
Riemannian Laplace Approximation with the Fisher Metric

Hanlin Yu Marcelo Hartmann Bernardo Williams
Department of Computer Science

University of Helsinki
Department of Computer Science

University of Helsinki
Department of Computer Science

University of Helsinki

Mark Girolami Arto Klami
Department of Engineering
University of Cambridge

and The Alan Turing Institute

Department of Computer Science
University of Helsinki

Abstract

Laplace’s method approximates a target den-
sity with a Gaussian distribution at its mode.
It is computationally efficient and asymptot-
ically exact for Bayesian inference due to the
Bernstein-von Mises theorem, but for com-
plex targets and finite-data posteriors it is
often too crude an approximation. A re-
cent generalization of the Laplace Approxi-
mation transforms the Gaussian approxima-
tion according to a chosen Riemannian geom-
etry providing a richer approximation family,
while still retaining computational efficiency.
However, as shown here, its properties de-
pend heavily on the chosen metric, indeed
the metric adopted in previous work results
in approximations that are overly narrow as
well as being biased even at the limit of in-
finite data. We correct this shortcoming by
developing the approximation family further,
deriving two alternative variants that are ex-
act at the limit of infinite data, extending
the theoretical analysis of the method, and
demonstrating practical improvements in a
range of experiments.

1 INTRODUCTION

Functional distributional approximations offer a com-
putationally attractive alternative to Markov Chain

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

Figure 1: Left: The Fisher metric (green) captures the
local curvature of the target density (black). Right:
Samples from a Gaussian distribution (orange) are de-
terministically mapped using the Fisher metric to pro-
vide a flexible approximation (blue).

Monte Carlo (MCMC) methods for statistical (pos-
terior in the Bayesian setting) inference of poten-
tially large models, building on variational inference
(VI) (Blei et al., 2017), expectation propagation (EP)
(Minka, 2001), or Laplace approximation (LA) (Tier-
ney and Kadane, 1986; Rue et al., 2009). Typically the
methods need to make a compromise between compu-
tational efficiency and accuracy, and often the flexibil-
ity is achieved by non-linear transformations modelled
as neural networks that need to be separately trained
for a given model, as in amortized VI (Margossian
and Blei, 2023) or normalizing flows (Papamakarios
et al., 2021). We focus on perhaps the oldest approxi-
mation strategy, the Laplace Approximation (Tierney
and Kadane, 1986), and study how to increase the flex-
ibility of the approximation without resorting to train-
able transformations.

Laplace Approximation fits a Gaussian distribution
at the mode of the target density and is used in
machine learning from non-conjugate Gaussian pro-
cesses (Rasmussen and Williams, 2006) to deep learn-

Riemannian Laplace Approximation with the Fisher Metric

ing (Daxberger et al., 2021). It is computationally effi-
cient, only requiring the maximum a posteriori (MAP)
estimate and the Hessian of the log-posterior that de-
termine the mean and covariance of the approxima-
tion. Despite its simplicity, it is asymptotically exact
at the limit of infinite data, due to the Bernstein-von
Mises theorem stating that the posterior converges to
a Gaussian when the probabilistic model has identi-
fiable parameterisation (van der Vaart, 1998). Obvi-
ously, as has been shown many times in the literature,
the disadvantage is that the approximation family is
very limited for finite-data posteriors.

We seek to create an approximation that retains the
advantages but increases the flexibility, and do so by
relying on the tools of Riemannian geometry (Carmo,
1992). We change the metric of the parameter space
in such a manner that after this modification the ap-
proximation more accurately characterises the target.
Concepts of Riemannian geometry have been broadly
considered in the approximate inference literature,
with Riemannian extensions of MCMC (Girolami and
Calderhead, 2011), stochastic-gradient MCMC (Pat-
terson and Teh, 2013; Yu et al., 2023) and VI (Frank
et al., 2021). Recently, Bergamin et al. (2023) intro-
duced a Riemannian generalization of the Laplace Ap-
proximation. The core idea (illustrated conceptually
in Figure 1, using the new metric from this paper) is to
transform samples from a Gaussian distribution using
numerical integrators to follow geodesic paths induced
by a chosen geometry, which can be carried out in par-
allel. Some of the concepts required were already stud-
ied by Hauberg (2018), where Laplace approximation
on a Riemannian manifold was considered.

