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Abstract

The quality of explanations for the predictions
made by complex machine learning predictors
is often measured using insertion and deletion
metrics, which assess the faithfulness of the
explanations, i.e., how accurately the expla-
nations reflect the predictor’s behavior. To
improve the faithfulness, we propose inser-
tion/deletion metric-aware explanation-based
optimization (ID-ExpO), which optimizes dif-
ferentiable predictors to improve both the
insertion and deletion scores of the explana-
tions while maintaining their predictive ac-
curacy. Because the original insertion and
deletion metrics are non-differentiable with
respect to the explanations and directly un-
available for gradient-based optimization, we
extend the metrics so that they are differ-
entiable and use them to formalize insertion
and deletion metric-based regularizers. Our
experimental results on image and tabular
datasets show that the deep neural network-
based predictors that are fine-tuned using
ID-ExpO enable popular post-hoc explain-
ers to produce more faithful and easier-to-
interpret explanations while maintaining high
predictive accuracy. The code is available at
https://github.com/yuyay/idexpo.

1 Introduction

Complex machine learning predictors, such as deep
neural networks (DNNs), have become indispensable
components of many modern AI systems because of
their remarkable predictive accuracy. In addition to
having high predictive accuracy, it has been crucial
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in AI systems for medical diagnostics (Holzinger et
al., 2017), autonomous driving (Omeiza et al., 2022),
cybersecurity (Capuano et al., 2022), e-commerce (Y.
Zhang et al., 2020), etc., to explain the rationale for
the predictor’s behavior so that users can trust the
AI system. Such explanations also help researchers
and developers to identify flaws caused by biases in
training datasets (Stein et al., 2023) and the errors
in implementation and modeling (Lertvittayakumjorn
et al., 2021).

To understand the behavior of a predictor, it is crucial
to know what features are essential to the individual
predictions produced by the predictor and to what ex-
tent they are essential. To obtain the explanations,
researchers and practitioners rely on post-hoc explain-
ers or use inherently interpretable predictors instead
of opaque predictors. Popular post-hoc explainers in-
clude local interpretable model-agnostic explanations
(LIME) (Ribeiro et al., 2016), kernel Shapley additive
explanations (KernelSHAP) (Lundberg et al., 2017),
and gradient-weighted class activation mapping (Grad-
CAM) (Selvaraju et al., 2020). One advantage of using
such post-hoc explainers is that they can focus on de-
veloping predictors that achieve the highest accuracy
because they place few constraints on the architecture
of the predictors. Inherently interpretable predictors
make predictions and offer explanations for those pre-
dictions in a single model. These include classical
models, such as generalized additive models (Hastie
et al., 1986) and recent DNN-based models (Alvarez
Melis et al., 2018).

Explanations for predictions can be obtained using the
above approaches. Are these explanations appropriate?
There are several evaluation metrics that assess, from
different perspectives, the quality of explanations. How
correctly explanations reflect the predictor’s behavior
is measured with faithfulness of the explanations. To
evaluate the faithfulness, insertion and deletion metrics
have been widely used in the literature (Petsiuk et al.,
2018; Gevaert et al., 2022). Intuitively, these metrics
are calculated on the assumption that if the features,
e.g., the pixels in an image, which are deemed important

https://github.com/yuyay/idexpo


Explanation-based Training with Differentiable Insertion/Deletion Metric-aware Regularizers

to the explanation are truly important to the predictor,
the presence or absence of the features should strongly
affect the output of the predictor. If the insertion and
deletion scores are both excellent, then we assume the
explanation is faithful to the predictor.

The present study enables explainers to generate more
faithful explanations with better insertion and dele-
tion scores. To this end, we propose insertion/dele-
tion metric-aware explanation-based optimization (ID-
ExpO), which is a framework for optimizing predic-
tors to improve both the insertion and deletion scores
of the explanations produced by the explainers while
maintaining the predictive accuracy of the predictors.
Because the original insertion and deletion metrics are
non-differentiable with respect to the explanations and
are directly unavailable for gradient-based optimization,
we extend the metrics so that they are differentiable,
and we use them to formalize the insertion and deletion
metric-based regularizers. By optimizing the predictors
based on the standard prediction loss together with
our regularizers simultaneously, ID-ExpO equips the
predictors with capabilities that both produce accu-
rate predictions and enable the explainers to produce
more faithful explanations. ID-ExpO can be applied to
both post-hoc explainers and inherently interpretable
models because it does not require any change in the
architecture of the predictors. In general, the post-
hoc explainers are modeled differently than predictors.
For example, the LIME explainer approximates the
predictor’s behaviors using linear models around indi-
vidual input data points, and the Grad-CAM explainer
produces the explanation (saliency map) by aggregat-
ing the feature maps of the predictor’s internal layer
differently from the inference process of the predictor.
Owing to these differences, the explanations by the
post-hoc explainers are likely not to reflect the actual
feature contributions in the predictor. Therefore, in
this study, we focus on employing ID-ExpO to improve
the post-hoc explainers and present its implementa-
tions for perturbation-based explainers, such as LIME
and KernelSHAP, and gradient-based explainers, such
as Grad-CAM.

In experiments on image and tabular datasets, we
demonstrate the effectiveness of fine-tuning DNN pre-
dictors based on ID-ExpO compared with that of the
existing stability-aware and fidelity-aware explanation-
based optimization (Plumb et al., 2020) and the stan-
dard fine-tuning approach. The experimental results
show that ID-ExpO significantly improves the insertion
and deletion scores on all the datasets while maintain-
ing high predictive accuracy. In a qualitative evaluation,
we show that, by calculating our regularizers with only
the top 30% or 50% of important features in explana-
tions, the explanations for the predictor trained using

ID-ExpO highlight the appropriate parts of features
well.

