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Abstract

Bilevel optimization aims to optimize an
outer objective function that depends on the
solution to an inner optimization problem. It
is routinely used in Machine Learning, no-
tably for hyperparameter tuning. The con-
ventional method to compute the so-called
hypergradient of the outer problem is to use
the Implicit Function Theorem (IFT). As a
function of the error of the inner problem
resolution, we study the error of the IFT
method. We analyze two strategies to reduce
this error: preconditioning the IFT formula
and reparameterizing the inner problem. We
give a detailed account of the impact of these
two modifications on the error, highlighting
the role played by higher-order derivatives of
the functionals at stake. Our theoretical find-
ings explain when super efficiency, namely
reaching an error on the hypergradient that
depends quadratically on the error on the in-
ner problem, is achievable and compare the
two approaches when this is impossible. Nu-
merical evaluations on hyperparameter tun-
ing for regression problems substantiate our
theoretical findings.

1 INTRODUCTION

Bilevel optimization, the problem of minimizing an
outer function that depends on the solution to an in-
ner problem, has become a standard tool in many ar-
eas of machine learning. Typical applications include
hyperparameter optimization (Franceschi et al., 2018;
Pedregosa, 2016; Bertrand et al., 2020), meta-learning
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(Finn et al., 2017; Rajeswaran et al., 2019) or neu-
ral architecture search (Liu et al., 2018). It is also
used to train implicit deep learning models like deep
equilibrium models (Bai et al., 2019) or networks with
optimization layers (Amos and Kolter, 2017; Blondel
et al., 2022). Large-scale bi-level problems are usu-
ally solved using the implicit function theorem (IFT)
to compute the gradient of the outer problem relying
only on an estimated solution of the inner problem.
In this paper, we challenge this de facto standard by
studying variations around this idea, obtained either
by preconditioning the IFT formula or by reparame-
terization, i.e., doing a change of variables. The funda-
mental question we tackle is to understand the impact
of these new IFT-type formulas on the outer gradient
approximation error.

Bilevel Optimization. We study the bilevel pro-
gram

min
y∈Rdy

h(y) = g(x⋆(y), y) s.t. F (x⋆(y), y) = 0 (1)

where g : Rdx × Rdy → R and F : Rdx × Rdy →
Rdx are smooth functions. The energy function g is
called outer function, and the root-finding problem
F (x⋆(y), y) = 0 in the constraint is called inner prob-
lem. When F (x, y) = ∇1f(x, y) is the gradient of a
convex scalar inner function f(x, y) w.r.t x, the inner
problem corresponds to the optimization of f(·, y). In
the following, we assume for simplicity that x⋆(y) is
uniquely defined for each y. If this condition does not
hold, we assume a consistent selection strategy for a
solution x⋆(y) (Arbel and Mairal, 2022).

IFT Formula. Optimizing over y in Eq. (1) typi-
cally requires the gradient of the function h w.r.t. y,
called hypergradient ∇h(y). Assuming the Jacobian
∇1F (x

⋆(y), y) is invertible, the hypergradient can be
computed by using the chain rule and Implicit Func-
tion Theorem (IFT) (Krantz and Parks, 2002):

∇h(y) = Ω(x⋆(y), y) (2)

where Ω(x, y) := ∇2g(x, y) + Ψ(x, y)∇1g(x, y). (3)
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and Ψ(x, y) := −[∇2F (x, y)]
⊤[∇1F (x, y)]

−1. (4)

Here, Ψ(x⋆(y), y) = ∂x⋆(y) relies on the IFT to com-
pute the Jacobian of the map y 7→ x⋆(y).

Approximate Inner Resolution. When the exact
root x⋆(y) is available, the IFT formula (2) computes
exactly ∇h(y). In practice, one only has access to an
approximate root x̂, for instance, x̂ = xk(y) can be
obtained by running k steps of an iterative resolution
method. The fundamental question studied in this pa-
per is to analyze the error Ω(x̂, y)−∇h(y) as a function
of the inner problem error x̂−x⋆(y). Several strategies
like warm starting (Bai et al., 2022; Thornton and Cu-
turi, 2023) and amortized learning (Amos et al., 2023)
have been proposed to reduce this error x̂ − x⋆(y).
Finally, Ramzi et al. (2021) uses the Hessian approxi-
mation learned by a Quasi-Newton method during the
inner problem resolution to have a better estimation of
the Jacobian Ψ. Still, as long as this error is non-zero,
directly using Ω(x̂, y) as a proxy for ∇h(y) leads to
an inaccurate estimation of the hypergradient, which
could cause an accumulated error when optimizing the
function h (Devolder et al., 2014). Even with some
simple convex functions, the error x̂ − x⋆(y) can be
amplified on the hypergradient estimation (Mehmood
and Ochs, 2021). We question the direct use of Ω and
propose alternate formulas Ω̃ based on precondition-
ing or reparameterization which might lower the error
Ω̃(x̂, y)−∇h(y).

Preconditioning and Reparameterization.
Many methods accelerate the convergence of xk(y)
toward x⋆(y) by preconditioning each step with a
linear mapping (Golub and Van Loan, 2013; Spielman
and Teng, 2004). When F = ∇1f , the intuition is
that this preconditioning should capture the curvature
of f , hence it should be close to the inverse of the
Hessian of f , which corresponds to Newton’s method.
Finding an efficient preconditioner is a trade-off
between the approximation of the Hessian and the
ease of inversion. Another widely used strategy
is reparemeterization, i.e., to perform a change of
variable z = ϕ(x, y) over the inner problem, and
perform the inner optimization over the z variable
(Salimans and Kingma, 2016; Kingma and Welling,
2013; Moins et al., 2023). From an optimization
perspective, reparameterization is closely related to
preconditioning, where the preconditioner depends on
the Jacobian of ϕ(·, y).

Contributions and Paper Organization. In this
paper, we propose a unified study of the IFT-type for-
mula to estimate ∇h. We study in particular formulas
derived by preconditioning and reparameterization:

• In Sec. 2, we characterize the error of the hyper-
gradient estimation when using (xk(y), y). The
Jacobian of Ω (Eq. (2)) w.r.t. x determines the
error decay of estimation. We introduce the con-
cept of super efficiency where the Jacobian is 0,
leading to a hypergradient estimation that decays
quadratically with the error x̂− x⋆.

• In Sec. 3, we analyze the impact of two strate-
gies, preconditioning and reparameterization, on
the hypergradient estimation. We describe cases
where each strategy achieves super efficiency.

• In Sec. 4, we compare these two strategies in dif-
ferent settings. Our results hint at the superior-
ity of preconditioning, while reparameterization
could be a better choice in certain corner cases.

• Sec. 5 presents numerical experiments illustrating
this paper’s theory.

Related Work. Problem (1) is usually solved with
an iterative algorithm, like gradient-based algorithms
(Beck, 2017), Newton’s method (Boyd and Vanden-
berghe, 2004), and second order Quasi-Newton meth-
ods (Shanno, 1970). Two main approaches can be
used to compute the gradient of h: automatic and
implicit differentiation. Assume that we have access
to an iterative strategy that builds the sequence xi(y)
for i = 0 . . . k − 1 that converges to x⋆(y), like the
power method, and that we use the last iterate xk

as an approximation to x⋆. Automatic differentiation
(Griewank and Walther, 2008) computes an approx-
imation of ∇h(y) as ∂yh(x

k(y)), where the differen-
tiation is done through the iterates of the algorithm.
It does so by leveraging the chain rule repeatedly to
the elementary operations and functions in the reverse
mode (Christianson, 1994). Gilbert (1992) analyzes
its behavior in the context of the iterative procedure.
It has become popular in several bilevel applications
(Domke, 2012; Franceschi et al., 2017; Mehmood and
Ochs, 2020; Bolte et al., 2022). This approach requires
storing each iterate xi(y) in memory, which makes it
impractical for iterative procedures with thousands of
iterations. Implicit differentiation (Bengio, 2000) over-
comes this drawback, using only the last iterate xk. It
is the approach of choice for problems such as deep
equilibrium network (Bai et al., 2019), non-smooth
problems (Bolte et al., 2021), and hyperparameter tun-
ing (Franceschi et al., 2018).

The preconditioning strategy is common for optimiz-
ing a function (Becker and Fadili, 2012; Pock and
Chambolle, 2011). Some typical preconditioners in-
clude diagonal preconditioner, incomplete Cholesky
factorization (Golub and Van Loan, 2013), and Lapla-
cian preconditioning (Spielman and Teng, 2004). Al-
though various works analyze the convergence of the
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technique (Benzi, 2002), the impact of preconditioning
on the hypergradient estimation is unclear.

Many methods can be viewed as reparameterization.
Salimans and Kingma (2016) introduce a reparame-
terization of the weight vectors in a neural network to
accelerate the training process. Kingma and Welling
(2013) apply the reparameterization trick on varia-
tional autoencoders to allow the backpropagation on
a random node. When optimizing a constrained prob-
lem, reparameterization is a common strategy to deal
with simple constraints (Jorge and Stephen, 2006). In
this work, we study whether reparameterization can
improve hypergradient estimation.

