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Abstract

We study the dynamic pricing problem where
the demand function is nonparametric and
Hölder smooth, and we focus on adaptivity
to the unknown Hölder smoothness parame-
ter β of the demand function. Traditionally
the optimal dynamic pricing algorithm heav-
ily relies on the knowledge of β to achieve a

minimax optimal regret of Õ(T
β+1
2β+1 ). How-

ever, we highlight the challenge of adaptivity
in this dynamic pricing problem by proving
that no pricing policy can adaptively achieve
this minimax optimal regret without knowl-
edge of β. Motivated by the impossibil-
ity result, we propose a self-similarity con-
dition to enable adaptivity. Importantly, we
show that the self-similarity condition does
not compromise the problem’s inherent com-
plexity since it preserves the regret lower

bound Ω(T
β+1
2β+1 ). Furthermore, we develop

a smoothness-adaptive dynamic pricing algo-
rithm and theoretically prove that the algo-
rithm achieves this minimax optimal regret
bound without the prior knowledge β.

1 INTRODUCTION

Dynamic pricing, the practice of adjusting prices in
real-time based on varying market demand, has be-
come an integral strategy in domains like e-commerce
and transportation. An effective dynamic pricing
model needs to adequately balance the exploration by
learning demand at various prices and the exploitation
by optimizing prices based on observed price and de-
mand data. We consider a canonical dynamic pricing
problem with nonparametric demand learning. At the
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period t, the decision maker chooses a price pt and ob-
serves a noisy demand dt, where E[dt|pt = p] = f(p)
for some unknown function f : P → R≥0 mapping
from price set P to demand. The goal of dynamic
pricing is to maximize the total revenue collected over
a finite time horizon. The performance of a dynamic
pricing policy or algorithm is measured by the cumula-
tive regret when compared with the maximal revenue
in hindsight. More broadly framed as an online op-
timization problem, the dynamic pricing problem fea-
tures nonparametric demand learning in that f can
be of any functional form and continuous action space
where price can be chosen at any value in a given price
interval. Dynamic pricing problem has been an active
topic for decades (Kleinberg and Leighton, 2003) and
has found numerous applications in retailing, auctions,
and advertising (Den Boer, 2015).

Without much regularity assumption on the demand
function f , the optimal regret is shown to be Õ(T 2/3).

This regret rate can be improved to Õ(T 1/2) if the
uniqueness of the maximum and certain local concav-
ity property of the revenue function r(p) = p · f(p) is
imposed. However, such uniqueness assumption can
be restrictive in practice and therefore other regular-
ity assumptions, notably the smoothness condition, of
the demand functions are considered. Nonetheless, a
prevalent limitation in these methodologies is the pre-
supposed exact knowledge of the Hölder smoothness
level β. In reality, such assumptions are frequently
misaligned with the complexities of real-world appli-
cations, thus constraining the practical applicability
of these algorithms. Against this backdrop, our work
distinguishes itself by delving into the uncharted terri-
tories of adaptability in dynamic pricing. Specifically,
we address the pressing challenge of how to adapt when
the Hölder smoothness level β is not known.

Facing the challenge of unknown smoothness parame-
ter, it is natural to ask the following question:

Can we design a dynamic pricing strategy that does
not require the prior knowledge of β while maintaining

the optimal regret of Õ(T
β+1
2β+1 )?
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Our answer to this question is two-fold: on the one
hand, it is impossible to achieve adaptivity without
imposing additional assumptions; on the other hand,
we identify a novel condition that achieves adaptivity
without reducing the original pricing problem’s com-
plexity. Our contributions in this paper can be sum-
marized as follows:

• Characterizing Adaptivity Challenge: We
formally characterize the challenge of adaptivity.
In particular, we prove that without additional
conditions, achieving the optimal regret for func-
tions without knowing the Hölder smoothness pa-
rameter is impossible. We show that one algo-
rithm with optimal regret for a certain Hölder
smoothness parameter can have sub-optimal re-
gret when directly applied to function class with
lower Hölder smoothness levels.

• Proposing a Self-Similarity Condition: To
make adaptivity possible, we propose a self-
similarity condition, which serves as a dual to
the Hölder smoothness assumption. Furthermore,
our analysis reveals notable properties of the self-
similarity condition, in particular regarding its
practical applicability and sustenance of the dy-
namic pricing problem’s complexity. We find
that the self-similarity condition not only enables
adaptivity but also does not decrease the intrinsic
complexity of the original pricing problem in that

the lower bound Ω(T
β+1
2β+1 ) does not change.

• Optimal Minimax Regret Rate: We design
a Smoothness-Adaptive Dynamic Pricing (SADP)
algorithm by incorporating a dedicated phase for
the estimation of the smoothness parameter. Un-
der the self-similarity condition, we establish a
tight confidence interval for the estimated Hölder
smoothness parameter. We derive an optimal re-

gret bound Õ(T
β+1
2β+1 ) that matches the same opti-

mal bound obtained by previous algorithms that
require the knowledge of β.

Organization and Notation In Section 2, we in-
troduce related literature on dynamic pricing, bandits,
and statistics. In Section 3, we explicitly formulate
the dynamic pricing problem under Hölder smooth de-
mand functions and introduce the adaptivity problem
by first presenting the non-adaptive dynamic pricing
algorithm. We discuss in-depth the adaptivity chal-
lenge in Section 4 and present two key favorable prop-
erties of the self-similarity condition. In Section 5, we
present our smoothness adaptive dynamic pricing al-
gorithm and give a detailed regret analysis. In Section
6, we conduct numerical experiment and present the

corresponding results. Lastly, we conclude the paper
with discussions and future directions in Section 7.

Throughout the paper, the vectors are column vectors
unless specified otherwise. The notation ∥x∥ denotes
the L2 norm of vector x, and given matrix A, the nota-
tion ∥x∥A = (xTAx)1/2 denotes the A-norm of vector
x. For matrix A, ∥A∥ = supx ̸=0 ∥xTAx∥/∥x∥ denotes
the L2 operator norm of matrix A. We employ the
notation O(·), Ω(·), Θ(·) to conceal constant factors,

and Õ(·), Ω̃(·), Θ̃(·) are used to mask both constant
and logarithmic factors.

2 RELATED LITERATURE

Dynamic Pricing with Demand Learning Mo-
tivated by the applications in e-commerce and trans-
portation, numerous works have studied dynamic pric-
ing with continuous price space and demand learn-
ing (Kleinberg and Leighton, 2003; Besbes and Zeevi,
2009; Broder and Rusmevichientong, 2012; Besbes and
Zeevi, 2012; Keskin and Zeevi, 2014; Chen and Gal-
lego, 2022). The crux of non-contextual dynamic pric-
ing lies in modeling and learning the unknown price
and demand relationship. Earlier works mainly fo-
cus on continuous parametric demand models with
additional concavity property of the revenue function
where a regret Õ(

√
T ) is typically shown to be opti-

mal. For discontinuous demand functions with finite
many valuations, a Õ(

√
T ) regret bound that also de-

pends on the number of different valuations is shown
to be optimal (Cesa-Bianchi et al., 2019). For non-

parametric demand models, Õ(T
k+1
2k+1 ) regret can be

achieved if the demand function is k times differen-
tiable reward function for some integer k > 0, and

moreover a matching lower bound of Θ(T
k+1
2k+1 ) can be

established (Wang et al., 2021). However, the smooth-
ness level k needs to be known prior to the algorith-
mic design, and it is thus unclear if existing algorithms
are able to adapt to different smoothness levels. Our
work improves upon Wang et al. (2021) by propos-
ing a smoothness-adaptive dynamic pricing algorithm
with the same minimax optimal regret rate and ad-
ditionally, we extend the integer k to more generally
β-smooth for any β ∈ R+.

In certain applications, consumer or product features,
also known as contexts, are available and can be
parametrized into the demand valuation (Qiang and
Bayati, 2016; Javanmard, 2017; Cohen et al., 2020;
Ban and Keskin, 2021; Xu and Wang, 2021). The
landscape of regret analysis in contextual cases typ-
ically ranges from log(T ) to Õ(

√
T ) depending on dif-

ferent parametric or semiparametric assumptions on
demand valuation and market noise. The smoothness
level of both the demand function and the noise func-
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tion may affect the regret bound, and theoretical re-
sults for adaptively learning the smoothness level are
not known (Fan et al., 2022; Bu et al., 2022).

Continuum-Armed Bandit Problems Dynamic
pricing is closely related to the continuum-armed ban-
dit problem, where the actions are not discrete but
rather lie in a continuous space as in the case of the
continuous price space. Adaption to Hölder smooth-
ness level β while achieving the minimax regret rate
has been considered in continuum-armed bandits as
well. It is shown in Locatelli and Carpentier (2018)
and Hadiji (2019) that adaptivity for free is gener-
ally impossible. Our non-adaptivity result for dynamic
pricing shares the same spirit as in the continuum-
armed bandit problem but requires different construc-
tion of function classes in the arguments. Liu et al.
(2021) propose to use a general model approach for
bandit problems, but the analysis only applies to the
subcase of 0 < β ≤ 1. Due to non-adaptivity, addi-
tional assumptions are therefore necessary for estab-
lishing adaptivity. Specifically, the assumption of self-
similarity emerges as a promising candidate because it
has been demonstrated to maintain the minimax re-
gret rates in both continuum-armed bandits (Cai and
Pu, 2022) and contextual bandits (Gur et al., 2022)
scenarios, where only 0 < β ≤ 1 is considered in the
latter.

Adaptivity in Statistics More broadly, adaptive
inference and adaptive estimators have been widely
considered in statistics, but less is known if these
techniques are suited for regret minimization. While
several structural conditions have profound implica-
tions in nonparametric regression, such as monotonic-
ity, concavity, as discussed in Cai et al. (2013), in-
troducing any of these assumptions may either signifi-
cantly diminish the problem’s complexity or do not di-
rectly contribute to the learning of the smoothness pa-
rameter (Slivkins et al., 2019; Cai and Pu, 2022). Con-
sequently, with any of these structural assumptions at
play, the minimax regret operates at the parametric
rate, making it agnostic to smoothness variations.