2 Related Work

Existing Explainers. To interpret feature contribu-
tions in the individual predictions of complex machine
learning models, various types of post-hoc explainers
have been proposed, such as gradient-based explainers
(including some of the CAM-based ones) (Selvaraju
et al., 2020; Chattopadhay et al., 2018; Fu et al.,
2020; Jiang et al., 2021), perturbation-based explain-
ers (Ribeiro et al., 2016; Lundberg et al., 2017; Zhao
et al., 2021), and occlusion-based explainers (Petsiuk
et al., 2018; Wang et al., 2020). One advantage of
using the proposed method is that it enables an im-
provement in the explanations by the existing post-hoc
explainers without changing their formulation, as long
as the explainers are differentiable. Some studies on
the post-hoc explainers have proposed approaches that
optimize or select explanations so that the features that
are deemed important to the explanations contribute
to better prediction (Petsiuk et al., 2018; Fong et al.,
2019; H. Zhang et al., 2023). However, H. Zhang et al.
(2023) reported that their proposed method, one of
those explainers, did not improve the insertion and
deletion scores. Another approach for this purpose
is to use inherently interpretable predictors (Molnar,
2022), including generalized additive models (Hastie
et al., 1986) and DNN-based models (Alvarez Melis et
al., 2018; Agarwal et al., 2021; Yoshikawa et al., 2022),
which can achieve both high predictive accuracy and
transparency. Several studies have proposed inherently
interpretable DNN-based predictors whose attention
maps and feature weights, which produce explanations,
affect predictions and optimize them to improve the
predictive accuracy (Schwab et al., 2018; Fukui et al.,
2019; Iida et al., 2022). Because explanations that
lead to higher accuracy do not always result in better
insertion and deletion scores, it is expected that the
proposed method will also be helpful for the inherently
interpretable predictors.

Evaluation Metrics for Explanation. The ground
truths of explanations are rarely observed because they
are inside the complex predictor we would like to un-
derstand. Therefore, many studies have assessed expla-
nations quantitatively using various proxy evaluation
metrics (Zhou et al., 2021). In computer vision litera-
ture, insertion and deletion metrics are widely used to
evaluate the faithfulness of the explanations (Petsiuk
et al., 2018; Gevaert et al., 2022). Several evaluation
metrics that are related to insertion and deletion met-
rics have been proposed, such as sensitivity-n (Ancona
et al., 2018), increase and drop rates (Chattopadhay
et al., 2018; Ramaswamy et al., 2020), and the iterative
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removal of features (IROF) (Rieger et al., 2020). For
tabular data, stability (Alvarez Melis et al., 2018), sen-
sitivity (Ghorbani et al., 2019), and faithfulness (Bhatt
et al., 2021), which is another formulation for the in-
sertion and deletion metrics, have been measured. Al-
though insertion and deletion metrics have not been
used frequently for tabular data, employing these met-
rics on tabular data is beneficial for evaluating the
combinatorial effects of features on prediction.

Explanation-Based Optimization. Our study was
inspired by the work of Plumb et al. (2020). They pro-
posed an explanation-based optimization to improve
the fidelity (Ribeiro et al., 2016) and stability (Al-
varez Melis et al., 2018) of the explanations produced
by perturbation-based post-hoc explainers for tabu-
lar data. The main differences between the proposed
method and their method are threefold: The proposed
method 1) aims to improve the faithfulness of the ex-
planations by optimizing the insertion and deletion
metrics, which are different from the fidelity and sta-
bility metrics; 2) is applicable to several data types,
including images and tabular data; and 3) is effective for
both perturbation-based and gradient-based explainers.
Ismail et al. (2021) proposed saliency-guided training,
which optimized predictors such that the predictions
between an original input and an input in which some of
the pixels were masked according to the gradient-based
explanations were similar. Unlike our method, their
method did not optimize the explanations to improve
the insertion and deletion metrics.

3 Proposed Method

For the sake of concreteness, we consider a multiclass
image classification task because the insertion and dele-
tion metrics for this kind of task are widely used in the
image domain. Note that the proposed method can be
applied to other data, such as text and tabular data,
with slight changes.

Problem Formulation. We are given an image
x ∈ X ⊆ RC×H×W of the number of channels C,
height H, and width W , which can be classified to
a class within the set of classes Y = {1, 2, · · · , L}.
In addition, we have a pretrained trained predictor
fθ : X → [0, 1]L, e.g., a deep neural network, which
outputs the probabilities of the classes, where θ is the
set of model parameters. We assume that the outputs
of fθ are normalized by the softmax function. Next,
we want to explain the prediction ŷ = argmaxlfθ(x)l
produced by fθ using the given post-hoc explainer e,
e.g., LIME, KernelSHAP, and Grad-CAM. Here, the
post-hoc explainer e outputs pixel-level contributions
(an explanation) φŷ ∈ RH×W for image x and pre-
dicted label ŷ, i.e., φŷ = e(x, fθ; ŷ), where a larger

positive value within φŷ means that its corresponding
pixel is of greater importance to label ŷ. In addition,
in LIME and KernelSHAP, a large negative value in φŷ

indicates that its corresponding pixel is not associated
with label ŷ. When we do not need to specify the label,
we denote the explanation as φ ∈ RH×W .

With the above setup, our goal is to optimize (i.e.,
fine-tune) predictor fθ on labeled data to force post-
hoc explainer e to produce faithful explanations with
the best insertion and deletion scores while maintain-
ing the predictor’s inherent predictive capability. To
achieve our goal, we assume that predictor fθ and
post-hoc explainer e are differentiable. This assump-
tion is commonly used because the DNN predictors
trained through backpropagation are differentiable, and
most post-hoc explainers, including perturbation-based,
gradient-based, CAM-based, and occlusion-based ex-
plainers, are also differentiable.

Preliminaries: Insertion and Deletion Metrics.
The insertion and deletion metrics are widely used to
assess the faithfulness of an explanation. In particular,
the insertion metric evaluates the increase in the pre-
dicted probability for a target label when pixels that
are deemed important to the explanation are gradually
added to a blank image. Conversely, the deletion met-
ric evaluates the decrease in the predicted probability
for the target label when such important pixels are
gradually deleted from the input image. Therefore, if
the insertion score is high and the deletion score is low,
we can say the explanation is faithful to the predictor.
More formally, for image x ∈ X and label y ∈ Y, the
insertion and deletion metrics are defined as follows:

InsS(x, y,φ
y, b; fθ) =

1

S

S∑
s=1

fθ(α(x;φ
y, b, s))y, (1)

α(x;φy, b, s)ijk =

{
xijk, (j, k) ∈ arg top-s(φy)

bijk, otherwise
,

(2)

DelS(x, y,φ
y, b; fθ) =

1

S

S∑
s=1

fθ(β(x;φ
y, b, s))y, (3)

β(x;φy, b, s)ijk =

{
bijk, (j, k) ∈ arg top-s(φy)

xijk, otherwise
,

(4)

where S ∈ {1, 2, · · · ,HW} is the number of pixels
that are used to evaluate these metrics. Although S
is typically set to HW , in some studies, S is a smaller
value than HW , e.g., 3.6%, 30%, and 50% of HW (Q.
Zhang et al., 2021; Huber et al., 2023; Zeng et al., 2022),
because some of the pixels in the image are often critical
to correct classification. Here, s can be incremented
by a positive integer that is larger than one to reduce
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the number of times that fθ is applied. arg top-s(φy)
outputs a set of s pairs of coordinate indices with
the top-s values in φy. b ∈ X is background values,
e.g., channel-wise mean values calculated over all the
training images. α : X → X and β : X → X are mask
functions that mask a part of the pixels according to
φy and replace them with background values b. The
difference between these metrics lies in the choice of
the mask functions. The insertion metric masks the
pixels other than arg top-s(φy) using α, whereas the
deletion metric masks the pixels in arg top-s(φy) using
β. The insertion and deletion scores range between 0
and 1, where higher insertion scores and lower deletion
scores, respectively, are better.

