
Graph Machine Learning through the Lens of Bilevel Optimization

Amber Yijia Zheng1

Purdue University
Tong He

Amazon Web Services
Yixuan Qiu

Shanghai University of
Finance and Economics

Minjie Wang
Amazon Web Services

David Wipf
Amazon Web Services

Abstract
Bilevel optimization refers to scenarios
whereby the optimal solution of a lower-level
energy function serves as input features to
an upper-level objective of interest. These
optimal features typically depend on tunable
parameters of the lower-level energy in such
a way that the entire bilevel pipeline can be
trained end-to-end. Although not generally
presented as such, this paper demonstrates
how a variety of graph learning techniques can
be recast as special cases of bilevel optimiza-
tion or simplifications thereof. In brief, build-
ing on prior work we first derive a more flexi-
ble class of energy functions that, when paired
with various descent steps (e.g., gradient de-
scent, proximal methods, momentum, etc.),
form graph neural network (GNN) message-
passing layers; critically, we also carefully un-
pack where any residual approximation error
lies with respect to the underlying constituent
message-passing functions. We then probe
several simplifications of this framework to
derive close connections with non-GNN-based
graph learning approaches, including knowl-
edge graph embeddings, various forms of label
propagation, and efficient graph-regularized
MLP models. And finally, we present sup-
porting empirical results that demonstrate
the versatility of the proposed bilevel lens,
which we refer to as BloomGML, referenc-
ing that BiLevel Optimization Offers More
Graph Machine Learning. Our code is avail-
able at https://github.com/amberyzheng/
BloomGML. Let graph ML bloom.

1Contribution during AWS Shanghai AI Lab internship.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 Introduction

Graph machine learning covers a wide range of model-
ing tasks involving graph-structured data, where cross-
instance/node dependencies are reflected by edges. As a
classical example, label propagation (Zhou et al., 2003)
and its many offshoots represent a semi-supervised
learning approach whereby observed node labels are it-
eratively spread across the graph to unlabeled nodes. In
a related vein, various forms of graph-regularized MLP
models (Ando and Zhang, 2006; Hu et al., 2021; Zhang
et al., 2023) share node representations across edges to
penalize misalignment with network structure during
training. And as a third example more narrowly fo-
cused on certain heterogeneous graphs, non-parametric
knowledge graph embedding (KGE) models (Bordes
et al., 2013) produce node and relation-type embed-
dings that have been trained to differentiate factual
knowledge triplets, composed of head and tail nodes
connected by an edge relation, from spurious ones.

More recently, graph neural networks (GNNs) have
emerged as a promising class of predictive models for
handling tasks such as node classification or link pre-
diction (Kipf and Welling, 2016; Hamilton et al., 2017;
Xu et al., 2019; Veličković et al., 2017; Zhou et al.,
2020). Central to a wide variety of GNN architectures
are layers composed of three components: a message
function, which bundles information for sharing with
neighbors, an aggregation function that fuses all the
messages from neighbors, and an update function that
computes the layer-wise output embedding for each
node. Collectively, these functions enable the layer-by-
layer propagation of information across the graph to
facilitate downstream tasks (Kipf and Welling, 2016;
Hamilton et al., 2017; Kearnes et al., 2016).

In the past, the graph ML models described above
have primarily been motivated from diverse perspec-
tives, without necessarily a single, transparent lens
with which to evaluate their commonalities. To make
strides towards a more cohesive graph ML narrative,

https://github.com/amberyzheng/BloomGML
https://github.com/amberyzheng/BloomGML

Graph Machine Learning through the Lens of Bilevel Optimization

we propose to operate from a unifying vantage point
afforded by bilevel optimization (Sinha et al., 2018;
Wang et al., 2016). The latter refers to an optimization
problem characterized by two interconnected levels,
whereby the optimal solution of a lower-level objective
serves as input features to an upper-level loss. Within
the context of graph ML, we will demonstrate how the
lower-level in particular can induce interpretable model
architectures, while exposing underappreciated simi-
larities across seemingly disparate paradigms. After
providing relevant background material in Section 2,
our primary contributions throughout the remainder
of the paper can be summarized as follows:

• In Section 3 we introduce a broad class of lower-
level energy functions that, when combined with
appropriate optimization steps, give rise to effi-
cient GNN message-passing layers inheriting in-
terpretable inductive biases of energy minimizers.
Moreover, subject to certain technical assump-
tions, we demonstrate that these optimization-
induced layers can replicate arbitrary message and
aggregation functions, while providing a flexible
approximation for the update function. Hence we
conditionally isolate any appreciable approxima-
tion error to the latter, and in doing so, articulate
a transparent design space for GNN architectures
produced by bilevel optimization.

• Based on the above, in Section 4 we propose a
broadly-applicable bilevel optimization framework
called BloomGML, and establish that several no-
table special cases effectively reproduce and unify
non-GNN-based graph learning approaches. In
particular, we demonstrate an equivalence between
traditional KGE learning and the training of an
implicit GNN, with parameters given by relational
embeddings and a graph formed from positive and
negative knowledge triplets. This association ex-
plains recent empirical findings in the literature
while motivating new interpretable approaches to
modeling over knowledge graphs.

• Finally, in Section 5 we present experiments that
highlight the flexibility and explanatory power
of candidate models motivated by our proposed
bilevel optimization framework and attendant anal-
ysis thereof.

2 Background
In this section, we first introduce GNN architectures
and their constituent message-passing layers as applied
to node classification tasks (more general tasks will be
addressed later). We then describe an existing, popular
special case induced by bilevel optimization, followed
by a discussion of both advantages and limitations.

2.1 Message Passing Graph Neural Networks

Let G = {V,R, E} denote a heterogeneous graph with
n = |V| nodes and m = |R| edge types. Each edge
e ∈ E is composed of a triplet via e = (u, r, v), with
nodes u, v ∈ V and relation type r ∈ R. The more
general heterogeneous case defaults to a homogeneous
graph when m = 1. For any given node v, we also define
the set of (1-hop) neighbors as Nv := {(u, r) : (u, r, v) ∈
E}. Additionally, associated with each node is a d-
dimensional feature vector and a c-dimensional label
vector which stack to form X ∈ Rn×d and Y ∈ Rn×c,
respectively. The latter reflects our focus on node
classification tasks within this section for simplicity of
exposition; the extension to link prediction (whereby
labels correspond with supervision over edges rather
than individual nodes) follows naturally.

When presented with a graph G so defined, a message-
passing GNN (or MP-GNN) of depth L produces a
layer-wise sequence of node embeddings {H(l)}Ll=1,
where H(l) = {h(l)

v }v∈V ∈ Rn×d represents the aggre-
gated set of embeddings h(l)

v at the l-th layer. Moreover,
for each l, H(l) is computed from H(l−1) using a com-
position of three functions characteristic of MP-GNN
architectures (Gilmer et al., 2017; Hamilton, 2020). We
formalize this composition via the following definition:

Definition 1 An MP-GNN layer is formed via the
composition of three functions:

1. A message function fM that computes µ
(l)
(u,r,v) :=

fM (h
(l−1)
u , r,h

(l−1)
v) ∈ Rd for any edge e =

(u, r, v) ∈ E, i.e., given the head and tail nodes
and the relation type, fM produces an embedding
for the corresponding edge;

2. A permutation-invariant aggregation function fA

that computes a
(l)
v := fA({µ(l)

(u,r,v) : (u, r) ∈
Nv}) ∈ Rd for all v ∈ V, meaning for each node
the set function fA aggregates all messages associ-
ated with other nodes sharing an edge;

3. An update function fU that computes the embed-
dings of the next layer as h

(l)
v = fU (h

(l−1)
v , a

(l)
v ,xv)

for all v ∈ V, i.e., the embeddings from the previ-
ous layer are combined with the aggregated mes-
sages and (optionally) the original input node fea-
tures xv ∈ X.

The permutation-invariance of fA notwithstanding, all
three components defining the MP-GNN layer can in
principle be any parameterized differentiable (almost
everywhere) functions suitable for learning with SGD,
etc. Hence different MP-GNN architectures are more-
or-less tantamount to different selections for fM , fA,

Zheng, He, Qiu, Wang, Wipf

and fU . We adopt W to denote the bundled set of all
trainable parameters within {fM , fA, fU}.

Conditioned on executing L layers per the schema
of Definition 1 culminating in the embeddings H(L),
model training proceeds by minimizing the loss

ℓup(W,Θ) :=
∑
v∈V′

D
[
g
(
h(L)
v (W); Θ

)
,yv

]
, (1)

where h
(L)
v (W) ≡ h

(L)
v reflects the explicit dependency

of H(L) on W. In this expression, the output layer
g : Rd → Rc is a differentiable node-wise function
parameterized by Θ, V ′ ⊂ V indicates the subset of
training instances with observable labels, and D is a
discriminator function, e.g., cross-entropy for classifica-
tion. Finally, the “up” in ℓup reflects the fact that this
function will later serve as an upper-level loss when
embedded within a bilevel optimization setting to be
described next.

2.2 Graph-Centric Bilevel Optimization

Our generic MP-GNN setting thus far narrows to the
realm of bilevel optimization (Sinha et al., 2018) when
we infuse the latent embeddings {H(l)}Ll=1 from above
with additional layer-wise structure determined by a
second, lower-level loss ℓlow(· ;W,G), which likewise
depends on W and G. Specifically, suppose that for all
layers l, we enforce that

ℓlow

(
H(l);W,G

)
≤ ℓlow

(
H(l−1);W,G

)
,

and ideally H(L) ≈ argmin
H

ℓlow (H;W,G)
(2)

for L sufficiently large. In other words, at each layer the
composite embedding model fU ◦ fA ◦ fM that updates
H(l) per Definition 1 dually serves as an algorithm
producing descent steps along the loss surface of ℓlow;
hence the coincident dependency of both ℓlow and fU ◦
fA ◦ fM on W and G. When combined with (1), we
arrive at our bilevel destination, with embeddings that
iteratively minimize ℓlow forming predictive features
for end-to-end training within ℓup.

A Representative Special Case. Motivated by
Zhou et al. (2003) in the context of homogeneous
graphs, we consider the energy ℓlow(H;W,G) :=∑

v∈V

1
2 ∥hv − π(xv;W)∥22 +

λ
2

∑
(u,v)∈E

∥hu − hv∥22 , (3)

where π is a parameterized input model (e.g., an MLP
with weights W), and λ > 0 is a trade-off parameter.
This factor balances local consistency w.r.t. the input
model π and global smoothness across the graph.

Next, starting from some H(0), we may iterate L gradi-
ent descent steps along (3) to obtain H(L). And along

this trajectory for each layer l, it is straightforward to
show (see Appendix B) that the resultant updates for
each node v adhere to the stipulations of Definition 1,
and can be equivalently computed as

µ
(l)
(u,r,v) = h(l−1)

u − h(l−1)
v , a(l)v =

∑
u∈Nv

µ
(l)
(u,r,v), and

h(l)
v = (1− γ)h(l−1)

v + γλa(l)v + γπ(xv;W), (4)

where γ is the gradient step-size parameter. From
this expression, we observe that the effective message-
passing layer involves weighted skip connections from
the previous layer and input model, along with a
permutation-invariant summation of the embeddings
from neighboring nodes. And provided π is differen-
tiable w.r.t. W, the update for h

(l)
v computed via (4)

is differentiable as well. Hence we can substitute into
(1) and train the entire system end-to-end using SGD
over W and Θ.