We build on Bergamin et al. (2023), expanding both
theoretical and practical understanding of the approx-
imation. They used the Riemannian metric Hartmann
et al. (2022) proposed for Riemann Manifold MCMC,
which is computationally attractive due to the efficient
exponential map for transforming the samples. How-
ever, as shown here, the approximation is not asymp-
totically exact and is also biased in practical cases. We
resolve this theoretical and practical limitation in two
alternative ways. We first show that the method of
Bergamin et al. (2023) can be fixed by incorporating
a logarithmic map to correct the bias, resulting in an
asymptotically exact but somewhat computationally
heavy and unstable approximation. A more practi-
cal solution is to replace the metric itself. We explain
how a metric based on the Fisher Information Matrix
(FIM) gives an approximation that is exact for targets
that are diffeomorphisms of a Gaussian, requires fewer
function evaluations in numerical integration, and is
superior in how it performs in a range of tasks.

2 PRELIMINARIES

2.1 Laplace Approximation

Let θ ∈ Θ denote the D-dimensional vector in the
parameter space Θ. Denote the log-posterior distribu-
tion given observed data set y = {yn}Nn=1 as ℓy(θ) :=
log π(θ |y). Laplace’s method expands a second-order
Taylor series of ℓy(θ) at the mode (MAP) where the
first-order term disappears. This is equivalent to using
a Gaussian approximation

π(θ |y) ≈ N
(
θ |θ̂,−∇2ℓy(θ̂)

−1
)
,

where θ̂ is the MAP estimate and ∇2ℓy(θ̂) is the Hes-

sian matrix of the log-posterior evaluated at θ̂. We
refer to this as ELA, for Euclidean LA.

2.2 Riemannian geometry

Key concepts. A manifold is a space more general
than an Euclidean space but that locally acts like a
Euclidean space. A differentiable manifold is a man-
ifold that can be represented with a system of coor-
dinates such that it will allow us to extend notions of
derivatives. A Riemannian manifold is a differentiable
manifold endowed with a metric g and this metric will,
intrinsically, generalise the local notions of angles, dis-
tances and derivatives on the manifold.

The metric g is formally defined as a function gθ :
TθΘ×TθΘ → R where TθΘ denotes the tan-
gent space at θ, given by TθΘ = { d

dtc(t)|t=0 =
v , and c(0) = θ}. The vs are known as the tangent
vectors. The function g is like the dot-product in Eu-
clidean spaces, but takes a more general form as a map-
ping (v,u) 7→ ⟨v,G(θ)u⟩ where G(θ) is a symmet-
ric positive-definite matrix called metric tensor that
collects the coefficients of the metric as g

(
∂
∂θi
, ∂
∂θj

)
=

G(θ)ij . We are free to choose the metric g to encode
desired properties of the manifold.

Gradients and Hessians in Rieman-
nian geometry. In a given basis, the
Riemannian gradient of ℓy(θ) is given by
grad ℓy(θ) = G(θ)−1∇ℓy(θ), and the Rieman-
nian Hessian is Hess ℓy(θ)[v] = ∇vgrad ℓy(θ) =
G−1

(
∇2ℓy(θ)−

∑
k Γ(θ)

k∇ℓy(θ)k
)
v. Here

Γ(θ)k = {Γ(θ)k}i,j are the Christoffel symbols
of the second kind in matrix forms. They can also be
expressed using the metric if the connection is chosen
to be the Levi-Civita connection (Carmo, 1992) as

Γk
ij =

1

2
Gkl (∂iGjl + ∂jGil − ∂lGij) ,

where ∂i =
∂
∂θi

. Following differential geometric con-
vention, we use the Einstein summation. Note that in

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

this convention Gkl refers to elements of the inverse of
the matrix G(θ).