3 PRELIMINARIES

Problem Description We consider the dynamic
pricing problem with demand learning over a finite
time horizon of length T . At every time period
t = 1, . . . , T , the seller selects a price pt ∈ [pmin, 1],
where 0 < pmin < 1 is a predetermined price lower
bound and the price upper bound is normalized to 1
without loss of generality. After the seller sets the
price, the customers then arrive and a randomized
demand dt ∈ [0, dmax] is incurred. The randomized

demand dt given price is determined by a demand
function f : [pmin, 1] → [0, dmax] and some random
market noise, and the expectation of the randomized
demand E[dt|pt = p] = f(p). The noise in demand
dt − f(p) follows a sub-gaussian distribution with re-
spect to some parameters. The revenue collected at
time t is rt = pt · dt, and the expected revenue given
pt is pt × f(pt).

As is common in previous literature on pricing (Besbes
and Zeevi, 2012; Wang et al., 2021; Bu et al., 2022),
the Hölder smoothness assumption is used to constrain
the volatility of the demand function f in any given
region. Throughout the paper, the demand function
f is assumed to belong to the Hölder smooth function
class H(β, L) for certain β, L > 0 that are defined as
follows.

Definition 1 (Hölder Smooth Function Class). The
Hölder class of functions H (β, L) is defined to be the
set of w (β) times continuously differentiable functions
g : [pmin, 1]→ R such that for any p, p′ ∈ [pmin, 1],

sup
p∈[pmin,1]

∣∣∣g(k) (p)∣∣∣ ≤ L,∀0 ≤ k ≤ w (β) ,

∣∣∣g(w(β)) (p)− g(w(β)) (p′)
∣∣∣ ≤ L · |p− p′|β−w(β)

,

where w(β) is the largest integer that is strictly smaller
than β.

Policy and Regret An admissible dynamic pric-
ing policy π over T selling periods is a sequence of
T random functions π1, π2, · · · , πT such that πt :
(p1, d1, · · · , pt−1, dt−1) 7→ pt is a mapping function
that maps the history prior to time t to a price pt.
Since the demand function belongs to H(β, L) and
thus continuous over [pmin, 1], there exists some op-
timal price p∗ ∈ argmaxp∈[pmin,1] E[rt|pt = p]. Note
that here we do not require the optimal price to be
unique.

The performance of dynamic pricing policies is evalu-
ated by the cumulative regret defined as follows. For
an admissible dynamic pricing policy π over T selling
periods, the regret Rπ(T ) over a time horizon T is

Rπ(T ) = Eπ

[
T∑

t=1

{p∗f(p∗)− ptf(pt)}

]
,

where the price sequence {pt}Tt=1 is determined by the
policy.

Non-Adaptive Pricing If the smoothness param-
eter β is known, non-adaptive dynamic pricing algo-
rithms can achieve the optimal regret rate, which is
called Hölder-Smooth Dynamic Pricing (HSDP) algo-
rithm and presented in Algorithm 1. The algorithm
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is designed based on the following idea. We first seg-
ment the price interval into many small intervals, and
the length of each small bin depends on β, and then
we can run local polynomial regression to approximate
the true demand function in each small price interval
separately. As we formally show later in Lemma 3, this
non-adaptive algorithm achieves the optimal regret if
it is run with the correct smoothness parameter.

Algorithm 1 Hölder-Smooth Dynamic Pricing
(HSDP)

Input: Time horizon T , Hölder smoothness β, mini-
mum price pmin, maximum demand dmax, number
of bins N , parameter L > 0, optional initial his-
tory D(0);

1: Set polynomial degree k = w(β);
2: Partition [pmin, 1] into N segments of equal

lengths, denoted as Ij = [aj , bj ] where aj =

pmin + (j−1)(1−pmin)
N , bj = pmin + j(1−pmin)

N for j =

1, 2, · · · , N , and let ∆ = L
(
1−pmin

N

)β̂
;

3: Initialize segment history, realized demands and
trial numbers Dj := {(pt, dt) : pt ∈ Ij}, τj :=∑

pt∈Dj
ptdt, nj := |Dj | where Dj ⊂ D(0) for all

1 ≤ j ≤ N ;
4: for t = 1, 2, · · · , T do

5: Compute CIj := [∆ + (3dmax+L)
√
2√

nj
](k +

1) ln(2(k + 1)T );
6: Select jt := argmax1≤j≤N

τj
nj

+ CIj ;

7: Let δ = 1
T 2 , compute γ = L

√
k + 1 +

∆
√
|Djt |+dmax

√
2(k + 1) ln( 4(k+1)t

δ )+2 and Λ =

I(k+1)×(k+1) +
∑

(p,d)∈Djt
ϕ(k)(p)ϕ(k)(p)T ;

8: Do local polynomial regression on Ijt with

ridge type penalty and the estimator θ̂ =
argminθ∈Rk+1

∑
(p,d)∈Djt

|d− ⟨θ̂, ϕ(k)(p)⟩|2 + ∥θ∥22;
9: Set price pt = argmaxp∈Ijt

p ×
min{dmax, ⟨θ̂, ϕ(k)(p)⟩ + γ

√
ϕ(k)(p)TΛ−1ϕ(k)(p) +

∆};
10: Observe realized demand dt ∈ [0, dmax];
11: Update τj ← τj + dtpt, nj ← nj + 1,Dj ←
Dj ∪ {(pt, dt)} for j = jt;

12: end for

To help illustrate Algorithm 1, we introduce the con-
cept of local polynomial regression, a crucial compo-
nent of both Algorithm 1 and our smoothness-adaptive
dynamic pricing algorithm that will be introduced
later. A systematic treatment of local polynomial re-
gression in the statistics literature can be found in the
monograph by Fan (2018). Compared to conventional
regression methods, the local polynomial regression
approach incorporates a scaling process that offers sev-
eral advantages in terms of flexibility, adaptability, and
efficiency. By applying the local polynomial regres-

sion with respect to a carefully chosen support set and
focusing on specific small intervals, our method can
effectively estimate the mean demand function with
greater accuracy, making it suitable for a wide range
of applications in dynamic pricing. The scaling process
also allows for more efficient computation and model
fitting, particularly in situations where data is limited
or sparse.

Definition 2 (Local polynomial regression). Let O ={(
p(1), d(1)

)
, ...
(
p(m), d(m)

)}
be a sequence of obser-

vations, where p(1) has support ⊂ [pmin, 1]. Our

goal is to estimate E
[
d(1)|p(1)

]
with these samples

nonparametrically. Let I = [a, b] ⊂ [pmin, 1], and
let those observations such that p(i) ∈ I be {OI =(
p(1), d(1)

)
, ...
(
p(m0), d(m0)

)
}. Then we can estimate

E
[
d(1)|p(1)

]
by fitting a polynomial regression on [a, b]

with samples in OI.

Let tm (p) =
(

1
2 +

p− a+b
2

b−a

)m
and vector ϕ(l) (p) =

(t0 (p) , t1 (p) , ..., tl (p))
T
for some integer l. Define

θ̂ = arg min
θ∈Rl+1

m0∑
j=1

(
d(j) − ⟨ϕ(l)

(
p(j)
)
, θ⟩
)2
.

For concreteness, if the minimizer is not unique we
define θ̂ = 0. The local polynomial regression estimate
on I is given by

f̂ (p;O, l, I) := ⟨ϕ(l) (p) , θ̂⟩.

By using the local polynomial regression, we can lever-
age the Hölder smoothness condition to improve the
approximation error at each small price interval. Sup-
pose the length of a price interval is ϵ, a constant ap-
proximation would lead to approximation error O(ϵ)
if the demand function f is Lipschitz and generally no
approximation guarantee without Lipschitz condition.
On the other hand, if f ∈ H(β, L), we can bound the
approximation error by O(ϵβ), which improves O(ϵ)
error for β > 1, and is also strictly better when β < 1
and the Lipschitz condition fails to hold. Details of
this approximation guarantee are presented in Lemma
12 in Appendix C.1.

Importantly, Algorithm 1 relies on the input of β to
construct the number of small intervals N , which is

decided as ⌈T
1

2β+1 ⌉. The parameter β affects the num-
ber of small intervals and therefore the length of each
small interval. The underlying reason is that the ap-
proximation error of the local polynomial regression
step crucially depends on the interval length, which
plays an important role when establishing the optimal

regret bound Õ(T
β+1
2β+1 ). It is therefore highly nontriv-

ial, if not impossible, to remove the dependence on β
from the design of Algorithm 1.
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4 ADAPTIVITY TO UNKNOWN
SMOOTHNESS

4.1 Difficulty of Adaption

We show that it is impossible for any policy to
achieve adaptivity without additional assumptions.
This statement is formalized by establishing Theorem
1 where we consider two different smoothness levels.
In Theorem 1, we show that a policy that achieves the
optimal regret rate on a smoothness level α could not
simultaneously do so on a smoothness level β < α.

Theorem 1. It is impossible to achieve adaption
without additional assumptions. Fix any two positive
Hölder smoothness parameters α > β > 0, and pa-
rameters L (α) , L (β) > 0. Suppose that there is a

policy π achieves the optimal regret Õ
(
T

α+1
2α+1

)
over

E [d|p] = f (p) ∈ H (α,L (α)) , then there exists a con-
stant C > 0 that is independent of π such that

sup
f∈H(β,L(β))

Rπ (T ) ≥ Ω

(
T

β+1
2β+1+

β(α−β)

2(2β+1)2(2α+1)

)
,

which means that it cannot achieve the optimal regret
over E [d|p] = f (p) ∈ H (β, L (β)).

The proof of Theorem 1 is accomplished by construct-
ing a single basis function. From this basis func-
tion, we then generate demand functions with distinct
Hölder smoothness levels of α and β. By comparing
the Kullback-Leibler divergence between the resulting
probability measures under these different conditions,
we establish the existence of a regret gap. The com-
prehensive proof of Theorem 1 can be found in Ap-
pendix A.1.

The negative result in Theorem 1 highlights the diffi-
culty of adaption and therefore necessitates the need
for introducing additional conditions. A potential con-
dition should ideally not only make the adaptivity pos-
sible for a wide range of functions as large as possible
but also not trivialize the pricing problem’s complexity.

4.2 Self-Similarity Condition

We identify the self-similarity condition to enable
adaptivity with desirable properties.Before introduc-
ing the definition, we need some notation regarding
function projections onto the space of polynomial func-
tions. For any positive integer l, let Poly (l) denote the
set of all polynomials of degree less than or equal to l.
For any function g (·), we use ΓU

l g (·) to denote the L2-
projection of the function g (·) onto Poly (l) over some
interval U , which can be computed by the following

minimization

ΓU
l g (p) :=min

q

∫
U

|g (u)− q (u)|2 du,

s.t. q ∈ Poly (l) .