Using various preconditioners and reparameterizations,
it has been widely noted that model layers constructed
via (4), or variations thereof, directly correspond with
various popular MP-GNN architectures (Chen et al.,
2021; Ma et al., 2021; Pan et al., 2020; Xue et al., 2023;
Yang et al., 2021; Zhang et al., 2020; Zhu et al., 2021b;
Zhou et al., 2021; Di Giovanni et al., 2023). Hence
this particular instance of bilevel optimization can be
interpreted as training a GNN node classification model
with layers designed to minimize (3).

Why Construct GNN Architectures this Way?
As one notable example, across customer-facing ap-
plications it is often desirable to know which factors
influence the output predictions of a GNN model (Ying
et al., 2019). Relevant to providing such explanatory
details, the embeddings produced by bilevel optimiza-
tion as in Section 2.2 contain additional information
when contextualized w.r.t. their role in the ℓlow. For
instance, if some node embedding h

(L)
v within (3) is

very far from π(xv;W) relative to other nodes, it in-
creases our confidence that subsequent predictions may
be based on network effects rather than an irrelevant
local feature xv. We will empirically explore this pos-
sibility in Section 5. Alternatively, in the context of
heterophilic graphs, we can examine the distribution
of ∥hv − hu∥2 across nodes sharing an edge to loosely
calibrate the degree of heterophily, and possibly coun-
teract its impact via appropriate modifications. And as
a final dimension of motivation, the bilevel perspective
provides natural entry points for the scalable training
of models with arbitrary depth (Xue et al., 2023) or
interpretable integration with offline sampling (Jiang
et al., 2023).

Graph Machine Learning through the Lens of Bilevel Optimization

2.3 Unresolved Limitations

Despite the widespread use of bilevel optimization in
forming and/or analyzing GNN layers, prior work is
largely confined to the exploration of narrow instances
that follow from quite specific (usually quadratic)
choices for ℓlow paired with vanilla gradient descent,
with application to homogeneous graphs; the example
presented in Section 2.2 follows this paradigm. As of
yet, there has been no clear delineation of a broad
design space of possibilities. We take initial steps in
this direction next.

3 Towards More Flexible GNNs from
Bilevel Optimization

In the previous section, we applied a specific iterative
algorithm, gradient descent with step-size γ, to a partic-
ular energy function, ℓlow(H;W,G) from (3), and the
resulting descent updates produced the GNN message-
passing layers given by (4). Within this relatively
narrow design space, the only algorithmic flexibility
is in the choice of γ, and on the energy side, we are
limited to tuning the trade-off parameter λ and the
input model π. Not surprisingly then, (4) is far less
flexible/expressive relative to the general form from
Definition 1. We now seek to reduce this gap via the
following formulation.

To begin we require some additional notation. Let
L(G) be a function space of interest dependent on
graph G, where each function ℓlow ∈ L(G) is specified
as ℓlow : H → R over some node embedding domain
H ⊆ Rn×d. We then define A : L(G) ×H → H as an
arbitrary iterative mapping/algorithm that satisfies

ℓlow (A[ℓlow,H]) ≤ ℓlow(H) ∀ℓlow ∈ L(G), ∀H ∈ H.
(5)

This expression merely entails that if we apply A to
ℓlow initialized at H, the resulting iteration produces
embeddings that reduce (or leave unchanged) ℓlow. We
are then poised to ask a central motivating question:

Can we find a sufficiently flexible pairing of some A
and compatible ℓlow ∈ L(G) such that A[ℓlow,H] closely
approximates, to the extent possible, any composite
message-passing layer fU ◦ fA ◦ fM which follows from
the stipulations of Definition 1?

To make initial progress in answering this question, we
first convert Definition 1 to what we will refer to as
a canonical form designed to minimize, without loss
of generality, the non-uniqueness of the decomposition
of fU ◦ fA ◦ fM into respective message, aggregation,
and update functions. In so doing we obtain a more
transparent entry point for isolating precisely where
more-or-less exact alignment between A[ℓ,H] and fU ◦
fA ◦ fM is possible, and where non-trivial gaps remain.

3.1 Canonical Form of MP-GNN Layers

Given the composite function fU ◦ fA ◦ fM , there is
no unique decomposition into its constituent parts,
even within the constraints of Definition 1. To this
end, we introduce the following simplification of MP-
GNN layers that, as we will later show, leads to a
unique decomposition (up to inconsequential linear
transformations) while maintaining expressiveness:

Definition 2 An MP-GNN layer in canonical form is
defined as the composition of three functions:

1. A message function f̃M that computes µ
(l)
(u,r,v) :=

f̃M (h
(l−1)
u , r,h

(l−1)
v) ∈ Rd̃ for any edge e =

(u, r, v) ∈ E;

2. The aggregation function f̃A that computes a
(l)
v :=

f̃A({µ(l)
(u,r,v) : (u, r) ∈ Nv}) =

∑
(u,r)∈Nv

µ
(l)
(u,r,v);

3. An update function f̃U that computes the embed-
dings of the next layer as h

(l)
v = f̃U (h

(l−1)
v , a

(l)
v ,xv)

for all v ∈ V.

We remark that there still remains a degree of non-
uniqueness in Definition 2 in that a linear transforma-
tion of µ(l)

(u,r,v) introduced by f̃M could pass through

f̃A and be absorbed into f̃U without changing the com-
posite function f̃U ◦ f̃A◦ f̃M . However, this ambiguity is
inconsequential for our purposes, and nonlinear trans-
formations cannot analogously pass through f̃A without
changing the form of the resulting composite function.

Additionally, although it may superficially appear as
though we have lost expressive power in moving to the
canonical form, this is actually not the case:

Proposition 1 For any fU ◦ fA ◦ fM adhering to Def-
inition 1, there exists a canonical form f̃U ◦ f̃A ◦ f̃M
following Definition 2 that provides an arbitrarily close
approximation.

Appendix D contains the proof. So indeed, we can
work with the canonical form without any appreciable
loss of generality. From here, we will first narrow our
scope in Section 3.2 to reproducing fM or f̃M using
some A[ℓlow, ·]; later in Section 3.3 we zoom out and
address approximations to the full canonical form.

3.2 A Priori Constraint Approximating
Message Functions fM or f̃M

To begin, we introduce the following definition:

Zheng, He, Qiu, Wang, Wipf

Definition 3 We say that a message function fM sat-
isfies a gradient representation criteria if

fM (hu, r,hv) =
∂ζ(hu,hv; r)

∂hv

fM (hv, r
−1,hu) =

∂ζ(hu,hv; r)

∂hu
(6)

for some function ζ : Rd × Rd → R with Lipschitz con-
tinuous gradients, where r−1 is the inverse relation of
r. Moreover, we extend this definition to the canonical
form f̃M via

f̃M (hu, r,hv) =
∂ζ̃(Φ⊤hu, z; r)

∂z

∣∣∣∣∣
z=Φ⊤hv

f̃M (hv, r
−1,hu) =

∂ζ̃(z,Φ⊤hv; r)

∂z

∣∣∣∣∣
z=Φ⊤hu

(7)

for some Φ ∈ Rd×d̃ and function ζ̃ : Rd̃ ×Rd̃ → R with
Lipschitz continuous gradients.

This definition describes message functions that can be
expressed in terms of the gradient of an energy term,
i.e., ζ or ζ̃. Moreover, if a pair of bidirectional mes-
sage functions do not satisfy this criteria, then they
cannot generally be obtained with a gradient-based
A applied to any possible ℓlow. To see this, consider
a graph with just two nodes and no node features
for simplicity. Moreover, assume that the aggregation
function is identity (there is only one message in ei-
ther direction) and the update function is given by
fU (h

(l)
v ,µ

(l)
(u,r,v)) = h

(l−1)
v − γµ

(l)
(u,r,v) for some γ > 0.

We then observe that any possible ℓlow can be expressed
w.l.o.g. as ℓlow(H;W,G) = ζ(h1,h2; r) for some func-
tion ζ. Therefore, the only source for producing the
two required message functions, meaning for 1 → 2
and 2 → 1 is taking gradients of the first and second
arguments of ζ.

3.3 Approximating the Full Canonical Form
via Energy Optimization

To proceed, we first require an adequately flexible form
of energy function with terms that are, in a sense to be
formally quantified, sufficiently aligned with the canon-
ical form serving as our target. Intuitively, there is a
trade-off here: If this energy is too complex, then itera-
tive optimization algorithms applied to it can produce
update rules that deviate from Definition 2, e.g., the
update for any given node v could potentially involve
all other nodes in the graph, as opposed to merely those
in Nv. In contrast, if the energy is too narrowly defined,
we will be unable to match the expressive power of the
composite f̃U ◦ f̃A ◦ f̃M .

Motivated by these considerations, we propose the
family of energies given by

ℓlow(H;W,G) := (8)∑
(u,r,v)∈E

f (hu,hv; r) +
∑
v∈V

[κ(hv;xv) + η(hv)] ,

where f : Rd × Rd → R and κ : Rd → R are arbitrary
differentiable functions, while η : Rd → R has no such
requirements, e.g., it can be nonsmooth and discontin-
uous. Additionally, W refers to all parameters that
may be included within f , κ, and η.

The role of η is to allow for the introduction of node-
wise constraints. For instance, if η(h) := I∞[h <
0], meaning a discontinuous indicator function with
infinite weight applied element-wise to the entries of
h less than zero, then we are effectively enforcing the
constraint that node embeddings must be non-negative
(Yang et al., 2021). To algorithmically handle this
possibility, we also require the notion of a proximal
operator (Parikh and Boyd, 2014), which is defined as

proxη,γ(h) := argmin
z

(
η(z) +

1

2γ
∥z− h∥2

)
. (9)

Proximal operators proxη,γ : Rd → Rd of this form
are useful for deriving descent algorithms involving
constraints or nonsmooth terms such as η. We are
now prepared to present our main result of this section,
with discussion and interpretations to follow:

Proposition 2 For any canonical message-passing
layer with constituent f̃U , f̃A, and f̃M abiding by Defi-
nition 2 and f̃U satisfying Definition 3, there exists an
algorithm A and functions f , κ, and η defining ℓlow
from (8) such that

A[ℓlow, ·] = f̂U ◦ f̃A ◦ f̃M , (10)

where f̂U : Rd × Rd̃ × Rd → Rd is defined as

f̂U (h,a,x) := proxη,γ (h− γσ(a) [Φa+ κ′(h;x)])
(11)

with σ(a) : Rd̃ → R+ > 0 as an arbitrary positive
function, Φ ∈ Rd×d̃ as an arbitrary matrix, and κ′ as
the first-order derivative of κ. Moreover, there exists a
γ′ > 0 such that for any γ ∈ (0, γ′],

ℓlow (A[ℓlow,H];G) ≤ ℓlow(H;G). (12)

Several salient points are worth highlighting as we
unpack this result:

• Once we have granted that f̃U adheres to Defini-
tion 3, all approximation error between the target

Graph Machine Learning through the Lens of Bilevel Optimization

composite message passing function f̃U ◦ f̃A ◦ f̃M
and the proposed A[ℓlow, ·] is confined to mis-
match in the respective update functions f̃U and
f̂U , not the message and aggregation functions f̃M
and f̃A.

• While f̂U cannot exactly represent all possible
f̃U , it maintains considerable degrees of freedom
for replicating important special cases, including
many/most commonly adopted update functions.
This flexibility comes from three primary sources:
namely, η, σ, and κ can all be freely chosen to
widen the expressiveness of f̂U ; we note that η and
κ are determined by ℓlow, while σ is associated
with A (see Appendix E for further details).