Variable Definition
∥ · ∥, ∥ · ∥op Euclidean, operator norm

Id d× d identity matrix
F1(·, ·) Jacobian of F w.r.t the first variable
F11(·, ·) Jacobian of F1 w.r.t. the first variable

Table 1: Notations

Notation. To simplify notations, we use the sub-
script to denote differentiation w.r.t. that variable,
i.e. we use for short F1(x, y) = ∇1F (x, y), F2(x, y) =
∇2F (x, y). The second-order derivative of g(x, y) is
denoted by g12(x, y) = ∇2

12g(x, y) ∈ Rdx×dy , similarly
for g11(x, y) ∈ Rdx×dx . A detailed table of notations
is shown in Table 1.

2 ERROR ANALYSIS AND SUPER
EFFICIENCY

In this section, we study the structure of the hyper-
gradient estimation problem. We consider a generic
formula Ω̃(x, y), where Ω̃ : Rdx × Rdy → Rdy is a
function that approximates the hypergradient ∇h(y).
The prototypical example is the IFT formula (3). The
most basic requirement on the formula Ω̃ is that it is
consistent, which means that it correctly recovers the
hypergradient if we set x = x⋆(y).

Definition 1 (Consistency). A formula Ω̃ is said to
be consistent if it satisfies

∀y, Ω̃(x⋆(y), y) = ∇h(y).

By definition, the IFT formula Ω is consistent. As-
suming that Ω̃ is a smooth C1 map, one can control
the impact of an approximate computation x̂ of x⋆(y)
by doing a Taylor expansion, as stated in the following
proposition.

Proposition 1 (Hypergradient approximation). If Ω̃

is C1 and consistent, then for all x̂ and y

∥Ω̃(x̂, y)−∇h(y)∥ ≤ Cy∥x⋆(y)− x̂∥+O(∥x⋆(y)− x̂∥2),
where Cy := Cy(Ω̃) := ∥Ω̃1(x

⋆(y), y)∥op.

This simple result exposes the fact that, at first order,
controlling the estimation error on the hyper-gradient
requires the control of Cy(Ω̃), which is the norm of

the Jacobian w.r.t. x of the formula Ω̃. It is the fun-
damental quantity that needs to be analyzed to un-
derstand the efficiency of a formula. We see that the
hypegradient estimation error diminishes with Cy(Ω̃):
a good hypergradient estimator should therefore strive
to make this constant as small as possible. Of partic-
ular interest is when this term is 0:

Definition 2 (Super efficiency (Ablin et al., 2020)). If
Cy(Ω̃) = 0, the formula Ω̃ is said to be super efficient.
Equivalently, according to Prop. 1, the estimation er-
ror on the hypergradient has a quadratic decay with
respect to the inner problem resolution error.

The following proposition computes Ω̃1 in the case of
the IFT formula Ω (Eq. (2)).

Proposition 2 (Jacobian of estimation). Assuming g
and F are smooth, one has

Ω1(x, y) = g21(x, y)+Ψ1(x, y)g1(x, y)+Ψ(x, y)g11(x, y),

with Ψ1(x, y) = −[F12(x, y)]
⊤[F1(x, y)]

−1

+ [[F1(x, y)]
−1F11(x, y)[F1(x, y)]

−1F2(x, y)]
⊤.

(5)

Efficiency on the Inner Problem. While we
phrase all our results directly in terms of the estima-
tion error of the hypergradient ∇h, the core of our
analysis aims at controlling the error on the Jacobian
∂x⋆(y) of the inner variable. The estimation of this
Jacobian of interest in itself beyond just bilevel pro-
gramming. The following proposition shows the rela-
tion between the error of the estimator Ω of the hy-
pergradient and the estimator Ψ of the inner problem.

Proposition 3 (IFT efficiency). One has

Cy(Ω) ≤ ∥g21 + ∂x⋆(y)g11∥∞ + ∥g1∥∞Cy(Ψ)

where ∥H∥∞ := supx,y ∥H(x, y)∥op. Hence, if g is of
the form g(x, y) = ax+m(y), then Ω is super-efficient
if Ψ is super-efficient. If, furthermore, F is of the
form Ax+M(y), then Ω is super-efficient.

Prop. 3 describes how the non-linearity of the outer
problem impacts the efficiency of Ω. In general, Cy(Ω)
is not 0; the following section aims to design alternate
formulas Ω̃ so that Cy(Ω̃) as small as possible.
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3 PROPOSED STRATEGIES

We detail here two classes of formula Ω̃ which are con-
sistent by design, and which hopefully improve the ef-
ficiency constant Cy(Ω̃) = ∥Ω̃1(x

⋆(y), y)∥op over the
vanilla IFT formula Ω. These two strategies operate
either by directly preconditioning the IFT formula or
by applying the IFT to a reparameterized problem.

3.1 Preconditioning

We consider an invertible matrix P (x, y) ∈ Rdx×dx and
perform an update on a given x:

x̃ := x − P (x, y)−1F (x, y). (6)

With a proper choice of P (x, y), x̃ becomes closer to
x⋆(y) than x. For instance, if F is the gradient of
a convex function, a simple choice for P is a large
enough symmetric positive matrix. Therefore, rather
than using x, we estimate the hypergradient with x̃:

ΩP (x, y) := Ω(x̃, y) = Ω(x−P (x, y)−1F (x, y), y). (7)

Preconditionning Efficiency. We now turn to the
analysis of the error of this new estimator, by relating
it to the Jacobian Ω1 of the IFT formula Ω.

Proposition 4 (Preconditioned estimation). ΩP is
consistent and

ΩP1 (x, y) = Ω1(x̃, y)E
P (x, y) (8)

where EP (x, y) := Idx − [P (x, y)]−1F1(x, y) +
[P (x, y)]−1P1(x, y)[P (x, y)]

−1F (x, y).

Proof. We give a sketch proof and the full one is
available in the appendix. The root of F means
that F (x⋆(y), y) = 0. Plugging it into Eq. (6) leads
to x⋆ − [P (x⋆(y), y)]−1F (x⋆(y), y) = x⋆, for any P .
With Eq. (7), we have ΩP (x⋆(y), y) = Ω(x⋆(y), y).
Deriving ΩP w.r.t x using the chain rule and using
F (x⋆(y), y) = 0, we have ΩP1 (x

⋆(y), y).

This proposition shows that the improvement brought
by preconditioning with respect to the IFT for-
mula is precisely captured by EP . Impor-
tantly, this term nicely simplifies at x⋆(y), giving
EP (x⋆(y), y) = Idx − P (x⋆(y), y)−1F1(x

⋆(y), y). As
long as ∥EP (x⋆(y), y)∥op < 1, preconditioning im-
proves the hypergradient estimation compared to the
vanilla IFT. In the trivial case where P (x, y) ≡ 0,
EP (x⋆(y), y) = Idx , and ΩP1 (x

⋆(y), y) = Ω1(x
⋆(y), y).

More generally, reducing ΩP1 amounts to finding a
good approximation to the (inverse) Hessian, which is
studied next.

Newton Preconditioners. To achieve super-
efficiency, the goal is to design P so that Cy(Ω

P ) = 0.
This can be achieved by using a Newton-type strategy.

Proposition 5 (Newton-like preconditioner). For
P (x, y) = F1(x, y), Ω

P is super-efficient.

Proof. In this case, we have Ep(x⋆(y), y) = 0, which
implies ΩP1 (x

⋆(y), y) = 0.

Note that Eq. (6) with the “ideal” preconditioner
P (x, y) corresponds to the iterates of Newton’s
method. A chief advantage of such a strategy is that
it is super-efficient independent of the choice of the
inner function f and the outer function g. This how-
ever comes at a price, because applying this formula
requires computing a Hessian and solving a linear sys-
tem. These operations are computationally expensive
and even intractable in large-scale problems. In prac-
tice, one usually leverages a cheap approximation of
the inverse of F1. When F1 is diagonally dominant,
an efficient solution, the Jacobi preconditioner, only
retains the diagonal of F1.

3.2 Reparameterization

Another classical way to accelerate optimization al-
gorithms is by reparameterization, with a well-chosen
change of variable. We denote x = ϕ(z, y) a surjective
change of variable, so that the initial problem (1) is
equivalent (in the case where F = ∇xf for concrete-
ness) to

min
y
h(y) = g̃(z(y), y) s.t. z(y) := argmin

z
f̃(z, y), (9)

where g̃(z(y), y) := g(ϕ(z(y), y), y) and f̃(z, y) :=
f(ϕ(z, y), y). Note that we reformulate the bilevel op-
timization in Eq. (1) with the constraint of a mini-
mization problem for the sake of concreteness. For the
general case of a constraint F (x, y) = 0, F (x, y) should
be changed into F̃ (z, y) := ϕ1(z, y)

⊤F (ϕ(z, y), y) = 0.
We emphasize that the change of variable should be
applied to the inner function f . Although the follow-
ing discussion only requires ϕ to be surjective, we as-
sume ϕ to be bijective for the sake of simplicity. Its
inverse on x is denoted as ϕ−1. A crucial point is that,
even though the bilevel program is invariant under this
change of variable, the IFT formula Ω(x, y) is not. In
the following, we denote Ωϕ the formula obtained by
replacing (g, F ) by (g̃, F̃ ).