Geodesic paths. Another important notion for the
development of this work is the exponential map and
its inverse known as the logarithmic map. Formally,
the exponential-map is defined as a function Expθ :
TθΘ→ Θ that takes a vector on the tangent space of
Θ and maps it back onto Θ (Boumal, 2023).

Intuitively, the exponential map is a function that re-
turns the final position after following the shortest
path at θ in the direction of v for unit time. These
paths are called geodesics and they solve the geodesic
equation given by (Carmo, 1992)

d2θk

dt2
+

dθi

dt

dθj

dt
Γk
ij = 0, k = 1, 2, . . . , D, (1)

where dθi

dt = vi. The inverse Logθ : Θ → TθΘ of the

above is defined as Logθ(θ̃) = argminv∈Tθ Θ gθ(v,v)
subject to Expθ(v) = θ̃ (see Boumal, 2023). It gives
the v for which the exponential map starting from θ
maps to θ̃.

3 RIEMANNIAN LA

Here we outline a general recipe for Rieman-
nian Laplace Approximation (RLA). The formulation
matches the one recently proposed by Bergamin et al.
(2023), though here presented in a more general form
where e.g. the choice of the metric is still left open.
We will later show how the metric influences both the
theoretical and practical properties of the method.

The Bernstein-von Mises Theorem states that, under
certain regularity conditions, the posterior at the limit
of infinite data becomes Gaussian with inverse of the
FIM as the covariance (van der Vaart, 1998). This
makes ELA exact at the limit. We want a Riemannian
generalization of ELA to retain this property but to
adapt for the local curvature of the target for non-
Gaussian targets and finite-data posteriors.

3.1 Principle and algorithm

The Riemannian extension of LA is based on a Taylor
series expansion on the tangent space TθΘ at a given
point θ ∈ Θ. Bergamin et al. (2023) used here the

particular tangent space Tθ̂Θ, where θ̂ is the MAP
estimate. When the parameter space of the model Θ
is endowed with a Riemannian geometry, the Taylor
approximation of the function Θ ∋ θ 7→ ℓy(θ) at θ̂ as-
sumes a more general formulation (see Boumal, 2023;

Algorithm 1 RLA-B, producing N samples θ[n].

Obtain MAP estimate θ̂
Set Σ = (−∇2ℓy(θ̂))

−1

for n← 1, . . . , N do
Obtain velocity v[n] ∼ N (0,Σ)

θ[n] = Expθ̂(v
[n])

end for

Bergamin et al., 2023)

ℓy
(
Expθ̂(v)

)
≈ ℓy(θ̂) + gθ̂

(
grad ℓy(θ̂),v

)
(2)

+
1

2
gθ̂
(
Hess ℓy(θ̂)[v],v

)
.

Generally we cannot evaluate the approximation ana-
lytically, but can obtain samples from it following Al-
gorithm 1 that comprises of three distinct steps, where
the last two are repeated for each sample (and can be
computed in parallel):

1. Find θ̂ where the approximation is placed;

2. Sample initial velocity v ∈ Tθ̂Θ from a Gaussian
distribution with suitably chosen covariance Σ;

3. Solve exponential map at θ̂ with velocity v to ob-
tain the sample θ.

This constructs a wrapped Gaussian (De Bortoli et al.,
2022) on the manifold. The primary design choice is
the metric g that encodes the intrinsic geometry of the
problem, but as will be explained later there is free-
dom also in the choices for the first two steps. Once g
is given, the geodesic equation (1) can be formulated
as an initial value problem of an ordinary system of
differential equations (ODE) and solved relatively ef-
ficiently with numerical integration.

Euclidean Laplace Approximation. Consider
the special case of g being the Euclidean inner prod-
uct. Then G(θ) = ID and the exponential map be-

comes Expθ̂(v) = θ̂ + v, a unit step in the direc-
tion of the velocity v. If velocities are sampled using
Σ = −(∇2ℓy(θ̂))

−1 we get the classical ELA.