• The function η, through its influence on proxη,γ ,
can introduce a wide variety of nonlinear acti-
vations into the message passing layer. And in
general, since η is arbitrary, proxη,γ can be any
arbitrary proximal operator. For example, proxη,γ

can implement any non-decreasing function of the
elements of h (Gribonval and Nikolova, 2020), such
as popular ReLU activations among other things.

• The function σ allows us to introduce softmax
self-attention in the message-passing layer. This
capability is exactly analogous to how an optimiza-
tion perspective can introduce self-attention into
typical Transformer layers (Yang et al., 2022a).

• Meanwhile, the function κ provides for arbitrary
interactions between node embeddings and input
node features. It also allows us to directly general-
ize (4). More concretely, when we choose η(h) = 0
(such that proxη,γ degenerates to an identity map-
ping), σ(a) = 1, and κ′(h;x) = h− π(x;W), we
exactly recover the message passing layer from (4).

• Increasing the expressiveness of f̂U to more tightly
match an arbitrary f̃U is challenging and possibly
infeasible (at least using standard descent methods
for A). See Appendix C for further discussion.

While the proof of Proposition 2 is deferred to Appendix
E, it is based on assigning A to be a form of proximal
gradient descent with preconditioning. Although this
class of algorithm has attractive convergence guaran-
tees, there remains potential to improve the conver-
gence rate. Within the present context, this is tan-
tamount to reducing the actual number of message-
passing layers needed to approach a minimum of ℓlow.
We conclude by noting that it is possible to retain
the expressiveness of (11) and the efficient message
passing structure of Definition 2 while accelerating con-
vergence through the use of momentum (Polyak, 1964)
and related (Kingma and Ba, 2014); see Appendix F.

4 On Broader Graph ML Regimes

In the previous section, our focus was on deriving flexi-
ble MP-GNN layers obtained by applying an algorithm
A to the minimization of a lower-level energy ℓlow.
Through Proposition 2, we demonstrated that the op-
erator A[ℓlow, ·] is equivalent to a MP-GNN layer
with unrestricted message function f̃M , aggregation
function f̃A, and approximate update function f̂U as
defined by (11). Analogous to any other MP-GNN
model, these components can be iterated for L steps
to produce final embeddings H(L) that can be inserted
into the supervised node classification loss as in (1) to
complete an end-to-end bilevel optimization pipeline.

We now expand our scope to encompass other inter-
related graph ML domains, building on the general
optimization-based message-passing layers derived in
Section 3.3. Because our motivation stems from the
principle that BiLevel Optimization Offers More Graph
Machine Learning, in the sequel we refer to our frame-
work as BloomGML.

4.1 The General BloomGML Framework

We formalize BloomGML via the optimization problem

min
W,Θ

ℓup

(
H(L)(W),Y′; Θ,G

)
(13)

s.t. H(l) = A
[
ℓlow(· ;W,G),H(l−1)

]
,∀l = 1, . . . , L,

where A and ℓlow follow from Proposition 2 while ℓup
is a generic upper-level loss that can be specified on
an application-specific basis, e.g., (1) is a special case
of this form. Additionally, as before we assume that
rows of Y′ are labels; however, for maximum generality
we need not assume that these labels correspond with
nodes. In this way, we can extend BloomGML to
generic GNN tasks besides node classification. More
importantly though, we can also form deep connections
with non-GNN regimes equally as well. In this regard,
we consider three such examples next: knowledge graph
embeddings (KGEs), label propagation (LP), and what
are often called graph-MLP models.

4.2 Knowledge Graph Embedding Models

Basics. Knowledge graphs are heterogeneous graphs,
typically without node features or labels, where each
triplet/edge e = (u, r, v) contains relational information
between two entities, e.g., u = ‘Paris’, v = ‘France’,
and r = ‘capital of’ (Ji et al., 2021). The goal of
knowledge graph completion (KGC) is to predict unob-
served/missing factual triplets given an existing knowl-
edge graph of interest. A widely adopted approach to
this fundamental problem is based on learning knowl-
edge graph embeddings (KGEs) as follows. First, all

Zheng, He, Qiu, Wang, Wipf

existing triplets E are treated as positive samples, while
a complementary set of negative samples are obtained
by randomly choosing triplets e− = (u−, r−, v−) /∈ E ,
with u−, v− ∈ V and r− ∈ R; we can assemble these in
a negative graph G− = {V,R, E−}, where E− denotes
the set of false triplets.

We then train a KGE model by minimizing a binary
cross-entropy loss of the form

ℓkge(H,E) :=
∑
e∈E

log ρ [s (hu, er,hv)] (14)

+
∑

e′∈E−

log (1− ρ [s (hu− , er− ,hv−)]) ,

where ρ denotes a standard sigmoid function, H ∈
Rn×d are node embeddings as before, and E ∈ Rm×d′

are embeddings for each relation type r ∈ R. Fi-
nally, s : Rd × Rd′ × Rd → R is a so-called score func-
tion, which evaluates the compatibility of the triplet
embeddings, with a higher score indicating a greater
likelihood of being a true triplet (Zheng et al., 2020).
Additionally, (14) is frequently used as a training loss
for traditional heterogeneous GNN models applied to
knowledge graphs (Schlichtkrull et al., 2017). Note
that at inference time, a candidate triplet can be eval-
uated by computing the score of the corresponding
output-layer embeddings produced by the GNN.

KGEs and BloomGML. We now demonstrate
how the above process emerges as a special case of
BloomGML, and the interpretable implications of this
association, in particular relative to GNN modeling.
Let Ḡ := G ∪ G− = {V, R̄, Ē}, where Ē = E ∪ E−. We
also define R̄ = R∪R− where R− denotes a dummy
set of negative relations such that, for every r ∈ R
there exists a r− ∈ R− representing that an original
relation r is now appearing in a negative triple. It
follows that |R̄| = 2m. Also, we assume that er = er−
for all r, i.e., the relation type embeddings are shared.
For BloomGML, following (8) we define ℓlow w.r.t. Ḡ
as

ℓlow(H;W, Ḡ) =
∑
ē∈Ē

f(hū,hv̄; r̄), (15)

where we choose W = E and

f(hū,hv̄; r̄) =

{
log ρ [s (hu, er,hv)] , ē ∈ E
log (1− ρ [s (hu− , er− ,hv−)]) , ē ∈ E−

(16)
while implicitly assuming κ and η are zero. By con-
structing ℓlow in this way, the lower-level minimization
problem provides optimal node embeddings conditioned
on fixed relation embeddings E. Hence if we execute a
descent algorithm A for L steps (e.g., gradient descent),
we can obtain some H(L) ≡ H(L)(W) ≡ H(L)(E).

To complete the full BloomGML specification per (13),
we must also select ℓup. In order to align with KGE

learning, we choose Θ = W = E, Y′ = {∅} and define

ℓup

(
H(L)(W),Y′; Θ, Ḡ

)
≡ ℓup

(
H(L)(E), {∅};E, Ḡ

)
:= ℓkge

(
H(L)(E),E

)
, (17)

where ℓkge follows (14).

Key Implications of this Reformulation. Per
Proposition 2 and the downstream BloomGML lens
from above, it follows that if we minimize (17) over
just E, we are effectively reproducing a minimizer of
the original KGE loss from (14), with H computed
by L steps of A. This implies that learning KGEs
equates to training an L-layer MP-GNN on graph Ḡ
with parameters E. Of particular relevance here, recent
work has been devoted to empirically showing that
when training powerful heterogeneous GNN models
using (14), contrary to conventional wisdom, completely
removing the GNN message-passing layers does not
actually harm performance. However, this observation
is directly explained by the analysis herein: Explicit
external message-passing is not necessary since we are
already training an implicit MP-GNN when solving (14)
over unconstrained embeddings. Beyond this finding,
BloomGML offers an additional practical benefit. In
brief, because we are free to choose L, in inductive
settings we can pick a relatively small value such that
E is learned to adjust accordingly. Hence when new
nodes are introduced, their embeddings can be quickly
approximated via only L steps of A, rather than full
model retraining. We test this capability in Section 5.

4.3 Other Graph ML Regimes

BloomGML elucidates other graph ML scenarios as
well, particularly LP and graph-regularized MLP mod-
els. While full details are deferred to Appendix G,
we note here that LP variants can be recast within
BloomGML when we treat observed labels as input
features and A as proximal gradient descent. We
also provide supplementary experiments that verify
BloomGML predictions regarding the relationship be-
tween LP and special cases of graph-regularized MLPs.

5 Empirical Validation and Analysis

As BloomGML represents a conceptual framework
that has independent value drawn from its explana-
tory/unifying nature, not just pushing SOTA per se,
the motivations for our experiments are two-fold:

1. Showcase the versatility and interpretability of
BloomGML across diverse testing regimes;

2. Demonstrate the explanatory power of the bilevel
optimization lens applied to graph ML tasks.

Graph Machine Learning through the Lens of Bilevel Optimization

Table 1: Performance mitigating spurious input features.
Here the detect ratio is obtained by computing ∥hv −
π(xv;W)∥2 for all v ∈ V and then segmenting out the
percentage of corrupted nodes within the largest 20%.

Cora Citeseer Pubmed Arxiv

Accuracy GCN 51.40 46.40 59.00 64.03
Base from (3) 54.97 38.98 45.67 47.63
BloomGML 65.83 49.33 72.70 69.11

Detect Ratio BloomGML 94.27 87.82 96.98 100.00

Despite these quite general aims, with limited space
we only include a few representative use cases and co-
incident analyses. That being said, our experiments
still span quite diverse settings, where SOTA methods
are different and often rely on domain-specific architec-
tures and/or heuristics. Hence our strategy is simply to
pick strong, domain-specific baselines for comparisons
across each task and narrative purpose, noting that
these baselines generally outperform standard/generic
alternatives (on a task-by-task basis) per results in prior
work. Additionally, throughout this section, we use
BloomGML to describe models derived from (13), with
differentiating descriptions accompanying each experi-
ment. Also, please see Appendix H for comprehensive
details of experimental setups as well as reproduction
of result tables with error bars.

Mitigating Spurious Input Features. As moti-
vated in Section 2.2, bilevel optimization with an ap-
propriate ℓlow should in principle be able to localize
spurious input features, allowing the model to focus on
more informative network effects when needed. How-
ever, to our knowledge, this capability has not as of yet
been exploited. To this end, we compare the original
base model formed via (3) and (4), with a more robust
version drawn from the general BloomGML framework
of (13). In particular, since quadratic regularizers can
be sensitive to outliers, we modify (3) by choosing
κ(h;x) = δ (h− π(x;W)) within BloomGML, where
δ : Rd → R+ represents a robust Huber loss penalty
(Huber, 1992) applied to each input dimension and
summed. We then conduct node classification experi-
ments over datasets Cora, Citeseer, Pubmed, and ogbn-
arxiv by randomly corrupting 20% of node features
prior to training. Results are displayed in Table 1
where multiple conclusions are evident: The Huber
loss improves the accuracy across all datasets, while
correctly identifying the majority of outliers.

Table 2: Node classification on heterophily graphs. Follow-
ing convention, accuracy (%) is reported for Roman and
Amazon, while ROC-AUC (%) is used for Minesweeper,
Tolokers, and Questions.

Roman Amazon Minesweep Tolokers Questions Avg.
FAGCN 65.22 44.12 88.17 77.75 77.24 70.50
FSGNN 79.92 52.74 90.08 82.76 78.86 76.87
GBK-GNN 74.57 45.98 90.85 81.01 74.47 73.38
JacobiConv 71.14 43.55 89.66 68.66 73.88 69.38
Base from (3) 76.63 52.37 88.97 80.91 76.72 75.12
BloomGML 84.45 52.92 91.83 84.84 77.62 78.33
BloomGML (w/Hub.) 85.26 51.00 93.30 85.92 77.93 78.68

Figure 1: ∥h(L)
u − h

(L)
v ∥2 density for (u, v) ∈ E but with

different labels in the Roman dataset.