Definition 3 (Self-Similarity Condition). A function
g : [a, b]→ R, [a, b] ⊆ [0, 1] is self-similar on [a, b] with
parameters β, l ∈ Z+,M1 ∈ R≥0,M2 ∈ R+ if for some
positive integer c > M1 it holds that

max
V ∈Vc

sup
p∈V

∣∣ΓV
l g (p)− g (p)

∣∣ ≥M2 · 2−cβ ,

where we define

Vc =
{[
a+

i

2c
, a+

i+ 1

2c

]
∩ [0, 1] , i = 0, 1, . . . 2c − 1

}
for any positive integer c. We denote the class of self-
similar functions by S(β, l,M1,M2).

In contrast to Hölder smoothness, the self-similarity
condition provides a global lower bound on the ap-
proximation error using polynomial regression. This
dual nature facilitates the estimation of the smooth-
ness of payoff functions by comparing the approxima-
tion on different scales. The self-similarity condition
has previously appeared in the literature of nonpara-
metric regression for constructing adaptive confidence
intervals (Picard and Tribouley, 2000; Giné and Nickl,
2010).

Example 1 (Example of Self-Similar Functions). Let
f be any function with continuous first-order derivative
uniformly bounded by C1. We define the function class
F as F(f) = {f : x 7→ c0 · xβ + f : c0 ∈ R, |c0| ≥ C1},
then all function in F(f) is self-similar with parame-
ters β, l = 0 for some constants M1,M2 depending on
C1 and C2.

To enable adaptivity, we assume that the self-similar
condition holds for the demand function.

Assumption 1. The demand function f is self-
similar with some parameters β, l,M1,M2.

4.3 Lower Bound

We emphasize that adding this self-similarity condi-
tion does not diminish the hardness of the dynamic
pricing problem. We validate this statement by show-

ing a worst-case lower bound of any policy Ω(T
β+1
2β+1 )

even in the presence of the self-similarity condition.
Notably, this rate matches exactly with the lower
bound given in the original problem without self-
similarity condition (Wang et al., 2021).

Theorem 2 (Lower Bound). Self-similarity does not
change the minimax regret rate and therefore does not
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lower the problem difficulty for any admissible dynamic
pricing policy π. Formally, for any positive parameters
β,M1, L > 0, there exists a constant M2 > 0 satisfying
that

inf
π

sup
f∈H(β,L)∩S(β,w(β),M1,M2)

Rπ(T ) ≥ Ω(T
β+1
2β+1 ).

Theorem 2 says that there exists a class of non-trivial
instances belonging to the self-similar function class
such that the worst-case regret of any pricing policy

is lower bounded by Ω(T
β+1
2β+1 ). A main challenge of

proving Theorem 2 is therefore constructing such a
class of demand functions to establish the lower bound.
We now explain our constructions.

Let u (·) : [0, 1] → R be a C∞ function with u (0) =
1, u (1) = 0, u(k) (0) = 0, u(k) (1) = 0,∀k ∈ Z+. Let
u1 (x) = sin2

(
π
2 · u (4x− 1)

)
. ∀x ∈ [0, 1], let σ (x) =

|x− 1
2 | and define

g (x) =

c1 · u1 (σ (x)) ·
(1−σ(x)β)

2 if 1
4 ≤ σ (x) ≤

1
2

c1 ·
(1−σ(x)β)

2 if σ (x) < 1
4

,

for some sufficiently small constant c1 > 0, then we
have g ∈ H (β, L). On the other hand, we know that
for some constant M2 > 0, g ∈ S (β,w (β) , 0,M2)
(Gur et al., 2022, Lemma 1.7). Also, g has a unique
maximum point at x = 1

2 and for any x ∈ {0, 1}, l ∈
{0, 1, · · · , w (β)} it holds that g(l) (x) = 0.

As a result, we have shown that for each L, β > 0,
there exists a function g : [0, 1]→ [0, 1] satisfying that
g ∈ H (β, L) ∩ S (β,w (β) , 0,M2) for some constant
M2 > 0; and g has a unique maximizer at 1

2 ; and
for any x ∈ {0, 1}, k ∈ {0, 1, · · · , w (β)} it holds that
g(k) (x) = 0. The constructed function class, combined
with a classical argument with the Kullback–Leibler
divergence, leads to the lower bound stated in The-
orem 2, and a complete proof of Theorem 2 can be
found in Appendix A.4.

5 ALGORITHM AND REGRET
ANALYSIS

In this section, we introduce our Smoothness-Adaptive
Dynamic Pricing (SADP) algorithm and provide a de-
tailed regret analysis.

5.1 Algorithm Description

We now present our SADP algorithm described in Al-
gorithm 2, which incorporates an efficient smoothness
parameter selection phase and is designed to adapt to
the unknown Hölder smoothness level.

Algorithm 2 Smoothness-Adaptive Dynamic Pricing
(SADP)

Input: Time horizon T , Hölder smoothness range
[βmin, βmax], minimum price pmin, maximum de-
mand dmax, parameter L > 0;

1: Set local polynomial regression degree l =
w(βmax);

2: Set k1 = 1
2βmax+2 , k2 = 1

4βmax+2 ,K1 =

2⌊k1 log2(T )⌋,K2 = 2⌊k2 log2(T )⌋;
3: for i = 1, 2 do
4: Set trial time Ti = T ⌊ 1

2+ki⌋;
5: Pull arms Ti times from U(pmin, 1) indepen-

dently;
6: for m = 1, 2, · · · ,Ki do
7: Let the samples which fall in [pmin +

(m−1)(1−pmin)
Ki

, pmin + m(1−pmin)
Ki

] be Oi,m =

{(pt, dt) : pt ∈ [pmin + (m−1)(1−pmin)
Ki

, pmin +
m(1−pmin)

Ki
]};

8: Fit local polynomial regression on [pmin +
(m−1)(1−pmin)

Ki
, pmin + m(1−pmin)

Ki
] with Oi,m, con-

struct estimate f̂i(p) on the interval;
9: end for

10: end for
11: Let β̂ = − ln(max ∥f̂2−f̂1∥∞)

ln(T ) − ln(ln(T ))
ln(T ) ;

12: Set N = ⌈T
1

2β̂+1 ⌉, D = ∪i ∪m Oi,m;

13: Call HSDP(T − T1 − T2, β̂, pmin, dmax, N,∆, L,D)

We provide some intuition behind the design of Algo-
rithm 2. Harnessing the Hölder smoothness assump-
tion, we can employ local polynomial regression to esti-
mate the demand function reasonably well. However,
the demand function is not easily approximated by
polynomials, due to the inherent self-similarity condi-
tion presented by the dual nature of Hölder smooth-
ness. The estimation granularity refers to the number
of intervals into which the domain of price is parti-
tioned for better piecewise polynomial approximation.

In Algorithm 2, we employ two distinct levels of gran-
ularity to estimate the demand function, indexed by
1 and 2 respectively. For estimation i ∈ {1, 2}, the
price range is segmented into small intervals of size
(1 − pmin)/Ki, where Ki is a quantity depending on
T . The algorithm then allocates Ti time periods to
collect price and demand data points and fit with lo-
cal polynomial regression. The constructed estimates
of demand function f are f̂1 and f̂2, which helps us
to establish an estimate of the Hölder smoothness pa-
rameter as defined in (1).

β̂ = − ln(max ∥f̂2 − f̂1∥∞)

ln(T )
− ln(ln(T ))

ln(T )
. (1)
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The estimator β̂ is then fed into the Hölder-smooth
dynamic pricing algorithm (Algorithm 1) for the re-
maining time horizon T − T1 − T2. As evident from
the algorithm design, the accuracy of β̂ estimation is
critical to the regret bound of our smoothness-adaptive
dynamic pricing algorithm in Algorithm 2. In the next
subsection, we provide a tight confidence interval for
the estimator β̂, which plays a central role in our final
regret analysis of the SADP algorithm.

5.2 Accuracy of Estimation

By employing two distinct levels of granularity to es-
timate the demand function and, in conjunction with
the previously established upper and lower bounds of
the approximation error, we can prove a confidence
interval for the distance between the two estimations
∥f̂2 − f̂1∥∞. This distance is directly related to the
Hölder smoothness parameter β. Ultimately, we ar-
rive at a reasonably narrow confidence interval for β,
which converges rapidly as T increases. Formally, we
have the following theorem, which plays a key role in
establishing the regret bound.

Theorem 3. With an upper bound βmax of the
smoothness parameter, under the assumptions and set-
tings in the Algorithm 2, for some constant C > 0,

with probability at least 1−O
(
e−C ln2(T )

)
,

β̂ ∈
[
β − 4 (βmax + 1) ln (ln (T ))

ln (T )
, β

]
.

Theorem 3 demonstrates the effectiveness of our
proposed SADP algorithm in estimating the Hölder
smoothness parameter β without prior knowledge.
This adaptability, along with the effective smoothness
parameter selection phase, enables our algorithm to
construct a tight confidence interval for the Hölder
smoothness parameter β and achieve a high conver-
gence rate. These characteristics contribute to the de-
sired regret bound in dynamic pricing scenarios, open-
ing up possibilities for the development of more robust
and adaptive dynamic pricing algorithms.

In order to prove Theorem 3, we firstly introduce a
lemma to characterize the convergence on f̂ .

Lemma 1. Let {p(i), i = 1, 2, · · · , n} be an i.i.d. uni-
form sample in an interval I = [a, b] ⊂ [pmin, 1],
and OI =

{(
p(1), d(1)

)
, . . . ,

(
p(n), d(n)

)}
. With the

assumptions, suppose sub-gaussian parameter u1 ≤
exp (u′1 · nv) for some positive constants ν, u′1, polyno-
mial degree l ≥ w (β). Let

δ1 =
∣∣∣E [d(1)∣∣p(1) = p

]
− f̂ (p;O, l, [a, b])

∣∣∣ ,
δ2 =

∣∣∣ΓI
l{E

[
d(1)|p(1) = p

]
} − f̂ (p;O, l, I)

∣∣∣ ,

Then, there exist positive constants C1, C2 such that

with probability at least 1 − O
(
e−C2 ln2(n)

)
, for any

p ∈ I and n > C1, the following inequality holds:

δ1 < (b− a)β ln (n) + ln3 (n) · n− 1
2 (1−v).