Method of Bergamin et al. (2023). In Equa-
tion (2), Bergamin et al. (2023) sets the metric tensor
as G(θ) = ID +∇ℓy(θ)∇ℓy(θ)⊤, which is a special
case of the metric Hartmann et al. (2022) used for ge-
ometric MCMC and coined as the Monge metric. This
metric is defined solely based on gradient information,
and is a way to introduce curvature information using
the first order derivative of the target density func-
tion. It enables fast computation of Christoffel sym-
bols for the exponential map. We denote this specific

Riemannian Laplace Approximation with the Fisher Metric

Figure 2: Euclidean LA (left) is exact for a Gaussian
target, but RLA-B (right) is biased. Lines are the true
contours and marginals, with samples and histograms
characterizing the approximation.

instance of RLA as RLA-B after the initial letter of
the first author, to distinguish the specific variant from
the general family. Even though RLA-B was shown to
work well in a range of tasks and scales up for large
problems, we will later observe that it does not always
improve over ELA.

More importantly, the method is not exact even for
Gaussian targets and hence not for infinite-data pos-
teriors, but instead underestimates the uncertainty.
This is seen by analysis of the exponential map.
The solutions of the geodesic equation keep the norm
∥v(t)∥2G(θ(t)) constant (Lee, John M., 2018), which in

this metric expands to ∥v(t)∥2+⟨v(t),∇ℓy(θ(t))⟩2. At
the MAP estimate we have ∇ℓy(θ̂) = 0 and hence

G(θ̂) = ID. Denote the norm of the initial velocity
by ∥v(0)∥. For every other t we have ∥v(t)∥ < ∥v(0)∥
because ⟨v(t),∇ℓy(θ(t))⟩2 > 0 except in the rare cases
when the gradient is null or exactly orthogonal to ve-
locity. Since the exponential map integrates for unit
time, the distance of each sample to θ̂ (in the Eu-
clidean sense) is upper-bounded by and almost always
smaller than for ELA, for which the distance is ∥v(0)∥.
Figure 2 shows that RLA-B does not recover even
a two dimensional isotropic Gaussian. Moreover, as
shown in Figure 3, the bias of RLA-B becomes larger
as D grows from 1 to 10 for isotropic Gaussians; see
Section 11 in the Supplement for further remarks.

4 IMPROVING RIEMANNIAN LA

Next we describe two alternative asymptotically valid
RLA methods, and discuss the choice of the starting
point and covariance of velocities.

4.1 RLA-B with logarithmic map

We can make RLA-B exact for Gaussian targets by
employing a logarithmic map to solve for the initial
velocity v such that the result of the exponential map

Figure 3: Wasserstein distances from approxi-
mate samples to true samples for isotropic Gaus-
sians of varying D, computed for the first dimen-
sion. The lines are means and means ± 2.0 times
standard deviations (stds) computed over 5 runs.

retains the correct Euclidean distance to θ̂.

Consider two manifolds P and M. P = (Θ, gP) has
the metric tensor

GP(θ) = I +∇ logN (θ |θ̂,Σ)∇ logN (θ |θ̂,Σ)⊤

where Σ = (−∇2ℓy(θ̂))
−1, and M = (Θ, gM) the

metric tensor

GM(θ) = I +∇ℓy(θ)∇ℓy(θ)⊤.

Tθ̂ P and Tθ̂M coincide at θ̂ as the metric tensors are
identical, and hence we have a diffeomorphism

ExpM,θ̂ ◦ LogP,θ̂ : P →M .

Suppose we sample from a Gaussian distribution as
in ELA and consider the samples as points on mani-
fold P. If P is equal toM the transformation given by
ExpM,θ̂ ◦LogP,θ̂ results in exact samples from the tar-
get associated withM. For non-Gaussian targets the
method is not exact, but we observed it can still help
reducing the underestimation tendency of RLA-B.