Comparison on Heterophily Graphs. For graphs
exhibiting heterophily (Zhu et al., 2021a), nodes sharing
an edge are less likely to have the same label. Hence
an energy function that pushes the respective node
embeddings to a common value may be counterproduc-
tive, i.e., as in the edge-dependent term from (3). In-
stead, to address heterophily graphs using BloomGML,
we form ℓlow via f(hv,hu; r) = ∥huC− hv∥22, where
C ∈ Rd×d is a trainable weight and r is ignored for
the homogeneous case. Additionally, to reduce sen-
sitivity to less reliable node features that could po-
tentially accompany heterophily graphs, we consider
κ(h;x) = δ (h− π(x;W)) to contrast with κ(h;x) =
∥h− π(x;W)∥22. Finally, we select η(h) = I∞[h < 0]
and σ(a) = 1 and apply proximal gradient descent for
A. Table 2 displays results using the recent heterophily
benchmarks Roman, Amazon, Minesweeper, Tolokers,
and Questions from Platonov et al. (2023). We com-
pare BloomGML against recent GNN models explicitly
designed for handling heterophily, namely, FAGCN (Bo
et al., 2021), FSGNN (Maurya et al., 2022), GBK-GNN
(Du et al., 2022), and JacobiConv (Wang and Zhang,
2022). For reference, we also compare with the bilevel
baseline formed from (3); additional GNN baselines
from Platonov et al. (2023) are discussed in Appendix
H. On average, we observe that BloomGML achieves
the best accuracy here. Even so, our focus is not on
solving heterophily problems per se, but rather, demon-
strating that interpretable modifications to ℓlow can
induce predictable effects.

Regarding the latter, we present one additional visual-
ization afforded by the BloomGML paradigm. On the
Roman dataset, we incorporate δ within the function f ,
which allows greater freedom for embeddings sharing
an edge but with different labels to deviate from one an-
other. The distribution of ∥h(L)

u −h
(L)
v ∥2 for (u, v) ∈ E

but yv ̸= yu (i.e., different labels) is shown in Figure
1. Clearly, the Huber loss allows greater deviation in
embeddings sharing an edge as expected. Interestingly,
the accuracy using Huber within f increases to 88.12%.

Comparison on Heterogeneous Graphs. The
base model formed via (3) has also recently been ex-

Zheng, He, Qiu, Wang, Wipf

Table 3: Node classification accuracy involving heteroge-
neous graphs. BloomGML is modified from HALO to in-
clude robust regularization within κ(h;x).

AIFB MUTAG BGS AM
HALO 97.2 80.9 89.7 85.9

BloomGML 97.2 82.4 93.1 86.9

tended to heterogeneous graphs via the HALO model
(Ahn et al., 2022). However, this extension remains
limited in its strict adherence to the quadratic edge-
and input feature-dependent penalty terms as in the
original (3). To this end, we modify HALO within the
confines of the BloomGML framework to explore non-
quadratic penalties (Log-Cosh and Huber) while main-
taining equivalence across all other aspects of model
design. Node classification results are in Table 3, where
we observe that all else being equal, these changes lead
to an improvement in accuracy over HALO.

Knowledge Graph Completion. As mentioned at
the end of Section 4.2, BloomGML is particularly well-
suited for inductive KGE tasks such as KGC. To this
end, we analytically and empirically compare against
the recent RefactorGNN model (Chen et al., 2022),
which includes related analysis showing how a par-
ticular score function, DistMult (Yang et al., 2014),
when combined with a softmax training loss over posi-
tive samples, has some commonalities with GNN layer
structure. From a practical standpoint, RefactorGNN
involves training a KGE model while resetting node
embeddings to initial values in regular intervals to fa-
cilitate the inductive setting (the edge embeddings are
trained as usual). While certainly a noteworthy contri-
bution, there nonetheless remain three limitations of
RefactorGNN relative to BloomGML.

First, the RefactorGNN model does not actually induce
an efficient/sparse MP-GNN, as there remains a global
hub node to which all other nodes are connected and
receive messages. Secondly, the supporting analysis
provided in Chen et al. (2022) only directly addresses
the softmax/DistMult pairing while excluding consid-
eration of negative samples; in contrast, BloomGML
serves as a general framework covering a wide variety
of both KGE and non-KGE models alike, and within
which we have explicitly accounted for negative samples
through Ḡ. And lastly, the repeated reinitialization of
node embeddings during RefactorGNN training can be
viewed as a heuristic, with no guarantee of convergence;
BloomGML sidesteps this issue altogether within an
integrated bilevel optimization framework.

To conduct empirical comparisons with RefactorGNN,
we must first specify (8) for BloomGML. We take in-
spiration from NBFNet (Zhu et al., 2021c) and design
ℓlow such that one step of proximal gradient descent

Table 4: Inductive KGC tasks. Reported results based on
the Test Hits@10 metric. Sum and PNA are aggregators
while T and D are TransE and DistMult score functions,
respectively.

WN18RR_v1 FB15k-237_v1
PNA(T) Sum(T) PNA(D) Sum(D) PNA(T) Sum(T) PNA(D) Sum(D)

RefactorGNN / / / 0.885 / / / 0.787
BloomGML 0.952 0.937 0.960 0.946 0.744 0.747 0.836 0.792

Figure 2: ℓlow values versus propagation steps on Cora.

mimics an NBFNet model layer; see Appendix I for
derivations showing how this process aligns with an
MP-GNN layer when incorporated within BloomGML
under the right circumstances. We also set κ(h;x) =
η(h) = 0, σ(a) = 1 for simplicity. Inductive KGC
results are shown in Table 4 on WordNet18RR_v1 and
FB15K237_v1 datasets (Teru et al., 2020). Across dif-
ferent score functions TransE and DistMult, and aggre-
gators Sum and PNA (Corso et al., 2020), BloomGML
achieves strong performance relative to RefactorGNN.
Note that in Table 4 we have reported the best Refac-
torGNN model from Chen et al. (2022) as there is
presently no publicly-available code for reproducibiliy.

Incorporation of Momentum. We demonstrate
how the incorporation of momentum within A, as pro-
posed at the end of Section 3.3 and detailed in Appendix
F, can maintain MP-GNN structure while expediting
convergence. Results are shown in Figure 2 and Table 5
using a simple base model akin to (3), where we observe
that momentum can potentially improve BloomGML
performance by reducing ℓlow more quickly.

Table 5: Node classification with momentum. The optimiza-
tion algorithm for BloomGML is SGD with momentum.

Cora Citeseer Pubmed Arxiv
SGD 80.1 73.2 78.0 72.0

BloomGML 83.4 74.0 80.7 72.6

Additional Results. Finally, please see Appendix J
for additional experiments including an ablation over
learning λ, the trade-off parameter from (3), as well as
further demonstration of the versatility of BloomGML.

6 Conclusion

In this work we have introduced the BloomGML frame-
work, which provides a novel lens for understanding
various graph ML paradigms and introducing inter-
pretable, targeted enhancements. Let graph ML bloom.

Graph Machine Learning through the Lens of Bilevel Optimization

References

Ahn, H., Yang, Y., Gan, Q., Moon, T., and Wipf,
D. (2022). Descent steps of a relation-aware energy
produce heterogeneous graph neural networks.

Ando, R. and Zhang, T. (2006). Learning on graph
with laplacian regularization. Advances in neural
information processing systems, 19.

Bo, D., Wang, X., Shi, C., and Shen, H. (2021). Beyond
low-frequency information in graph convolutional
networks. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35.

Bordes, A., Usunier, N., Garcia-Duran, A., Weston,
J., and Yakhnenko, O. (2013). Translating embed-
dings for modeling multi-relational data. Advances
in neural information processing systems, 26.

Chen, J., Mueller, J., Ioannidis, V. N., Adeshina, S.,
Wang, Y., Goldstein, T., and Wipf, D. (2021). Does
your graph need a confidence boost? Convergent
boosted smoothing on graphs with tabular node fea-
tures. In International Conference on Learning Rep-
resentations.

Chen, Y., Mishra, P., Franceschi, L., Minervini, P.,
Stenetorp, P., and Riedel, S. (2022). Refactor
gnns: Revisiting factorisation-based models from
a message-passing perspective.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and
Veličković, P. (2020). Principal neighbourhood ag-
gregation for graph nets. In Advances in Neural
Information Processing Systems, volume 33.

Di Giovanni, F., Rowbottom, J., Chamberlain, B. P.,
Markovich, T., and Bronstein, M. M. (2023). Under-
standing convolution on graphs via energies. Trans-
actions on Machine Learning Research.

Du, L., Shi, X., Fu, Q., Ma, X., Liu, H., Han, S.,
and Zhang, D. (2022). Gbk-gnn: Gated bi-kernel
graph neural networks for modeling both homophily
and heterophily. In Proceedings of the ACM Web
Conference 2022, pages 1550–1558.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adap-
tive subgradient methods for online learning and
stochastic optimization. Journal of machine learning
research, 12(7).

Eswaran, D., Günnemann, S., Faloutsos, C., Makhija,
D., and Kumar, M. (2017). Zoobp: Belief propaga-
tion for heterogeneous networks. 10(5).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O.,
and Dahl, G. E. (2017). Neural message passing for
quantum chemistry. In International Conference on
Machine Learning, pages 1263–1272. PMLR.

Gribonval, R. and Nikolova, M. (2020). A characteriza-
tion of proximity operators. Journal of Mathematical
Imaging and Vision, 62(6):773–789.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). In-
ductive representation learning on large graphs. Ad-
vances in neural information processing systems, 30.

Hamilton, W. L. (2020). Graph representation learning.
Morgan & Claypool Publishers.

Hinton, G., Srivastava, N., and Swersky, K. (2012). Neu-
ral networks for machine learning lecture 6a overview
of mini-batch gradient descent. Cited on, 14(8):2.

Hu, Y., You, H., Wang, Z., Wang, Z., Zhou, E., and
Gao, Y. (2021). Graph-mlp: Node classification
without message passing in graph. arXiv preprint
arXiv:2106.04051.

Huber, P. J. (1992). Robust estimation of a location
parameter. Breakthroughs in statistics: Methodology
and distribution, pages 492–518.

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Philip,
S. Y. (2021). A survey on knowledge graphs: Rep-
resentation, acquisition, and applications. IEEE
Transactions on Neural Networks and Learning Sys-
tems.

Jiang, H., Liu, R., Yan, X., Cai, Z., Wang, M., and
Wipf, D. (2023). MuseGNN: Interpretable and con-
vergent graph neural network layers at scale. arXiv
preprint arXiv:2310.12457.

Kearnes, S., McCloskey, K., Berndl, M., Pande, V.,
and Riley, P. (2016). Molecular graph convolutions:
moving beyond fingerprints. Journal of computer-
aided molecular design, 30:595–608.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kipf, T. N. and Welling, M. (2016). Semi-supervised
classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

Luo, Y., Huang, R., Chen, A., and Zeng, X. (2021).
Reslpa: Label propagation with residual learning. In
Proceedings of the 2021 7th International Conference
on Computing and Artificial Intelligence, ICCAI ’21.

Ma, Y., Liu, X., Zhao, T., Liu, Y., Tang, J., and Shah,
N. (2021). A unified view on graph neural networks
as graph signal denoising. In Proceedings of the 30th
ACM International Conference on Information &
Knowledge Management, pages 1202–1211.