3.1 Insertion/Deletion Metric-Aware
Explanation-Based Optimization
(ID-ExpO)

Although the insertion and deletion metrics are used
to assess explainers in the literature, we consider using
them to optimize predictor fθ such that the explana-
tions by explainer e have higher insertion scores and
lower deletion scores. We expect that such an opti-
mization will furnish two benefits: 1) the explainer
can produce feature contributions that are more faith-
ful to the predictor’s behaviors; 2) the explainer can
clearly separate the important pixels from the less im-
portant ones in the explanation. However, as these
metrics are non-differentiable with respect to φ due
to the arg top-s operation in the mask functions, we
cannot use them directly to optimize fθ with gradient-
based optimization, such as stochastic gradient descent
(SGD).

To solve this problem, we present differentiable inser-
tion and deletion metrics with soft mask functions. We
rewrite the mask functions in (2) and (4) as follows:

α(x;φ, b, s)ijk =

{
xijk, φjk ≥ sth-val(φ)
bijk, otherwise

, (5)

β(x;φ, b, s)ijk =

{
bijk, φjk ≥ sth-val(φ)
xijk, otherwise

, (6)

where sth-val(φ) indicates the sth largest value in φ.
Here, the reformulation is equivalent to (2) and (4),
except in the case where the same value as sth-val(φ)
exists in φ. The mask functions (5) and (6) are step
functions that distinctly switch between xijk and bijk
using the value of sth-val(φ) as a boundary, which
are non-differentiable at the boundary and they have
zero derivatives elsewhere. To make them smooth, we
approximate (5) and (6) with soft step functions as

follows:

αsoft(x,φ; b, s)ijk = r(φjk; s)xijk + (1− r(φjk; s))bijk,
(7)

βsoft(x,φ; b, s)ijk = r(φjk; s)bijk + (1− r(φjk; s))xijk,
(8)

where r(φjk; s) ∈ [0, 1] is defined as r(φjk; s) =
σ (T · (φjk − ts)). σ is a sigmoid function, T > 0 is
a temperature parameter, and ts is the boundary value
for the s-th largest value in φ and is calculated as
ts = (sth-val(φ) + (s+1)th-val(φ)) /2. Here, if T = ∞,
then (7) and (8) are equivalent to (5) and (6), re-
spectively. Using (7) and (8) as the mask functions
in (1) and (3), respectively, we obtain the insertion and
deletion metrics that are differentiable with respect to
φ.

On the basis of the differentiable insertion and deletion
metrics, we define insertion and deletion metric-based
regularizers that regularize the predictor to maximize
the insertion scores and minimize the deletion scores,
as follows:

ΩIns(φ
y, fθ;x, y, b) = − 1

S

S∑
s=1

log fθ(αsoft(x,φ
y; b, s))y,

(9)

ΩDel(φ
y, fθ;x, y, b) = − 1

S

S∑
s=1

log
fθ(x)y

fθ(βsoft(x,φ
y; b, s))y

,

(10)

where we use log fθ instead of using fθ directly for
numerical stability. We attempted three types of for-
mulations using the deletion metric-based regularizer.
Consequently, (10) achieved the high performance, as
shown in Appendix A.

During the training, we used an fθ that had been pre-
trained in a supervised learning manner, and we fine-
tuned it using the regularizers together with the stan-
dard prediction loss. In particular, given N training
samples {(xn, yn)}Nn=1 where xn ∈ X and yn ∈ Y, we
solve the following minimization problem using SGD:

argmin
θ

N∑
n=1

`CE(fθ(xn), yn) + λ1ΩIns(φ
yn
n , fθ;xn, yn, b)

+λ2ΩDel(φ
yn
n , fθ;xn, yn, b) + λ3‖φyn

n ‖22,
(11)

where `CE(fθ(xn), yn) is the cross-entropy loss between
the prediction fθ(xn) and the label yn; λ1, λ2, and λ3

are hyperparameters; λ1, λ2 ≥ 0 are the weights for the
regularizers, respectively. ‖φyn

n ‖22 is an L2 regularizer
to prevent the divergence of φyn

n , and λ3 ≥ 0 is its
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Forward Backward

… …

Eq.
(12)

M
ask super-pixels

LIME/KernelSHAP Explainer    

… Eq.
(13)

Grad-CAM Explainer    
Feature 

maps

Gradients w.r.t. 
feature maps

Figure 1: Overview of the forward and backward computations during training using ID-ExpO. (Left) the entire
computational flow for each training sample (xn, yn). The computation flows inside the (center) LIME/Ker-
nelSHAP and (right) Grad-CAM explainers. Here, the red double line in Grad-CAM indicates that it computes
second-order derivatives when it updates predictor fθ, as it uses the gradients w.r.t. feature maps to obtain φ.

weight1. The left side of Figure 1 illustrates an overview
of forward and backward computations involved in
executing (11).

Because φyn
n is obtained using the post-hoc explainer

e(xn, fθ; yn), the implementation of (11) depends on
which post-hoc explainer we use. Below, we de-
scribe the implementations of perturbation-based and
gradient-based explainers.