Proposition 6. Ωϕ is consistent and

Ωϕ(x, y) := g2(x, y) + Ψϕ(x, y)g1(x, y), (10)

Ψϕ(x, y) := ϕ2(z, y)
⊤ − Uϕ(x, y)⊤[V ϕ(x, y)]−1, (11)

Uϕ(x, y) := F2 + F1ϕ2 + ϕ−1
1 (ϕ21F ), (12)

V ϕ(x, y) := ϕ−⊤
1 (ϕ11F )ϕ

−1
1 + F1. (13)



Zhenzhang Ye, Gabriel Peyré, Daniel Cremers, Pierre Ablin

with z = ϕ−1(x, y). Additionally, denoting x⋆ :=
x⋆(y):

Ωϕ1 (x
⋆, y) = D(y) + Ψϕ1 (x

⋆, y)g1(x
⋆, y), (14)

D(y) := g21(x
⋆, y) + [∂x⋆]⊤g11(x

⋆, y), (15)

Ψϕ1 (x
⋆, y) = Ψ1(x

⋆, y) + Cϕ(y), (16)

Cϕ(y) =Wϕ(y) + Sϕ(y) + Tϕ(y), (17)

Wϕ(y) := −F−1
1 ϕ−⊤

1 ϕ⊤12F1,

Sϕ(y) := [ϕ−⊤
1 (ϕ11F1)ϕ

−1
1 F−1

1 ϕ2]
⊤,

Tϕ(y) := [F−1
1 (ϕ−⊤

1 (ϕ11F1)ϕ
−1
1 )F−1

1 F2]
⊤.

(18)

Proof. We omitted (x, y), (z, y) in the right side of
Eq. (12)- (13) and (x⋆, y), (z⋆, y) in the right side of
Eq. (18) for simplicity. A more detailed derivation
can be found in the Supplementary. g(ϕ(z(y), y), y)
contains three ys. The derivative w.r.t. the latter
two can be computed by using the chain rule directly.
The derivative w.r.t. the first y requires the IFT. The
gradient of f̃(z, y) w.r.t. z corresponds to a new root-
finding problem. Viewing it as a function on (z⋆(y), y),
we can apply IFT to get the derivative of the map
y 7→ z⋆(y). Using this derivative and the chain rule, we
have Ψϕ(x, y). Optimality of x⋆(y) reads F (x⋆, y) = 0.
Plugging it into Eq. (11), we have U = F2 +F1ϕ2 and
V = F1. Computing Ψϕ(x⋆, y) by these two equations
yields Ψϕ(x⋆, y) = Ψ(x⋆, y). Therefore, we have Ωϕ is
consistent. The Jacobian of Ωϕ(x, y) w.r.t. x follows
the chain rule directly.

Remark 1 (Identity map). Despite the complexity
of these expressions, a sanity check is to verify that
if ϕ(z, y) = z, then the above formulae simplify to
the IFT ones, since Ωϕ = Ω. Indeed, in that case,
ϕ2(z, y) = ϕ21(z, y) = ϕ11(z, y) = 0, so that in
Eq. (11), one has Ψϕ(x, y) = Ψ(x, y) for any (x, y).

Super-Efficient Reparameterization in 1-D.
Using Prop. 6, one can seek for a change of vari-
able ϕ in order to minimize Cy(Ω

ϕ). In particular, it
turns out that achieving super-efficiency is equivalent
to solving a high-dimensional second-order partial-
differential equation in ϕ, which, to the best of our
knowledge, has no explicit solution. The following
proposition shows this second-order differential equa-
tion in a simple scalar case.

Proposition 7. Assume x, y ∈ R and that g(x, y) and
F (x, y) are linear w.r.t. x but arbitrary on y. Then
Ωϕ is super-efficient if and only if for all y,

ϕ12
ϕ1

− ϕ2ϕ11
[ϕ1]2

− F2ϕ11
F1[ϕ1]2

=
g12
g1

− F12

F1
(19)

where ϕ12 = ϕ12(z
⋆(y), y) (and similarly for other

terms).

In the (admittedly singular) case where the outer func-
tion is affine, the above formulation can be leveraged
to construct super-efficient reparameterizations ϕ(z)
depending only on the variable z.

Proposition 8. If g is affine on x (see Prop. 3), then
super-efficient reparameterizations ϕ(z, y) = ϕ0(z) ex-
ist and define locally a 2-parameters family of maps. If
furthermore F is linear of x, i.e. F (x, y) = a(y)x+ b,
where a : R → R and b ∈ R, these super-efficient maps
are of the form ϕ0(z) = αeβz for (α, β) ∈ R2.

Proof. Eq. (19) boils down to a second-order ODE
of a scalar variable on ϕ0(z). Under the smooth-
ness hypothesis on (g, F ), one can apply the Cauchy-
Lipschitz theorem to ensure the local existence of a
super-efficient change of variable. In the simple case
where F is affine, the equation is simple enough to be
solved, giving the advertised formula for ϕ.

If one drops the constraint that ϕ(z, y) only depends
on z, then another super-efficient reparameterization
is ϕ(z, y) = z/a(y), which coincides with the precon-
ditioning step.

3.3 Separable Localized Reparameterizations

Localized Reparametrizations. A difficulty with
the computation of a reparameterized formula Ωϕ is
the necessity to be able to compute the inverse map
ϕ−1(·, y). To allow for easily inversible maps, we in-
troduce “localized” changes of variable of the form
ϕ(z, y) = ψx,ȳ(z, y) which depend on extra fixed pa-
rameters (x, ȳ). The resulting localized formula is then

Ωψloc(x, y) := Ωψx,y (x, y).

Note that while it leverages at each (x, y) a change of
variable formula, it is not globally an estimator of the
form Ωϕ for some fixed ϕ. The following section high-
lights its versatility in the context of the computation
of separable change of variables. Despite being more
general, the following proposition shows that the com-
putation of its efficiency constant Cy still boils down
to the one of a classical change of variable.

Proposition 9. The estimator Ωψloc is consistent and
one has

Cy(Ω
ψ
loc) = Cy(Ω

ψx⋆(y),y ).

Separable Localized Reparameterization.
Even with a localized change of variable, designing
efficient change of variable remains difficult, even in
the 1D case as shown in Eq. (19). To ease this task,
inspired by the separation of variables used while
solving PDE, we relax this problem by assuming a
separable form for ψx,ȳ(z, y):

ψx,ȳ(z, y) = R(x, y)Q(z, ȳ) + x, (20)
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where R(x, y) ∈ Rdx×dx and Q(z, ȳ) ∈ Rdx . To ensure
that ψx,ȳ(z, y) is bijective, we impose thatR(x, y) is in-
vertible and Q(·, ȳ) is bijective. The following proposi-
tion explicitly gives the quantities involved in Prop. 6.

Proposition 10. Let ϕ = ψx,ȳ as in Eq. (20), one
has:

Wϕ(y) = −F−1
1 R−⊤Q−⊤

1 Q1R
⊤
2 F1,

Sϕ(y) = [R−⊤Q−⊤
1 (Q11RF1)Q

−1
1 R−1F−1

1 (QR2)]
⊤,

Tϕ(y) = [F−1
1 (R−⊤Q−⊤

1 (Q11RF1)Q
−1
1 R−1)F−1

1 F2]
⊤,

for any (x, ȳ), where R = R(x, y), Q = Q(z⋆(y), ȳ)
with ψx,ȳ(z

⋆(y), y) = x⋆(y) (and similarly for other
terms).

This shows that the search for super-efficient separable
parameterization leads to a simpler differential equa-
tion on (R,Q) than the original equation on ϕ. How-
ever, it is still non-linear and there exists no analyt-
ical solution in general. We now show that this effi-
ciency is however always improving as one approaches
a Newton-type class of changes of variables and the
outer problem is close to being affine.

Efficiency of Ωψloc. Mimicking the preconditioner
studied in Prop. 5, we now show that a local change
of variable based on a Newton step defines a super-
efficient reparameterization. Note however that, in
contrast to Prop. 5, in this case, super-efficiency is
only possible in the case of an affine outer problem (so
it only improves the efficiency of the inner problem
estimation).

Proposition 11 (Newton-like reparameterization).
We assume g is of the form g(x, y) = ax +m(y)(see
Prop. 3 for a discussion). Let ψx,ȳ as in Eq. (20) and
let F (x, y) be bijective on x for all y. For R(x, y) =

[F1(x, y)]
−1, Q(z, ȳ) = −F (z, ȳ), Ωψloc is super effi-

ciency.

Proof. The super efficiency requires to examine
Cy(Ω

ψ
loc). Because (x, ȳ) are extra parameters not vari-

ables, Ωψloc has the same formula as in Prop. 6. While
computing its Jacobian, using the fact of F (x⋆(y), y) =
0, we can still get the same results as in Prop. 10.
Plugging the special choice of R and Q, we get

Ψ
ψx⋆(y),y

1 (x⋆(y), y) = 0. Cy(Ω
ψ
loc) is thus 0 because

g is affine.

Remark 2. The above proposition reveals that the
reparameterization is never equivalent to the precon-
ditioning strategy. In the case of a quadratic inner
problem, the Newton-like preconditioner in Prop. 5
achieves super-efficiency with any g, while the Newton-
like reparameterization requires an assumption on g.

This proposition should be understood as providing
heuristic guidance to design R and Q, which we ex-
ploit in the numerical simulations in Sec. 5. The fol-
lowing more general proposition states that for generic
localized separable changes of variable, the efficiency
constant is upper-bounded by error terms measuring
how far the change of variable is different from the
above-mentioned Newton-type reparameterization.