Also,
δ2 < ln3 (n) · n− 1

2 (1−v).

With Lemma 1 in place, we can now proceed to prove
Theorem 3. The proof for this theorem relies on the
concentration result stated in Lemma 1 and the con-
struction of the confidence interval based on the two-
level granularity approach. By analyzing the relation-
ship between the distance of the estimated demand
functions and the Hölder smoothness parameter β, we
can show that the estimated β̂ falls within the stated
confidence interval with high probability.

We also present a lemma to mitigate the issue of insuf-
ficient sample points falling within certain intervals.

Lemma 2. Let {Bi : i = 1, 2, · · · , n} be i.i.d ran-
dom variables. Suppose B1 ∼ Bernoulli( 1

m ). Let

B̄ =
∑n

i=1 Bi

n . Then

P(B̄ <
1

2m
) ≤ exp(− n

50m
).

Proof Sketch of Theorem 3. Our first objective is to
ascertain an upper bound for the distance be-
tween f̂1 and f̂2. Define the interval Ii,m =[
pmin + (m−1)(1−pmin)

Ki
, pmin + m(1−pmin)

Ki

)
. Invoking

the first part of Lemma 1 and corroborated by Lemma

2, with a probability of at least 1−O
(
e−C ln2(n)

)
, we

have ∀p ∈ Ii,m,∣∣∣f (p)− f̂i (p)∣∣∣ <K−β
i ln (T )

+ ln3 (T ) ·
(
Ti
2Ki

)− 1
2 (1−vi)

,

(2)

for some sufficiently small constants v1, v2.

Subsequently, utilizing inequality (2), we deduce the
following upper bound∥∥∥f̂2 − f̂1∥∥∥

∞
≤ (K1 +K2)

−β
ln (T )

+ ln3 (T ) ·

[(
T1
2K1

)− 1
2 (1−v1)

+

(
T2
2K2

)− 1
2 (1−v2)

]
≤ 2cT−βk2 ln (T ) ,

for a small constant c.
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However, to prove the theorem, it’s necessary to es-
tablish a lower bound for the distance between and f̂1
and f̂2.

Firstly, using inequality (2), we can establish an up-

per bound for the distance between f and f̂1. Fur-
thermore, by invoking the second part of Lemma 1
as well as Lemma 2, with probability at least 1 −
O
(
e−C ln2(n)

)
, ∀p ∈ Ii,m,

∣∣∣ΓIi,m
l f (p)− f̂2 (p)

∣∣∣ ≤ ln3 (T ) ·
(
T2
2K2

)− 1
2 (1−v2)

, (3)

where v1, v2 are sufficiently small.

Given the self-similar properties of f , a lower bound
for the distance between f and Γlf is established:

∥f − Γlf∥∞ ≥M2 ·K−β
2 . (4)

Subsequently, combining inequalities (2), (3), and (4),
a lower bound can be derived as∥∥∥f̂2 − f̂1∥∥∥

∞
≥M2 ·K−β

2 −K−β
1 ln (T )

− ln3 (T ) ·

[(
T1
2K1

)− 1
2 (1−v1)

+

(
T2
2K2

)− 1
2 (1−v2)

]

≥ M2

2
T−βk2 ,

To advance the proof, we employ the probability union
bound. For some constant C > 0, with probability at
least 1−O(e−C ln2(T )), the following holds:

β̂ = −
ln
(
max

∥∥∥f̂2 − f̂1∥∥∥
∞

)
ln (T )

− ln (ln (T ))

ln (T )

∈
[
β − c ln (2) + ln (ln (T ))

k2 ln (T )

− ln (ln (T ))

ln (T )
, β −

ln
(
M2

2

)
k2 ln (T )

− ln (ln (T ))

ln (T )

]

⊂
[
β − 4 (βmax + 1) ln (ln (T ))

ln (T )
, β

]
,

which completes the proof.

5.3 Regret Analysis

After obtaining an estimation of β, we can provide a
more precise bound for the distance between the local
polynomial projection and the demand function.

Theorem 4. Suppose f ∈ H (β, L), SADP has an

estimation of β with β̂, and is run with N ≥
⌈T

1
2β̂+1 ⌉,∆ ≤ L

(
1−pmin

N

)β̂
, then with probability 1 −

O
(
T−1

)
the cumulative regret of SADP is upper

bounded by Õ
(
T

β+1
2β+1

)
.

We introduce Lemma 3 to bound the regret rate of
our non-adaptive algorithm HSDP, whose proof is in
Appendix C.2.

Lemma 3. If HSDP is run with β̂ ≤ β and other condi-
tions stays the same as Theorem 4, then with probabil-
ity 1−O(T−1), the cumulative regret is upper bounded

by O(T
β̂+1

2β̂+1 ).

Proof Sketch of Theorem 4. Considering the event

A∗ : {β̂ ∈
[
β − 4(βmax+1) ln(ln(T ))

ln(T ) , β
]
}, and by theorem

3, we know that P(A∗) ≥ 1 − O(e−C ln2(T )). Under

event A∗, β̂ converges to β with rate O( ln(ln(T ))
ln(T ) ), we

have O(T
β̂+1

2β̂+1 − T
β+1
2β+1 ) ≤ O(T

β+1
2β+1 · T

β−β̂

(2β̂+1)(β+1) ) ≤
Õ(T

β+1
2β+1 ). Considering lemma 3, we can derive the

regret bound for HSDP under event A∗:

T−T1−T2∑
t=1

[p∗f (p∗)− p̂if (p̂i)] ≤ Õ(T
β+1
2β+1 ).

For the adaptive part of SADP, note that T1, T2 ≤
T

β+1
2β+1 , which means that the regret is bounded by

O
(
T

β+1
2β+1

)
. Applying the union bound with event A∗,

we can derive that with probability 1−O
(
T−1

)
,

Rπ (T ) = E

[
T1+T2∑
t′=1

{p∗f (p∗)− pt′f (pt′)}

]

+ E

[
T−T1−T2∑

t=1

{p∗f (p∗)− ptf (pt)}

]
≤ Õ

(
T

β+1
2β+1

)
.

Theorem 4 highlights the effectiveness of the SADP al-
gorithm in achieving the desired regret bound under
the specified conditions. By estimating the Hölder
smoothness parameter β and generalizing the non-
adaptive dynamic-pricing algorithm with non-integer
Hölder smoothness parameter, our algorithm is capa-
ble of maintaining a high level of performance in dy-
namic pricing scenarios. We note that by employing
the doubling trick the same regret can be achieved
without the knowledge of T .
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6 NUMERICAL EXPERIMENT

We simulate the performance of our policies SADP
with βmax is set to 3.0, and HSDP(β̃) that is
initiated by some misspecified smoothness param-
eter β̃ ∈ {0.5, 1, · · · , 2.5, 3.0}. Our simulation
code can be found at https://github.com/liamyzq/
Smoothness-Adaptive-Dynamic-Pricing.

In our numerical experiment, we set pmin = 1, dmax =
1, and rewards that are Gaussian with standard de-
viation σ = 0.05. We then consider a demand func-
tion based on the setting in Gur et al. (2022) with
a Hölder smoothness parameter of β1 = 0.8. We set
T = 2 × 104, and this choice of time periods is at a
similar scale as in Gur et al. (2022). Specifically, we
let ϕ(p) = 1{|p| ≤ 1}(1− p), and the demand function
is defined as

f1(p) =

{
1+L1(

1
2 )

β1−L1p
β1

4 , if pmin ≤ p ≤ 1
2 ,

1
4 + C

∑m
j=1(−1)j(2M)−β1 , if 1

2 < p ≤ 1,

where L1 = C = 1, α = 0.01, τ = 0.8,M =

1
16

⌊
1
4

(
2 ln 2
T

) −τ
2τ+1

⌋ 1
β1

,m =
⌊
M1−αβ1

⌋
, and ξj =

ϕ(2M [(2− 2p)− j+ 1
2

M ]) for each j = 1, 2, · · · ,m.

We utilize the concept of relative regret to present
the results of our numerical experiments, defined as

Rπ
relative(T ) = Rπ(T )

T ·p∗f(p∗) . The experiments are con-

ducted repeatedly, and Figure 1 displays the mean rel-
ative regrets obtained from 30 repeated experiments
under our setting. Our numerical findings indicate
that under the setting, as β̃ gets larger compared to β,
the cost of smoothness misspecification incurred by the
misspecified HSDP(β̃) policy increases and dominates
the cost of adaptation incurred by the SADP policy.
Therefore, the value of adaptivity is even larger in the
setting. In particular, we note that HSDP(β) with true
smoothness β (or the nearest β) is not guaranteed to
minimize regret under every function in the class, and
this setting is an example.

7 CONCLUSION

Motivated by the challenge of unknown smooth-
ness levels in applications, we develop a smoothness-
adaptive dynamic pricing algorithm under self-
similarity conditions. To make dynamic pricing algo-
rithms, it is very desirable to remove the parameter de-
pendence of algorithms. Moving forward, it is promis-
ing to explore whether our approach and the notion
of self-similarity can be generalized to other dynamic
pricing problems such as feature-based dynamic pric-
ing or more broadly other online learning problems.
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Figure 1: The comparison of mean relative regret over
30 experiments.

To further improve adaptivity, it is of interest to con-
sider other parameters that are implicitly used in the
algorithm design.
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A PROOFS ON SELF-SIMILARITY

A.1 Proof of Theorem 1

Proof of Theorem 1. Let d ∼ N
(
f (p) , σ2

)
be a normal random variable, σ2 here is small enough such that

N
(
0, σ2

)
is sub-Gaussian under different demand settings. Also let ϵ1 = α−β

2(2α+1)(2β+1) and ϵ2 = 2ϵ1, ϵ3 = ϵ1
2 .

Denote

ψ (p) =

{
ce

− 1

(p−pmin)(1−p) if pmin < p < 1

0, otherwise.

when c < 1
2 is small enough, ψ ∈ H (α,L′ (α)) ∩ H (β, L′ (β)). Define a counting random variable Zk,m =∑T

t=1 1
{
pt ∈

[
pmin + m(1−pmin)

k , pmin + (m+1)(1−pmin)
k

)}
for any positive integer k. Let a ∝ T

1
2α+1−

ϵ2
α , b ∝

T
1−ϵ1
2β+1 . Define index set Sa,b = {0, 1, · · · , b − 1} ∩

(
b
a ,+∞

)
and let m0 be the index in the index set such that

E [Zk,m0 ] is the smallest. Define functions ψa (p) = a−αψ (a (p− pmin)) and ψb (p) = b−βψ (b (p− pmin)−m0).
And let g1 (p) = 1

p

[
1
2 + ψa (p)

]
, g2 (p) = 1

p

[
1
2 + ψa (p) + ψb (p)

]
, by Lemma 4, g1 ∈ H (α,L (α)) , g2 ∈

H (β, L (β)).