ID-ExpO for Perturbation-Based Explainers.
The perturbation-based explainers for an image learn
interpretable functions that capture the relationship
between the predictor’s inputs and outputs using per-
turbations around the image. The representative
methods for the perturbation-based explanation are
LIME and KernelSHAP, which calculate pixel-level
contributions using the coefficients of linear regression
models that have been learned on the perturbations
around the input image. We illustrate the computa-
tional flow of these explainers at the center of Fig-
ure 1. First, we partition the image into D super-
pixels. Then, we generate M binary random vectors
where the mth vector is denoted by zm ∈ {0, 1}D,
and its lth element of that vector indicates whether
its corresponding superpixel is masked (zml = 0) or
not (zml = 1). According to zm, we obtain the
masked perturbed image x̃m from the original image
x. Where Z = [z1, z2, · · · , zM ]> ∈ {0, 1}M×D and
f̃y = [fθ(x̃m)y]

M
m=1, the LIME and KernelSHAP ex-

plainers calculate the pixel-level contributions by first
solving the weighted least-squares problem and then
expanding the obtained coefficients into the pixels of

1Because our regularizers encourage separating impor-
tant pixels from less important ones, the feature contribu-
tions for the important pixels may become larger, and those
for the less important ones may become smaller (negatively
larger). Therefore, we add λ3‖φyn

n ‖22 to avoid the diver-
gence of φyn

n , which may adversely affect the predictor’s
parameter update.

the image, as follows:

e(x, fθ; y) = expandD→H×W

(
(Z>KZ+εID)−1ZKf̃y

)
,

(12)
where expandD→H×W is a function that expands the
contribution assigned to each of D superpixels to the
pixels associated with the superpixel. K is a diagonal
matrix of size M × M whose (m,m)-element is the
kernel value between a D-dimensional all-ones vector
and zm. ID is an identity matrix of size D, and ε ≥
0 is the hyperparameter of the L2 regularizer. The
key difference between LIME and KernelSHAP is the
kernel function used to compute K: LIME uses an
L2 kernel (for images), whereas KernelSHAP uses a
Shapley kernel.

ID-ExpO for Gradient-Based Explainers. One
of the most popular gradient-based explainers is Grad-
CAM. We illustrate the computational flow of the Grad-
CAM explainer on the right side of Figure 1. Grad-
CAM obtains nonnegative pixel-level contributions by
calculating the activation map for the intermediate
layers of predictor fθ. Typically, convolutional neural
networks are used as the predictors. To compute the
activation map, Grad-CAM uses the feature maps from
a convolution layer of the CNN predictor, which are
denoted by A ∈ RC′×H′×W ′ where C ′, H ′ and W ′ are
the number of channels, height, and width of the fea-
ture maps, respectively. In addition, it calculates the
gradient for the output of the CNN predictor with re-
spect to each element in the feature maps, i.e., ∂fθ(x)y

∂Ai′j′k′
.

Using them, the Grad-CAM explainer calculates the
activation map M ∈ RH′×W ′

≥0 for label y, followed by
the pixel-level importance from M , as follows:

e(x, fθ; y) = expandH′×W ′→H×W

(
ReLU

( C′∑
i′=1

ωy
i′Ai′

)
︸ ︷︷ ︸

=M

)
,

(13)
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where

ωy
i′ =

1

H ′W ′

H′∑
j′=1

W ′∑
k′=1

∂fθ(x)y
∂Ai′j′k′

. (14)

Here, expandH′×W ′→H×W , as with that in (12), ex-
pands the (j′, k′)-element of the activation map M
to its corresponding pixels on the image; ReLU is the
rectified linear unit.

For Data Other Than Images. ID-ExpO is
also available for cases where the input data is a Q-
dimensional vector x ∈ X ⊆ RQ, e.g., text classification
and tabular classification, whose qth dimension repre-
sents the qth feature value. In these cases, we replace
ijk and jk in (1)–(10) specifying indices in an image
with q ∈ {1, 2, · · · , Q}. In addition, the maximum
value of S becomes Q instead of HW .

Missingness Bias. When we produce explanations
by perturbation-based explainers and evaluate explana-
tions using insertion/deletion metrics, we mask some
of the pixels in the input image. This input masking
causes a problem called missingness bias, which means
that the masked images are left out of the training
input distribution. Jain et al. (2022) reported that
missingness bias causes the explanations by LIME not
to be aligned with human intuition, and that training
the model with random masking augmentation mit-
igates the problem. Our regularizers, (9) and (10),
evaluate the predictive loss, log f(·), when some of the
input pixels are masked; this has effects similar to the
training with random masking augmentation. There-
fore, our regularizers naturally manage the missingness
bias.

Computational Complexity. The computational
time complexity of the forward computation for up-
dating the predictor’s parameters once is O(B(E + S))
in our framework, where B is the batch size, E is the
computational time complexity for the generation of
an explanation by the explainer, and S is the number
of times that the predictor is applied in Eqs. (9) and
(10). M depends on the explainer used. For LIME and
KernelSHAP, E indicates the computational time com-
plexity of Eq. (12), O(M+D3), where M is the number
of predictions executed for perturbed images, and D is
the number of superpixels. For Grad-CAM, E indicates
the computational time complexity of Eq. (13), which
is determined by the choice of predictor.

4 Experiments

We conducted experiments on two image datasets and
six tabular datasets to evaluate the effectiveness of
our ID-ExpO in the case of using LIME, KernelSHAP
and Grad-CAM as post-hoc explainers. Due to length
limitations, we report the results of the image classi-

fication task in this section and those of the tabular
classification task in Appendix C. Our implementation
is based on PyTorch v.1.13, and the experiments were
performed on a computer consisting of an Intel Xeon
Platinum 8360Y CPU, an NVIDIA A100 SMX4 GPU,
and 512 GB of RAM.

Comparing Methods. We compared the pro-
posed method (ID-ExpO) with the following meth-
ods: stability-aware explanation-based optimization
(ExpO-S), fidelity-aware explanation-based optimiza-
tion (ExpO-F), and fine-tuning without explanation
regularizers (`CE-only). ExpO-S and ExpO-F were
based on the study in (Plumb et al., 2020). They
aimed to improve the stability and fidelity of explana-
tions produced by perturbation-based explainers such
as LIME. ExpO-S learns the predictor with a regular-
izer so that the outputs of the predictor do not change
for neighborhoods of the input. ExpO-F learns the
predictor with another regularizer so that the outputs
of the predictor for the neighborhoods are fitted with
a local linear function. Because the original ExpO-S
and ExpO-F were not intended for use on image data,
we modified the ExpO-S and ExpO-F to apply to both
image and tabular data, as described in Appendix B.1.
`CE-only learns the predictor without any regularizer
of explanation, which is equivalent to optimizing (11)
with λ1 = λ2 = λ3 = 0.

Evaluation. We quantitatively assessed the pro-
posed method and the comparing methods in terms of
predictive accuracy, insertion score (1), and deletion
score (3). Here, we set S to 30% or 50% of the number
of features (pixels), which is the same value as that
used by our regularizers (9) and (10). Instead of the
deletion score, we use the one-minus-deletion score,
which is calculated by subtracting the deletion score
from one, for readability. Furthermore, to check if the
proposed method improves other faithfulness metrics
that are not optimized directly, we also assessed expla-
nations in sensitivity-n (Ancona et al., 2018), which
evaluates how much, when n features are randomly
removed, the sum of the contributions of the removed
features correlates with the decrease in the predicted
confidence.