Proposition 12. Let x⋆ := x⋆(y) and
ψx⋆,y be defined as in Eq. (20) and z⋆ sat-
isfy ψx⋆,y(z

⋆, y) = x⋆. Denoting EQ(y) :=
Q(z⋆, y) + F (x⋆, y), EQ1(y) := Q1(z

⋆, y) +
F1(x

⋆, y), EQ11(y) := Q11(z
⋆, y) + F11(x

⋆, y),
ER(y) := R(x⋆, y) − [F1(x

⋆, y)]−1, ER2(y) :=
R2(x

⋆, y) + [F1(x
⋆, y)]−1F21(x

⋆, y)[F1(x
⋆, y)]−1.

We have that Cy(Ψ
ψ
loc) =

O(∥EQ∥op, ∥EQ1∥op, ∥EQ11∥op, ∥ER∥op, ∥ER2∥op).

Note that this proposition shows (R,Q) should be
close to Newton-type functionals, but their higher-
order derivatives should also be close, which highlights
the difficulty of designing efficient changes of variables.

4 COMPARISON BETWEEN
METHODS

As it should be clear from the above analysis, super-
efficiency is out of reach for cases of practical interest.
We thus focus on comparing the efficiency constant
Cy of the different strategies. We first focus our anal-
ysis on the preconditioning ΩP with P (x, y) and the
reparameterization Ωϕ with an arbitrary smooth and
bijective functional ϕ(z, y). The following proposition,
which is leveraged in special cases below, gives a gen-
eral formula to compare the efficiency constants.

Proposition 13 (Comparison of the two methods).
Let ϕ be smooth and bijective, one has

[Cy(Ω
ϕ)]2 − [Cy(Ω

P )]2 ≥ ⟨U+vP , U−vP ⟩ (21)

[Cy(Ω
P )]2 − [Cy(Ω

ϕ)]2 ≥ ⟨V+vϕ, V−vϕ⟩ (22)

where, for EP as in Eq. (8), Ψϕ1 and D as in Eq. (15),

U± := D ±DEP +Ψϕ1g1 ±Ψ1g1E
P ,

V± := DEP ±D +Ψ1g1E
P ±Ψϕ1g1,

vω := argmax
∥u∥=1

∥Ωω1 (x⋆(y), y)u∥ for ω ∈ {P, ϕ},

The dependencies on (x⋆(y), y) on the right side are
omitted.

Asymptotic Analysis of Preconditioning Supe-
riority. As a consequence, the following proposition
shows that as the preconditioning quality δ is small
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enough, then the preconditioning formula ΩP is nec-
essarily better than the reparameterization one Ωϕ.
This should not be surprising since when δ = 0, the
preconditioning is super-efficient, while the reparame-
terization is not necessarily super-efficient.

Proposition 14. For δ := ∥P (x⋆(y), y) −
F1(x

⋆(y), y)−1∥∞, we have

[Cy(Ω
ϕ)]2 − [Cy(Ω

P )]2 ≥ ∥(D +Ψϕ1g1)vP ∥2 + o(δ),

all the terms being evaluated at (x⋆(y), y) and vP as
defined in Prop. 13.

Note that the term (D + Ψϕ1g1)vP does not cancel in
general, which shows that the preconditioning strategy
should be favored when a suitable preconditioner (that
makes δ small) is available. A suitable preconditioner
can also be leveraged in localized reparameterization
by ψx(z, y) = [P (x, y)]−1z. However, the improvement
from the reparameterization is less than the precondi-
tioning because of (D +Ψϕ1g1)vP .

Asymptotic Analysis of Separable Localized
Reparameterization Superiority. On the other
hand, if P does not approximate very well F−1

1 , it
might be possible that the reparameterization Ωϕ is
better than ΩP if ϕ is well designed. Extreme cases
were already given for 1-D problems in Prop. 8, where
super-efficient changes of variables are detailed. Ad-
ditionally, in the case of the separable localized repa-
rameterization, the following proposition shows that if
g is close to being affine on x (as already analyzed in

Prop. 3), then the reparameterization Ωψloc could be a
better choice than the preconditioning ΩP .

Proposition 15. For σ := ∥g1(x⋆(y), y)∥∞Cy(Ψψloc),

[Cy(Ω
P )]2 − [Cy(Ψ

ψ
loc)]

2

≥∥(D +Ψ1g1)E
P vϕ∥2 − ∥Dvϕ∥2 + o(σ),

where vϕ is defined in Prop. 13 with ϕ = Ψψloc.

In conclusion, the preconditioning strategy outper-
forms in general as long as a valuable preconditioner
is available. Otherwise, a well-designed reparameter-
ization could be a better choice when approximating
F−1
1 is difficult.

5 NUMERICAL EXPERIMENTS

We illustrate our findings on regression and classifica-
tion supervised learning problems. Bilevel program-
ming is used to compute hyper-parameters y control-
ling the regularization function. The inner and outer
problems are of the form:

g(x) = L(Avalx, bval),

f(x, y) = L(Atrx, btr) +R(x, y),
(23)
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(a) gaff (b) g

PNewton ψopt
x,ȳ

Figure 1: Compare PNewton from Prop. 5 and ψopt
x,ȳ

from Prop. 11 on ridge regression but with different
outer problems. We show the efficiency constant Cy
in log space under different y. (a) When the outer
problem is affine, both strategies can achieve a small
efficiency constant Cy around machine accuracy. (b)
When the outer problem is quadratic, the Newton pre-
conditioner achieves the super efficiency while the ψopt

x,ȳ

has a large constant Cy.

with L(z, b) =
∑
i ℓ(zi, bi), and the loss ℓ depends

on the task (regression or classification). Here Atr ∈
RM×dx , Aval ∈ RN×dx are the train and test design
matrix respectively, btr ∈ RM and bval ∈ RN are the
train and test labels (restricted to {−1, 1} for clas-
sification). The coefficients x ∈ Rdx are the weight
parameters of the predictor. The value of y deter-
mines the structure of F1(x, y), for instance large y
lead to F1(x, y) being diagonally dominant. The reg-
ularization functional is a ridge penalty R(x, y) :=
1
2

∑dx
i eyix2i , so that y introduces a feature-dependent

penalization (Pedregosa, 2016).

Inspired by Prop. 5, the first two strategies we con-
sider are Newton preconditioner PNewton(x, y) :=
F1(x, y) and the diagonal preconditioner P diag(x, y) :=
diag(F1(x, y)). Similarly to Prop. 8, we also con-
sider an exponential reparameterization defined as
ψexp
x (z) := sign(x) exp(z). The last strategy is a

separable diagonal reparameterization ψdiag
x (z, y) :=

[diag(F1(x, y))]
−1z. We run a gradient descent xk =

xk−1 − τk∇xf(xk−1, y) with a proper step size τk > 0
to attain an approximate root xk after k steps. All
the experiments are run with Jax (Bradbury et al.,
2018) and can be found in https://github.com/

zhenzhang-ye/enhance_hypergradient.

5.1 Ridge Regression

The first problem we consider is a regularized ridge re-
gression, obtained using ℓ(z, b) = (z − b)2 in Eq. (23).
The design matrix Atr and labels btr are from the
dataset mpg in LIBSVM (Chang and Lin, 2011),
which consists of M = 392 data and dx = 7 features.
The Aval ∈ RM×dx and bval ∈ RM in the outer problem

https://github.com/zhenzhang-ye/enhance_hypergradient
https://github.com/zhenzhang-ye/enhance_hypergradient
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Figure 2: Compare P diag, ψexp
x , ψdiag

x on ridge regres-
sion with the outer problem g. (a) We show the hy-
pergradient errors of different strategies in log space
over the number of iterations when having a bad pre-
conditioner. It turns out that ψexp

x could be a better
choice in this setting. (b) We show the efficiency con-
stant Cy of each strategy in log space under different
y. Although reparameterization could perform better
in some cases, P diag in general is the best choice.

is randomly generated. The optimal x⋆(y) is computed
using the linear solver from Jax. To directly assess the
estimation error on ∂x⋆(y) (see Prop. 3), we also con-
sider a special case where the outer problem is affine,
denoted by gaff.

Since F is bijective in this case, the reparameterization
ψopt
x,ȳ (z, y) := −[F1(x, y)]

−1F (z, ȳ)+x from Prop. 11 is
readily applicable. We first compare it to PNewton un-
der different values of y. We ran the experiments 10
times for each y to remove the effect of randomness.
Fig. 1(a) shows that when the outer problem is gaff, the
two strategies both achieve very small efficiency con-
stant Cy. This agrees with our finding that both of the
algorithms can achieve super efficiency if D is 0. On
the other hand, the advantage of Newton’s precondi-
tioner shows up when having the general g. As shown
in Fig. 1(b), the efficiency constant Cy of PNewton is
independent of the outer problem, while ψopt

x,ȳ fails to
attain a small constant Cy.

