ρt = (πt)#γ

∗. A functional F is λ-strongly convex along geodesics if

F(ρt) ≤ (1− t)F(ρ0) + tF(ρ1)−
λ

2
t(1− t)W 2

2 (ρ0, ρ1)

holds for any geodesics {ρt : 0 ≤ t ≤ 1} and t ∈ [0, 1].

Non-convexity along geodesics of NPMLE. Recall that given n observationsXn = (X1, · · · , Xn), NPMLE
is defined as

P̂n = argmin
ρ∈P(Θ)

Ln(ρ), where Ln(ρ) := − 1

n

n∑
i=1

log
(∫

Θ

p(Xi | θ) dρ(θ)
)

(8)

The objective functional Ln may not be geodesically convex. Consider p(· | θ) = N (θ, 1), ρ0 = N (0, 1) and
ρ1 = N (0, 25). Since both ρ0 and ρ1 are Gaussian distributions, the optimal transport map from ρ0 to ρ1 is
T (θ) = 5θ, and thus the geodescis connecting ρ0 and ρ1 is ρt = N (0, (1 + 4t)2). In this case, we have

Ln(ρt) =
∑n
i=1X

2
i

2[1 + (1 + 4t)2]
+
n

2
log

[
2π

(
1 + (1 + 4t)2

)]
.

When ρ∗ = δ0 is the point mass, 1
nLn(ρt) →

1
2 log[2π(1+ (1+ 4t)2)] + 1

2[1+(1+4t)2] by law of large numbers. This

function is not convex on [0, 1]. Similar result of non-convexity is numerically verified by Yan et al. (2023).

A.2 Extension from KL to General Bregman Divergences

Let Φ : P(Θ) → R ∪ {+∞} be a (L2-)convex functional with first variation δΦ
δρ . Define the associated Bregman

divergence as

DΦ(ρ, ρ
′) := Φ(ρ)− Φ(ρ′)−

∫
Θ

δΦ

δρ
(ρ′) d(ρ− ρ′).

Bregman divergence is always nonnegative due to the convexity of Φ. In the implicit proximal mirror descent
algorithm (with respect to the Bregman function Φ) on the space of all probability distributions, given ρ0 ∈ P(Θ)
such that Φ(ρ0) is finite, we iteratively solve

ρk = argmin
ρ∈P(Θ)

F(ρ) +
1

τk
DΦ(ρ, ρk−1), k ≥ 1.

When Φ(ρ) =
∫
ρ log ρ for ρ ∈ Pr(Θ) and Φ(ρ) = +∞ for ρ /∈ Pr(Θ), it is easy to check that DΦ(ρ, ρ

′) =
DKL(ρ ∥ ρ′).

χ2-divergence is not a Bregman divergence. Recall that the χ2-divergence between two probability dis-
tributions are

χ2(ρ, ρ′) =

∫
Θ

( ρ(θ)
ρ′(θ)

− 1
)2

dρ(θ).

If there exists a convex functional Φ, such that χ2(ρ, ρ′) = DΦ(ρ, ρ
′) for all ρ, ρ′ ∈ Pr(Θ). Let ρ′ = N (0, 1), we

have

Φ(ρ) = χ2(ρ, ρ′) + Φ(ρ′) +

∫
Θ

δΦ

δρ
(ρ′) d(ρ− ρ′)

= Φ(ρ′) +

∫
Θ

δΦ

δρ
(ρ′) d(ρ− ρ′) +

∫
Θ

( ρ(θ)
ρ′(θ)

− 1
)2 ρ(θ)

ρ′(θ)
dρ′.

Note that the first two terms are linear in ρ, while the last term is not convex with respect to ρ. Therefore, there
is no convex functional Φ such that χ2(ρ, ρ′) = DΦ(ρ, ρ

′).
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Renyi’s α-divergence is not a Bregman divergence. Recall that Renyi’s α-divergence (Li and Turner,
2016) is defined as

Rα(ρ, ρ
′) =

1

α− 1
log

∫
Θ

ρ(θ)αρ′(θ)1−α dθ, α ∈ (0, 1).

If there exists a convex functional Φ, such that Rα(ρ, ρ
′) = DΦ(ρ, ρ

′) for all ρ, ρ′ ∈ Pr(Θ). Then

Φ(ρ) = Φ(ρ′) +

∫
Θ

δΦ

δρ
(ρ′) d(ρ− ρ′) +

1

α− 1
log

∫
Θ

ρ(θ)αρ′(θ)1−α dθ. (9)

Taking the first variation on both sides of (9) yields

δΦ

δρ
(ρ)(θ) =

δΦ

δρ
(ρ′)(θ) +

1

α− 1
· αρ(θ)α−1ρ′(θ)1−α∫

Θ
ρ(θ)αρ′(θ)1−α dθ

.

Taking this expression of δΦδρ (ρ) back to (9) yields contradiction.

B MORE LITERATURE REVIEW

Mirror descent. Mirror descent for convex optimization in the Euclidean space was originally proposed by Ne-
mirovskij and Yudin (1983). It is established that the mirror descent algorithm achieves a O(k−1/2) convergence
rate when dealing with a non-smooth convex objective function that possesses a uniformly bounded subgradient;
this rate can be enhanced to O(k−1) when the function is relatively smooth with respect to the Bregman diver-
gence (Bauschke et al., 2017). When the objective function is convex and has Lipschitz gradients, Krichene et al.
(2015) demonstrate that the accelerated mirror descent converges at a rate of O(k−2). For additional details on
mirror descent algorithms in the Euclidean space, we refer the reader to the monographs (Beck, 2017; Lan, 2020;
Wright and Recht, 2022).

Stochastic proximal (mirror) descent. Stochastic proximal descent type algorithms have been shown to be
more stable than stochastic gradient type algorithms (Ryu and Boyd, 2014) when optimizing a function in the
Euclidean space. However, they have been less extensively studied compared to the latter. Considering a scenario
where the random objective function is restricted strongly convex, Ryu and Boyd (2014) demonstrate that the
expected L2-distance between each iterate and the minima of the objective function converges exponentially
fast, up to a constant factor. In cases where the objective function is convex, Asi and Duchi (2019) establish
that the expected value of the objective function evaluated at each iterate approaches its global minimum at
a polynomial rate. This is under the condition that the L2-norm of the derivative of the stochastic objective
function has uniformly bounded expected values. In contrast, Bertsekas (2011) shows that in a bounded search
space with a one-sided Lipschitz continuous objective function, the expected number of iterations needed to
achieve ε-accuracy, up to a fixed constant, is of the order O(ε−1). When it comes to stochastic proximal mirror
descent, Davis et al. (2018) prove a polynomial convergence rate for the expected value of the objective function
across iterations, given a similar condition of one-sided Lipschitz continuity with respect to the square root of
Bregman divergence.

Algorithms for optimizing functional on the space of probability distributions. Assuming the log-
Sobolev inequality is satisfied, Chizat (2022) and Nitanda et al. (2022) demonstrate an exponential convergence
rate for minimizing the entropic regularized objective functional across the space of probabilities using mean-
field Langevin dynamics. Chizat (2022) further shows that the unregularized objective functional approaches its
minimum at a rate of O( log log t

log t ), achieved by decreasing the regularization parameter at a rate of O( 1
log t ) through

an annealing argument. A similar annealing approach is employed in (Chizat et al., 2022), transforming trajectory
inference problems into functional optimization problems. In a different vein, Kent et al. (2021) introduce the
Frank–Wolfe algorithm in the space of probabilities, inspired by distributionally robust optimization approaches.