As the criterion used for model selection and for moni-
toring the progress of the training, we used the valida-
tion score function defined as follows:

valscore(fθ; η) = η · Acc(fθ) + Ins(fθ) + 1− Del(fθ),
(15)

where Acc(fθ), Ins(fθ), and Del(fθ) indicate predictive
accuracy, average insertion score, and average deletion
score for the validation set for the predictor with current
parameters fθ, respectively. η ≥ 0 is an accuracy weight
used to control the ratio of predictive and explanatory
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capabilities. Unless otherwise noted, we set η = 2,
which indicates that the predictive and explanatory
capabilities should be equally evaluated.

4.1 Image Classification

Datasets. We used two standard benchmark image
classification datasets, CIFAR-10 (Krizhevsky et al.,
2009) and STL-10 (Coates et al., 2011). CIFAR-10
contains 60,000 color images having a resolution of
32x32, classified into ten distinct classes. There were
originally 50,000 labeled images for training and 10,000
labeled images for testing. In our experiment, we left
10,000 images in the original training set for validation.
STL-10 consists of color images having a resolution of
96x96, with ten classes and 1,300 images per class. It
originally provided 5,000 labeled images for training
and 8,000 labeled images for testing. In our experi-
ment, we left 500 images in the original training set for
validation.

Implementation. We used ResNet-18 (He et al.,
2016) as a predictor. We trained it in advance on each
training set using the standard supervised learning,
with data augmentation via random horizontal flipping
and random cropping. For the LIME explainer, we first
partitioned the image into square-shaped superpixels
of different sizes, depending on the dataset. We used
the superpixels of size 4x4 for 32x32 pixel images in
CIFAR-10, and we used the superpixels of size 12x12
for the 96x96 pixel images in STL-10. Therefore, the
number of superpixels was set to D = (32/4)2 = 64
for CIFAR-10 and D = (96/12)2 = 64 for STL-10. We
also used D as the constant to increment s because
each pixel in a superpixel has the same contribution
value. We generated M = 200 perturbations and we
set ε = 0.01 in (12). For the Grad-CAM explainer,
we used the feature maps of the conv3_x and conv4_x
building blocks in ResNet-18 for CIFAR-10 and STL-
10, respectively. The sizes of the feature maps were 8x8
for CIFAR-10 and 6x6 for STL-10. Depending on these
sizes, we decided s to increment by 16 for CIFAR-10
and by 256 for STL-10.

The hyperparameters in ID-ExpO were λ1, λ2 and λ3

in (11), and the temperature parameter T . For the
experiments in this study, we used the same value λ12

for λ1 and λ2. We determined the best hyperparam-
eter values in the ranges of λ12 ∈ {0.1, 0.01, 0.001}
and λ3 ∈ {0.001, 0} based on (15). T in the soft step
function r ensures that its value does not approach
zero or one. Because the appropriate value of T is
different for different samples, we determined it as
T =

(
1

#(φ)−1 (max(φ)−min(φ))
)−1

for each sample,
where #(φ) is the number of elements with nondu-
plicated values in φ. The hyperparameter in each

Figure 2: Mean insertion and mean one-minus-deletion
scores against accuracy on CIFAR-10 in the case of
S = 0.5 ·HW . The top row shows the results for LIME,
and the bottom row shows the results for Grad-CAM.
Each point indicates the result for the hyperparameters
chosen on the basis of (15) with a different accuracy
weight η ∈ {0.5, 1.0. · · · , 3.0} (different η values can be
plotted in the same location). The higher the score,
the better.

of ExpO-S and ExpO-F, which is the strength of its
own regularizer, is determined as the best one in the
range of {0.1, 0.01, 0.001} based on (15). There are
no hyperparameters specific to `CE-only. For the op-
timizer, we used an SGD optimizer with a minibatch
size of 128, a momentum factor of 0.9, a weight decay
of 0.0005, and Nesterov momentum. Its learning rate
was determined on the basis of (15) within the range
of {10−4, 10−5}. The training continued for 50 epochs
or the value of valscore(fθ; 2) did not increase for ten
consecutive epochs.

4.1.1 Results

Figure 2 shows the insertion and one-minus-deletion
scores against the predictive accuracy on CIFAR-10.
Here, the scores are averaged over all the samples in the
test set. ID-ExpO achieved the best insertion and dele-
tion scores among the results. This fact indicates that
the insertion and deletion metric-based regularizers
used in ID-ExpO are effective, although the stability-
aware regularizer in ExpO-S and the fidelity-aware reg-
ularizer in ExpO-F are not suitable for improving those
scores. In terms of predictive accuracy, ID-ExpO was
comparable with `CE-only when η was controlled in (15)
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to achieve the highest accuracy, e.g., for η = 3, the
insertion and deletion scores of ID-ExpO were better
than those of `CE-only. Similar results were observed
in the case of S = 0.3 ·HW and on STL-10, as shown
in Appendix B.2.

As described in Section 3.1, the regularizers in ID-ExpO
naturally make predictors robust to the missingness
bias. Missingness bias can unfairly make the insertion
and deletion scores of the comparing methods better
than those of ID-ExpO because the predictors that
are sensitive to the bias may greatly change thier pre-
dictions, even if unimportant pixels are inserted in or
masked out. Therefore, the fact that ID-ExpO achieved
the best insertion and deletion scores indicates that
the regularizers in ID-ExpO are effective in improving
the faithfulness of explanations.

To investigate the impact of the proposed and the
existing optimization methods on a faithfulness metric
other than insertion/deletion metrics, we also evaluated
the produced explanations in terms of sensitivity-n
metric in Figure 3, which ID-ExpO does not directly
optimize2. The figure shows that ID-ExpO consistently
improved in terms of the sensitivity-n metric on CIFAR-
10 and STL-10, whereas ExpO-S and ExpO-F did not.
This result indicates that ID-ExpO does not overfit the
insertion and deletion metrics, and can improve the
faithfulness of explanations from various perspectives.