Maurya, S. K., Liu, X., and Murata, T. (2022). Simpli-
fying approach to node classification in graph neu-
ral networks. Journal of Computational Science,
62:101695.

Pan, X., Song, S., and Huang, G. (2020). A unified
framework for convolution-based graph neural net-
works.

Parikh, N. and Boyd, S. (2014). Proximal algorithms.
Found. Trends Optim., page 127–239.

Zheng, He, Qiu, Wang, Wipf

Platonov, O., Kuznedelev, D., Babenko, A.,
and Prokhorenkova, L. (2022). Characterizing
graph datasets for node classification: Beyond
homophily-heterophily dichotomy. arXiv preprint
arXiv:2209.06177.

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A.,
and Prokhorenkova, L. (2023). A critical look at the
evaluation of GNNs under heterophily: Are we really
making progress? In The Eleventh International
Conference on Learning Representations.

Polyak, B. T. (1964). Some methods of speeding up
the convergence of iteration methods. Ussr com-
putational mathematics and mathematical physics,
4(5):1–17.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg,
R., Titov, I., and Welling, M. (2017). Modeling
relational data with graph convolutional networks.

Sinha, A., Malo, P., and Deb, K. (2018). A review on
bilevel optimization: From classical to evolutionary
approaches and applications. IEEE Transactions on
Evolutionary Computation, 22(2):276–295.

Teru, K., Denis, E., and Hamilton, W. (2020). In-
ductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning,
pages 9448–9457. PMLR.

Veličković, P., Cucurull, G., Casanova, A., Romero,
A., Lio, P., and Bengio, Y. (2017). Graph attention
networks. arXiv preprint arXiv:1710.10903.

Wang, X. and Zhang, M. (2022). How powerful are
spectral graph neural networks. In International
Conference on Machine Learning, pages 23341–23362.
PMLR.

Wang, Y., Jin, J., Zhang, W., Yang, Y., Chen, J.,
Gan, Q., Yu, Y., Zhang, Z., Huang, Z., and Wipf, D.
(2022). Why propagate alone? parallel use of labels
and features on graphs. In International Conference
on Learning Representations.

Wang, Z., Ling, Q., and Huang, T. (2016). Learning
deep ℓ0 encoders. In AAAI Conference on Artificial
Intelligence, volume 30.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019).
How powerful are graph neural networks?

Xue, R., Han, H., Torkamani, M., Pei, J., and Liu, X.
(2023). LazyGNN: Large-scale graph neural networks
via lazy propagation. In International Conference
on Machine Learning.

Yamaguchi, Y., Faloutsos, C., and Kitagawa, H. (2016).
Camlp: Confidence-aware modulated label propaga-
tion. pages 513–521.

Yang, B., Yih, W.-t., He, X., Gao, J., and Deng, L.
(2014). Embedding entities and relations for learning

and inference in knowledge bases. arXiv preprint
arXiv:1412.6575.

Yang, Y., Huang, Z., and Wipf, D. (2022a). Transform-
ers from an optimization perspective. In Advances
in Neural Information Processing Systems.

Yang, Y., Liu, T., Wang, Y., Huang, Z., and Wipf, D.
(2022b). Implicit vs unfolded graph neural networks.
arXiv preprint arXiv:2111.06592.

Yang, Y., Liu, T., Wang, Y., Zhou, J., Gan, Q., Wei, Z.,
Zhang, Z., Huang, Z., and Wipf, D. (2021). Graph
neural networks inspired by classical iterative algo-
rithms. In International Conference on Machine
Learning, pages 11773–11783. PMLR.

Ying, Z., Bourgeois, D., You, J., Zitnik, M., and
Leskovec, J. (2019). Gnnexplainer: Generating ex-
planations for graph neural networks. Advances in
neural information processing systems, 32.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. (2017). Deep
sets. Advances in neural information processing sys-
tems, 30.

Zhang, H., Wang, S., Ioannidis, V. N., Adeshina, S.,
Zhang, J., Qin, X., Faloutsos, C., Zheng, D., Karypis,
G., and Yu, P. S. (2023). Orthoreg: Improving graph-
regularized mlps via orthogonality regularization.

Zhang, H., Yan, T., Xie, Z., Xia, Y., and Zhang, Y.
(2020). Revisiting graph convolutional network on
semi-supervised node classification from an optimiza-
tion perspective. arXiv preprint arXiv:2009.11469.

Zheng, D., Song, X., Ma, C., Tan, Z., Ye, Z., Dong,
J., Xiong, H., Zhang, Z., and Karypis, G. (2020).
Dgl-ke: Training knowledge graph embeddings at
scale. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 739–748.

Zhou, D., Bousquet, O., Lal, T., Weston, J., and
Schölkopf, B. (2003). Learning with local and global
consistency. Advances in neural information process-
ing systems, 16.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z.,
Wang, L., Li, C., and Sun, M. (2020). Graph neural
networks: A review of methods and applications. AI
open, 1:57–81.

Zhou, K., Huang, X., Zha, D., Chen, R., Li, L., Choi, S.-
H., and Hu, X. (2021). Dirichlet energy constrained
learning for deep graph neural networks. Advances
in Neural Information Processing Systems, 34:21834–
21846.

Zhu, J., Rossi, R. A., Rao, A., Mai, T., Lipka, N.,
Ahmed, N. K., and Koutra, D. (2021a). Graph neural
networks with heterophily. In Proceedings of the
AAAI conference on artificial intelligence, volume 35.

Graph Machine Learning through the Lens of Bilevel Optimization

Zhu, M., Wang, X., Shi, C., Ji, H., and Cui, P. (2021b).
Interpreting and unifying graph neural networks
with an optimization framework. arXiv preprint
arXiv:2101.11859.

Zhu, X. (2005). Semi-supervised learning with graphs.
PhD Thesis, Carnegie Mellon University.

Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J.
(2021c). Neural bellman-ford networks: A general
graph neural network framework for link prediction.
Advances in Neural Information Processing Systems,
34:29476–29490.

Zheng, He, Qiu, Wang, Wipf

A Appendix Overview

Appendix content more-or-less follows the order in which it was originally referenced in the main text; we
summarize as follows:

• In Section B, we derive the the message passing special case from (4).

• In Section C, we discuss why increasing the expressiveness of BloomGML in meaningful ways is challenging.

• In Sections D and E, we provide the proofs of Propositions 1 and 2, respectively.

• In Section F, we present a general framework for accelerating convergence and related special cases.

• In Section G, we fill in details relating BloomGML to label propagation and graph-regularized MLPs. We
also provide supporting empirical results.

• In Section H, we provide model implementation and experiment details related to Section 5.

• In Section I, we explore the connection between NBFNet and BloomGML.

• In Section J, we present additional empirical results/ablations.

B Derivation of Message Passing Special Case from (4)

The message passing updates from (4) in Section 2.2 are based on the energy function from (3), which we repeat
here for convenience as

ℓlow(H;W,G) =
∑
v∈V

1
2 ∥hv − π(xv;W)∥22 +

λ
2

∑
(u,v)∈E

∥hu − hv∥22 . (18)

Taking the derivative of this ℓlow w.r.t. hv we obtain

∇hv
ℓlow(H;W,G) = hv − π(xv;W)− λ

∑
u∈Nv

(hu − hv). (19)

Let µ
(l)
(u,r,v) := h

(l−1)
u − h

(l−1)
v and a

(l)
v :=

∑
u∈Nv

µ
(l)
(u,r,v). There will then exist an update function

fU (h
(l−1)
v ,a

(l)
v ,xv) such that we have

h(l)
v = h(l−1)

v − γ∇hv
ℓlow(H;W,G) = fU (h

(l−1)
v ,a(l)v ,xv) := (1− γ)h(l−1)

v + γλa(l)
v + γπ(xv;W), (20)

which reproduces (4).

C Possibilities for Generalizing BloomGML Expressiveness

As alluded to in Section 3.3, increasing the expressiveness of BloomGML in meaningful ways is challenging. At
a trivial level, we could always generalize (8) by allowing f → f(u,r,v) to vary across each triplet; analogously
we could allow κ → κ(v) and η → η(v) or related. But for more interesting enhancements, we might consider
flexible expressions of permutation-invariant functions given that the input graph is invariant to the order of
nodes and triplets. For example, results from Zaheer et al. (2017) show that, granted certain stipulations on the
input domain, permutation invariant functions operating on a set X can be expressed as ρ[

∑
x∈X ϕ(x)] when

granted suitable transforms ρ and ϕ. From this type of result, it is natural to consider, for example, generalizing
the first term of (8) via ∑

(u,r,v)∈E

f (hu,hv; r) → ρ

 ∑
(u,r,v)∈E

f (hu,hv; r)

 . (21)

The problem here though is that, if we take the gradient of this revised term w.r.t. the node embeddings, by the
chain rule the result can depend on all triplets in the graph, which violates the message-passing schema from
either Definition 1 or 2.

Graph Machine Learning through the Lens of Bilevel Optimization

D Proof of Proposition 1

The basic strategy here will be to push components of the original aggregation function fA into the revised
message and update functions f̃M and f̃U , respectively. And the underlying goal is to do so without losing any
expressiveness in the resulting composite function, even while reducing the revised aggregation function f̃A to
simple, parameter-free addition.

To proceed, we rely on a suitable decomposition of permutation-invariant set functions as required by fA over input
messages from Nv, where the domain of each message is Rd. In this regard, a number of permutation-invariant
function decompositions have been proposed in Zaheer et al. (2017) with conditions dependent on the domain of
the input sets. The strongest result they present provides a useful general form of exact decomposition; however,
unfortunately the underpinning guarantee only holds for input sets drawn from a countable universe, which Rd is
of course not.

To work around this limitation, we first assume that |Nv| = p < n for all v ∈ V, where p > 0 is a fixed constant.
We may then apply Theorem 9 from Zaheer et al. (2017) which stipulates that any continuous fA defined on a
compact set within Rd can be approximated arbitrarily closely via a decomposition of the form

fA

(
{µ(l)

(u,r,v) : (u, r) ∈ Nv}
)
≈ ρ

 ∑
(u,r)∈Nv

ϕ(µ
(l)
(u,r,v))

 , (22)

where ρ : Rd̃ → Rd and ϕ : Rd → Rd̃ are suitable transforms.

To extend to the general case where |Nv| may vary across nodes (since graphs are generally not limited to a
fixed node degree), we add maxv∈V |Nv| − |Nv| dummy neighbors (u′, r′) to Nv for every v ∈ V, and form the
augmented neighbor sets N ′

v, with the restriction that ϕ(µu′,r′,v) = 0. Note that in the neighborhood of the
associated dummy messages µ(u′,r′,v), we can no longer guarantee a close approximation to the true function;
however, we can cluster such dummy messages in an area of arbitrarily small measure, so their impact is negligible.
Given N ′

v so defined, fA can be approximated arbitrarily closely (except for within a negligible, vanishingly small
area of the input domain) via a decomposition of the form

fA({µ(l)
(u,r,v) : (u, r) ∈ Nv}) ≈ ρ

 ∑
(u,r)∈N ′

v

ϕ(µ
(l)
(u,r,v))

 ≡ ρ

 ∑
(u,r)∈Nv

ϕ(µ
(l)
(u,r,v))

 . (23)

Now define f̃M := ϕ ◦ fM , µ̃
(l)
(u,r,v) := f̃M (h

(l−1)
u , r,h

(l−1)
v) ∈ Rd̃, and f̃A({µ̃(l)

(u,r,v) : (u, r) ∈ Nv}) =∑
(u,r)∈Nv

µ̃
(l)
(u,r,v). Then we have

ρ ◦ f̃A ◦ f̃M ≈ fA ◦ fM (24)

Furthermore, if we define f̃U := fU ◦ ρ, we may conclude that

f̃U ◦ f̃A ◦ f̃M ≈ fU ◦ fA ◦ fM (25)

in the sense described above.