C MORE COMPUTATIONAL DETAILS AND NUMERICAL RESULTS

In this appendix, we provide more details about our use of the normalizing flow for implementing the proposed
IKLPD algorithm and the setup of the three numerical examples in the main paper. We also provide additional
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numerical results about: 1. the impact of step size τk on the inner/outer loop convergence of the IKLPD
algorithm; 2. the teacher-student architecture for maintaining a fixed storage budget when composing short
normalizing flows as the number of (outer loop) iterations increases. We conducted all experiments using the
NVIDIA Tesla T4 GPU available on Google Colab.

C.1 Implementation via Normalizing Flows

Recall that the implicit KL proximal descent (IKLPD) algorithm minimizes the objective functional F by iter-
atively solving the subproblem

ρk = argmin
ρ∈P(Θ)

F(ρ) +
1

τk
DKL(ρ ∥ ρk−1), k ≥ 1, (10)

with an initialization ρ0 ∈ Pr(Θ) and step size {τk : k ≥ 1}. The main idea of using normalizing flow (NF) to
solve (10) is to express ρk through a map T (k) : Θ → Θ and the initialization ρ0, which can be easily sampled

from, by letting ρk = T
(k)
# ρ0. A closed-form expression of the density of log ρk derived from the normalizing

flow enables exact computation of DKL(ρk ∥ ρk−1) through T
(k) and T (k−1). Specifically, when the map T (k) is

invertible and differentiable (which is satisfied by NF), if we denote the Jacobian matrix of T (k) by JT (k) , then
the change of variable formula implies

ρk(θ) = ρ0
(
(T (k))−1(θ)

)∣∣ det JT (k)

(
(T (k))−1(θ)

)∣∣−1
(11)

In practice, the reparametrization trick can be employed to simplify the numerical computation. Concretely,

let ρ̃k be empirical distribution of M particles θ
(k)
1 , · · · , θ(k)M sampled from ρk = T

(k)
# ρ0. By applying (11), the

objective functional in (10) can be approximated by

Fk := F(ρ̃k) +
1

Mτk

M∑
j=1

[
log

ρ0
(
(T (k))−1(θ

(k)
j )

)
ρ0
(
(T (k−1))−1(θ

(k)
j )

) − log

∣∣det JT (k)

(
(T (k))−1(θ

(k)
j )

)∣∣∣∣det JT (k−1)

(
(T (k−1))−1(θ

(k)
j )

)∣∣
]
. (12)

Computing (12) requires efficient computation of the inverse maps of T (k) and T (k−1), which makes NF an appro-
priate choice for modeling these maps. An NF model with length L is a map composed of L invertible transfor-
mations T1, · · · , TL, the inverse of which can be easily calculated. The invertibility of the NF model is guaranteed
by the invertibility of these transformations. We choose the NF model with Real-NVP architecture (Dinh et al.,
2016), where the transformations {Tl : 1 ≤ l ≤ L} are affine coupling blocks. See Algorithm 1 for a summary of
this straightforward implementation of IKLPD using NF via the Adam optimizer. In Appendix C.5 below, we
present a computationally efficient method for sequentially stacking local, short normalizing flows, learned within
each inner-loop iteration, to form a global, layered normalizing flow for approximating the target solution ρ∗.
Additionally, we conduct a numerical experiment to compare this compositional scheme via a teacher-student
architecture with Algorithm 1, which re-trains a long normalizing flow for each subproblem.

C.2 More Implementation Details of Examples in the Paper

Gaussian location mixture model. We consider a two-dimensional Gaussian location mixture model with
the parameter space Θ = R2. The true distribution P ∗ of the parameter θ is a bimodal two moon distribu-
tion (Stimper et al., 2023). The conditional distribution in NPMLE is p(· | θ) = N (θ, I2), and n = 5000 samples
are generated from the model

θi
i.i.d.∼ P ∗ and Xi | θi ∼ N (θi, I2), i = 1, 2, · · · , n. (13)

In our method, the NF model consists of 30 affine coupling blocks and each block contains two hidden layers
with width 256. The initialization is ρ0 = N (0, 4I2), and M = 3000 particles are generated to approximate the
probability measure ρk in each iteration. The outer iteration is run N1 = 25 times with the step size τk = 5×βk−1

2

where the increase factor is β2 = 1.15. In the k-th outer iteration, the subproblem (12) with F = Ln defined
in (8) is optimized via Adam optimizer with the initialized learning rate γk = 10−4βk−1

1 and the rate decay factor
β1 = 0.912 for at most N2 = 1000 inner iterations. The inner loop stops early if the L2-norm of the gradient of
the parameters in the NF model T (k) reaches the threshold 10−4 or stops decreasing for 200 consecutive inner
iterations.
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Algorithm 1 Implementing IKLPD with Normalizing Flows

Require: data Xn = (X1, · · · , Xn); initialized NF model T (0); number of particlesM ; initialization ρ0; learning
rate of Adam optimizer γ; step size τ ; number of outer iterations N1; number of inner iterations N2; the decay
factor of the learning rate in Adam β1; the increase factor of the step size β2

Sample M particles
˜
θ(0) = [θ

(0)
1 , · · · , θ(0)M ] from ρ0.

for k = 1 to N1 do
Initialize T (k) as T (k−1).
Compute the learning rate γk = γ · βk−1

1 .
Compute the step size τk = τ · βk−1

2 .
for r = 1 to N2 do

˜
θ(k) = T (k)(

˜
θ(0)).

Compute the loss Fk = Fk(
˜
θ(k), τk) in (12) with

˜
θ(k).

Update T (k) based on the loss Fk using Adam optimizer with learning rate γk.
end for

end for

In the stochastic variant of NF, a randomly subsampled mini-batch of size m = 500 from samples Xn is used to
compute the stochastic gradient during the training of the NF. Different from the deterministic NF, the increase
factor is β2 = 1, and the initialized learning rate in Adam optimizer is 1/(1 + k/27), which decays along outer
iterations. All other settings are same as the ones in the deterministic NF model.

In this experiment, our methods are compared with the KW method (Koenker and Mizera, 2014) and the
Wasserstein–Fisher–Rao (WFR) gradient flow (Yan et al., 2023). In the KW method, the probability measure is
approximated by a discrete probability distribution supported on a fixed grid. Each grid point can be viewed as
a particle with a fixed location, and the goal is to minimize Ln by finding the optimal weights of these particles,
which can be achieved by applying Algorithm 2 in (Yan et al., 2023); this algorithm updates the weights of the
particles by explicitly discretizing the Fisher–Rao gradient flow. On the other hand, both the locations and the
weights are updated in WFR method by discretizing the WFR gradient flow through particles.

In both of these two methods, the step size is τ = 1, as it is the largest step size to ensure that these methods
converge. In the KW method, by letting L = ∥Xn∥∞, probability distributions are approximated by a discrete
probability distribution supported on a fixed and equally spaced grid on [−L,L]2 with total 3025 grid points,
and the mass on each grid is updated to minimize the functional loss Ln via Algorithm 2 in (Yan et al., 2023).
In the WFR method, we directly use Algorithm 1 in (Yan et al., 2023) with the same initialization ρ0 and the
number of particles M as in our method.