Figure 4 shows how much the insertion and deletion
scores of individual samples changed before and after
we fine-tuned the predictor based on each method.
In ID-ExpO, ExpO-S, ExpO-F, and `CE-only, 57.8%,
41.9%, 38.7% and 34.6% of samples were located in the
first quadrant, respectively. Because the first quadrant
means that the changes in the insertion and one-minus-
deletion scores are both positive, we found that ID-
ExpO was the most effective in making explanations
more faithful. Conversely, the ratios of the samples
located in the third quadrant, which indicates that
the samples became less faithful, were 6.9%, 6.7%,
7.7% and 11.1%, respectively. We also found that the
possibility that ID-ExpO would worsen the faithfulness
of the explanations was relatively low.

In Figure 5, we visualize the produced explanations
for the predictors trained using ID-ExpO and `CE-only,
and we show the distributions of the insertion and
deletion metrics for the explanations. More results
are shown in Appendix B.3. Here, we show only the

2Although the original sensitivity-n evaluates feature
contributions at a pixel level, it is not appropriate to as-
sess the feature contributions produced by Grad-CAM and
LIME, which are explained at a super-pixel level. Therefore,
we modified the sensitivity-n so as to mask super-pixels
randomly. Here, we were set to n = 4, i.e., we randomly
masked four super-pixels instead of pixels in an image.

Figure 3: Mean sensitivity-n scores against accuracy
on CIFAR-10 (left) and STL-10 (right) in the case of
S = 0.3 ·HW . The higher the score, the better.

Figure 4: Differences in the insertion and one-minus-
deletion scores between before and after predictors
were fine-tuned, with Grad-CAM using each method
for 1,000 randomly selected individual test samples on
CIFAR-10. Ins and Del indicate the mean insertion
and deletion scores over the test set when the predictors
are used after fine-tuning, whereas Ins(0) and Del(0)

indicate the same scores before the fine-tuning. The
percentage in each quadrant is the ratio of the samples
located in the quadrant.

examples in Figure 5, in which correct prediction was
made. As shown in Figures 5(d) and 5(e), the dis-
tributions of the insertion and deletion metrics were
quite different between ID-ExpO and `CE-only. This
result indicates that our insertion and deletion metric-
aware regularizers positively affected those distribu-
tions, as we expected. In addition, as shown in Fig-
ures 5(b) and 5(c), we found that the explanations
differed from each other. In particular, in the heatmap
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(a) (b) (c) (d) (e)

Figure 5: Examples of the produced explanations for STL-10. The first row shows the results obtained by
Grad-CAM, while the other shows the results obtained by LIME. Each row illustrates (a) an input image, (b)–(c)
the heatmaps of the explanations by the explainers with ID-ExpO and `CE-only, and (d)–(e) the insertion score
(top) and the deletion score (bottom) for those explanations in the case of S = 0.5 ·HW , which means that the
scores are the blue areas to the left of red vertical lines.

explanations for ID-ExpO (Figure 5(b)), large positive
contributions were assigned to some of the superpixels
that captured the object of the class label well. This
is because the evaluation of the insertion and deletion
scores in our regularizers is truncated at 30% or 50%
of the number of pixels. These results indicate that
ID-ExpO can change the explanations to preferentially
assign larger positive contributions to the pixels that
strongly affect the prediction to improve those metrics.

Comparison with Adversarially Robust Mod-
els. Shah et al. (2021) reported that adversarially
robust models could make explanations based on in-
put gradients more faithful to the model predictions
than could models trained in the standard supervised
learning manner. However, it is not clear whether the
adversarially robust models were helpful in producing
faithful explanations when LIME and Grad-CAM were
used. To compare the models trained with ID-ExpO
and with the adversarially robust models, we evaluated
the adversarially robust ResNet-50 model (ADV for
short) used in the work of Shah et al. (2021) in terms
of insertion and one-minus-deletion metrics. Here, the
weights for ADV that are trained on CIFAR-10 are
publicly available, and the predictive accuracy of ADV
was 0.854 in our setting, which was comparable to
or lower than that of the ResNet-18 model that had
been fine-tuned with ID-ExpO. The insertion and one-
minus-deletion scores of ADV were 0.282 and 0.567
when Grad-CAM was used, and they were 0.456 and
0.778 when LIME was used. Compared with the re-
sults shown in Figure 2, we found that in terms of

the insertion scores, the model trained with ID-ExpO
significantly outperformed ADV, and in terms of the
one-minus-deletion scores, the model trained with ID-
ExpO was comparable to or better than ADV. This
result indicates that for Grad-CAM and LIME, ID-
ExpO was more effective than the adversarially robust
model in improving the faithfulness of explanations.

5 Conclusion

We proposed an explanation-based optimization
method that learns machine learning predictors, such
as DNNs, with insertion and deletion metrics-aware
regularizers. By fine-tuning the predictors based on
the proposed method, we were able to confirm that
several explainers, including perturbation-based and
gradient-based explainers, could produce explanations
that were faithful to the predictors’ behaviors. In fu-
ture work, we will further verify the effectiveness of
our insertion and deletion metrics-aware regularizers
in improving the faithfulness of the explanations made
by inherently interpretable models (Alvarez Melis et
al., 2018; Yoshikawa et al., 2021) and parameterized
explainers (Situ et al., 2021).
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Figure A.1: Mean insertion and mean one-minus-deletion scores against mean accuracy averaged over six tabular
datasets when LIME was used as the explainer among three types of deletion metric-aware regularizers. Each
point has a different accuracy weight η ∈ {0.5, 1.0. · · · , 3.0}. Figures of the first two columns are the results at
S = 0.3 ·HW , while those of the other columns are the results at S = 0.5 ·HW . The higher the score, the better.

A Comparison Among Different Types of Deletion Metric-Based Regularizers

We formalized three types of deletion metric-based regularizers, as follows:

Del-A : ΩDel(φ
y, fθ;x, y, b) = − 1

S

S∑
s=1

log
fθ(x)y

fθ(βsoft(x,φ
y; b, s))y

, (A.1)

Del-B : ΩDel(φ
y, fθ;x, y, b) =

1

S

S∑
s=1

log fθ(βsoft(x,φ
y; b, s))y, (A.2)

Del-C : ΩDel(φ
y, fθ;x, y, b) = − 1

S

S∑
s=1

log (1− fθ(βsoft(x,φ
y; b, s))y) , (A.3)

where Del-A is what the proposed method employs. Del-B is similar to Del-A, but does not have the term
improving the prediction for the original input. Del-C is similar to Del-B, but is formalized like the term for
negative class in the binary cross entropy loss.

Figure A.1 shows the insertion and one-minus-deletion scores of the three formulations. We found that Del-A
achieved the best balance of the accuracy and insertion/one-minus-deletion scores.