Denote the probability measure determined by A and f = gi by Pi for i = 1, 2. Let Ei [Z] be the expectation of
random variable Z (p1, · · · , pT , d1, · · · , dT ) if the probability measure is Pi.

If f = g1, we have

Rπ (T ) = E1

[
T∑

t=1

{p∗ · g1 (p∗)− pt · dt}

]

≥ E

[
T∑

t=1

{ψa (p
∗)−N

(
ψa (pt) , σ

2
)
}1
{
pt /∈

[
pmin, pmin +

1− pmin

a

)}]

≥ E

[
T∑

t=1

ψa (p
∗)1

{
pt /∈

[
pmin, pmin +

1− pmin

a

)}]
= Ω

(
a−α

)
E1 [T − Za,0] . (A.1)

By the conditions from the theorem, we have RT (A; g1) ≤ O
(
T

α+1
2α+1+ϵ3

)
. So we have

E1 [T − Za,0] ≤ O
(
aα · T

α+1
2α+1+ϵ3

)
.

And by the definition of m0 and notice that b > a, we can derive that

E1 [Zb,m0
] ≤ E1 [T − Za,0]

|Sa,b|
≤ O

(
aα · b−1 · T

α+1
2α+1+ϵ3

)
. (A.2)
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Then we can decompose the KL-divergence between P1,P2 as

KL (P1||P2) = E1

[
T∏

t=1

P1 (dt|pt)
P2 (dt|pt)

]
=

T∑
t=1

E1

[
KL

(
N
(
g1 (pt) , σ

2
)
||N

(
g2 (pt) , σ

2
))]

.

By inequality (A.2) and Lemma 5 we can obtain

KL (P1||P2) =
1

2σ2
E1

[
T∑

t=1

{g1 (pt)− g2 (pt)}2
]

≤ b−2β

2σ2pmin

T∑
t=1

E1

[
1

{
pt ∈

[
pmin +

m0 (1− pmin)

b
, pmin +

(m0 + 1) (1− pmin)

b

)}2
]

≤ b−2β

2σ2pmin
E1 [Zb,m0

]

≤ O
(
b−2β−1 · aα · b−1 · T

α+1
2α+1+ϵ3

)
= O

(
T ϵ1−1 · T

α+1
2α+1+ϵ3 · T

α
2α+1−ϵ2

)
= O

(
T ϵ1−ϵ2+ϵ3

)
= O

(
T−ϵ3

)
= o (1) .

Let A = {Zb,m0
> b−1 · aα · T

α+1
2α+1+ϵ3 · ln (T )}. Inequality A.2 implies that P1 (A) = o (1). By Lemma 6, we have

|P1 (A)− P2 (A) | = o (1), so we can derive that P2 (A) = o (1).

Since
b−1 · aα · T

α+1
2α+1+ϵ3 · ln (T ) = T

ϵ1−1
2β+1 · T

α+1
2α+1+ϵ3 · T

α
2α+1−ϵ2 = o (T ) ,

On Ac, we have T − Zb,m0 > T
2 . Note that max

p∈[pmin,pmin+
1−pmin

a ) ψa (p) ≪
max

p∈
[
pmin+

m0(1−pmin)
b ,pmin+

(m0+1)(1−pmin)
b

) ψb (p), then with the similar procedure in inequality A.1, if

f = g2, we have

RT (A; g2) ≥ Ω
(
b−β · E2 [T − Zb,m0 ]

)
≥ Ω

(
b−β · E2 [(T − Zb,m0)1Ac ]

)
≥ Ω

(
b−β · T

2
· P2 (A

c)

)
≥ Ω

(
T 1+

β(ϵ1−1)
2β+1

)
≥ Ω

(
T

β+1
2β+1+

β(α−β)

2(2β+1)2(2α+1)

)
,

which completes the proof.

A.2 Technical Lemmas for Theorem 1

Lemma 4. Suppose r (p) ∈ H (β, L′) , p ∈ [pmin, 1] , 0 < pmin < 1, then f (p) = r(p)
p ∈ H (β, L) for some constant

L.

Proof of Lemma 4. This is a basic property of Hölder class of functions, whose proof follows directly from Lemma
1.10 of Gur et al. (2022) and the fact that the function p 7→ 1/p is Hölder smooth of any levels when restricted
to the interval [pmin, 1].



Smoothness-Adaptive Dynamic Pricing

Then we introduce three lemmas about KL-divergence which are standard results in the literature and therefore
we omit the proofs.

Lemma 5. Let d1 ∼ N
(
µ1, σ

2
)
, d2 ∼ N

(
µ2, σ

2
)
, then the KL-divergence between d1 and d2 is (µ1−µ2)

2

2σ2 .

Lemma 6. Let P1,P2 be two probability measures on the same σ-algebra, then for any event A on this σ-algebra,
we have

KL (P1||P2) ≥ 2 (P1 (A)− P2 (A))
2
.

Lemma 7. For P1,P2 defined as above, in terms of the total variation norm ∥·∥TV , we have

∥P1 − P2∥TV ≤
√
2KL (P1||P2).

A.3 Proof of Proposition 1 and Lemma 8 - 9

The results in this section will be used to prove Theorem 2.

A.3.1 Proof of Proposition 1

Proposition 1. For each L, β > 0, there exists a function g : [0, 1] → [0, 1] satisfying that g ∈ H (β, L) ∩
S (β,w (β) , 0,M2) for some constant M2 > 0; and g has a unique maximizer at 1

2 ; and for any x ∈ {0, 1}, k ∈
{0, 1, · · · , w (β)} it holds that g(k) (x) = 0.

Proof. Let u (·) : [0, 1] → R be a C∞ function with u (0) = 1, u (1) = 0, u(k) (0) = 0, u(k) (1) = 0,∀k ∈ Z+. Let
u1 (x) = sin2

(
π
2 · u (4x− 1)

)
. ∀x ∈ [0, 1], let σ (x) = |x− 1

2 | and define

g (x) =

c1 · u1 (σ (x)) ·
(1−σ(x)β)

2 if 1
4 ≤ σ (x) ≤

1
2

c1 ·
(1−σ(x)β)

2 if σ (x) < 1
4

,

for some sufficiently small constant c1 > 0, then we have g ∈ H (β, L), and following the proof procedure as
Lemma 1.7 of Gur et al. (2022), for some constant M2 > 0, g ∈ S (β,w (β) , 0,M2). Also, g has a unique
maximum point at x = 1

2 and for any x ∈ {0, 1}, l ∈ {0, 1, · · · , w (β)} it holds that g(l) (x) = 0.

A.3.2 Proof of Lemma 8

Lemma 8. The worst-case regret of algorithm A over time period T can be lower bounded as

sup
f∈H(β,L)

RT

(
A; f,N

(
0, σ2

))
≥ Ω

(
ϵβT

)
· max
1≤j≤J

(T − Ej [Tj ]) ,

where f ∈ S (β,w (β) , 0,M2) on [pmin, 1] for some constant M2.

Proof. For ∀j ∈ {1, 2, · · · , J},

sup
f∈H(β,L)

RT

(
A; f,N

(
0, σ2

))
≥ Ej

[
T∑

i=1

{p∗fj (p∗)− pifj (pi)}

]

≥ Ω
(
ϵβT

)
· Ej

[
T∑

i=1

1 {pi /∈ Ij}

]
≥ Ω

(
ϵβT

)
· (T − Ej [Tj ]) ,

which completes the proof.
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A.3.3 Proof of Lemma 9

Lemma 9. For fixed j ∈ {1, 2, · · · , J}, we have

|E0 [Tj ]− Ej [Tj ]| ≤ O
(
TϵβT

)
·
√
E0 [Tj ].

Proof. Because f0 and fj only differs on Ij , we have that

KL (P0||Pj) ≤ E0 [Tj ] · sup
p∈Ij

KL
(
N
(
f0 (p) , σ

2
)
||N

(
fj (p) , σ

2
))
. (A.3)

Then by Lemma 6, we have

sup
p∈Ij

KL
(
N
(
f0 (p) , σ

2
)
||N

(
fj (p) , σ

2
))
≤ O

(
ϵ2βT

)
, (A.4)

and by Lemma 7, inequalities A.3,A.4 we have

∥P0 − Pj∥TV ≤ O
(
ϵβT

)
·
√

E0 [Tj ].

Subsequently,

|E0 [Tj ]− Ej [Tj ]| ≤
T∑

t=1

{t · |P0 (Tj = t)− Pj (Tj = t)|} ≤ T · ∥P0 − Pj∥TV ≤ O
(
TϵβT

)
·
√

E0 [Tj ],

which completes the proof.

A.4 Proof of Theorem 2

Proof of Theorem 2. Let β denote the true Hölder smoothness parameter here.

Firstly, we introduce a proposition constructing the reward function we need.

Define number of intervals J = ⌈ϵ−1
T ⌉ for ϵT defined as cT− 1

2β+1 where c is some sufficiently small constant

depending only on β. Let Ij = [aj , bj ] , aj = pmin + (j−1)(1−pmin)
J , bj = pmin + j(1−pmin)

J , for j = 1, 2, · · · J . Then
define J different demand functions f1, f2, · · · , fJ , let

fj (p) =

{
1
2p if p /∈ Ij
1
2p + 1

pϵ
β
T g
(

p−aj

ϵT

)
if p ∈ Ij

,

where fj ∈ H (β, L) ∩ S (β,w (β) , 0,M2). Define also f0 (p) ≡ 1
2p , p ∈ [pmin, 1].

Denote the probability measure determined by algorithm A and f = fj by Pj for j = 0, 1, · · · , J . Let Ei [Z]
be the expectation of random variable Z (p1, · · · , pT , d1, · · · , dT ) if the probability measure is Pj . Let demand
di ∼ N

(
f (pi) , σ

2
)
, where σ2 is small enough that N

(
f (pi) , σ

2
)
is sub-Gaussian with parameters u1, u2.

Then we can upper bound the difference between E0 [Tj ] and Ej [Tj ] by the properties of KL-divergence.