Gaussian location scale mixture model. We consider a d-dimensional Gaussian location scale mixture
model with parameters θ = (µ, σ2) ∈ Θ = Rd × Rd+. The conditional distribution is p(· | θ) = N (µ,Σ) with
Σ = diag(σ2

1 , · · · , σ2
d), and the true joint mixing distribution is P ∗ = P ∗

µ ⊗ P ∗
σ2 . We consider two settings. In

Setting 1, we let d = 2 and P ∗
µ be the bimodal two moon distribution. In Setting 2, we let d = 3 and P ∗

µ be
the tensor product of a bimodal two moon distribution for the first two coordinates of µ and a standard normal
distribution for the last coordinate of µ. In both settings, we set P ∗

σ2 to be the joint distribution of d independent
χ2 distributions with degree of freedom 1, and the sample size is n = 5000.

In our methods, we use an NF model with 2d-dimensional inputs and outputs, where the first d dimensions
represent location parameters and the last d-dimensions represent scale parameters. The NF model consists
of 30 affine coupling blocks and each block contains two hidden layers with width 64. The initialization is
ρ0 = N (0, 4Id). M particles are generated to approximate the probability measure ρk in each iteration, and we
choose M = 2041 in Setting 1 and M = 4096 in Setting 2. The outer iteration is run N1 = 50 times. All other
hyperparameters and the stopping criterion of the inner loop in deterministic NF and stochastic NF are same as
in the experiments of Gaussian location mixture models.

In the experiment, our methods are compared with the KW method. By letting L = ∥Xn∥∞, probability
distributions are approximated by a discrete probability distribution supported on a fixed and equally spaced
grid on [−L,L]d × [0.01, 4]d with total M = 2041 grid points in Setting 1 and M = 4096 grid points in Setting



Minimizing Convex Functionals over Space of Probability Measures via KL Divergence Gradient Flow

2. The mass on each grid is updated to minimize the functional loss Ln via Algorithm 2 in (Yan et al., 2023)
with step size 1.

Bayesian posterior sampling. The goal is to minimize the KL divergence F(ρ) = DKL(ρ ∥π), where the

target distribution π(θ) ∝ e−
1
2α∥θ∥2α

is known up to a normalization constant and θ ∈ Θ = R2. We consider
two settings with α = 2 in Setting 1 and α = 3 in Setting 2. In our method, the NF model consists of 20 affine
coupling blocks and each block contains two hidden layers with width 64. With initialization ρ0 = N (0, 9I2)
in Setting 1 and ρ0 = N (0, 4I2) in Setting 2, M = 1000 particles are generated to approximate the probability
measure ρk in each iteration. The outer iteration is run N1 = 25 times with the step size τk = 5 for all k ≥ 1 (i.e.
the increase factor is β2 = 1). In the k-th outer iteration, the subproblem (12) with F = DKL(· ∥π) is optimized
via Adam optimizer with the initialized learning rate γk = 10−4βk−1

1 and the rate decay factor β1 = 0.912 for
N2 = 1000 inner iterations. Our method is compared with Langevin dynamics, where M = 1000 particles are
generated from the same initialization as in our method and updated by an explicit discretization of Langevin
dynamics,

θ
(k)
j = θ

(k−1)
j −∆t

∥∥θ(k−1)
j

∥∥(2α−2)
θ
(k−1)
j +

√
2∆t u

(k)
j , j = 1, · · · ,M,

where u
(k)
j are i.i.d. samples generated from N (0, I2). We set ∆t = 10−2 in Setting 1 and ∆t = 4 ·10−4 in Setting

2, as they are the largest ∆t to ensure that the discretized Langevin dynamics does not diverge and therefore
leads to the fastest convergence possible.

C.3 Comparisons with Wasserstein gradient flows

In this subsection, we compare the numerical performance between our method and some representative methods
based on discretizing a WGF, namely, the ICNN-JKO method (Mokrov et al., 2021) and the Euler–Maruyama
(EM) method with 103, 104, 5 · 104 particles (EM-1K, EM-10K, EM-50K shown in the figures). The ICNN-JKO
method numerically solves the JKO scheme by using input-convex neural networks (ICNNs) to approximate
the optimal transport map between two consecutive iterates. The EM method approximates the solution of
Langevin dynamics by time discretization. We follow the same experiment setting as the Section 4.1 in (Mokrov
et al., 2021). Precisely, let ρ∗ be the target distribution and D be the dimension. We consider a random

Gaussian mixture model 1
M

∑M
m=1 N (µm, ID) with M mixtures, where µ1, · · · , µM ∼ Uniform([−5, 5]D). We let

the dimension D take all even numbers from 2 to 10 and let M increases with D. Specifically we take M = 5
when D = 2, M = 6 when D = 4, · · · , and M = 10 when D = 12. The goal is to minimize the KL divergence
F(ρ) = DKL(ρ ∥ ρ∗). To qualitatively compare numerical results, we use the KL divergence and symmetric KL
divergence defined as follows

SymKL(ρk, ρ
∗) = DKL(ρk || ρ∗) +DKL(ρ

∗ || ρk), (14)

where ρk is distribution learned by the NF model after finishing the k-th outer step.

In our method, the NF model consists of 30 affine coupling blocks and each block contains three hidden layers
with width 256. The initialization is ρ0 =Uniform([−10, 10]D). In each iteration, we use M = 10000 particles to
approximte the probability measure ρk. The numbers of outer iterations and inner iterations are N1 = 20 and
N2 = 6000 respectively. For the first 10 outer iterations k ∈ {1, 2, · · · , 10}, we set the step size τk = 0.1 (the
increase factor β2 = 1). For the last 10 outer iterations k ∈ {11, 12, · · · , 20}, we set the step size τk = 0.1 ·1.3k−11

(the increase factor β2 = 1.3). In the k-th outer iteration, the subproblem (12) with F = DKL(· ∥ ρ∗) is optimized
via Adam optimizer with the initial learning rate γk = 10−5 (the increase factor β1 = 1) and the learning rate
reduce by 0.5 every 2000 inner iteration steps for Adam optimizer. The ICNN-JKO method and the EM method
follow the same setting of the experiment 4.1 in (Mokrov et al., 2021). Figure 4 reports the comparing results.
As we can see, although all methods tend to incur a higher approximation error as the dimension D grows, our
method (IKLPD) consistently attained the best accuracy.

C.4 Impact of IKLPD Step Size τk

Recall that the first variation of Ln in the NPMLE problem (8) at a probability measure ρ is the map

δLn
δρ

(ρ) : θ 7→ − 1

n

n∑
i=1

p(Xi | θ)∫
Θ
p(Xi | θ) dρ(θ)

. (15)
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(a) KL divergence between the computed and the tar-
get measure in D = 2, 4, · · · , 12.

(b) SymKL between the computed and the target mea-
sure in D = 2, 4, · · · , 12.

Figure 4: Performance metrics across dimensions for different methods (over 3 independent trials), highlighting
the superiority of our approach.

For any (local) minimum ρ of Ln, the first-order optimality condition (FOC) implies that δLn

δρ (ρ) is a constant on

the support of ρ almost everywhere. In the experiments, we use the variance of first variation Varθ∼ρ
(
δLn

δρ (ρ)(θ)
)

to characterize the closeness of δLn

δρ (ρ) to a constant. In the k-th iteration, this variance at ρk can be approximated
by the sample variance of {

− 1

n

n∑
i=1

p(Xi | θ(k)j )

1
M

∑M
j=1 p(Xi | θ(k)j )

: 1 ≤ j ≤M

}

given M particles θ
(k)
1 , · · · , θ(k)M generated from ρk. When the sample variance is smaller than a threshold ζ at

some iteration k, we choose ρk as the final solution of the NPMLE problem.