In Algorithm 2 the exponential map is computed as
before on manifold M, and the logarithmic map cor-
responds to a boundary value problem of the geodesic
ODE on manifold P. It is solved numerically and
benefits again from efficient computation of Christof-
fel symbols. The logarithmic map is in general more
costly than the exponential map (Arvanitidis et al.,
2016), but we observed it can help reducing the num-
ber of function evaluations during the exponential map
and the overall cost is not necessarily higher. We refer
to this variant as RLA-BLog.

4.2 Fisher Information Matrix as metric

The choices of Bergamin et al. (2023) were motivated
by computational arguments and relied on extrinsic

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

Algorithm 2 RLA-BLog, producing N samples θ[n].
The manifold P uses the metric induced by Gaussian
N (θ̃|θ̂,Σ) and the manifoldM the metric induced by
the target π(θ |y).

Obtain MAP estimate θ̂
Σ = (−∇2ℓy(θ̂))

−1

for n← 1 . . . N do
Obtain base sample θ̄

[n] ∼ N (0,Σ)

v[n] = LogP,θ̂(θ̄
[n]
)

θ[n] = ExpM,θ̂(v
[n])

end for

notions in differential geometry, whereas we turn the
attention to intrinsic notions and the natural Rieman-
nian metric tensor for probabilistic machine learning.

4.3 Fisher metric

From a statistical point of view FIM is the lower bound
for the variance of unbiased estimators. At a first
glance, it may not tell us much about possible under-
lying geometries on Θ. However, FIM transforms like
a 2-covariant tensor for regular probabilistic models as
the expected score function is null and it is symmet-
ric and positive-definite by definition (see Lehmann,
2003; Schervish, 2012). Therefore the FIM can act
as the coefficients G(θ) for the metric g and the pair
(Θ, g) defines an abstract Riemannian manifold.

We propose using a metric tensor

G(θ) = EY | θ
[
−∇2 log π(Y |θ)

]
−∇2 log π(θ), (3)

which is the FIM plus the negative Hessian of the
log-prior, accounting for both the likelihood and the
prior. This formulation has been used by Girolami and
Calderhead (2011) and Lan et al. (2015) as the met-
ric for Riemann Manifold MCMC algorithms and by
Hartmann and Vanhatalo (2019) in natural gradient
descent for Gaussian processes with non log-concave
likelihoods. For simplicity, we call it the Fisher metric
and the resulting approximation RLA-F.

The same form can also be used as Σ when sampling
the velocities v, instead of the negative Hessian as in
ELA and RLA-B. The negative Hessian is not guaran-
teed to be positive definite (e.g. for a neural network),
which causes numerical problems, whereas (3) is when
the negative Hessian of the log prior is positive def-
inite, e.g. when the prior is Gaussian. In addition,
we will later show that the Fisher metric can coincide
with the negative Hessian for a specific class of targets
(Theorem 3).

4.3.1 Hausdorff MAP

The classical MAP estimate is not invariant un-
der reparameterizations in Euclidean geometry (see
Jermyn, 2005). From the Riemannian perspective, a
natural invariant alternative is the maximum value of
the posterior density under the Hausdorff measure.
When Θ is endowed with g, the probability density
function on the manifold is given by

πG(θ) =
π(θ)√
detG(θ)

;

see Theorem 3.2.5 by Federer (1969).

If sampling the velocities v using the Fisher metric, we
can justify the usage of the Hausdorff MAP as a repa-
rameterization (from the differential geometric view-
point), where the Fisher is locally identity around the
MAP. This makes the gradients zero and consequently
the second-order Taylor series still corresponds to a
Gaussian; see Section 9 in the Supplement for further
discussions. We will later show that both Hausdorff
and Euclidean MAP can provide good approximations.