Let j∗ = argminj∈{1,2,··· ,J} E0 [Tj ], it is obvious that E0 [Tj ] ≤ T
J ≤ TϵT . Then by Lemma 9, for some sufficiently

small c, we can obtain

Ej [Tj ] ≤ O
(
TϵβT

)
·
√
E0 [Tj ] ≤ O

(
T · cβ · T− β

2β+1

)
·
√
T · c · T− 1

2β+1 ≤ T

2
.

Consequently, by Lemma 8

sup
f∈H(β,L)

RT

(
A; f,N

(
0, σ2

))
≥ Ω

(
ϵβT

)
· max
1≤j≤J

(T − Ej [Tj ])

≥ Ω
(
cβ · T− β

2β+1

)
· T
2

≥ Ω
(
T

β+1
2β+1

)
,
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which completes the proof.

B PROOFS OF CONSTRUCTED CONFIDENCE INTERVAL

B.1 Proof of Lemma 1

To prove Lemma 1, we first introduce the following two lemmas.

Lemma 10. Suppose A,B are two n0 × n0 symmetric matrices. If ∥A−B∥ ≤ λmin(B)
2 , then∥∥A−1 −B−1

∥∥ ≤ 2
(
1 +
√
5
)
∥A−B∥λ−2

min (B)

The proof of Lemma 1 directly follows Theorem 3.3 of Stewart (1977).

Lemma 11. Suppose d(1) is a sub-Gaussian random variable with parameter u1, u2, then we can upper bound

E
[
|d(1)|

]
with

(
2
√

ln(2u1)+1
)

√
u2

.

Proof of Lemma 11. Let K = 2

√
ln(2u1)

u2
, and we have

E[|d(1)|] =
∫ ∞

0

P(|d(1)| ≥ x)dx =

∫ K

0

P(|d(1)| ≥ x)dx+

∫ ∞

K

P(|d(1)| ≥ x)dx

≤ K +

∫ ∞

K

u1 · e−u2x
2

dx

≤ K +
u1

2u2K
e−u2K

2

≤

(
2
√

ln (2u1) + 1
)

√
u2

.

Proof of Lemma 1. Without loss of generality, in this part, we do a translation for d(1)|p(1) to make its expectation

0. Let Pn be a n× (l + 1) matrix with its mth row ϕ(l)
(
p(m)

)T
for every m and dn =

(
d(1), . . . , d(n)

)T
. By least

square regression, we obtain

θ̂ =
(
PT

nPn

)−1
PT

ndn =

(
PT

nPn

n

)−1
PT

ndn

n

Define

θ0 =
(
E
[
ϕ(l)

(
p(1)
)
ϕ(l)

(
p(1)
)T ])−1

E
[
ϕ(l)

(
p(1)
)T
d(1)

]
.

The goal of this lemma is to obtain the convergence properties of θ, here we firstly prove the convergence of(
PT

nPn

n

)−1

. Let U1 = ϕ(l)
(
p(1)
)
ϕ(l)

(
p(1)
)T − E

[
ϕ(l)

(
p(1)
)
ϕ(l)

(
p(1)
)T ]

, by Bernstein inequality(Tropp (2012),

Theorem 1.6),

P
(∥∥∥∥PT

nPn

n
− E

[
t
(
p(1)
)
· t
(
p(1)
)T ]∥∥∥∥ ≥ w) ≤ (2l + 2) · exp

(
−nw2

2

R1 +
wR2

3

)

where R1 = max{
∥∥E [U1 · UT

1

]∥∥ ,∥∥E [UT
1 · U1

]∥∥}, R2 = sup ∥U1∥. For each m, we have tm
(
p(1)
)
∈ [0, 1] with

probability 1, so R1, R2 ≤ O (1). Let w = ln(n)√
n
, then we have

P
(∥∥∥∥PT

nPn

n
− E

[
ϕ(l)

(
p(1)
)
· ϕ(l)

(
p(1)
)T ]∥∥∥∥ ≥ ln (n)√

n

)
≤ O

(
e−C ln2(n)

)
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for some constant C > 0.

Let V
(
p(1)
)

= E
[
ϕ(l)

(
p(1)
)
ϕ(l)

(
p(1)
)T ]

, we can prove there exists a constant M0 which satisfies

λmin

(
V
(
p(1)
))
≥M0 > 0 where λmin denotes the least eigenvalue of the matrix. We have

λmin

(
V
(
p(1)
))

= inf
u∈Rl+1,∥u∥2=1

uTV
(
p(1)
)
u = inf

u∈Rl+1,∥u∥2=1
E
∥∥∥ϕ(l) (p(1))T u∥∥∥2 ≥M0 > 0

Based on Lemma 10, we have

P

(∥∥∥∥∥
(
PT

nPn

n

)−1

−
(
E
[
ϕ(l)

(
p(1)
)
· ϕ(l)

(
p(1)
)T ])−1

∥∥∥∥∥ ≥ C1
ln (n)√

n

)
≤ O

(
e−C2 ln2(n)

)
(B.1)

Then we prove the convergence of
PT

ndn

n . Let 1 (|dn| > M) be a n-dimensional vector whose mth ele-
ment is 1

(
|d(m)| > M

)
, FM (dn) be a n-dimensional vector whose mth element is d(m)1

(
|d(m)| ≤M

)
. Let

U2 = ϕ(l)
(
p(1)
)
d(1) · 1

(
|d(1)| ≤M

)
− E

[
ϕ(l)

(
p(1)
)
d(1) · 1

(
|d(1)| ≤M

)]
, and by Bernstein Inequality(Tropp

(2012),Theorem 1.6),

P
(∥∥∥∥PT

nFM (dn)

n
− E

[
ϕ(l)

(
p(1)
)
d(1) · 1

(
|d(1)| ≤M

)]∥∥∥∥ ≥ w) ≤ (2l + 2) · exp

(
−nw2

2

R3 +
wR4

3

)

where R3 = max{
∥∥E [U2 · UT

2

]∥∥ ,∥∥E [UT
2 · U2

]∥∥}, R4 = sup ∥U2∥. Each element of U2 is upper bounded by O (M)

so we have R3 ≤ O
(
M2
)
, R4 ≤ O (M). Let w = M ln(n)√

n
, then we have

P
(∥∥∥∥PT

nFM (dn)

n
− E

[
ϕ(l)

(
p(1)
)
d(1) · 1

(
|d(1)| ≤M

)]∥∥∥∥ ≥ w) ≤ O (e−C ln2(n)
)

(B.2)

for some constant C > 0. And by the sub-gaussian assumption, we have

P
(
∃i ∈ {1, . . . , n},

∣∣d(i)∣∣ > M
)
≤ u1n · e−u2M

2

Taking M =
√

ln(u1n)
u2

ln (n), we have

P
(
∃i ∈ {1, . . . , n}, |d(i)| > M

)
≤ e−C ln2(n) (B.3)

and C is a constant that independent of u1, u2. And also by the we can deduce that∣∣∣E [ϕ(l) (p(1)) d(1) · 1 (|d(1)| ≤M)]− E
[
t
(
p(1)
)
d(1)

]∣∣∣
= O

(∫ +∞

M

pdFd

)
= O

(∫ +∞

M

(p−M) dFd +MP
(
|d(1)| ≥M

))
= O

(∫ +∞

M

P (|d| ≥ p) dp+MP
(
|d(1)| ≥M

))
= O

(∫ +∞

M

u1 · e−u2p
2

dp+ u1 ·M · e−u2M
2

)
≤ O

(
u1

2Mu2
e−u2M

2

+ u1M · e−u2M
2

)

= O

 u1

2
√
ln (u1n)u2 ln (n)

+ u1

√
ln (u1n)

u2
ln (n)

 · exp (− ln (u1n) ln
2 (n)

)
which leads to ∣∣∣E [ϕ(l) (p(1)) d(1) · 1 (|d(1)| ≤M)]− E

[
ϕ(l)

(
p(1)
)
d(1)

]∣∣∣ ≤ O( 1

n

)
(B.4)

Combining the three inequalities B.2, B.3 and B.4, we have the following
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P

(∥∥∥∥PT
ndn

n
− E

[
ϕ(l)

(
p(1)
)
d(1)

]∥∥∥∥ ≥ C ·
√
ln (u1 · n) ln2 (n)√

n

)
≤ C0e

−C2 ln2(n) (B.5)

where C,C0, C2 are constants depending on u2 and l.

And by Lemma 11, we know that

∥∥∥E [ϕ(l) (p(1)) d(1)]∥∥∥ ≤ O
(√

ln (u1) + 1

u2

)
. (B.6)

Then combining inequalities B.1, B.5 and B.6, recall the definition of θ0 and θ̂, with probability at least 1 −
O
(
e−C2 ln2(n)

)
for some constants C2 depending on u2 and l, we have

∥∥∥θ̂ − θ0∥∥∥ =

∥∥∥∥∥
(
PT

nPn

n

)−1
PT

ndn

n
−
(
E
[
ϕ(l)

(
p(1)
)
ϕ(l)

(
p(1)
)T ])−1

E
[
ϕ(l)

(
p(1)
)T
d(1)

]∥∥∥∥∥
=

∥∥∥∥∥
(
PT

nPn

n

)−1(
PT

ndn

n
− E

[
ϕ(l)

(
p(1)
)
d(1)

])

+

((
PT

nPn

n

)−1

− E
[
ϕ(l)

(
p(1)
)
ϕ(l)

(
p(1)
)T ])−1

E
[
ϕ(l)

(
p(1)
)
d(1)

]∥∥∥∥∥∥
≤

∥∥∥∥∥
(
PT

nPn

n

)−1(
PT

ndn

n
− E

[
ϕ(l)

(
p(1)
)
d(1)

])∥∥∥∥∥
+

∥∥∥∥∥∥
((

PT
nPn

n

)−1

− E
[
ϕ(l)

(
p(1)
)
ϕ(l)

(
p(1)
)T ])−1

E
[
ϕ(l)

(
p(1)
)
d(1)

]∥∥∥∥∥∥
≤ O

(√
ln (u1 · n) ln2 (n)√

n

)
+O


(√

ln (u1) + 1
)
ln (n)

√
nu2


< ln3 (n) · n− 1

2 (1−v), (B.7)

for n larger than some constant C1 depending on u′1, u2, l.