E Proof of Proposition 2

We assume that f̃M satisfies the gradient representation criteria from Definition 3. Now recall that the energy
function ℓlow is given by

ℓlow(H;W,G) :=
∑

(u,r,v)∈E

f (hu,hv; r) +
∑
v∈V

[κ(hv;xv) + η(hv)] . (26)

First, we choose
f (hu,hv; r) := ζ̃(Φ⊤hu,Φ

⊤hv; r), (27)

Zheng, He, Qiu, Wang, Wipf

where Φ and ζ̃ instantiate the gradient representation criteria for f̃M . From this it follows that

∂f (hu,hv; r)

∂hv
= Φf̃M (hu, r,hv)

∂f (hu,hv; r)

∂hu
= Φf̃M (hv, r

−1,hu). (28)

We may then choose µ
(l)
(u,r,v) := f̃M (h

(l−1)
u , r,h

(l−1)
v) ∈ Rd̃, and by adding up all gradient terms depending on a

given node v, we can produce the aggregation function a
(l)
v := f̃A({µ(l)

(u,r,v) : (u, r) ∈ Nv}) =
∑

(u,r)∈Nv
µ

(l)
(u,r,v),

noting that in certain cases r = r̄−1 for some other relation r̄ ∈ R. And by linearity of the aggregation, we can
later push Φ through to the update function (see below).

In this way, the gradient of ℓlow w.r.t. h(l−1)
v , excluding the (possibly) non-differentiable η term is given by

Φa
(l)
v + κ′(h

(l−1)
v ;xv). Given the Lipschitz continuous gradients of ζ̃, it follows that for a suitably small γ′ > 0,

there will always exist an upper bound of the form

ℓlow(H;W,G) ≤
∑
v∈V

1

2γσ(a
(l)
v)

[∥∥∥hv −
(
h(l−1)
v − γσ(a(l)

v)
[
Φa(l)

v + κ′(h(l−1)
v ;xv)

])∥∥∥2
2
+ η(hv)

]
+ C (29)

for all γ ∈ (0, γ′], where C is an irrelevant constant, σ is a preconditioner function, and we achieve equality iff
H = H(l−1). From this bound, we can construct an update function by taking a proximal step that is guaranteed
to reduce or leave unchanged ℓlow. The form is given by

f̂(h(l−1)
v ,a(l)

v ,xv) := prox
η,γσ(a

(l)
v)

(
h(l−1)
v − γσ(a(l)

v)
[
Φa(l)

v + κ′(h(l−1)
v ;xv)

])
, (30)

completing the proof.

F Accelerating BloomGML Convergence with Momentum/Hidden States

At the end of Section 3.3, we briefly alluded to retaining the expressiveness of (11) and the efficient message
passing structure of Definition 2 while accelerating convergence, meaning a smaller value of L will be adequate for
approximating a minimum of ℓlow. We fill in further details here. At a high level, this goal can be accomplished
through the use of additional hidden states S = {sv}v∈V ∈ Rn×d that instantiate momentum (Polyak, 1964). The
latter can mute the amplitude of oscillations in noisy gradients while traversing flatter regions of the loss surface
more quickly. A revised version of (11) festooned with momentum is given by

s(l) = βs(l−1) + (1− β)σ(a(l))
[
Φa(l) + κ′(h(l−1);x)

]
h(l) = proxη,γ

(
h(l−1) − γs(l)

)
, (31)

where β is an additional trade-off parameter.

Beyond the vanilla version of momentum given by (31), for reference we now define a more general formulation that
encompasses many well-known acceleration methods including AdaGrad (Duchi et al., 2011), RMSProp (Hinton
et al., 2012), and Adam (Kingma and Ba, 2014) as special cases.

To begin, let ℓlow be any differentiable energy function expressible as (8) with η = 0 (we omit handling the more
general case for brevity, although it can be derived in a similar way) and g

(l)
v := Φa

(l)
v + κ′(h

(l−1)
v ;xv) ∈ Rd.

Given auxiliary variables S = {sv}v∈V ∈ Rn×d and a coefficient β > 0, the iterative mapping2

s(l) = βs(l−1) + (1− β)ξ(g(l−1))

h(l) = h(l−1) − γσ(s(l))φ(g(l−1))
(32)

provides a general framework for accelerating convergence. Here ξ : Rd → Rd, and φ : Rd → Rd are linear
node-wise functions defined on g. σ(·) : Rd → R+ > 0 is an arbitrary positive function. Note that when k > 1

2We omit a subscript v in the following context for simplicity.

Graph Machine Learning through the Lens of Bilevel Optimization

auxiliary variables are involved, φ is extended to Rkd → Rd. Such an iterative mapping preserves the properties
of message-passing functions. To clarify this, let fU ′(h,a, s,x) denote the mapping defined in (32). For any
v ∈ V, we have h

(l)
v = fU ′(h

(l−1)
v ,a

(l)
v , s

(l−1)
v ,xv), which means one update step only takes information from

{v ∪Nv}. Also, av =
∑

(u,r)∈Nv
µ(u,r,v) is a permutation-invariant function by construction, which means fU ′ is

also permutation invariant over the sets of 1-hop neighbors.

Turning now to the remainder of this section, we verify that the vanilla momentum from above, as well as
AdaGrad, RMSProp, and Adam are all special cases of (32).

Momentum as Special Case. To show that vanilla momentum is a message-passing layer formed as a special
case of (32), we let ξ(g) = g, σ(s) = s, and φ = 1, then the mapping is given by

s(l) = βs(l−1) + (1− β)g(l−1),

h(l) = h(l−1) − γs(l).
(33)

which reproduces (31).

AdaGrad. Here we show AdaGrad (Duchi et al., 2011) is also a special case of (32). Let β = 0, ξ(g) = diag(ggT),

φ(g) = g, and σ(s) =
(
s(l) + ϵ

)− 1
2 where ϵ is a small constant to avoid division by zero. Then the updating rule

of AdaGrad is given by

s(l) = diag(g(l−1)(g(l−1))T),

h(l) = h(l−1) − γ
(
s(l) + ϵ

)− 1
2 ⊙ g(l−1).

(34)

Here the square root, inverse, and ⊙ are all element-wise operations.

RMSprop. RMSprop (Hinton et al., 2012) divides the gradient by a running average of its recent magnitude.

To show that it is also a special case of (32), let ξ(g) = g2, φ(g) = g, and σ(s) =
(
s(l) + ϵ

)− 1
2 . Then the updating

rule of RMSprop is

s(l) = βs(l−1) + (1− β)(g(l−1))2,

h(l) = h(l−1) −
(
s(l) + ϵ

)− 1
2 ⊙ g(l−1).

(35)

Adam. Adam (Kingma and Ba, 2014) requires two auxiliary variables s1 and s2. Let ξ1(g) = g, ξ2(g) = g2,

φ(g) = 1, and σ(s
(l)
1 , s

(l)
2) =

(√
s
(l)
1

1−βl
1
+ ϵ

)−1

· s
(l)
1

1−βl
2
. The updating rule of Adam is

s
(l)
1 = β1s

(l−1)
1 − (1− β1)g

(l−1),

s
(l)
2 = β2s

(l−1)
2 + (1− β2)(g

(l−1))2,

h(l) = h(l−1) − γ

√ s
(l)
1

1− βl
1

+ ϵ

−1

· s
(l)
1

1− βl
2

.

(36)

G More on Label Propagation and Graph-Regularized MLPs

In this section we pick up where we left off in Section 4.3, filling in details at the nexus of label propagation,
graph-regularized MLPs, and BloomGML.

G.1 Label Propagation as a BloomGML Special Case

Consider the lower-level energy given by

ℓlow(H;G) := λtr
(
H⊤LH

)
+
∥∥Ȳ −H

∥∥2
F +

∑
v∈V′

I∞[hv ̸= ȳv], (37)

Zheng, He, Qiu, Wang, Wipf

where L is the graph Laplacian of G and Ȳ ∈ Rn×d is constructed with ȳv = yv if v ∈ V ′ and ∥ȳv∥ = 0
otherwise. This form is a special case of BloomGML when we assume m = 1, f(hu,hv) = λ∥hu − hv∥22 with
λ > 0 a hyperparameter, and X = Ȳ, κ(hv;xv) = ∥hv − xv∥22 ≡ ∥hv − ȳv∥22. Furthermore, we generalize
η(hv) → η(hv;xv) ≡ η(hv; ȳv) and choose

η(hv; ȳv) = I[∥ȳv∥ ≠ 0]I∞[hv ̸= ȳ′
v], (38)

where we are implicitly assuming that ∥ȳv∥ ≠ 0 for any v ∈ V ′. The first two terms of (37) are smooth, while the
last enforces that embeddings for nodes with observable labels must equal those labels. We may minimize using
proximal gradient steps of the form

H(l) = proxη,γ

[
(1− γ)H(l−1) − γ

(
λLH(l−1) − Ȳ

)]
= PȲ

[
(1− γ)H(l−1) − γ

(
λLH(l−1) − Ȳ

)]
, (39)

where PȲ : Rn×c → Rn×c is a projection operator that leaves rows v /∈ V ′ unchanged, while setting rows v ∈ V ′

as hv → ȳv = yv. Several points are worth noting regarding this result:

• For different choices of γ and λ, as well as the possible inclusion of a gradient preconditioner, the update
from (39) can exactly reproduce various forms of label propagation (LP) (Zhou et al., 2003; Zhu, 2005),
which represents a family of semi-supervised learning algorithms designed to predict unlabeled nodes by
propagating observed labels across edges of the graph.

• As a representative LP example, we include a gradient preconditioner D−1 within (39), where D is the
diagonal degree matrix of G, and choose λ → ∞, γ → 0 such that λγ → 1. Then (39) reduces to the standard,
interpretable form

H(l) = PȲ

[
D−1AH(l−1)

]
, (40)

where A is the adjacency matrix of G.

• The input argument to PȲ [·] in (39) exactly reduces to (4) across all v ∈ V if we replace the π used in (4)
with the corresponding labels ȳv; this follows from the derivations presented in Section B. Moreover, the
node-wise projection operator PȲ merely introduces a nonlinear activation function which can be merged
into an update function f̂U . In this way, executing the LP model propagation steps induces node embeddings
analogous to those from a message-passing GNN architecture.

• If we include the η-based indicator term in (37), then w.l.o.g. we can actually remove the κ-based term and
still reproduce some notable LP variants. However, we include the general form for two reasons: (i) It will
facilitate more direct comparisons with graph-regularized MLP models below, and (ii) If we instead remove
the η-based indicator term, then we can nonetheless recoup other flavors of LP without a projection step by
retaining the κ-based term.

• There exist more exotic LP models that are not directly covered by (37), such as ZooBP (Eswaran et al.,
2017) and CAMLP (Yamaguchi et al., 2016), which include compatibility matrices to address graphs beyond
vanilla homogeneous structure. These can be accommodated by generalizing (37); however, we do not pursue
this course further here.

We close by noting that, LP methods traditionally do not have parameters W to train, and the motivation
for including an upper-level loss ℓup analogous to BloomGML may be unclear. However, recently trainable
variants have been proposed (Wang et al., 2022) that incorporate randomized sampling to mitigate label leakage.
BloomGML can cover many such cases by supplementing (37) with parameters that can be subsequently trained
using, for example, a node classification loss for ℓup.