To cover cases where F−1
1 is unavailable or expensive

to apply, we compare P diag, ψexp
x and ψdiag

x . In Fig. 2
(a), we show a special case where ψexp

x works the best
even with an arbitrary (non-affine) outer problem g.
The reason is that the F1 is not diagonally dominated,
and the diagonal preconditioner is not efficient any-
more. To this end, we compare the three strategies
with different y and show the results in Fig. 2(b). All
three strategies improve the hypergradient estimator
compared to the vanilla one when the outer problem
is quadratic g. The average performance of P diag is
the best, but there can be cases where the two repa-
rameterizations are the best choices.
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Figure 3: Comparison of different strategies on hyper-
gradient error in log space over approximated root for
logistic regression. PNewton always achieve the super
efficiency. (a) With a small y, the performances of
P diag and ψdiag

x are nearly the same. ψexp
x performs

worse than the vanilla one in some situations. (b) The
performance of P diag improves thanks to the large y
which leads to a diagonally dominated F1. The per-
formances of two reparameterizations are the similar,
both better than the vanilla one.

5.2 Logistic Regression

We now consider classification using logistic regression,
using ℓ(z, b) = log(1+exp(−zb)). The design matrices
and labels are from liver-disorder in LIBSVM with
145 training and 200 testing data. There are 5 features
and 2 classes of each data. We ran all experiments 10
times with different random seeds. The root x⋆(y) is
attained by the minimize function from Jax with a
tolerance of 10−15.

To assess the impact of the scale of y on F1 (and hence
on the estimator efficiency), we compare the strate-
gies with y drawn from two different uniform distri-
butions. The first notable result in Fig. 3 is that
PNewton achieves super efficiency in both cases. This
comes without a surprise because our finding shows
that the performance of Newton’s preconditioner is
independent of F1 and the problems. Additionally
when y is generated over [−1, 1) in Fig. 3(a), the F1 is
away from diagonally dominated. It makes the perfor-
mances of P diag and ψdiag

x nearly the same. The expo-
nential reparameterization ψexp

x performs even worse
than the vanilla one. However, when y generated over
[3, 6) becomes larger, all the strategies outperform the
vanilla one. The difference between P diag and ψdiag

x is
expected because the diagonal preconditioner leads to
a small δ in Prop. 14 in this case. For larger values
of y, the performance of ψexp

x is improved as well. A
plausible explanation is that larger y makes F1 close
to a diagonal matrix, in which case the exponential
reparameterization achieves super efficiency.
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Conclusion

In this paper, we have developed an in-depth local
analysis of implicit differentiation for bilevel program-
ming. Of particular interest are detailed expressions of
the efficiency constant Cy of several variations around
the vanilla IFT formula. This highlights the key chal-
lenge in designing an efficient hypergradient formula.
On the theoretical side, the question of the existence
(let alone the computation) of super-efficient repa-
rameterization is still mostly open. It corresponds to
highly non-linear partial differential equations. Bet-
ter exploiting the connection between reparametriza-
tion and preconditioning could also be fruitful, for in-
stance, in designing parametric formulas that could be
adapted to specific machine-learning problems.
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1. For all models and algorithms presented, check if
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(a) A clear description of the mathematical set-
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[Yes] See Sec. 1 and Sec. 3

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] See Sec. 3
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external libraries. [Yes], we plan to publish
code.

2. For any theoretical claim, check if you include:
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(b) Complete proofs of all theoretical results.
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URL). [Yes]
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Supplementary Materials

Proof of Propositions

Proposition 1 (Hypergradient approximation). If Ω̃ is C1 and consistent, then for all x̂ and y

∥Ω̃(x̂, y)−∇h(y)∥ ≤ Cy∥x⋆(y)− x̂∥+O(∥x⋆(y)− x̂∥2),
where Cy := Cy(Ω̃) := ∥Ω̃1(x

⋆(y), y)∥op.

Proof. The Taylor expansion of Ω̃(x̂, y) at (x⋆(y), y) yields:

Ω̃(x̂, y) = Ω̃(x⋆(y), y) + Ω̃1(x
⋆(y), y)(x⋆(y)− x̂) +O(∥x⋆(y)− x̂∥2).

Because Ω̃ is consistent, we have

∥Ω̃(x̂, y)−∇h(y)∥ = ∥Ω̃1(x
⋆(y), y)(x̂− x⋆(y)) +O(∥x⋆(y)− x̂∥2)∥

≤ ∥Ω̃1(x
⋆(y), y)∥op∥(x⋆(y)− x̂)∥+O(∥x⋆(y)− x̂∥2).

Proposition 2 (Jacobian of estimation). Assuming g and F are smooth, one has

Ω1(x, y) = g21(x, y) + Ψ1(x, y)g1(x, y) + Ψ(x, y)g11(x, y),

with Ψ1(x, y) = −[F12(x, y)]
⊤[F1(x, y)]

−1 +
(
[F1(x, y)]

−1F11(x, y)[F1(x, y)]
−1F2(x, y)

)⊤
.

Proof. Recall that Ω(x, y) = g2(x, y) + Ψ(x, y)g1(x, y) with Ψ(x, y) = −[F2(x, y)]
⊤[F1(x, y)]

−1. Using the chain
rule to compute the Jacobian w.r.t. x, we have:

Ω1 = g21(x, y) + Ψ1(x, y)g1(x, y) + Ψ(x, y)g11(x, y).

Using the fact that the Jacobian of [F (x)]−1 is −[F (x)]−1F1(x)[F (x)]
−1, we can get Ψ1(x, y) as defined.

Proposition 3 (IFT efficiency). One has

Cy(Ω) ≤ ∥g21(x⋆(y), y) + [∂x⋆(y)]⊤g11∥∞ + ∥g1(x⋆(y), y)∥∞Cy(Ψ)

where ∥H∥∞ := supx,y ∥H(x, y)∥op. Hence, if g is of the form g(x, y) = ax +m(y), then Ω is super-efficient if
Ψ is super-efficient. If, furthermore, F is of the form Ax+M(y), then Ω is super-efficient.

Proof. Recall the definition of Cy(Ω) in Prop. 1, we have:

Cy(Ω) = ∥Ω1(x
⋆(y), y)∥op

= ∥g21(x∗(y), y) + Ψ1(x
∗(y), y)g1(x

∗(y), y) + ∂x⋆(y)g11(x
∗(y), y)∥op

≤ ∥g21(x∗(y), y) + [∂x⋆(y)]⊤g11(x
∗(y), y)∥op + ∥Ψ1(x

∗(y), y)g1(x
∗(y), y)∥op

≤ ∥g21(x∗(y), y) + [∂x⋆(y)]⊤g11(x
∗(y), y)∥∞ + ∥Ψ1(x

∗(y), y)∥op∥g1(x∗(y), y)∥∞

If g is affine, we have g21(x, y) = g11(x, y) ≡ 0 and the first term becomes 0. If furthermore, F (x, y) = Ax+M(y),
Cy(Ψ) ≡ 0, which implies Cy(Ω) ≡ 0.
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Proposition 4 (Preconditioned estimation). ΩP is consistent and

ΩP1 (x, y) = Ω1(x̃, y)E
P (x, y),

where EP (x, y) := Idx − [P (x, y)]−1F1(x, y) + [P (x, y)]−1P1(x, y)[P (x, y)]
−1F (x, y).

Proof. The root of F reads F (x⋆(y), y) = 0. Recall the preconditioning step x̃ := x−[P (x, y)]−1F (x, y). Plugging
x = x⋆(y), we have x̃ = x⋆(y). We thus have ΩP (x⋆(y), y) = Ω(x⋆(y), y).

Because ΩP = Ω(x − [P (x, y)]−1F (x, y), y), using the chain rule and the fact that the Jacobian of [P (x)]−1 is
−[P (x)]−1P1(x)[P (x)]

−1, we have:

ΩP1 (x, y) = Ω1(x− [P (x, y)]−1F (x, y), y)(Idx − [P (x, y)]−1F1(x, y) + [P (x, y)]−1P1(x, y)[P (x, y)]
−1F (x, y)).

Proposition 5 (Newton-like preconditioner). For P (x, y) = F1(x, y), Ω
P is super-efficient.

Proof. Note that F (x⋆(y), y) = 0 in this case. Thus, we have EP (x∗(y), y) = Idx − [P (x⋆(y), y)]−1F1(x
⋆(y), y) =

0, which implies ΩP1 (x
⋆(y), y) = 0.

Proposition 6. Ωϕ is consistent and

Ωϕ(x, y) := g2(x, y) + Ψϕ(x, y)g1(x, y),

Ψϕ(x, y) := ϕ2(z, y)
⊤ − Uϕ(x, y)⊤[V ϕ(x, y)]−1,

Uϕ(x, y) := F2(x, y) + F1(x, y)ϕ2(z, y) + [ϕ1(z, y)]
−1ϕ21(z, y)F (x, y),

V ϕ(x, y) := [ϕ1(z, y)]
−⊤ϕ11(z, y)F (x, y)[ϕ1(z, y)]

−1 + F1(x, y),

with z = ϕ−1(x, y). Additionally, denoting x⋆ := x⋆(y) and z⋆ := ϕ−1(x⋆, y):

Ωϕ1 (x
⋆, y) = D(y) + Ψϕ1 (x

⋆, y)g1(x
⋆, y),

D(y) := g21(x
⋆, y) + [∂x⋆(y)]⊤g11(x

⋆, y),

Ψϕ1 (x
⋆, y) = Ψ1(x

⋆, y) + Cϕ(y),

Cϕ(y) :=Wϕ(y) + Sϕ(y) + Tϕ(y).