Similarly, since the first variation Ln(ρ) + 1
τk
DKL(ρ ∥ ρk−1) is

− 1

n

n∑
i=1

p(Xi | θ)∫
Θ
p(Xi | θ) dρ(θ)

+
1

τk
log

ρ(θ)

ρk−1(θ)
,

the variance of this first variation of the subproblem at ρk can be approximated by the sample variance of{
− 1

n

n∑
i=1

p(Xi | θ(k)j )

1
M

∑M
j=1 p(Xi | θ(k)j )

+
1

τk
log

(
ρ(θ

(k)
j )

ρk−1(θ
(k)
j )

)
: 1 ≤ j ≤M

}
.

When this sample variance is smaller than a threshold ζk, the inner loop stops and the current T (k) is used to

construct the solution ρk of the subproblem through ρk = T
(k)
# ρ0.

Figure 5 summarizes our numerical results, illustrating the impact of the step size τk on the IKLPD algorithm.
Here, we report the number of inner loop iterations executed using the Adam optimizer and the outer loop
iterations of IKLPD under various constant step sizes τk ≡ τ , employing the stopping criterion based on the
aforementioned variance of the first variation. Note that in the implementation, we designate the first two outer
iterations as a burn-in period, applying the stopping criterion only after this burn-in; moreover, we include the
burn-in period in the total count of outer iterations, resulting in 3 as the smallest possible number of outer
iterations. We observe that for small (large) τ values, the subproblem (3) becomes simpler (more complex),
requiring fewer (more) inner loop iterations to meet the stopping criterion. However, since each IKLPD step
results in smaller (larger) progress, the total number of outer loop iterations correspondingly rises (falls). We
note that since the minimal outer loop iteration is 3, the (averaged) outer loop iterations tend to stabilize within
the interval [3, 5] for those relatively large τ values with convergent inner loop iterations. Additionally, when τ
exceeds a particular threshold (which is 8), the inner loop does not converge within the prescribed upper limit
of 5000 iterations. Overall, τ = 3 seems to be the optimal step size that balances the inner and outer loop
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Figure 5: Outer and inner loop iterations (over 5 independent trials) versus step size τ . Here, we designate the
first two outer iterations as a burn-in period, applying the stopping criterion only after this burn-in; moreover,
we include the burn-in period in the total count of outer iterations, resulting in 3 as the smallest possible number
of outer iterations. As we can observe, the implicit step optimization problem (12) becomes easier as the step
size τ decreases. This trend is reflected in the lower average number of inner iterations and higher number of
outer iterations when the step size τ is smaller. We note that since the minimal outer loop iteration is 3, the
(averaged) outer loop iterations tend to stabilize within the interval [3, 5] for those relatively large τ values with
convergent inner loop iterations. However, when τ exceeds the threshold 8, the inner loop is unable to converge
within a prescribed number of 5000 iterations. For these instances, we have chosen not to plot the corresponding
inner and outer iterations.

convergences for this particular example. This empirical finding is consistent with the discussion that follows
equation (3).

The detailed experiment setup for this numerical study is described as follows. We consider a similar experiment
setting as the Gaussian location mixture model. The true mixing distribution P ∗ is a bimodal two moon
distribution with 1.4 times larger distance between two modes than the setting in Appendix C.2. n = 1000
samples are generated through the data generating process (13), and the step size τk = τ is a constant. We
use an NF model consisting of 10 affine coupling blocks, and each block contains two hidden layers with width
64. The initialization is ρ0 = N (0, I2), and M = 1000 particles are generated to approximate the probability
distribution ρk at each iteration.

The threshold for the outer iterations is ζ = 0.05. In the k-th outer iteration, the threshold for the inner loop
is ζk = 0.07·20

19+k . If this convergence condition of the inner loop is not met within 5000 iterations at the k-th
iteration, we claim that the NF model fails find ρk due to a overly large choice of the step size τ . The maximum
outer iteration is 50. We set the first two outer iterations as burn-in iterations, where the NF model will not be
considered to fail to converge for the first two outer iterations if the convergence condition is not met.

We select the outer step size τ ∈ {1, 2, . . . , 9, 10}. For each τ , the learning rate γ for the Adam optimizer is
selected to make the algorithm converge in smallest number of outer iteration. In the k-th outer iteration, the
Adam optimizer with the initialized learing rate is γk = 20·γ

19+k , which decays along outer iterations. When τ = 9
or 10, for various choices of learning rate γ, the NF model fails to find ρk at some iteration k after the burn-in
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period.

(a) KL divergence between the computed and the tar-
get measure for different τ .

(b) SymKL between the computed and the target mea-
sure for different τ .

Figure 6: We investigate the impact of the step size τ on the IKLPD algorithm (over 3 independent trials). We
set τ ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.5} while fixing the total number of outer iterations N1 = 40 and the total
number of inner iterations N2 = 6000. As the step size τ increases, each outer iteration of the IKLPD method
achieves greater progress. Specifically, τ = 0.10 leads to faster convergence of IKLPD compared with τ = 0.05.
However, beyond a certain threshold (e.g., τ ≥ 0.15), convergence to the global minimum becomes challenging
due to the increasing difficulty of solving the implicit step optimization problem (12).

(a) N2 = 2000, KL (b) N2 = 4000, KL (c) N2 = 6000, KL

(d) N2 = 2000, Symmetric KL (e) N2 = 4000, Symmetric KL (f) N2 = 6000, Symmetric KL

(g) τ = 0.05, Symmetric KL (h) τ = 0.10, Symmetric KL (i) τ = 0.15, Symmetric KL
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(j) τ = 0.20, Symmetric KL (k) τ = 0.25, Symmetric KL (l) τ = 0.5, Symmetric KL

(m) τ = 0.05, KL (n) τ = 0.10, KL (o) τ = 0.15, KL

(p) τ = 0.20, KL (q) τ = 0.25, KL (r) τ = 0.5, KL

Figure 7: We explore the performance of IKLPD with a varying step size τ ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.5}
and number of inner loop iterations N2 ∈ {2000, 4000, 6000}, while fixing the number of outer loop iterations
N1 = 15. The implicit step optimization problem (12) becomes easier (harder) as τ decreases (increases). The
figures demonstrate that, to ensure the convergence of IKLPD to the global minimum, N2 must increase as the
step size τ increases. Specifically, for τ = 0.05, 0.1, and 0.15, the required number of inner iterations for IKLPD
to find the global minimum are N2 = 2000, 4000, and 6000, respectively. When τ ≥ 0.20, the implicit step
optimization problem (12) becomes significantly harder, preventing IKLPD from obtaining a reasonably good
solution within a prescribed number of inner loop iterations.