G.2 Graph-Regularized MLPs, BloomGML, and Connections with LP

Graph-regularized MLPs (GR-MLP) represent a class of models typically applied to node classification tasks
whereby no explicit message-passing occurs within actual layers of the architecture itself (Ando and Zhang,

Graph Machine Learning through the Lens of Bilevel Optimization

2006; Hu et al., 2021; Zhang et al., 2023). Instead, a base model (like an MLP or related) is trained using a
typical supervised learning loss combined with an additional regularization factor designed to push together the
predictions of node labels sharing an edge. These models are often motivated by their efficiency at inference time,
where the graph structure is no longer utilized.

As a simple representative example,3 consider the loss

ℓ(W;G) := 1
2∥Ȳ −H∥2F + λ

2 tr
[
H⊤LH

]
, s.t. hv = π(xv;W) ∀v ∈ V. (41)

Here we are assuming that Ȳ is defined analogously as in Section G.1. In this expression, the first term
represents quadratic supervision applied to node labels Ȳ, while the second term introduces the eponymous
graph-regularization with graph Laplacian L. Within the constraint, π is some node-wise trainable model such as
an MLP. Hence model training amounts to learning a W such that the resulting node embeddings closely match
the given labels subject to smoothing across the graph. For this purpose, we take gradient steps

W(l) = W(l−1) − γ
∂ℓ(W;G)

∂W

∣∣∣∣
W=W(l−1)

, l = 1, . . . , L. (42)

We now show how these steps induce implicit message-passing GNN-like structure in certain cases, and later,
connect to label propagation. To see this effect in transparent terms, assume that π(x;W) = xW. Then we have

∂ℓ(W;G)
∂W

= X⊤ (H+ λLH− Ȳ
)
. (43)

From here we define H(l) := XW(l) such that the above gradient steps w.r.t. W produce a corresponding sequence
of embeddings given by

H(l) = H(l−1) − γXX⊤
(
H(l−1) + λLH(l−1) − Ȳ

)
. (44)

Provided that X is full column rank, we can assume w.l.o.g. that columns of X are orthonormal, i.e., X⊤X = I.
(This is possible because we can always convert non-orthonormal columns into orthonormal ones via an invertible
linear transformation that can be absorbed into W.) Consequently, we may directly conclude that XX⊤ = PX ,
where PX indicates an orthogonal projection to the range of X, denoted range[X]. We then provide the following
straightforward interpretations of this process:

• From the perspective of BloomGML, we can convert (41) to an equivalent ℓlow given by

ℓlow(H;W,G) := λ
2

∑
(u,v)∈E

∥hu − hv∥22 +
∑
v∈V

1
2 ∥hv − ȳv∥22 + I∞{H /∈ range[X]}, (45)

where we are treating the labels from Ȳ as auxiliary inputs to the κ function, and we are trivially generalizing
the non-smooth η function to apply across all of H while including a dependency on the original node features
from X. Additionally, the proximal gradient update for minimizing (45) is given by

H(l) = PX

[
(1− γ)H(l−1) − γ

(
λLH(l−1) − Ȳ

)]
, (46)

which is equivalent to (44) provided H(0) ∈ range[X]. Analogous to the LP derivations from Section G.1,
the input argument to PX [·] in (46) exactly reduces to (4) across all v ∈ V if we replace the π used in
(4) with the corresponding labels ȳv; this follows from the derivations presented in Section B. In this way,
training GR-MLP model weights induces node embeddings analogous to those from a message-passing GNN
architecture, the final projection operator notwithstanding.

• If d = n, then PX = XX⊤ = I and we are operating in an overparameterized regime where H = W. In this
special case, the iterations from (46) exactly reproduce LP from Section G.1, excluding the projection step
as some LP variants do.

• In the more typical setting with d < n, the lingering difference between (46) and LP hinges on the projection
operator being invoked, PX versus PȲ (where PȲ is defined in Section G.1; it is not equivalent to a projection
to range[Ȳ]). Which operator is to be preferred depends heavily on the quality of input features. If range[X]
closely aligns with range[Y] (the range space of the true label matrix), then PX will be preferable. In
contrast, when the relationship is closer to range[X] ⊥ range[Y], then PȲ will generally be superior.

3Admittedly, this example does not cover the full diversity of possible GR-MLP models in the literature. Nonetheless,
it remains a useful starting point for analysis purposes.

Zheng, He, Qiu, Wang, Wipf

G.3 Empirical Illustration of LP/GR-MLP Insights

To illustrate some of the concepts from the previous section, we conduct a simple experiment involving Cora
and Citeseer data. We choose π(x;W) = xW and train GR-MLP models based on (46) using (i) original node
features, and (ii) overparameterized features whereby d = n. We also compare with an LP model, excluding the
projection step for a more direct evaluation.

Node classification results from these experiments are shown in Table 6. The first two rows confirm the equivalence
between GR-MLP and LP for the reasons detailed in Section G.2. Furthermore, by examining the second and
third rows, we are able to observe how the quality of node features influences the efficacy of PX . Specifically,
it has been previously demonstrated that the features and labels of Cora nodes have minimal positive (linear)
correlation (Luo et al., 2021). Therefore, from Table 6 we see that the GR-MLP model using the original features
performs much worse than the overparameterized version. In contrast, with Citeseer where the input features are
more aligned with the labels, the original feature model significantly outperforms the overparameterized one.

Table 6: Node classification accuracy (%) comparisons. Results are averaged over 5 trials; error bars (not shown)
are negligible.

Cora Citeseer
Label Propagation 70.2 50.2
GR-MLP Overparam. 70.2 50.2
GR-MLP Original 60.4 64.1

H Model Implementation and Section 5 Experiment Details

In this section we provide further details regarding the experiments from Section 5.

Details for Table 1. Our implementation is based on modifications of the public codebase from Yang et al.
(2021). We adopt the hyperparameters they reported for all datasets. For BloomGML, we apply a vectorized
version of a Huber penalty in the form

δ(u) :=

d∑
i=1

{
1
2u

2
i , for |ui| < 1

|ui| − 1
2 , otherwise, (47)

where {ui}di=1 are the elements of the input vector u ∈ Rd. We then form the energy function

ℓlow(H;W,G) =
∑

(u,v)∈E

f(hu,hv; r) +
∑
v∈V

κ(hv;xv) =
λ

2

∑
(u,v)∈E

∥hu − hv∥22 +
∑
v∈V

δ (hv − π(xv;W)) , (48)

where the dependency of f on r is irrelevant for homogeneous graphs. Note that because (48) is smooth and
differentiable (i.e., the Huber loss is differentiable and the ℓ1 norm defaults to merely a summation since its
argument is non-negative), no η term is needed. Hence, we choose A as gradient descent for producing the
BloomGML model A[ℓlow, ·]. For ℓup we apply a standard node classification loss. We reproduce Table 1 from
the main text with error bars obtained from averaging over 10 trials; these results are presented in Table 7.

Table 7: Full version of Table 1 including error bars from averaging over 10 runs. Performance mitigating spurious input
features. Here the detect ratio is obtained by computing ∥hv − π(xv;W)∥2 for all v ∈ V and then segmenting out the
percentage of corrupted nodes within the largest 20%.

Cora Citeseer Pubmed Arxiv

Accuracy Base 54.97 ± 1.95 38.98 ± 1.96 45.67 ± 3.21 47.63 ± 0.23
BloomGML 65.83 ± 2.28 49.33 ± 1.95 72.70 ± 1.58 69.11 ± 0.23

Detect Ratio BloomGML 94.27 87.82 96.98 100.00

Graph Machine Learning through the Lens of Bilevel Optimization

Details for Table 2. Building on the results from above and the description in Section 5 in the main text, we
consider the generalized form

ℓlow(H;W,G) =
∑

(u,v)∈E

f(hu,hv; r) +
∑
v∈V

κ(hv;xv) =
λ

2

∑
(u,v)∈E

∥huC− hv∥22 +
∑
v∈V

δ (hv − π(xv;W)) . (49)

As before, this expression is differentiable so we can choose A as gradient descent with step-size parameter γ. All
of the hyperparameters were selected via Bayesian optimization using Wandb4 and we also provide the model
hyperparameters search space in Table 9. Note that we also found that it can be effective to simply learn λ, i.e.,
absorb it into W, which reduces the hyperparameter search space and can potentially even improve performance.
We show such supporting ablations in Section J.1.

In Table 8 we reproduce results from Table 2, including error bars from averaging over 10 runs and an additional
ablation. For the latter, we compare κ(h;x) = ∥h − π(x;W)∥22 labeled as BloomGML (w/o Huber) with the
κ(h;x) = δ (hv − π(xv;W)) implied within (49). From Table 8 we observe that the Huber version works better
on 4 of 5 datasets, the exception being Amazon where it is significantly worse. As one candidate explanation for
this exception, we note that the Amazon dataset has a significantly higher adjusted homophily ratio than the
other 4 datasets, where adjusted homophily is defined as in Platonov et al. (2022) (this metric is less sensitive to
the number of classes and their balance).

We also trained several standard GNN architectures, e.g., GCN and GAT, for reference purposes; however, we
found that their performance was considerably worse than the heterophily baseline architectures from Table 8
(and therefore Table 2 as well). This is in contrast to Platonov et al. (2023), which presents somewhat stronger
results associated with such popular architectures. However, this apparent contradiction can be resolved by
closer examination of the public implementations from Platonov et al. (2023). Here we observe that additional
modifications to the original models have been introduced to the codebase that can significantly alter performance.
While certainly valuable to consider, these types of enhancements can be widely applied and lie beyond the
scope of our bilevel optimization lens. Indeed the flexibility of BloomGML also readily accommodates further
architectural adjustments with the potential to analogously improve performance as well on specific heterophily
tasks.

Table 8: Full version of Table 2 including additional ablations and error bars from averaging over 10 runs. Node classification
on heterophily graphs. Following convention, accuracy (%) is reported for Roman and Amazon, while ROC-AUC (%) is
used for Minesweeper, Tolokers, and Questions. The numbers in the upper block are from Platonov et al. (2023).

Roman Amazon Minesweep Tolokers Questions Avg.
FAGCN 65.22 ± 0.56 44.12 ± 0.30 88.17 ± 0.73 77.75 ± 1.05 77.24 ± 1.26 70.50
FSGNN 79.92 ± 0.56 52.74 ± 0.83 90.08 ± 0.70 82.76 ± 0.61 78.86 ± 0.92 76.87
GBK-GNN 74.57 ± 0.47 45.98 ± 0.71 90.85 ± 0.58 81.01 ± 0.67 74.47 ± 0.86 73.38
JacobiConv 71.14 ± 0.42 43.55 ± 0.48 89.66 ± 0.40 68.66 ± 0.65 73.88 ± 1.16 69.38
Base from (3) 76.63 ± 0.24 52.37 ± 0.20 88.97 ± 0.05 80.91 ± 0.24 76.72 ± 0.49 75.12
BloomGML (w/o Huber) 84.45 ± 0.31 52.92 ± 0.39 91.83 ± 0.28 84.84 ± 0.27 77.62 ± 0.33 78.33
BloomGML (w/ Huber) 85.26 ± 0.25 51.00 ± 0.47 93.30 ± 0.16 85.92 ± 0.14 77.93 ± 0.34 78.68

Table 9: Model hyperparameters selection search space for Tables 2 and 3. For BloomGML (w/o Huber), λ is a
learnable parameter that is not searched by BO; see Section J.1 for an ablation on learning λ.