Wϕ(y) := −[F1(x
⋆, y)]−1[ϕ1(z

⋆, y)]−⊤[ϕ12(z
⋆, y)]⊤F1(x

⋆, y),

Sϕ(y) :=
(
[ϕ1(z

⋆, y)]−⊤ϕ11(z
⋆, y)F1(x

⋆, y)[ϕ1(z
⋆, y)]−1[F1(x

⋆, y)]−1ϕ2(z
⋆, y)

)⊤
,

Tϕ(y) :=
(
[F1(x

⋆, y)]−1[ϕ1(z
⋆, y)]−⊤ϕ11(z

⋆, y)F1(x
⋆, y)[ϕ1(z

⋆, y)]−1[F1(x
⋆, y)]−1F2(x

⋆, y)
)⊤
.

Proof. After the change of variable, we have the inner problem f(ϕ(z, y), y) and the outer problem g(ϕ(z(y), y), y).
Using the chain rule, the hypergradient is then:

∇h(y) = ∇g(ϕ(z(y), y), y)
= g2(ϕ(z(y), y), y) + [∂z(y)]⊤[ϕ1(z(y), y)]

⊤g1(ϕ(z(y), y), y) + [ϕ2(z(y), y)]
⊤g1(ϕ(z(y), y)).

(24)

Now, we turn to compute ∂z(y). Computing the gradient of the inner problem w.r.t. z and denoting the fixed
point as (z⋆, y) with z⋆ := z⋆(y), we have the new equation:

F̃ (z⋆, y) := ϕ1(z
⋆, y)⊤F (ϕ(z⋆, y), y) = 0.

Viewing it as a fixed-point equation on (z⋆, y), we can apply IFT to get ∂z⋆(y):

∂z⋆(y) = −[F̃1(z
⋆, y)]−1F̃2(z

⋆, y),

where F̃1(z
⋆, y) = ϕ11(z

⋆, y)F (ϕ(z⋆, y), y) + [ϕ1(z
⋆, y)]⊤F1(ϕ(z

⋆, y), y)ϕ1(z
⋆, y),

F̃2(z
⋆, y) = [ϕ21(z

⋆, y)]⊤F (ϕ(z⋆, y), y) + [ϕ1(z
⋆, y)]⊤F1(ϕ(z

⋆, y), y)ϕ2(z
⋆, y) + [ϕ1(z

⋆, y)]⊤F2(ϕ(z
⋆, y), y).
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Plugging it back to Eq. (24), we can get Ωϕ(ϕ(z⋆(y), y), y). Because ϕ(z⋆(y), y) = x⋆(y) and ϕ is bijective, we
recall the notation that ϕ(x⋆(y), y) := ϕ(ϕ−1(x⋆(y), y), y). Ωϕ(x, y) is achieved.

Now we turn to compute the Jacobian of Ωϕ(x, y) w.r.t. x. We introduce a new notation D1F (x, y) meaning
the derivative of F w.r.t. the first variable.

Ωϕ1 (x, y) = g21(x, y) + Ψϕ1 (x, y)g1(x, y) + Ψϕ(x, y)g11(x, y),

where Ψϕ1 (x, y) = D1ϕ
⊤
2 (z, y)− [Uϕ1 (x, y)]

⊤[V ϕ(x, y)]−1 + [Uϕ(x, y)]⊤[V ϕ(x, y)]−1V ϕ1 (x, y)[V ϕ(x, y)]−1,

Uϕ1 (x, y) = F12(x, y) + F11(x, y)ϕ2(z, y) + F1(x, y)D1ϕ2(z, y) + [ϕ1(z, y)]
−1

(
[ϕ12(z, y)]

⊤F1(x, y)
)⊤

+D1ϕ
−1
1 (x, y)ϕ21(z, y)F (x, y) + ϕ−1(x, y)D1ϕ21(z, y)F (x, y),

V ϕ1 (x, y) = F11(x, y) + [ϕ1(z, y)]
−⊤ϕ11(z, y)F1(x, y)[ϕ1(z, y)]

−1

+D1ϕ
−⊤
1 (x, y)ϕ11(z, y)F (x, y)[ϕ1(z, y)]

−1 + [ϕ1(z, y)]
−⊤D1ϕ11(z, y)F (x, y)[ϕ1(z, y)]

−1

+ [ϕ1(z, y)]
−⊤ϕ11(z, y)F (x, y)D1ϕ

−1
1 (z, y).

(25)

Note that this is true for any (x, y). However, the terms D1ϕ2, D1ϕ
−1
1 , D1ϕ21, D1ϕ11 are complicated. Because

we have a inversion ϕ(x, y) = ϕ(ϕ−1(x, y), y) depending on x. Fortunately, when we evaluate it at the root (x⋆, y)

where x⋆ := x⋆(y) = ϕ(z⋆, y), F (x⋆, y) = 0. Thus, we have simplified Uϕ1 and V ϕ1 :

Uϕ1 (x
⋆, y) = F12(x

⋆, y) + F11(x
⋆, y)ϕ2(z

⋆, y) + F1(x
⋆, y)D1ϕ2(z

⋆, y) + [ϕ1(z
⋆, y)]−1

[
[ϕ12(z

⋆, y)]⊤F1(x
⋆, y)

]⊤
,

V ϕ1 (x⋆, y) = F11(x
⋆, y) + [ϕ1(z

⋆, y)]−⊤ϕ11(z
⋆, y)F1(x

⋆, y)[ϕ1(z
⋆, y)]−1.

(26)

Plugging this back to Ψϕ1 (x
⋆, y), we have:

Ψϕ1 (x
⋆, y) =−

(
F12(x

⋆, y) + F11(x
⋆, y)ϕ2(z

⋆, y) + [ϕ1(z
⋆, y)]−1[ϕ12(z

⋆, y)]⊤F1(x
⋆, y)

)⊤
[F1(x

⋆, y)]−1

+
(
F2(x

⋆, y) + F1(x
⋆, y)ϕ2(z

⋆, y)
)⊤

[F1(x
⋆, y)]−1F11(x

⋆, y)[F1(x
⋆, y)]−1

+
(
F2(x

⋆, y) + F1(x
⋆, y)ϕ2(z

⋆, y)
)⊤

[ϕ1(z
⋆, y)]−⊤ϕ11(z

⋆, y)F1(x
⋆, y)[ϕ1(z

⋆, y)]−1[F1(x
⋆, y)]−1

=−[F12(x
⋆, y)]⊤[F1(x

⋆, y)]−1 +
(
[F1(x

⋆, y)]−1F11(x
⋆, y)[F1(x

⋆, y)]−1F2(x
⋆, y)

)⊤︸ ︷︷ ︸
Ψ1(x⋆,y)

+−[F1(x
⋆, y)]−1[ϕ1(z

⋆, y)]−⊤[ϕ12(z
⋆, y)]⊤F1(x

⋆, y)︸ ︷︷ ︸
Wϕ(y)

+
(
[ϕ1(z

⋆, y)]−⊤ϕ11(z
⋆, y)F1(x

⋆, y)[ϕ1(z
⋆, y)]−1[F1(x

⋆, y)]−1ϕ2(z
⋆, y)

)⊤︸ ︷︷ ︸
Sϕ(y)

+
(
[F1(x

⋆, y)]−1[ϕ1(z
⋆, y)]−⊤ϕ11(z

⋆, y)F1(x
⋆, y)[ϕ1(z

⋆, y)]−1[F1(x
⋆, y)]−1F2(x

⋆, y)
)⊤︸ ︷︷ ︸

Tϕ(y)

.

(27)

The F1(x
⋆, y)D1ϕ2(z

⋆, y) is canceled out in the first equation. The F11(x
⋆, y)ϕ2(z

⋆, y) is canceled out in the
second equation. We want to emphasize that the above equation is only true at (x⋆, y).

Proposition 7. Assume x, y ∈ R and that g(x, y) and F (x, y) are linear w.r.t. x but arbitrary on y. Then Ωϕ

is super-efficient if and only if for all y,

ϕ12(z
⋆(y), y)

ϕ1(z⋆(y), y)
− ϕ2(z

⋆(y), y)ϕ11(z
⋆(y), y)

[ϕ1(z⋆(y), y)]2
− F2(x

⋆(y), y)ϕ11(z
⋆(y), y)

F1(x⋆(y), y)[ϕ1(z⋆(y), y)]2
=
g12(x

⋆(y), y)

g1(x⋆(y), y)
− F12(x

⋆(y), y)

F1(x⋆(y), y)

Proof. Because g and F are linear on x, g11(x, y) and F11(x, y) are 0. The inversion in 1D case equals division
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and the transpose can be ignored. Using these two facts and Prop. 6, we have:

D(y) = g12(x
⋆(y), y)

Ψ1(x
⋆(y), y) = −F12(x

⋆(y), y)

F1(x⋆(y), y)

Wϕ(y) = −ϕ12(z
⋆(y), y)

ϕ1(z⋆(y), y)

Sϕ(y) =
ϕ11(z

⋆(y), y)ϕ2(z
⋆(y), y)

[ϕ1(z⋆(y), y)]2

Tϕ(y) =
ϕ11(z

⋆(y), y)F2(x
⋆(y), y)

F1(x⋆(y), y)[ϕ1(z⋆(y), y)]2

Plugging everything into Ψϕ1 (x
⋆(y), y), we have:

Ψϕ1 (x
⋆(y), y) = D(y) +

(
Ψ1(x

⋆(y), y) +Wϕ(y) + Sϕ(y) + Tϕ(y)
)
g1(x

⋆(y), y)

= g12(x
⋆(y), y)− F12(x

⋆(y), y)

F1(x⋆(y), y)
g1(x

⋆(y), y)− ϕ12(z
⋆(y), y)

ϕ1(z⋆(y), y)
g1(x

⋆(y), y)

+
ϕ11(z

⋆(y), y)ϕ2(z
⋆(y), y)

[ϕ1(z⋆(y), y)]2
g1(x

⋆(y), y) +
ϕ11(z

⋆(y), y)F2(x
⋆(y), y)

F1(x⋆(y), y)[ϕ1(z⋆(y), y]2
g1(x

⋆(y), y)

Setting it to 0 and dividing both side with g1(x
⋆(y), y), we get what we want.