To further explore the impact of the IKLPD step size τ on the convergence of the IKLPD algorithm, we conduct
two additional experiments using the problem setting D = 12 and M = 10, as previously described in C.3.
KL and symKL metric represent DKL(ρk ∥ ρ∗) and SymKL(ρk, ρ

∗) respectively. The IKLPD step size τk ≡ τ
is fixed during the training (i.e. the increase factor β2 = 1) in both experiments. In the first experiment as in
Figure 6, the training process is the same as the one stated in C.3 except that we choose N1 = 40, N2 = 6000 and
explore different values of τ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.5. In the second experiment as in Figure 7, we keep
the number of outer iterations N1 = 15 and vary τ . For each τ , we consider three different choices of number of
inner iterations N2 = 2000, 4000, and 6000. The training process follows the same configurations as in the first
experiment, but we adjust the width of the hidden layers to 512 instead of 256 for the NF model. The results
are summarized in Figures 6 and 7, where all the patterns are consistent with our discussions and remarks made
in the main paper.
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Algorithm 2 IKLPD with composition of short flows and the teacher-student architecture

Require: data Xn = (X1, · · · , Xn); initialized NF model T (0); number of particlesM ; initialization ρ0; learning
rate of Adam optimizer γ; learning rate of Adam optimizer used in the compression process γ′; step size τ ;
number of outer iterations N1; number of inner iterations N2; number of compression iterations N3; the length
of the compressed flow k0; the maximum length of the flow before compression k1; the length of the short flow
k2; the compression L2 loss threshold ϵ; the decay factor of the learning rate in Adam β1; the increase factor
of the step size β2

Sample M particles
˜
θ(0) = [θ

(0)
1 , · · · , θ(0)M ] from ρ0.

for k = 1 to N1 do
Initialize a short flow T ′(k) with length k2 such that T

′(k)
# ρk−1 = ρk−1.

Set RequiresGrad = False for all parameters in T (k−1). ▷ the parameters in T (k−1) are fixed
Initialize T (k) as T (k−1) ◦ T ′(k). ▷ only the parameters in T ′(k) could be learned
Compute the learning rate γk = γ · βk−1

1 .
Compute the step size τk = τ · βk−1

2 .
for r = 1 to N2 do

˜
θ(k) = T (k)(

˜
θ(0)).

Compute the loss Fk = Fk(
˜
θ(k), τk) in (12) with

˜
θ(k).

Update T (k) based on the loss Fk using Adam optimizer with learning rate γk.
end for
if Length of the NF model T (k) > k1 then

Initialize a flow T ′′(k) with length k0 as T
′′(k)
# ρ0 = ρ0.

for s = 1 to N3 do:
Compute the L2 loss L2(T

(k), T ′′(k)) := ℓ2(T
(k)(

˜
θ(0)), T ′′(k)(

˜
θ(0))).

Update T ′′(k) based on L2(T
(k), T ′′(k)) using Adam optimizer with learning rate γ′.

if L2(T
(k), T ′′(k)) ≤ ϵ then

Break the current loop.
end if

end for
Let T (k) = T ′′(k).

end if
end for

C.5 Composition of Short Flows and Teacher-Student Architecture

Algorithm 2 summarizes the algorithm for the compositional scheme of sequentially stacking the local, short
normalizing flows (each with length k2), learned within each inner-loop iteration, to form a global, layered
normalizing flow for minimizing F . In the k-th outer iteration, the total length of the large NF model is
(k + 1) · k2 since we composite a new length-k2 short flow with the original NF model with length k · k2. When
the length of this compositional NF model exceeds the threshold of maximum length k1, we employ a teacher-
student architecture to distill knowledge from the compositional NF model to a shorter NF model of length k0.
This is achieved by minimizing (a sample version of) the L2 distance between the larger (teacher) NF model and
the smaller, length-k0 (student) NF model.

Figure 8 provides a numerical comparison between Algorithm 2 that re-trains a long normalizing flow for each
subproblem (indicated as NF) and Algorithm 2 that uses the compositional scheme and teacher-student architec-
ture (indicated as NF ST). As we can see, the expressive capability of the composited normalizing flow model is
comparable to that of the computationally more expensive NF method, which re-trains a lengthy normalizing flow
at each iteration of the IKLPD algorithm. In addition, by employing the teacher-student architecture, we can
preserve a constant storage budget while maintaining the expressive capability of the compositional normalizing
flow model.

We describe below the concrete setting of this numerical experiment. We use a similar objective functional as
in the Gaussian location mixture models. The NF model consists of 30 affine coupling blocks, and each block
contains two hidden layers having 256 units. The step size τk = τ is fixed (i.e. the increase factor β2 = 1),



Minimizing Convex Functionals over Space of Probability Measures via KL Divergence Gradient Flow

Figure 8: Optimized objective value Ln(ρk) versus iteration count k. We report the averaged Ln(ρk) over
5 independent trials. The results indicate that NF ST and NF demonstrate very similar performance. The
compression through the teacher-student architecture successfully maintains the expressive capability of the
original model.

and no early stopping criterion is applied for the inner loop. All other hyperparameters are the same as in the
deterministic NF model in Appendix C.2.

Algorithm 1 is compared with the composition of short NF model with teacher-student architecture (NF ST) as
shown in Algorithm 2. In each outer iteration, a short flow with length k2 = 4 is composited with the original
flow. Each short flow consists of 4 affine coupling blocks and each block contains two hidden layers with width
512. When the length of the composited flow exceeds the maximum length k1 = 40, it will be compressed into a
flow with length k0 = 20. The initialized Adam learning rate is γ = 8× 10−5. The compression process is run at
most N3 = 3000 iterations with the Adam learning rate γ′ = 10−5 and stops early if the L2 distance between the
compressed flow and the original composited flow is less than the threshold ϵ = 10−4. Other hyperparameters
are the same as the NF model in Appendix C.2

D PROOFS OF THEORETICAL RESULTS

In this appendix, we provide all deferred proofs for the main theoretical results from the main paper.

D.1 Proof of Theorem 1

Taking derivative with respect to time yields

d

dt
DKL(ρ

∗ ∥ ρt) = − d

dt

∫
log ρt dρ

∗

=

∫
Θ

(δF
δρ

(ρt)(θ)−
∫
Θ

δF
δρ

(ρt)(θ
′) dρt(θ

′)
)
dρ∗(θ)

=

∫
δF
δρ

(ρt) d(ρ
∗ − ρt)(θ)

≤ F(ρ∗)−F(ρt)−
λ

2
DKL(ρ

∗ ∥ ρt). (16)
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When λ > 0, since F(ρ∗)−F(ρt) ≤ 0, we have

d

dt
DKL(ρ

∗ ∥ ρt) ≤ −λ
2
DKL(ρ

∗ ∥ ρt).

By Gronwall’s inequality, we have

DKL(ρ
∗ ∥ ρt) ≤ e−

λt
2 DKL(ρ

∗ ∥ ρ0).

When λ = 0, (16) is equivalent to

d

dt
DKL(ρ

∗ ∥ ρt) ≤ F(ρ∗)−F(ρt).

This implies

DKL(ρ
∗ ∥ ρt)−DKL(ρ

∗ ∥ ρ0) ≤ tF(ρ∗)−
∫ t

0

F(ρs) ds.

By Jensen’s inequality, we have

F
(1
t

∫ t

0

ρs ds
)
−F(ρ∗) ≤ 1

t

∫ t

0

F(ρs) ds−F(ρ∗) ≤ 1

t
DKL(ρ

∗ ∥ ρ0).

D.2 Proof of Theorem 2

We need the following lemma to bound the functional value at each iterate, the proof of which is deferred to
Section D.6 in this Appendix.

Lemma A1. For any ρ ∈ Pr(Θ)

F(ρk)−F(ρ) ≤ 1

τk
DKL(ρ ∥ ρk−1)−

( 1

τk
+
λ

2

)
DKL(ρ ∥ ρk)−

1

τk
DKL(ρk ∥ ρk−1).