Note that ΓI
l{E

[
d(1)|p(1) = p

]
} = ⟨ϕ(l) (p) , θ0⟩ and f̂ (p;O, l, I) = ⟨ϕ(l) (p) , θ̂⟩, with ϕ(l)

(
p(1)
)
≤ O (1), the second

part of the lemma is proved.

In order to prove the first part of the lemma, we can show that |E
[
d(1)|p(1) = p

]
−⟨t

(
p(1)
)
, θ0⟩| = O

(
(b− a)β

)
.

By the Holder assumption and taylor expansion, there exists an l + 1 dimensional vector θ1 such that

|E
[
E
[
d(1)|p(1) = p

]]
− ⟨ϕ(l)

(
p(1)
)
, θ1⟩| = O

(
(b− a)β

)
,∀p ∈ I. So we have

∥θ0 − θ1∥ =
∥∥∥∥(E [ϕ(l) (p(1))ϕ(l) (p(1))T ])−1

E
[
ϕ(l)

(
p(1)
)T
d(1)

]
−
(
E
[
ϕ(l)

(
p(1)
)
ϕ(l)

(
p(1)
)T ])−1

E
[
ϕ(l)

(
p(1)
)
ϕ(l)

(
p(1)
)T ]

θ1

∥∥∥∥
=

∥∥∥∥(E [ϕ(l) (p(1))ϕ(l) (p(1))T ])−1

E
[
ϕ(l)

(
p(1)
)
(d(1) − ⟨ϕ(l)

(
p(1)
)
, θ1⟩

]∥∥∥∥ = O
(
(b− a)β

)
.

Then by inequality (B.7), we can deduce that with probability at least 1−O
(
e−C2 ln2(n)

)
∥∥∥θ̂ − θ1∥∥∥ ≤ ln3 (n) · n− 1

2 (1−v) + (b− a)β ln (n) .
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Note that with ϕ(l)
(
p(1)
)
≤ O (1),

∥∥∥⟨ϕ(l) (p) , θ̂⟩ − ⟨ϕ(l) (p) , θ1⟩∥∥∥ ≤ O (∥∥∥θ̂ − θ1∥∥∥), ∀p ∈ I, n > C1, with probability

at least 1−O
(
e−C2 ln2(n)

)
, the following inequality holds∣∣∣E [d(1)|p(1) = p

]
− ⟨ϕ(l)

(
p(1)
)
, θ̂⟩
∣∣∣ ≤ ln3 (n) · n− 1

2 (1−v) + (b− a)β ln (n) .

Therefore the first part of the lemma is proved.

B.2 Proof of Theorem 3

Proof. We first define an event A = {∃i ∈ {1, 2},m ∈ {1, 2, . . . ,Ki}, s.t.|Oi,m| < Ti

2Ki
}, by Lemma 2, we have

P (A) ≤ T
(
exp

(
− T1
50K1

)
+ exp

(
− T2
50K2

))
,

By conditioning on Ac, we can guarantee the number of samples in each interval. Next, we aim
to establish an upper bound for the distance between the distance between f̂1 and f̂2. Let Ii,m =[
pmin + (m−1)(1−pmin)

Ki
, pmin + m(1−pmin)

Ki

)
. Invoking the first part of Lemma 1, with probability at least

1−O
(
e−C ln2(n)

)
, ∀p ∈ Ii,m, the following inequality holds:

∣∣∣f (p)− f̂i (p)∣∣∣ < K−β
i ln (T ) + ln3 (T ) ·

(
Ti
2Ki

)− 1
2 (1−vi)

, (B.8)

for some sufficiently small constants v1, v2.

Define the event

B = {∃i ∈ {1, 2},m ∈ {1, 2, . . .Ki}, p ∈ Ii,m, s.t. inequality 2 does not hold}, (B.9)

Applying the union bound, we find that

P (B|Ac) ≤ O
(
(K1 +K2) e

−C ln2(n)
)
,

for some constant C > 0.

Then, conditioning on Ac ∩Bc, we can, by inequality 2, derive an upper bound as follows:∥∥∥f̂2 − f̂1∥∥∥
∞
< (K1 +K2)

−β
ln (T ) + ln3 (T ) ·

[(
T1
2K1

)− 1
2 (1−v1)

+

(
T2
2K2

)− 1
2 (1−v2)

]
, (B.10)

However, to prove the theorem, it’s necessary to establish a lower bound for the distance between and f̂1 and
f̂2. In the ensuing discussion, we aim to provide this lower bound.

Firstly, using inequality 2, we can establish an upper bound for the distance between f and f̂1. This, in turn,
aids in deducing an upper bound for the distance between Γlf and f̂2.

Furthermore, by invoking the second part of Lemma 1 as well as Lemma 2, with probability at least 1 −
O
(
e−C ln2(n)

)
, ∀p ∈ Ii,m, ∣∣∣ΓIi,m

l f (p)− f̂2 (p)
∣∣∣ ≤ ln3 (T ) ·

(
T2
2K2

)− 1
2 (1−v2)

, (B.11)

where v1, v2 are sufficiently small.

Define the event
D = {∃p ∈ [pmin, 1) , s.t. inequality 3 does not hold},
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And applying the union bound we have

P (D|Ac) ≤ O
(
(K1 +K2) e

−C ln2(n)
)
,

Given the self-similar property of f , we can establish a lower bound for the distance between f and Γlf .

∥f − Γlf∥∞ ≥M2 ·K−β
2 , (B.12)

Subsequently, conditioning on Ac ∩Bc ∩Dc, and using inequalities 2, 3, and (4), we can derive a lower bound as
follows: ∥∥∥f̂2 − f̂1∥∥∥

∞
> M2 ·K−β

2 −K−β
1 ln (T )− ln3 (T ) ·

[(
T1
2K1

)− 1
2 (1−v1)

+

(
T2
2K2

)− 1
2 (1−v2)

]
, (B.13)

Now, let’s attempt to simplify the upper bound in inequality B.10:∥∥∥f̂2 − f̂1∥∥∥
∞
≤ (K1 +K2)

−β
ln (T ) + ln3 (T ) ·

[(
T1
2K1

)− 1
2 (1−v1)

+

(
T2
2K2

)− 1
2 (1−v2)

]
≤ 2cT−βk2 ln (T ) ,

for some small constant c.

Similarly, we can simplify the lower bound in inequality B.13:∥∥∥f̂2 − f̂1∥∥∥
∞
≥M2 ·K−β

2 −K−β
1 ln (T )− ln3 (T ) ·

[(
T1
2K1

)− 1
2 (1−v1)

+

(
T2
2K2

)− 1
2 (1−v2)

]

≥ M2

2
T−βk2 ,

Thus, on the event Ac ∩Bc ∩Dc, we have

β̂ = −
ln
(
max

∥∥∥f̂2 − f̂1∥∥∥
∞

)
ln (T )

− ln (ln (T ))

ln (T )

∈

[
β − c ln (2) + ln (ln (T ))

k2 ln (T )
− ln (ln (T ))

ln (T )
, β −

ln
(
M2

2

)
k2 ln (T )

− ln (ln (T ))

ln (T )

]

⊂
[
β − 4 (βmax + 1) ln (ln (T ))

ln (T )
, β

]
,

Simultaneously we have

P (A ∪B ∪D) = O
(
e−C ln2(n)

)
,

for some constant C > 0 which completes the proof.

C PROOFS OF REGRET UPPER BOUNDS

C.1 Proof of Lemma 12

Lemma 12. Suppose f ∈ H (β, L) and let I = [a, b] ⊂ [pmin, 1] be an arbitrary interval whose length is |I|. For

estimation β̂ ≤ β, there exists a polynomial with degree k = w
(
β̂
)
: PI (p) = ΓI

kf(p) =
∑k

m=0 am

(
1
2 +

p− a+b
2

b−a

)m
satisfying |am|m! ≤ L,∀m ≤ k, such that

sup
p∈I
|f (p)− PI (p)| ≤ L (b− a)β̂ .
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Proof. Firstly, let am = f(m)(a)
m! (b− a)m

PI (p) =

k∑
m=0

am

(
1

2
+
p− a+b

2

b− a

)m

=

k∑
m=0

f (m) (a)

m!
(p− a)m

By Taylor expansion with Lagrangian remainders, ∀p ∈ I,∃p̃ ∈ I such that

f (p) =

k−1∑
m=0

f (m) (a)

m!
(p− a)m +

f (k) (p̃)

k!
(p− a)k

With β̂ ≤ β, we then have that

|f (p)− PI (p) | =
|f (k) (p̃)− f (k) (a) |

k!
(p− a)k

=
|f(w(β̂)) (p̃)− fw(β̂) (a) |

w
(
β̂
)
!

(p− a)w(β̂)

≤ L|p− a|β̂−w(β̂)

w
(
β̂
)
!

(p− a)w(β̂)

=
L|b− a|β̂

k!

≤ L|b− a|β̂ .

C.2 Proof of Lemma 3

Proof. We first state two important lemmas, Lemma 13 and Lemma 14, whose proofs will be included later in
this section.

Lemma 13. Suppose f ∈ H (β, L) and let I = [a, b] ⊂ [pmin, 1]. If HSDP is invoked with ∆ ≥ L (b− a)β̂ and
outputs p̂, then with probability 1− δ it holds that

max
p∈I

pf (p)− p̂f (p̂) ≤ 2min{dmax, γ

√
ϕ(k) (p)

T
Λ−1ϕ(k) (p) + ∆},

where γ = L
√
k + 1 +∆

√
|D|+ dmax

√
2 (k + 1) ln

(
4(k+1)t

δ

)
+ 2.

Then we can use Lemma 13 to prove Lemma 14.