B On Experiments on Image Datasets

B.1 Modified Version of ExpO-S and ExpO-F

The original ExpO-Stability (ExpO-S for short) and ExpO-Fidelity (ExpO-F for short) aim at making predictions
and their corresponding explanations robust to slight changes in the feature values of the input, respectively (Plumb
et al., 2020). The authors stated that the ExpO-F did not evaluate for non-semantic features, such as images, as
the fidelity metric is not appropriate for the non-semantic features (Plumb et al., 2020, Appendix A.8). Therefore,
while keeping the idea of the original ExpO-F, we modified it to apply it to image data. In particular, we utilize
the same approach to LIME for image data, which we describe in Section 3.1, as the fidelity regularizer mimics the
derivation of the explanations produced by LIME. Below we use the same notation of the variables in Section 3.1.
First, for a given training sample (x, y), we obtain a LIME explanation φy by applying (12). Then, since φy is
the coefficients of a local linear model around input x, we can calculate the fidelity-aware regularizer based on
the original ExpO-F as follows:

ΩFidelity(φ
y, fθ;x, y, {zm}Mm=1,K) =

1

M

M∑
m=1

Kmm(fθ(x̃m)y − φy>zm)2. (A.4)

where zm ∈ {0, 1}D is the mth binary random vector to mask D super-pixels, fθ(x̃m)y is the predicted probability
of label y for perturbed mask image x̃m, Kmm is the value of a cosine kernel between a D-dimensional all-one



Explanation-based Training with Differentiable Insertion/Deletion Metric-aware Regularizers

vector and zm.

The original ExpO-S can be applied to numerical features and non-semantic features as it calculates the differences
between the prediction for the original input and that for the perturbed input, in which Gaussian perturbations
are added to the features of the input. However, for the consistency of evaluation, we modified the original
ExpO-S to perturb the input with binary random mask vectors Z. In particular, we calculate the stability-aware
regularizer as follows:

ΩStability(φ
y, fθ;x, y, {x̃m}Mm=1,K) =

1

M

M∑
m=1

Kmm(fθ(x̃m)y − fθ(x))
2. (A.5)

B.2 All Quantitative Results on Image Datasets

Figure A.2 shows the insertion and the one-minus-deletion scores against the accuracy on each image dataset. On
all the explainers and the datasets except Grad-CAM on STL-10 (Figure A.2(D)), we found that the insertion and
one-minus-deletion scores of ID-ExpO are superior to those of the other methods. With the accuracy, by putting
emphasis on the accuracy, i.e., by setting η = 3, we found that ID-ExpO in the case of S = 0.5 ·HW could keep
comparable or slightly low accuracy compared to the others, while the highest insertion and one-minus-deletion
scores. However, in the case of S = 0.3 ·HW , we found that the accuracy of ID-ExpO was lower than the other
methods and the accuracy of ID-ExpO in the case of S = 0.5 ·HW . The setting of S = 0.3 ·HW means that our
insertion and deletion metric-aware regularizers force the predictor to use only 30% of the pixels in an image in
prediction. The result indicates that the regularization was too strong to predict correctly for the image datasets.

B.3 Additional Examples of Produced Explanations on Image Datasets

Figures A.3 and A.4 show additional visualization examples of the produced explanations on image datasets when
the insertion and deletion scores of the explanations were improved by using ID-ExpO. Overall, compared to the
explanations of `CE-only, the explanations of ID-ExpO had the tendency that large positive contributions were
assigned to a part of super-pixels that captures the object of the class label well.



Yuya Yoshikawa, Tomoharu Iwata

(A) LIME on CIFAR-10

(B) Grad-CAM on CIFAR-10

(C) LIME on STL-10

(D) Grad-CAM on STL-10

Figure A.2: Mean insertion and mean one-minus-deletion scores against accuracy on each image dataset. Each
row indicates a different pair of an explainer and a dataset. The first two columns show the results when
S = 0.3 ·HW , while the last two columns show the results when S = 0.5 ·HW . Each point indicates the result
for the hyperparameters chosen based on (15) with a different accuracy weight η ∈ {0.5, 1.0. · · · , 3.0} (different η
values can be plotted in the same location). The higher the score, the better.
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(A) LIME on CIFAR-10 (S = 0.5 ·HW )

(B) Grad-CAM on CIFAR-10 (S = 0.5 ·HW )

(a) (b) (c) (d) (e)

Figure A.3: Examples of the produced explanations on CIFAR-10. Each row illustrates (a) an input image,
(b)–(c) the heatmaps of the explanations by the explainers with ID-ExpO and `CE-only, and (d)–(e) the insertion
score (top) and the deletion score (bottom) for those explanations in the case of S = 0.5 ·HW , which means that
the scores are the blue areas to the left of red vertical lines.
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(A) LIME on STL-10 (S = 0.5 ·HW )

(B) Grad-CAM on STL-10 (S = 0.5 ·HW )

(a) (b) (c) (d) (e)

Figure A.4: Examples of the produced explanations on STL-10. How to read the figures is the same as Figure A.3.
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Table A.1: Specification of tabular datasets.

Dataset # samples # features # classes
collins 500 23 2

mfeat-fourier 2,000 77 10
one-hundred-plants-shape 1,600 65 100

qsar-biodeg 1,055 42 2
steel-plates-fault 1,941 28 7
wine-quality-red 1,599 12 6

Figure A.5: Mean insertion and mean one-minus-deletion scores against accuracy on steel-plates-fault dataset in
case of S = 0.3 ·Q. The scores are averaged over the five training/validation/test sets. The first two columns
show the results on LIME, while the other shows the results on KernelSHAP.

C Experiments on Tabular Datasets

C.1 Tabular Datasets

We used six tabular classification datasets with numerical features from OpenML dataset repository (Bischl
et al., 2021): collins, mfeat-fourier, one-hundred-plants-shape, qsar-biodeg, steel-plates-fault, and wine-quality-red.
Table A.1 shows the numbers of samples, features and classes of each tabular dataset. For each dataset, we
created five sets, each of which consists of training, validation and test sets, by randomly dividing the dataset in
the ratio of 70%, 10% and 20%. We standardized each feature value using the training set.