Applying Lemma A1 with ρ = ρ∗ yields

0 ≤ F(ρk)−F(ρ∗) ≤ 1

τk
DKL(ρ

∗ ∥ ρk−1)−
( 1

τk
+
λ

2

)
DKL(ρ

∗ ∥ ρk). (17)

When λ > 0 and τk = τ for all k ≥ 1, the above inequality implies

DKL(ρ
∗ ∥ ρk) ≤

(
1 +

λτ

2

)−1

DKL(ρ
∗ ∥ ρk−1).

Therefore, we have

DKL(ρ
∗ ∥ ρk) ≤

(
1 +

λτ

2

)−k
DKL(ρ

∗ ∥ ρ0).

When λ = 0, (17) implies

τk
[
F(ρk)−F(ρ∗)

]
≤ DKL(ρ

∗ ∥ ρk−1)−DKL(ρ
∗ ∥ ρk).

Summing the above inequality from 1 to k, we have

k∑
l=1

τl
[
F(ρl)−F(ρ∗)

]
≤ DKL(ρ

∗ ∥ ρ0)−DKL(ρ
∗ ∥ ρk).

Therefore, we have

min
1≤l≤k

F(ρl)−F(ρ∗) ≤ 1

τ1 + · · ·+ τk
DKL(ρ

∗ ∥ ρ0).
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D.3 Proof of Theorem 3

Similar to the proof of Theorem 2, for any ρ ∈ Pr(Θ) we have

min
1≤l≤k

F(ρl)−F(ρ) ≤ 1

τ1 + · · ·+ τk
DKL(ρ ∥ ρ0). (18)

By Assumption 3, we have

|F(ρ∗)−F(ρ)| ≤ LW1(ρ
∗, ρ).

Therefore,

min
1≤l≤k

F(ρl)−F(ρ∗) ≤ 1

τ1 + · · ·+ τk
DKL(ρ ∥ ρ0) + LW1(ρ

∗, ρ).

Special cases: discrete measures and singular measures supported on hyperplanes. Let ψm1
be a

probability measure on Θ with first-order moment m1 = Eθ∼ψm1
∥θ∥ < ∞. Let X ∼ ρ and Y ∼ ψm1

. Then
X + Y ∼ ρ ∗ ψm1

. By definition, we have

W1(ρ, ρ ∗ ψm1) = inf
θ∼ρ,θ′∼ρ∗ψm1

E∥θ − θ′∥ ≤ E∥X − (X + Y )∥ = E∥Y ∥ = m1. (19)

This result helps control the smoothing error through W1-distance.

Case 1: ρ∗ is a discrete measure with bounded support. We need the following lemma to control the
Gaussian smoothing error in KL divergence. The proof is deferred to Section D.6 in this Appendix.

Lemma A2 (KL divergence bound after Gaussian smoothing). Assume ρ∗ is a discrete probability measure with
bounded support. Let Rθ = sup

{
∥θ∥ : θ ∈ supp(ρ∗)

}
, and ρσ = ρ∗ ∗ N (0, σ2Id). If ρ0 = N (0, β2Id), we have

DKL(ρ
σ ∥ ρ0) ≤ d log

β

σ
+
dσ2 +R2

θ

2β2
− d

2
.

Note that the first-order moment of N (0, σ2Id) is smaller than
√
dσ2. Applying Lemma A2 and Inequality (19)

yields

0 ≤ min
1≤l≤k

F(ρl)−F(ρ∗) ≤ 1

τ1 + · · ·+ τk

(
d log

β

σ
+
dσ2 +R2

θ

2β2
− d

2

)
+ L

√
dσ2.

Since the above inequality holds for all σ > 0, by choosing σ2 = L−2(τ1 + · · ·+ τk)
−2, we have

0 ≤ min
1≤l≤k

F(ρl)−F(ρ∗) ≤
d log[βL(τ1 + · · ·+ τk)] +

d
2β2L2(τ1+···+τk)2 +

R2
θ

2β2 +
√
d− d

2

τ1 + · · ·+ τk
.

When τ1 = · · · = τk = τ , the upper bound has order O(d log kk ).

Case 2: ρ∗ is absolutely continuous with respect to the Lebesgue measure supported on a d′-
dimensional hyperplane. Without loss of generality, assume ρ∗ is supported on supp(ρ∗) = {(θ′, 0, · · · , 0) ∈
Rd : θ′ ∈ Rd′}. Let ρ∗d′ denote the distribution of ρ∗ restricted to the first d′ coordinates. Then ρ∗d′ ∈ Pr(Rd′).
Assume Z = (X,Y ) with X ∈ Rd′ and Y ∈ Rd−d′ such that (X, 0d−d′) ∼ ρ∗, Y ∼ N (0, σ2Id−d′), and X is
independent with Y . Then X ∼ ρ∗d′ is a continuous random variable in Rd′ . Similarly, let Z0 = (X0, Y0) ∼ ρ0 =
N (0, β2Id), such that X0 ∼ N (0, β2Id′) and Y0 ∼ N (0, β2Id−d′). Then, we have

PZ(z) = PX(x)PY (y) and ρ0(z) = PZ0(z) = PX0(x)PY0(y).

Note that

DKL(PZ ∥ ρ0) = DKL(PZ ∥PZ0
) =

∫
log

PZ
PZ0

dPZ
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=

∫ ∫
log

PX(x)PY (y)

PX0(x)PY0(y)
dPX(x) dPY (y)

= DKL(PX ∥N (0, β2Id′)) +DKL

(
N (0, σ2Id−d′)

∥∥N (0, β2Id−d′)
)

= DKL(PX ∥N (0, β2Id′)) +
d− d′

2

(
log

β2

σ2
− 1 +

σ2

β2

)
.

By Theorem 3 and Inequality (19), for every σ2 > 0 we have

min
1≤l≤k

F(ρl)−F(ρ∗) ≤ 1

τ1 + · · ·+ τk

[
DKL(PX ∥N (0, β2Id′)) +

d− d′

2

(
log

β2

σ2
− 1 +

σ2

β2

)]
+ L

√
(d− d′)σ2.

Noting that PX = ρ∗d′ , by choosing σ2 = L−2(τ1 + · · ·+ τk)
−2, the above inequality implies

min
1≤l≤k

F(ρl)−F(ρ∗) ≤
(d− d′) log[βL(τ1 + · · ·+ τk)] +

d−d′
2β2L2(τ1+···+τk)2 +

√
d− d′ − d−d′

2 +DKL(ρ
∗
d′ ∥N (0, β2Id′))

τ1 + · · ·+ τk
.

When τ1 = · · · = τk = τ , the upper bound has order O
( (d−d′) log k

k

)
.

D.4 Proof of Theorem 4

Recall that

ηk(θ) =
δF
δρ

(ρerrk )(θ) +
1

τk
log

ρerrk
ρerrk−1

(θ).

Let η̃k = ηk − infθ∈Θ ηk(θ). Therefore, we have ∥η̃k∥∞ ≤ εk. Since F is λ-relative strongly convex, we have

F(ρ)−F(ρerrk ) ≥
∫
Θ

δF
δρ

(ρerrk )(θ) d(ρ− ρerrk )(θ) +
λ

2
DKL(ρ ∥ ρerrk )

=

∫
Θ

η̃k(θ)−
1

τk
log

ρerrk
ρerrk−1

(θ) d(ρ− ρerrk )(θ) +
λ

2
DKL(ρ ∥ ρerrk )

= − 1

τk
DKL(ρ ∥ ρerrk−1) +

( 1

τk
+
λ

2

)
DKL(ρ ∥ ρerrk ) +

1

τk
DKL(ρ

err
k ∥ ρerrk−1) +

∫
Θ

η̃k(θ) d(ρ− ρerrk )(θ).