Hyperparameters Range for Table 2 Range for Table 3
L [2,4,6] [4, 8, 16]
λ [0.1 , 1, 5, 10] [0.01, 0.1 , 1, 10]
γ [0 , 0.5, 1] [0 , 0.1, 0.5, 1]
MLP layers before prop [0, 1, 2] [0, 1, 2]
Hidden size [128,256,512] [16, 64, 128]

4https://wandb.ai/site

Zheng, He, Qiu, Wang, Wipf

Details for Figure 1. To show the effect of BloomGML to have connected nodes with deviated embeddings,
we use a Huber penalty for the edge-dependent regularizer term leading to the energy function

ℓlow(H;W,G) =
∑

(u,v)∈E

f(hu,hv; r) +
∑
v∈V

κ(hv;xv) =
λ

2

∑
(u,v)∈E

δ(hu − hv) +
1

2

∑
v∈V

∥hv − π(xv;W)∥22 . (50)

For the experiments, we fixed the hidden embedding size to 1024, which gives the model more capacity for
handling heterphility, and we run Bayesian optimization with the same range as in the left block of Table 9 for
the remaining hyperparameters.

Details for Table 3. For these results involving heterogeneous graphs, we modify the codebase from the HALO
model (Ahn et al., 2022) and adopt κ(h;x) = δ(hv − π(xv;W)) or κ(h;x) = ω(hv − π(xv;W)), where ω is the
Log-Cosh loss given by

ω(u) :=

d∑
i=1

log(coshui). (51)

The hyperparameters we used are also selected via Bayesian optimization with Wandb; the search range is
provided in the right block of Table 9, for both HALO and BloomGML. Note that we observe negligible variance
in the test accuracies across different seeds, so we omit error bars from multiple runs.

Details for Table 4. We provide specifics directly tied to creating Table 4 here, while a more comprehensive
treatment of how NBFNet relates to BloomGML is deferred to Section I. Our implementation is based on
modifications of the public codebase from Zhu et al. (2021c), which involves (among other things) two trainable
linear transformations. The first involves parameters Wr and br used to create the relation embeddings for each
relation type via er = Wrqq +br, where qq is the query embedding. The other is Φ used to transform the output
of the aggregation function back to the embedding space. To satisfy the criteria of BloomGML, we modify the
code to share these weights across all layers. Performance results for RefactorGNN (Chen et al., 2022) were taken
from the original paper due to lack of publicly-available reproducible code for conducting our own comparisons.

Details for Table 5 and Figure 2. For Table 5, we modify the codebase from Yang et al. (2021) by using the
update step defined in (31). The components are chosen based on (4). The hyperparameters are chosen via grid
search over λ, γ and β. For Figure 2, we use the same set of hyperparameters for both SGD and BloomGML
(momentum), with the number of message-passing layers being 200.

I Exploring the Connection between NBFNet and BloomGML

Given a graph G = (V,R, E), let Gcq denote a conditional version with the same node, relation, and edge set, but
with node features Xcq = {xv,cq}v∈V and labels Ycq = {yv,cq}v∈V that depend on a fixed source node c ∈ V (in
this section c should not be confused with the class label dimension used elsewhere) and query relation q ∈ R. By
conditioning in this way, KGC or link prediction queries specific to c and q can be converted to node classification,
e.g. yv,cq = 1 if (c, q, v) is a true edge in the original graph. We may then later expand to unrestricted link
prediction tasks by replicating across all c ∈ V and q ∈ R. This is the high-level strategy of NBFNet.

In this section, we first show that given a graph Gcq described as above, an NBFNet-like architecture with
parameters shared across layers can be induced using BloomGML iterations of the form A[ℓlow, ·] for suitable
choice of energy ℓlow and A. For this purpose, we define the lower-level energy function as

ℓlow(Hcq;W,Gcq) := (52)∑
(u,r,v)∈Ecq

(
h⊤
v,cqΦhu,cq + h⊤

v,cqΦer + h⊤
u,cqΦer−1

)
+

1

2

∑
v∈Vcq

[
||Ψ 1

2hv,cq +Ψ− 1
2Φxv,cq||22 + η(hv,cq)

]
,

where Hcq = {hv,cq}v∈V are node embeddings and er := Wrq + br are relation embeddings, q is a so-called
shared query relation embedding (distinct from the relation index of query q), and Wr and br are trainable
parameters that are bundled within W along with Φ,Ψ ∈ Rd×d. Additionally, xv,cq := I(c = v)q for all v ∈ Vcq.
To ensure the gradient expressions are symmetric in form across relations and inverse relations, we require that Φ
and Ψ are symmetric matrices. However, it has been shown in Yang et al. (2022b) that in certain circumstances,

Graph Machine Learning through the Lens of Bilevel Optimization

asymmetric weights can be reproduced by symmetric ones via an appropriate expansion of the hidden dimensions.
Let

f(hu,cq,hv,cq; r) = h⊤
v,cqΦhu,cq + h⊤

v,cqΦer + h⊤
u,cqΦer−1 (53)

Then we have

∂f (hu,cq,hv,cq; r)

∂hv,cq
= Φhu,cq +Φer =: Φf̃M (hu,cq, r,hv,cq)

∂f (hu,cq,hv,cq; r)

∂hu,cq
= Φhv,cq +Φer−1 =: Φf̃M (hu,cq, r

−1,hv,cq)

(54)

Thus, the aggregated function is

av,cq =
∑

(u,r)∈Nv

f̃M (hu,cq, r,hv,cq) =
∑

(u,r)∈Nv,cq

(hu,cq + er) (55)

Next, let
κ(hv,cq;xv,cq) = ||Ψ 1

2hv,cq +Ψ− 1
2Φxv,cq||22 (56)

Then, by reintroducing η and adopting proximal gradient descent for A, we produce the message-passing function

µ
(l)
(u,r,v),cq := h(l−1)

u,cq + e(l−1)
r

a(l)v,cq :=
∑

(u,r)∈Nv,cq

µ
(l)
(u,r,v),cq

h(l)
v,cq := prox1,η

(
Φ
[
a(l)v,cq + xv,cq

]
+Ψh(l−1)

v,cq

)
.

(57)

This expression closely resembles an NBFNet model layer with summation aggregation.

Proceeding further, we extend the scope of our discussion to an expanded graph Gexp with node set Vexp and edge
set Eexp, where Gexp = ∪Gcq, ∀(c, q, ·) ∈ Eexp. Analogously, we define an extended energy function over Gexp as

ℓlow(H;W,Gexp) :=
∑

(c,q,·)∈Eexp

ℓlow(Hcq;W,Gcq)

=
∑

(c,q,·)∈Eexp

(∑
(u,r,v)∈Ecq

(
h⊤
v,cqΦhu,cq + h⊤

v,cqΦer + h⊤
u,cqΦer−1

)
+

1

2

∑
v∈Vcq

[
||Ψ 1

2hv,cq +Ψ− 1
2Φxv,cq||22 + η(hv,cq)

])
(58)

For elements in Ycq, positive instances correspond with true edges in the original graph, while negative instances
are obtained by sampling. With Yexp := ∪Ycq, we define an upper-level energy as

ℓup(W,Yexp; Θ) :=
∑

(c,q,·)∈Eexp

∑
v∈V′

cp

D
[
g
(
h(L)
v,cq(W); Θ

)
,yv,cq

]
, (59)

where V ′
cq represents the node set of each Gcq with observed labels. In this way, the resulting bilevel optimization

process can be viewed as instantiating a BloomGML node classification task on the expanded graph Gexp, with
architecture mimicking a specialized NBFNet-like model designed to minimize ℓlow.

J Additional Experiments

In this section we include additional ablations and further demonstration of the versatility of BloomGML.

Zheng, He, Qiu, Wang, Wipf

J.1 Ablation on Learning λ

There are two potential advantages to learning differentiable hyperparameters within ℓlow. First, relative to
hyperparameter tuning, it may be possible to boost performance. And secondly, even if performance improvements
are stubborn, by learning such hyperparameters, we economize the sweep over any remaining hyperparameters as
the effective search space has compressed along one dimension. In this regard, Table 10 shows results on the
heterophily datasets (and the same setup from Tables 2 and 8) with and without learning λ. From these results
we observe that learning λ produces reliable performance, suggesting that it can be trained instead of tuned (as a
hyperparameter) without sacrificing accuracy.

Table 10: Ablation on learnable λ. Accuracy results are obtained by averaging over 10 trials.

Roman Amazon Minesweep Tolokers Questions Avg.
w/o Huber 84.28 ± 0.63 52.76 ± 0.27 91.89 ± 0.25 84.66 ± 0.33 77.46 ± 0.30 78.21
w/o Huber (learnable λ) 84.45 ± 0.31 52.92 ± 0.39 91.83 ± 0.28 84.84 ± 0.27 77.62 ± 0.33 78.33
w/ Huber 85.26 ± 0.25 51.00 ± 0.47 93.30 ± 0.16 85.92 ± 0.14 77.93 ± 0.34 78.68
w/ Huber (learnable λ) 85.36 ± 0.36 51.32 ± 0.43 92.70 ± 0.60 85.86 ± 0.18 78.01 ± 0.45 78.65

J.2 Efficiently Enforcing Layernorm Using η

If for some reason we prefer to have a model with layer-normalized node embeddings, one option is to introduce a
penalty of the form (∥h∥22 − 1)2, absorb this factor into κ(h;x), and pthen roceed to minimize ℓlow using regular
gradient descent for A. However, this requires an additional trade-off hyperparameter, and if we want to be
arbitrarily close to the unit norm, convergence will become prohibitively slow. Alternatively, we can enforce
strict adherence to unit norm by choosing η(h) = I∞{∥h∥22 ̸= 1} and then adopt proximal gradient descent for
A to handle the resulting discontinuous loss surface. This involves simply taking gradient steps on all other
differentiable terms and then projecting to the unit sphere (i.e., the proximal operator). We compare these two
approaches in Figure 3, where proximal gradient descent converges far more rapidly. For the model without
proximal gradient descent, we add the penalty α(∥h∥22 − 1)2 to the energy from (3), where α is the trade-off
parameter; we choose α = 1 in Figure 3. For the model with proximal gradient descent, we project each node
embedding to the surface of a ball satisfying ||h||22 = 1.

Figure 3: ℓlow value versus the number of propagation steps in Roman dataset.

	Introduction
	Background
	Message Passing Graph Neural Networks
	Graph-Centric Bilevel Optimization
	Unresolved Limitations

	Towards More Flexible GNNs from Bilevel Optimization
	Canonical Form of MP-GNN Layers
	A Priori Constraint Approximating Message Functions fM or f"0365fM
	Approximating the Full Canonical Form via Energy Optimization

	On Broader Graph ML Regimes
	The General BloomGML Framework
	Knowledge Graph Embedding Models
	Other Graph ML Regimes

	Empirical Validation and Analysis
	Conclusion
	Appendix Overview
	Derivation of Message Passing Special Case from (4)
	Possibilities for Generalizing BloomGML Expressiveness
	Proof of Proposition 1
	Proof of Proposition 2
	Accelerating BloomGML Convergence with Momentum/Hidden States
	More on Label Propagation and Graph-Regularized MLPs
	Label Propagation as a BloomGML Special Case
	Graph-Regularized MLPs, BloomGML, and Connections with LP
	Empirical Illustration of LP/GR-MLP Insights

	Model Implementation and Section 5 Experiment Details
	Exploring the Connection between NBFNet and BloomGML
	Additional Experiments
	Ablation on Learning
	Efficiently Enforcing Layernorm Using