C.2 Implementation Details for Tabular Datasets

We used a multilayer perceptron (MLP) with two hidden layers of 256 units and ReLU activation functions as a
predictor, which was trained on the training set of each dataset in advance in the standard supervised learning
manner. We used LIME and KernelSHAP with the same hyperparameter setting as the LIME for the image
classification as explainers. Since there is no bunch of features like a super-pixel, we directly calculated the
contributions of individual features in (12). We did not use Grad-CAM because it is impossible to associate the
features with the activation maps of the intermediate layers of the MLP. The optimizer is the same as that for
image classification, except we chose the learning rate in the range of {0.01, 0.001}. The training continued until
200 epochs were reached or the value of valscore(fθ; 2) does not gain for 20 consecutive epochs.

C.3 Results of Tabular Datasets

Figure A.5 shows the insertion and one-minus-deletion scores against accuracy on steel-plates-fault dataset. To
test the differences among the methods for each evaluation metric, we performed a paired t-test at 5% level
for the results with η = 3. As a result, in the case of using LIME, ID-ExpO achieved the highest insertion
and one-minus-deletion scores, and there was no statistical accuracy difference among the methods. In the case
of using KernelSHAP, although the insertion and one-minus-deletion scores of ID-ExpO were the highest, its
accuracy was superior to the comparing methods. LIME and KernelSHAP are similarly formalized as linear
regression models. The main difference between them is the kernel functions in (12). Since the Shapley kernel
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Figure A.6: Feature contributions on a sample in wine-quality-red dataset.

used in KernelSHAP often outputs extremely small values, resulting in unstable calculation in (12), it may have
adversely affected the accuracy. As shown in Appendix C.4, similar results were observed on the other tabular
datasets.

To analyze how the explanations changed by employing ID-ExpO, we visualize the feature contributions by
LIME with ID-ExpO and `CE-only. We show a typical example in the wine-quality-red dataset in Figure A.6.
In many samples, including this, we found that ID-ExpO tended to bring larger positive or negative feature
contributions than `CE-only, although LIME for both has the same setting. This is because that ID-ExpO adjusts
the predictor’s behaviors so that important features are taken into account early in the calculation of the insertion
and deletion metrics. Since the explanation with such feature contributions makes features that users should focus
on more clear, ID-ExpO can be effective in producing explanations that are easy to understand for the users.

C.4 All Quantitative Results on Tabular Datasets

Figures A.7–A.9 show the insertion and the one-minus-deletion scores against the accuracy on the six tabular
datasets. On all the datasets, ID-ExpO outperformed the others in terms of the insertion and the one-minus-
deletion scores for any in the range of η. With the accuracy, by putting emphasis on the accuracy, i.e., by
setting η = 3, we found that ID-ExpO could keep comparable or slightly low accuracy compared to the others,
while the highest insertion and one-minus-deletion scores. However, in some cases of using KernelSHAP, e.g.,
Figures A.8(C) and A.9(C), we found that the accuracy of ID-ExpO degraded compared to the other methods.
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(A) LIME and KernelSHAP on collins (S = 0.3 ·Q)

(B) LIME and KernelSHAP on collins (S = 0.5 ·Q)

(C) LIME and KernelSHAP on mfeat-fourier (S = 0.3 ·Q)

(D) LIME and KernelSHAP on mfeat-fourier (S = 0.5 ·Q)

Figure A.7: Mean insertion and mean one-minus-deletion scores against accuracy on collins and mfeat-fourier
datasets. The scores are averaged over the five training/validation/test sets. The first two columns show the
results on LIME, while the others show the results on KernelSHAP. Each point has a different accuracy weight
η ∈ {0.5, 1.0. · · · , 3.0}. The higher the score, the better.
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(A) LIME and KernelSHAP on one-hundred-plants-shape (S = 0.3 ·Q)

(B) LIME and KernelSHAP on one-hundred-plants-shape (S = 0.5 ·Q)

(C) LIME and KernelSHAP on qsar-biodeg (S = 0.3 ·Q)

(D) LIME and KernelSHAP on qsar-biodeg (S = 0.5 ·Q)

Figure A.8: Mean insertion and mean one-minus-deletion scores against accuracy on one-hundred-plants-shape
and qsar-biodeg datasets. How to read these figures is the same as Figure A.7.
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(A) LIME and KernelSHAP on steel-plates-fault (S = 0.3 ·Q)

(B) LIME and KernelSHAP on steel-plates-fault (S = 0.5 ·Q)

(C) LIME and KernelSHAP on wine-quality-red (S = 0.3 ·Q)

(D) LIME and KernelSHAP on wine-quality-red (S = 0.5 ·Q)

Figure A.9: Mean insertion and mean one-minus-deletion scores against accuracy on steel-plates-fault and
wine-quality-red datasets. How to read these figures is the same as Figure A.7.
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D Broader Impact

The proposed method can contribute to producing faithful explanations that capture the predictor’s behaviors
well. However, the fact does not guarantee that the explanations are easy-to-understand for humans. If the
predictor and explainer that are trained using the proposed method produce explanations that are faithful but
difficult to understand for humans, they might give users wrong interpretations of the prediction results. There
are several studies that explore producing explanations that are easy to understand for humans, which include
human-in-the-loop approaches (Lage et al., 2018; Gao et al., 2022) and using ground truths of explanations
by human annotators (Ross et al., 2017; Balayan et al., 2020). By using the proposed method together with
such approaches, we can alleviate the concern of such misinterpretation while keeping high faithfulness in the
explanations.

E Limitations

The proposed method can contribute to producing faithful explanations that capture the predictor’s behaviors
well. However, the fact does not guarantee that the explanations are easy-to-understand for humans. There
are several studies that explore producing explanations that are easy to understand for humans, which include
human-in-the-loop approaches (Lage et al., 2018; Gao et al., 2022) and using the ground truth of explanations by
human annotators (Ross et al., 2017; Balayan et al., 2020). When we require easy-to-understand explanations,
combining the proposed method with such approaches would result in producing faithful and easy-to-understand
explanations.

The proposed method is applicable to a wide range of predictors and explainers. In practice, the computational
complexities of the predictor and explainer we use can be barriers to using the proposed method. The perturbation-
based explainers, such as LIME and KernelSHAP, produce an explanation for an input sample by using M
perturbed samples around the input sample. In our experiment, M was set to 200, and the mini-batch size was
128. This means that 200× 128 = 25, 600 samples were used to update the predictor’s parameters θ once. For
this issue, fast computation is possible by performing the data parallel training using multiple GPUs. On the
other hand, using Grad-CAM, one of the gradient-based explainers, as an explainer in the proposed method is
computationally more efficient than LIME and KernelSHAP because it does not need to increase the sample.
Note that, although those computational complexities affect training efficiency using the proposed method, the
computational complexities of the predictor and explainer in testing are invariant before and after applying the
proposed method.
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