Note that ∫
Θ

η̃k(θ) d(ρ− ρerrk )(θ) ≤ ∥η̃k∥∞∥ρ− ρerrk ∥1 ≤ εk ·
√
2DKL(ρ ∥ ρerrk ),

where the last inequality is due to Pinsker’s inequality. Thus, we have

0 ≥ F(ρ∗)−F(ρerrk ) ≥ − 1

τk
DKL(ρ

∗ ∥ ρerrk−1) +
( 1

τk
+
λ

2

)
DKL(ρ

∗ ∥ ρerrk )− εk

√
2DKL(ρ∗ ∥ ρerrk ).

This implies

√
DKL(ρ∗ ∥ ρerrk ) ≤

√
DKL(ρ∗ ∥ ρerrk−1)√

1 + τkλ/2
+

√
2τkεk.

Therefore,

√
DKL(ρ∗ ∥ ρerrk ) ≤

√
DKL(ρ∗ ∥ ρ0)∏k
l=1

√
1 + λτl/2

+

k∑
l=1

√
2τlεl∏k

s=l+1

√
1 + λτs/2

. (20)
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Case 1: When εk ≤ κεk for some 0 < ε < 1, κ > 0 and τk = τ ,

k∑
l=1

√
2τlεl∏k

s=l+1

√
1 + λτs/2

≤
k∑
l=1

√
2τκεl(1 + λτ/2)l/2

(1 + λτ/2)k/2
=

√
2τκ

(1 + λτ/2)k/2
·
k∑
l=1

[
ε
√
1 + λτ/2

]l
.

We can always assume that ε
√
1 + λτ/2 ̸= 1, since if ε

√
1 + λτ/2 = 1, we can find ε′ ∈ (ε, 1), so that εk ≤ κ(ε′)k.

Note that

k∑
l=1

[
ε
√
1 + λτ/2

]l ≤


1

1−ε
√

1+λτ/2
, ε

√
1 + λτ/2 < 1

[ε
√

1+λτ/2]k+1

ε
√

1+λτ/2−1
, ε

√
1 + λτ/2 > 1

.

Therefore, we have

k∑
l=1

√
2τlεl∏k

s=l+1

√
1 + λτs/2

≤


√
2τκ

1−ε
√

1+λτ/2
·
(
1 + λτ

2

)− k
2 , ε

√
1 + λτ/2 < 1

√
2τκε

ε
√

1+λτ/2−1
εk, ε

√
1 + λτ/2 > 1

Therefore, there exists C = C(τ, λ, ε) > 0, such that

k∑
l=1

√
2τlεl∏k

s=l+1

√
1 + λτs/2

≤ Cκmax{ε, (1 + λτ/2)−1/2}k.

Combining the above inequality with (20) yields

DKL(ρ
∗ ∥ ρerrk ) ≤ Cκ2 + 2DKL(ρ

∗ ∥ ρ0)
(min{ε−2, 1 + λτ/2})k

.

Case 2: When εk = εk−α for some α, ε > 0 and τk = τ for every k ≥ 1, we show that DKL(ρ
∗ ∥ ρk) ≲ k−2α.

In fact, note that

k∑
l=1

√
2τlεl∏k

s=l+1

√
1 + λτs/2

≤
√
2τε

(1 + τλ/2)k/2

k∑
l=1

(1 + τλ/2)l/2

lα
.

We prove that there exists C = C(τ, λ, α) > 0, such that

k∑
l=1

(1 + τλ/2)l/2

lα
≤ C(1 + τλ/2)k/2

kα
. (21)

We use the induction to prove (21). If the statement is correct for k, then

k+1∑
l=1

(1 + τλ/2)l/2

lα

(i)

≤ C(1 + τλ/2)k/2

kα
+

(1 + τλ/2)(k+1)/2

(k + 1)α

(ii)

≤ C(1 + τλ/2)(k+1)/2

(k + 1)
.

Here, (i) is by the induction hypothesis, and (ii) is equivalent to(
1 +

1

k

)α
C +

√
1 +

τλ

2
≤ C

√
1 +

τλ

2
.

The above inequality is true when(
1 +

1

k

)α
≤

√
1 +

τλ

4
, and C ≥

√
1 + τλ/2√

1 + τλ/2−
√
1 + τλ/4

.
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When (1 + k−1)α >
√
1 + τλ/4, i.e. k <

[
(1 + τλ/4)1/2α − 1

]−1
, we can choose C large enough such that (21)

holds. Therefore, by induction, we know (21) is true for all k ≥ 1 when

C = max

{ √
1 + τλ/2√

1 + τλ/2−
√
1 + τλ/4

,max
{ kα

(1 + τλ/2)k/2
·
k∑
l=1

(1 + τλ/2)l/2

lα
: k <

1

(1 + τλ/4)1/2α − 1

}}
.

Applying (21) to (20) yields√
DKL(ρ∗ ∥ ρerrk ) ≤

√
DKL(ρ∗ ∥ ρ0)

(1 + λτ/2)k/2
+

√
2τε

(1 + τλ/2)k/2
· C(1 + τλ/2)k/2

kα

=

√
DKL(ρ∗ ∥ ρ0)

(1 + λτ/2)k/2
+

√
2Cτε

kα
.

Therefore, we have

DKL(ρ
∗ ∥ ρerrk ) ≤ 2DKL(ρ

∗ ∥ ρ0)
(1 + λτ/2)k

+
Cε2

k2α

for some C = C(τ, λ, α).

D.5 Proof of Theorem 5

By applying Lemma A1, we have( 1

τk
+
λ

2

)
DKL(ρ ∥ ρstock )− 1

τk
DKL(ρ ∥ ρstock−1) ≤ Fξk(ρ)−Fξk(ρstock )− 1

τk
DKL(ρ

stoc
k ∥ ρstock−1).

Note that

E
[
Fξk(ρ)−Fξk(ρstock )

∣∣ ρstock−1

]
= E

[
Fξk(ρ)−Fξk(ρstock−1)

∣∣ ρstock−1

]
+ E

[
Fξk(ρstock−1)−Fξk(ρstock )

∣∣ ρstock−1

]
(i)
= F(ρ)−F(ρstock−1) + E

[
Fξk(ρstock−1)−Fξk(ρstock )

∣∣ ρstock−1

]
(ii)

≤ F(ρ)−F(ρstock−1) + E
[
L(ξk)

√
DKL(ρstock ∥ ρstock−1)

∣∣ ρstock−1

]
(iii)

≤ F(ρ)−F(ρstock−1) +
√
EL(ξk)2 ·

√
E
[
DKL(ρstock ∥ ρstock−1)

∣∣ ρstock−1

]
.

Here, both (i) and (ii) are by Assumption 5, and (iii) is by Cauchy–Schwarz inequality. Therefore, we have( 1

τk
+
λ

2

)
EDKL(ρ ∥ ρstock )− 1

τk
EDKL(ρ ∥ ρstock−1)

≤ F(ρ)− EF(ρstock−1) +
√
EL(ξk)2 ·

√
EDKL(ρstock ∥ ρstock−1)−

1

τk
DKL(ρ

stoc
k ∥ ρstock−1)

≤ F(ρ)− EF(ρstock−1) +
τk
4
EL(ξ)2. (22)

When λ = 0, (22) implies

τk
[
EF(ρstock−1)−F(ρ∗)

]
≤ EDKL(ρ

∗ ∥ ρstock−1)− EDKL(ρ
∗ ∥ ρstock ) +

τ2k
4
EL(ξ)2.