Proposition 8. If g is affine on x (see Prop.3), then super-efficient reparameterization ϕ(z, y) = ϕ0(z) exists
and defines locally a 2-parameters family of maps. If furthermore F is linear of x, i.e. F (x, y) = a(y)x + b,
where a : R → R and b ∈ R, these super-efficient maps are of the form ϕ0(z) = αeβz for (α, β) ∈ R.

Proof. Because g is affine on x, we have g12(x, y) = 0. ϕ(z, y) = ϕ0(z) reads that ϕ12(z, y) = ϕ2(z, y) = 0. We
first show the existence of ϕ0(z). Denoting that phi0(z

⋆(y)) = x⋆(y) and from Prop. 7, we have:

F2(x
⋆(y), y)ϕ0,11(z

⋆(y))

F1(x⋆(y), y)[ϕ0,1(z⋆(y), y)]2
=
g12(x

⋆(y), y)

g1(x⋆(y), y)
− F12(x

⋆(y), y)

F1(x⋆(y), y)

This equation can be reformulated to:

ϕ0,11 = F(ϕ0, ϕ0,1)

where F(ϕ0, ϕ0,1) =

(
g12(ϕ0(z

⋆(y)), y)

g1(ϕ0(z⋆(y)), y)
− F12(ϕ0(z

⋆(y)), y)

F1(ϕ0(z⋆(y)), y)

)
F1(ϕ0(z

⋆(y)), y)[ϕ0,1(z
⋆(y), y)]2

F2(ϕ0(z⋆(y)), y)

Denoting ϕ0,1 = G(ϕ) yields:
ϕ0,11 = G(ϕ)G′(ϕ)

⇒G(ϕ)G′(ϕ) = F(ϕ,G)
⇒G′(ϕ) = F̃(ϕ,G(ϕ)).

with F̃(ϕ,G(ϕ)) = F(ϕ,G)/G(ϕ). This becomes a first-order differential equation about G. The Cauchy-Lipschtz
theorem shows the existence of G with one parameter. Performing another integration we can get ϕ0 with one
additional parameter.

If F (x, y) = a(y)x + b, we have F1(x, y) = a(y), F2(x, y) = a′(y)x and F12(x, y) = a′(y). Plugging everything
into Prop. 7, we have:

a′(y)ϕ(z, y)ϕ11(z, y)

a(y)[ϕ1(z, y)]2
=
a′(y)

a(y)

⇒ϕ(z, y)ϕ11(z, y) = [ϕ1(z, y)]
2

The solution of this second-order ODE should be ϕ(z, y) = αeβz for (α, β) ∈ R2.
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Proposition 9. The estimator Ωψloc is consistent and one has

Cy(Ω
ψ
loc) = Cy(Ω

ψx⋆(y),y ).

Proof. As Prop. 6 is true for any bijective ϕ, so Ωψloc is consistent.

We then show Cy(Ω
ψ
loc) = Cy(Ω

ψx⋆(y),y ). We use the same notation D1F (x, y) as in the proof of Prop. 6. The

derivations in Eq. (25) still holds when computing D1Ω
ψ
loc(x, y) and D1Ω

ψx⋆(y),y (x, y). Note that there are

differences on D1ϕ2, D1ϕ
−1
1 , D1ϕ21, D1ϕ11 and D1ϕ2. In the case Ωψloc, the derivative considers the dependency

on x from the parameter of ψ, the change of variable (x, y) and the inversion of ψ−1, while Ωψx⋆(y),y only considers
the latter two. However, they agree when evaluating at (x⋆(y), y) thanks to F (x⋆(y), y) = 0.

Proposition 10. Let ϕ(z, y) = ψx,ȳ(z, y) = R(x, y)Q(z, ȳ) + x, denoting x⋆ := x⋆(y) and ψx,ȳ(z
⋆, y) = x⋆. one

has:

Wϕ(y) =− [F1(x
⋆, y)]−1[R(x, y)]−⊤[Q1(z

⋆, ȳ)]−⊤Q1(z
⋆, ȳ)[R2(x

⋆, y)]⊤F1(x
⋆, y),

Sϕ(y) =
(
[R(x, y)]−⊤[Q1(z

⋆, ȳ)]−⊤Q11(z
⋆, ȳ)R(x, y)F1(x

⋆, y)

[Q1(z
⋆, ȳ)]−1[R(x, y)]−1[F1(x

⋆, y)]−1Q(z⋆, ȳ)R2(x, y)
)⊤
,

Tϕ(y) =
(
[F1(x

⋆, y)]−1[R(x, y)]−⊤[Q1(z
⋆, ȳ)]−⊤[Q11(z

⋆, ȳ)]

R(x, y)F1(x
⋆, y)[Q1(z

⋆, ȳ)]−1[R(x, y)]−1[F1(x
⋆, y)]−1F2(x

⋆, y)
)⊤
,

for any (x, ȳ).

Proof. Because ψx,ȳ is a special case of ϕ, we can apply the results from Prop. 6 and 9. Computing Wϕ(y),
Sϕ(y) and Tϕ(y) require ϕ1, ϕ12, ϕ2 and ϕ11. Viewing x, ȳ as constant, we have:

ϕ1(z, y) = ψ1,x,ȳ(z, y) = R(x, y)Q1(z, ȳ)

ϕ12(z, y) = ψ12,x,ȳ(z, y) = Q1(z, ȳ)R2(x, y)

ϕ2(z, y) = ψ2,x,ȳ(z, y) = Q(z, ȳ)R2(x, y)

ϕ11(z, y) = ψ11,x,ȳ(z, y) = Q11(z, ȳ)R(x, y).

Plugging them into Prop. 6 to compute Wϕ(y), Sϕ(y) and Tϕ(y), we get the desired results.

Proposition 11 (Newton-like reparameterization). We assume g is of the form g(x, y) = ax+m(y)(see Prop. 3
for a discussion). Let ψx,ȳ(z, y) = R(x, y)Q(z, ȳ) + x and let F (x, y) be bijective on x for all y. For R(x, y) =

[F1(x, y)]
−1, Q(z, ȳ) = −F (z, ȳ), Ωψloc is super efficiency.

Proof. We need to examine Cy(Ω
ψ
loc), which is the same as Ω

ψx⋆(y),y

1 (x⋆(y), y) from Prop. 9. Therefore, we
compute Q1, Q11, R2 with Q(z, y) = −F (z, y) and R(x⋆(y), y) = [F1(x

⋆(y), y)]−1, we have:

Q1(z, y) = −F1(z, y)

Q11(z, y) = −F11(z, y)

R2(x, y) = −
(
[F1(x

⋆(y), y)]−1[F12(x
⋆(y), y)]⊤[F1(x

⋆(y), y)]−1
)⊤

Because F is bijective in the assumption, given x⋆(y) we can compute z⋆(y):

z⋆(y) = ψ−1
x⋆(y),y(x

⋆(y), y) = Q−1(−[R(x⋆(y), y)]−1(x⋆(y)− x⋆(y)), y) = F−1(0, y) = x⋆(y).

We thus have Q(z⋆(y), y) = 0. Using thatF1(x
⋆(y), y) is symmetric, and denoting x⋆ = x⋆(y) and z⋆ = z⋆(y),
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we have from Prop 10:

Wϕ(y) =− [F1(x
⋆, y)]−1[F1(x

⋆, y)]⊤[−F1(z
⋆, y)]−1

[−F1(z
⋆, y)][−F1(x

⋆, y)]−1[F12(x
⋆, y)]⊤[F1(x

⋆, y)]−1F1(x
⋆, y)

=[F12(x
⋆, y)]⊤[F1(x, y)]

−1

Sϕ(y) =0

Tϕ(y) =
(
[F1(x

⋆, y)]−1[F1(x
⋆, y)][−F1(z

⋆, y)]−1[−F11(z
⋆, y)]

[F1(x
⋆, y)]−1F1(x

⋆, y)[−F1(x
⋆, y)]−1F1(x

⋆, y)[F1(x
⋆, y)]−1F2(x

⋆, y)
)⊤

=−
(
[F1(z

⋆, y)]−1F11(z
⋆, y)[F1(z

⋆, y)]−1F2(x
⋆, y)

)⊤
Because z⋆ = x⋆, we have Ψϕ1 (x

⋆, y) = Ψ1(x
⋆, y) +Wϕ(y) + Tϕ(y) = 0 with ϕ = ψx⋆(y),y. g(x, y) = ax +m(y)

reads that D(y) = 0. In total, we have Ω
ψx⋆(y),y

1 (x⋆(y), y) = 0.