Lemma 14. Keep the same setting in Lemma 13 and let p̂1, · · · , p̂t be the output prices of t consecutive calls on
I. Then with probability 1−O

(
T−1

)
it holds that

1

t

t∑
i=1

[
max
p∈I

pf (p)− p̂if (p̂i)
]
≤

[
∆+

(3dmax + L)
√
2√

t

]
(k + 1) ln (2 (k + 1)T ) ,

Finally, with Lemma 14 proved, we can do the UCB analysis for the Theorem.
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For all 1 ≤ j ≤ N , we define r∗ (Ij) = maxp∈Ij pf (p). Invoking Lemma 14, by concentration inequalities, with
probability 1−O

(
T−1

)
, it holds uniformly for all j that

r∗ (Ij) ≤
τj
nj

+ CIj ≤ r∗ (Ij) + 2CIj ,

Let Tj be the total number of time periods that we invoke HSDP in the jth interval, and we invoke jtth interval

at time t. Also, denote j∗ = argmaxj r
∗ (Ij). Note that β̂ is strictly less than β, then we can still derive a bound

for the regret each round using UCB analysis

r∗ (Ij∗)− r∗ (Ijt) ≤
(
τj∗

nj∗
+ CIj∗

)
−
(
τjt
njt

+ CIjt

)
+

(
τjt
njt

+ CIjt

)
− r∗ (Ijt)

≤
(
τjt
njt

+ CIjt

)
− r∗ (Ijt)

≤ 2CIjt ,

And

T−T1−T2∑
t=1

CIjt ≤ (k + 1) ln (2 (k + 1)T )

∆T + (3dmax + L)

N∑
j=1

Tj∑
i=1

√
2

i


≤ (k + 1) ln (2 (k + 1)T )

∆T + (9dmax + 3L)

N∑
j=1

√
Tj


≤ (k + 1) ln (2 (k + 1)T )

∆T + (9dmax + 3L)

√√√√N

N∑
j=1

Tj


≤ (k + 1) ln (2 (k + 1)T ) (9dmax + 4L)T

β̂+1

2β̂+1

≤ Õ(T
β̂+1

2β̂+1 ).

C.3 Proof of Lemma 13 and 14

C.3.1 Proof of Lemma 13

Proof. The (p, d) pairs in the history are labeled as {(pi, di)}ti=1 in chronological order. And we can show
that di = f (pi) + ξi = PI (pi) + ξi + βi, where {ξi}ti=1 are i.i.d sub-gaussian random variables with zero
mean and |βi| ≤ ∆ with probability 1. Use vectors and matrices to denote them we have p = (pi)

t
i=1 ,d =

(di)
t
i=1 , ξ = (ξi)

t
i=1 ,β = (βi)

t
i=1 and P =

(
ϕ(k) (pi)

T
)t
i=1
∈ Rt×(k+1). And the ridge estimator θ̂ can be written

as θ̂ = Λ−1PTd =
(
PTP+ I

)−1
PTd, plug in d = Pθ∗ + ξ + β with θ∗ is the real coefficient of the expansion,

we have
θ̂ − θ∗ = −Λ−1θ∗ + Λ−1PT (ξ + β) ,

Multiplying
(
θ̂ − θ∗

)
Λ on both sides and it leads to(
θ̂ − θ∗

)T
Λ
(
θ̂ − θ∗

)
= −

(
θ̂ − θ∗

)T
θ∗ +

(
θ̂ − θ∗

)T
PT (ξ + β) (C.1)

=

t∑
i=1

(ξi + βi) ⟨ϕ(k) (pi) , θ̂ − θ∗⟩ − ⟨θ̂ − θ∗, θ∗⟩, (C.2)

Note that∣∣∣∣∣
t∑

i=1

βi⟨ϕ(k) (pi) , θ̂ − θ∗⟩ − ⟨θ̂ − θ∗, θ∗⟩

∣∣∣∣∣ ≤
√√√√ t∑

i=1

β2
i

√√√√ t∑
i=1

|⟨θ̂ − θ∗, θ∗⟩|2 ≤ ∆
√
t ·
√(

θ̂ − θ∗
)T

Λ
(
θ̂ − θ∗

)
,
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Plug the above inequality into equation (C.1), then dividing

√(
θ̂ − θ∗

)T
Λ
(
θ̂ − θ∗

)
from both sides, also noting

that Λ ⪰ I which makes

√(
θ̂ − θ∗

)T
Λ
(
θ̂ − θ∗

)
≥
∥∥∥θ̂ − θ∗∥∥∥

2
, we obtain

√(
θ̂ − θ∗

)T
Λ
(
θ̂ − θ∗

)
≤ ∥θ∗∥2 +∆

√
t+ sup

z∈ΦΛ

|Gt (z) |, (C.3)

where

ΦΛ = {z ∈ Rk+1 : zTΛz ≤ 1}, Gt (z) =

t∑
i=1

ξi⟨ϕ(k) (pi) , z⟩.

Recall the definition of θ∗ and the Hölder class assumption, we have ∥θ∗∥2 ≤ L
√
k + 1. In order to bound Gt (z),

we introduce and prove Lemma 15:

Lemma 15. Fix k, t and a probability δ, with probability 1− δ it holds uniformly for all Λ defined above that

sup
z∈ΦΛ

|Gt (z)| ≤ dmax

√
2 (k + 1) ln

(
4 (k + 1) t

δ

)
+ 2

Proof of Lemma 15. By definition we have
∥∥ϕ(k) (pi)∥∥2 ≤ √k + 1. Let ϵ > 0 be a small parameter. Denote

∥·∥Λ =
√

(·) Λ (·) as the Λ-norm of a vector, and B (r, ∥·∥) = {z ∈ Rk+1 : ∥z∥ ≤ r} as a ball. Let U ⊆ B (1, ∥·∥2)
be a ϵ-covering of B (1, ∥·∥2) which means that supz∈B(1,∥·∥2)

minz′∈U ∥z − z′∥2 ≤ ϵ. Fix arbitrary z ∈ U , for
|ξi| ≤ dmax with probability 1, by Hoffeding’s inequality we know that for any δ ∈ (0, 1),

P

(
|Gt (z) | ≤ dmax

√
2 ln

(
2

δ

)
∥z∥Λ

)
≥ 1− δ,

Since Λ ⪰ I, we know that ΦΛ = B (1, ∥·∥Λ) ⊆ B (1, ∥·∥2) and therefore U is also a ϵ-covering of ΦΛ, and it is
easy to verify that there exists U with ln (|U|) ≤ (k + 1) ln

(
2
ϵ

)
. Applying union bound we have with probability

1− δ,

sup
z∈U∩ΦΛ

|Gt (z) | ≤

√
2 ln

(
2|U|
δ

)
≤ dmax

√
2 ln

(
2|U|
δ

)
≤ dmax

√
2 (k + 1) ln

(
4

ϵ

)
+ 2 ln

(
1

δ

)
,

Considering the covering, by
∥∥ϕ(k) (pi)∥∥2 ≤ √k + 1, we have that ∥Λ∥op ≤ 1 + (k + 1) t ≤ 2 (k + 1) t, then we

have

sup
z∈ΦΛ

|Gt (z) | ≤ dmax

√
2 (k + 1) ln

(
4

ϵ

)
+ 2 ln

(
1

δ

)
+ 2 (k + 1) tϵ

By setting ϵ = 1
(k+1)t we complete the proof of Lemma 15.

Then back to the proof of Lemma 13. With inequality C.3, invoking Lemma 15, with probability 1− δ we have√(
θ̂ − θ∗

)T
Λ
(
θ̂ − θ∗

)
≤ L
√
k + 1 +∆

√
t+ dmax

√
2 (k + 1) ln

(
4

ϵ

)
+ 2 ln

(
1

δ

)
+ 2,

And ∀p ∈ I, let f̂ (p) = ⟨ϕ(k) (p) , θ̂⟩, we can obtain

|f̂ (p)− f (p) | ≤ |f̂ (p)− PI (p) |+ |PI (p)− f (p) |

≤ ⟨ϕ(k) (p) , θ̂⟩+∆

≤
√
ϕ(k) (p)

T
Λ−1ϕ(k) (p)

√(
θ̂ − θ∗

)T
Λ
(
θ̂ − θ∗

)
+∆

≤ γ
√
ϕ(k) (p)

T
Λ−1ϕ(k) (p) + ∆.



Smoothness-Adaptive Dynamic Pricing

The upper bound f̄ (p) = min{dmax, ⟨ϕ(k) (p) , θ̂⟩ + γ

√
ϕ(k) (p)

T
Λ−1ϕ(k) (p) + ∆}. We can infer from the above

analysis that with probability 1 − δ, f̄ (p) ≥ f (p) ,∀p ∈ I. So maxp∈I pf (p) − p̂f (p̂) ≤ p̂|f̄ (p̂) − f (p) | ≤

2min{dmax, γ

√
ϕ(k) (p)

T
Λ−1ϕ(k) (p) + ∆} which completes the proof.

C.3.2 Proof of Lemma 14

Proof. Invoke Lemma 13 with δ = 1
T 2 and let Λi = I +

∑
i′<i ϕ

(k) (p̂i′)ϕ
(k) (p̂i′)

T
denote the Λ matrix at the ith

call. Denote γmax = maxi≤t γi, and we can easily verify γmax ≤ L
√
k + 1+∆

√
t+ dmax

√
6 (k + 1) ln ((k + 1)T ).

Recalling the right side of Lemma 13, and noting that γmax ≥ dmax we have

t∑
i=1

min{dmax, γ

√
ϕ(k) (p̂i)

T
Λ−1ϕ(k) (p̂i) + ∆} ≤ ∆t+

t∑
i=1

min{dmax, γmax

√
ϕ(k) (p̂i)

T
Λ−1ϕ(k) (p̂i)}

≤ ∆t+ γmax

t∑
i=1

min{1,
√
ϕ(k) (p̂i)

T
Λ−1ϕ(k) (p̂i)}

≤ ∆t+ γmax

√
t×

√√√√ t∑
i=1

min{1, ϕ(k) (p̂i)T Λ−1ϕ(k) (p̂i)},

Using the elliptical potential lemma (Abbasi-Yadkori et al. (2012), Lemma 11), we know that

min{1, ϕ(k) (p̂i)T Λ−1ϕ(k) (p̂i)} ≤ 2 (k + 1) ln ((k + 1) t+ 1) ,

Subsequently,

∆t+ γmax

√
t×

√√√√ t∑
i=1

min{1, ϕ(k) (p̂i)T Λ−1ϕ(k) (p̂i)}

≤ ∆t+ γmax

√
t×

√
2 (k + 1) ln ((k + 1) t+ 1)

≤ ∆t+
(
L
√
k + 1 +∆

√
t+ dmax

√
6 (k + 1) ln ((k + 1)T )

)
×
√
t×

√
2 (k + 1) ln ((k + 1) t+ 1)

≤
[
(3dmax + L)×

√
2t+∆t

]
× (k + 1) ln (2 (k + 1)T ) ,

So
1

t

t∑
i=1

[
max
p∈I

pf (p)− p̂if (p̂i)
]
≤

[
∆+

(3dmax + L)
√
2√

t

]
(k + 1) ln (2 (k + 1)T ) .
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