Therefore, we have

min
0≤l≤k−1

EF(ρstocl )−F(ρ∗) ≤ DKL(ρ
∗ ∥ ρ0)

τ1 + · · ·+ τk
+

τ21 + · · ·+ τ2k
4(τ1 + · · ·+ τk)

EL(ξ)2.

By taking τk = τ√
k
and using k−1/2 ≥ 2

√
k + 1− 2

√
k, the above inequality implies that

min
0≤l≤k−1

EF(ρstocl )−F(ρ∗) ≤ 4DKL(ρ
∗ ∥ ρ0) + τ2 log(k + 1)EL(ξ)2

8τ(
√
k + 1− 1)

.
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When λ > 0, (22) implies

EF(ρstock−1)−F(ρ∗) ≤ 1

τk
EDKL(ρ

∗ ∥ ρstock−1)−
( 1

τk
+
λ

2

)
EDKL(ρ

∗ ∥ ρstock ) +
τk
4
EL(ξ)2.

By taking τk = 2
λ(k+1) , we have

min
0≤l≤k−1

EF(ρstocl )−F(ρ∗) ≤ λ

k
DKL(ρ

∗ ∥ ρ0) +
EL(ξ)2

4k

k∑
l=1

2

λ(l + 1)

≤ λ

k
DKL(ρ

∗ ∥ ρ0) +
log(k + 1)

2λk
EL(ξ)2.

In the last inequality, we use 1
l+1 ≤ log l+1

l for all l ≥ 1.

D.6 Proofs of Technical Results

Proof of Lemma A1. By first-order optimality condition of (3), we know that

δF
δρ

(ρk) +
1

τk
log

ρk
ρk−1

is a constant. Since F is λ-relative strongly convex, we have

F(ρ)−F(ρk) ≥
∫
Θ

δF
δρ

(ρk)(θ) d(ρ− ρk)(θ) +
λ

2
DKL(ρ ∥ ρk)

= − 1

τk

∫
Θ

log
ρk
ρk−1

(θ) d(ρ− ρk)(θ) +
λ

2
DKL(ρ ∥ ρk)

= − 1

τk
DKL(ρ ∥ ρk−1) +

( 1

τk
+
λ

2

)
DKL(ρ ∥ ρk) +

1

τk
DKL(ρk ∥ ρk−1).

Proof of Lemma A2. Since ρ∗ is discrete probability measure, ρσ = ρ∗ ∗N (0, σ2Id) is a Gaussian mixture distri-
bution. The main step is to prove

DKL(ρ
σ ∥ ρ0) ≤ sup

θ∈supp(ρ∗)

DKL

(
N
(
θ, σ2Id

) ∥∥∥ ρ0). (23)

In fact, for any θj , θl ∈ supp(ρ∗) with θj ̸= θl, assume wj = ρ∗(θj) and wl = ρ∗(θl). Let

ρ∗−jl =
∑

θ∈supp(ρ∗)
θ ̸=θj ,θl

ρ∗(θ)δθ

be a measure by deleting the contribution of θj and θl in ρ
∗. (Note that ρ∗−jl(Θ) = 1 − wj − wl < 1, so ρ∗−jl is

not a probability measure.) Consider the optimization problem

max
w+w′=wj+wl

w,w′≥0

gjl(w,w
′) := DKL

((
ρ∗−jl + wδθj + w′δθl

)
∗ N (0, σ2)

∥∥∥ ρ0)
= DKL

(
ρ∗−jl ∗ N (0, σ2) + wN (θj , σ

2Id) + w′N (θl, σ
2Id)

∥∥∥ ρ0).
It is easy to see that gjl is a convex function on {(w,w′) ⊂ R2

≥0 : w + w′ = wj + wl}. Therefore, gjl achieves
its maximum on the boundary (w,w′) = (wj + wl, 0) or (w,w′) = (0, wj + wl). The above argument indicates
that we can always merge two mixtures of ρσ into one while the KL divergence is not decreasing. Therefore, the
inequality (23) holds. Applying (23), we know

DKL(ρ
σ ∥ ρ0) ≤ sup

θ∈supp(ρ∗)

DKL

(
N
(
θ, σ2Id

) ∥∥∥ ρ0)
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= sup
θ∈supp(ρ∗)

1

2

(
log

det(β2Id)

det(σ2Id)
− d+ tr (β−2σ2Id) + θ⊤(β2Id)

−1θ
)

=
1

2

(
2d log

β

σ
− d+

dσ2

β2
+

∥θ∥2

β2

)
≤ d log

β

σ
+
dσ2 +R2

θ

2β2
− d

2
.

D.7 Convexity of NPMLE and KL Divergence

NPMLE. Recall that the empirical loss function in NPMLE is

Ln(ρ) = − 1

n

n∑
i=1

log
(∫

Θ

p(Xi | θ) dρ(θ)
)
.

Then, for any ρ, ρ′ ∈ P(Θ) and t ∈ [0, 1], we have

Ln
(
(1− t)ρ+ tρ′

)
= − 1

n

n∑
i=1

log
(
(1− t)

∫
Θ

p(Xi | θ) dρ(θ) + t

∫
Θ

p(Xi | θ) dρ′(θ)
)

(i)

≤ −1− t

n

n∑
i=1

log
(∫

Θ

p(Xi | θ) dρ(θ)
)
− t

n

n∑
i=1

log
(∫

Θ

p(Xi | θ) dρ′(θ)
)

= (1− t)Ln(ρ) + tLn(ρ′).

Here, (i) is due to the convexity of function x 7→ − log x. The above inequality implies

Ln(ρ′)− Ln(ρ) ≥
Ln

(
ρ+ t(ρ′ − ρ)

)
− Ln(ρ)

t
, ∀ t ∈ [0, 1].

By the definition of first-order variation and letting t→ 0+ on the right-hand side yield

Ln(ρ′)− Ln(ρ) ≥ lim
t→0+

Ln
(
ρ+ t(ρ′ − ρ)

)
− Ln(ρ)

t
=

∫
δF
δρ

(ρ) d(ρ′ − ρ).

Therefore, Ln is (L2-)convex.

KL divergence For any π ∈ Pr(Θ), we will show that DKL(· ∥π) is 1-relative strongly convex. We provide
the proof to make our paper self-contained. For any ρ, ρ′ ∈ Pr(Θ), we have

DKL(ρ
′ ∥π)−DKL(ρ ∥π) =

∫
Θ

− log π d(ρ′ − ρ) +DKL(ρ
′ ∥ ρ) +

∫
Θ

log ρd(ρ′ − ρ)

=

∫
Θ

δDKL(· ∥π)
δρ

(ρ) d(ρ′ − ρ) +DKL(ρ
′ ∥ ρ).

In the last equation, we use the fact that

δDKL(· ∥π)
δρ

(ρ) = log ρ− log π.

In fact, Chizat (2022); Nitanda et al. (2022) show a stronger result that for any convex functional H, the
functional F(ρ) = H(ρ)+λ

∫
ρ log ρ is λ-relative strongly convex. In the KL divergence case, we can simply take

H(ρ) = −
∫
Θ
log π dρ and λ = 1.