Proposition 12. Let x⋆ := x⋆(y), ψx⋆,y := R(x⋆, y)Q(z, y) + x⋆, and z⋆ satisfy ψx⋆,y(z
⋆, y) = x⋆. Denoting

EQ(y) := Q(z⋆, y) + F (x⋆, y), EQ1(y) := Q1(z
⋆, y) + F1(x

⋆, y), EQ11(y) := Q11(z
⋆, y) + F11(x

⋆, y), ER(y) :=

R(x⋆, y) − [F1(x
⋆, y)]−1, ER2(y) := R2(x

⋆, y) + [F1(x
⋆, y)]−1F21(x

⋆, y)[F1(x
⋆, y)]−1. We have that Cy(Ψ

ψ
loc) =

O(∥EQ∥op, ∥EQ1∥op, ∥EQ11∥op, ∥ER∥op, ∥ER2∥op).

Proof. We need to compute Cy(Ψ
ψ
loc), which is the same as Cy(Ψ

ψx⋆,y ). Because Ψ
ψx⋆(y),y

1 (x⋆, y) = Ψ1(x
⋆, y) +

Wψx⋆(y),y (y)+Sψx⋆(y),y (y)+Tψx⋆(y),y (y) from Prop. 6 andWψx⋆(y),y (y) = [F12(x
⋆, y)]⊤[F1(x, y)]

−1 when ER(y) =
EQ1(y) = ER2(y) = 0 from the proof of Prop. 11. We first analyze the error on Wψx⋆(y),y :

Wψx⋆(y),y)(y) =− [F1(x
⋆, y)]−1[R(x, y)]−⊤[Q1(z

⋆, y)]−⊤Q1(z
⋆, y)[R2(x

⋆, y)]⊤F1(x
⋆, y)

=[F1(x
⋆, y)]−1(ER(y) + [F1(x

⋆, y)]−1)−⊤(EQ1(y)− F1(x
⋆, y))−⊤(EQ1(y)− F1(x

⋆, y))

(ER2(y)− [F1(x
⋆, y)]−1F21(x

⋆, y)[F1(x
⋆, y)]−1)⊤F1(x

⋆, y)

=[F12(x
⋆, y)]⊤[F1(x

⋆, y)]−1

+ (EQ1(y)− F1(x
⋆, y))−⊤(EQ1(y)− F1(x

⋆, y))[ER2(y)]⊤F1(x
⋆, y)

+
(
[EQ1(y)]−⊤[EQ1(y)] + [−F1(x

⋆, y)]−⊤[EQ1(y)]

+ [EQ1(y)]−⊤[−F1(x
⋆, y)]

)(
−F21(x

⋆, y)[F1(x
⋆, y)]−1

)⊤
+ [F1(x

⋆, y)]−1[ER(y)]−⊤(EQ1(y)− F1(x
⋆, y))−⊤(EQ1(y)− F1(x

⋆, y))(−F21(x
⋆, y)[F1(x

⋆, y)]−1)⊤

+ [F1(x
⋆, y)]−1[ER(y)]−⊤(EQ1(y)− F1(x

⋆, y))−⊤(EQ1(y)− F1(x
⋆, y))[−ER2(y)]⊤F1(x

⋆, y).

Though it is complicated, the last four lines in the last equation are polynomial on EQ1 , ER2 and ER. Therefore,
we have ∥Wψx⋆(y),y (y)∥op = ∥[F12(x

⋆, y)]⊤[F1(x
⋆, y)]−1∥op +O(∥EQ1∥op, ∥ER2∥op, ∥ER∥op). The same logic can

be applied to Sψx⋆(y),y and Tψx⋆(y),y . Putting them all together, we finish the proof.

Proposition 13 (Comparison of the two methods). Let ϕ be smooth and bijective, one has

[Cy(Ω
ϕ)]2 − [Cy(Ω

P )]2 ≥ ⟨U+(y)vP (y), U−(y)vP (y)⟩ (28)

[Cy(Ω
P )]2 − [Cy(Ω

ϕ)]2 ≥ ⟨V+(y)vϕ(y), V−(y)vϕ(y)⟩ (29)

where, for EP as in Prop. 4, Ψϕ1 and D as in Prop. 6,

U±(y) := D(y)±D(y)EP (x⋆(y), y) + Ψϕ1 (x
⋆(y), y)g1(x

⋆(y), y)±Ψ1(x
⋆(y), y)g1(x

⋆(y), y)EP (x⋆(y), y),

V±(y) := D(y)EP (x⋆(y), y)±D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y)EP (x⋆(y), y)±Ψϕ1 (x
⋆(y), y)g1(x

⋆(y), y),

vω(y) := argmax
∥u∥=1

∥Ωω1 (x⋆(y), y)u∥ for ω ∈ {P, ϕ},
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Proof. We derive [Cy(Ω
ϕ)]2 − [Cy(Ω

P )]2 and the similar idea can be applied to derive [Cy(Ω
P )]2 − [Cy(Ω

ϕ)]2.

[Cy(Ω
ϕ)]2 − [Cy(Ω

P )]2 = ∥Ωϕ1 (x⋆(y), y)∥2op − ∥ΩP (x⋆(y), y)∥2op
=∥D(y) + Ψϕ1 (x

⋆(y), y)g1(x
⋆(y), y)∥2op − ∥Ω1(x

⋆(y), y)EP (x⋆(y), y)∥2op
=∥D(y) + Ψϕ1 (x

⋆(y), y)g1(x
⋆(y), y)∥2op − ∥(D(y) + Ψ1(x

⋆(y), y)g1(x
⋆(y), y))EP (x⋆(y), y)∥2op

≥⟨
(
D(y) + Ψϕ1 (x

⋆(y), y)g1(x
⋆(y), y)− (D(y) + Ψ1(x

⋆(y), y)g1(x
⋆(y), y))EP (x⋆(y), y)

)
v(y),(

D(y) + Ψϕ1 (x
⋆(y), y)g1(x

⋆(y), y) + (D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y))EP (x⋆(y), y)
)
v(y)⟩

by choosing v(y) = argmax∥u∥=1 ∥ΩP (x⋆(y), y)u∥.

Proposition 14. For δ := ∥P (x⋆(y), y)− F1(x
⋆(y), y)∥∞, we have

[Cy(Ω
ϕ)]2 − [Cy(Ω

P )]2 ≥ ∥(D(y) + Ψϕ1 (x
⋆(y), y)g1(x

⋆(y), y))vP ∥2 + o(δ),

with vP as defined in Prop. 13

Proof. Recall that EP (x⋆(y), y) = Idx−[P (x⋆(y), y)]−1F1(x
⋆(y), y) = [P (x⋆(y), y)]−1(P (x⋆(y), y)−F1(x

⋆(y), y)).
Continuing deriving from Prop. 13, we have:

[Cy(Ω
ϕ)]2 − [Cy(Ω

P )]2 ≥∥(D(y) + Ψϕ1 (x
⋆(y), y)g1(x

⋆(y), y))vP ∥2

−∥(D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y))EP (x⋆(y), y)vP ∥2

≥∥(D(y) + Ψϕ1 (x
⋆(y), y)g1(x

⋆(y), y))vP ∥2

−∥D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y)∥2op∥EP (x⋆(y), y)∥2op∥vP ∥2

≥∥(D(y) + Ψϕ1 (x
⋆(y), y)g1(x

⋆(y), y))vP ∥2

−∥D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y)∥2op∥P (x⋆(y), y)∥2op∥P (x⋆(y), y)− F1(x
⋆(y), y)∥2∞∥vP ∥2

=∥(D(y) + Ψϕ1 (x
⋆(y), y)g1(x

⋆(y), y))vP ∥2 + o(δ).

Proposition 15. For σ := ∥g1(x⋆(y), y)∥∞Cy(Ψψloc)

[Cy(Ω
P )]2 − [Cy(Ω

ψ
loc)]

2 ≥ ∥(D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y))EP (x⋆(y), y)vϕ∥2 − ∥D(y)vϕ∥2 + o(σ),

with vϕ as defined in Prop. 13 with ϕ = Ψψloc.

Proof. Continue from Prop. 13, we have:

[Cy(Ω
P )]2 − [Cy(Ω

ψ
loc)]

2 ≥∥(D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y))EP (x⋆(y), y)vϕ∥2

−∥(D(y) + Ψψ1,loc(x
⋆(y), y)g1(x

⋆(y), y))vϕ∥2

≥∥(D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y))EP (x⋆(y), y)vϕ∥2 − ∥D(y)vϕ∥2

−∥Ψψ1,loc(x
⋆(y), y)g1(x

⋆(y), y))vϕ∥2

≥∥(D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y))EP (x⋆(y), y)vϕ∥2 − ∥D(y)vϕ∥2

−∥g1(x⋆(y), y)∥2∞[Cy(Ψ
ψ
loc)]

2∥vϕ∥2

=∥(D(y) + Ψ1(x
⋆(y), y)g1(x

⋆(y), y))EP (x⋆(y), y)vϕ∥2 − ∥D(y)vϕ∥2 + o(σ).
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