4.3.2 Theoretical basis

This variant is asymptotically exact for Gaussian tar-
gets, including posterior distributions of identifiable
models at the limit of large data, as determined by
the following theorems (see Section 8 in the Supple-
ment for proofs). Note that Knollmüller and Enßlin
(2020) also showed conclusions similar to Theorem 1
in the context of VI.

Theorem 1. For Gaussian (or uniform) prior and
Gaussian likelihood with fixed covariance, the Fisher
metric is constant.

Theorem 2. Under the conditions of the Bernstein-
von Mises theorem, the Fisher metric converges to a
fixed matrix at the limit of infinite data.

For constant metric (or for one that converges to a con-
stant one), the geodesics become straight lines in the
Euclidean sense. Consequently the approximation be-
comes identical to ELA and hence exact for the target
that is (or converges to) a Gaussian.

We can also make a stronger statement (proof in Sup-
plement) for specific types of targets and priors:

Theorem 3. With an invariant prior, e.g. Jeffreys
prior, RLA-F with Hausdorff MAP is exact for prob-
abilistic models whose target distributions are diffeo-
morphic with Gaussians, for which the negative Hes-
sian at the Hausdorff MAP coincides with the Fisher
metric.

Denote a diffeomorphic transformation θ = ϕ(ψ) for
a Gaussian distribution N (ψ |µ,S). Since Gaussians

Riemannian Laplace Approximation with the Fisher Metric

Figure 4: RLA-F (left) is exact (already for finite data)
for the squiggle distribution with complex shape due
to diffeomorphism with a Gaussian, whereas RLA-B
(right) is too narrow everywhere and generally biased.

are symmetric, observing how Riemannian metrics
transform, define a metric for the space of θ as

GΨ =

(
∂ θ

∂ψ

)⊤

GΘ
∂ θ

∂ψ
.

With (GΨ)i,j = Eψ
(
− ∂2µi,µj

logN (ψ |µ,S)
)
= S−1

i,j

inspired by the Fisher metric, we have

GΘ =

(
∂ θ

∂ψ

)−⊤

S−1

(
∂ θ

∂ψ

)−1

.

Example. Consider the Squiggle distribution, used
previously e.g. for evaluation of MCMC samplers
(Hartmann et al., 2022),

π(θ1, θ2|µ,S) = N (ϕ−1
a (θ1, θ2)|µ,S),

ϕ−1
a (θ1, θ2) = (θ1, θ2 + sin(aθ1)).

This can be seen as a probability density as

π(µ |θ) = N (µ |ϕ−1
a (θ),S) and πJ(θ) =

√
detGΘ

where πJ denotes the Jeffreys prior.

The Jacobian to form the Fisher metric is given by(
∂ θ

∂ψa

)−1

=

[
1 0

a cos(aθ1) 1

]
and for µ = 0 used here the Hausdorff MAP is also 0.
As stated by Theorem 3, RLA-F is exact for this target
due to the diffeomorphism detailed above. Figure 4
empirically validates this.

4.3.3 Computation of the Fisher metric

FIM for neural networks (NNs). The Fisher
metric is known for many probabilistic models of ba-
sic form, i.e. the likelihood part (see Yang and Berger,
1996; George Casella, 2001). For instance, for expo-
nential family the FIM always has closed-form expres-
sion (George Casella, 2001). Building on these, we

can easily form the Fisher metric for more complex
models. Let ϕ be the parameters of a model π(y|ϕ)
in its basic form in a P -dimensional parameter space
Φ. Denote the FIM for Φ as GΦ(·). Consider inputs
{xn}Nn=1 with associated observations y = {yn}Nn=1

and a NN that maps X ∋ xn
fθ7→ Φ, where X is the

space of inputs and θ the vector of parameters. Let
ℓy(θ) =

∑N
n log π

(
yn|fθ(xn)) denote the likelihood

function of θ and define ϕn = fθ(xn) ∈ Φ ∀n. Using
the chain rule for the Hessian matrix of ℓy(θ) w.r.t θ
the expression involving the score function vanishes in
expectation. Therefore, the metric tensor on θ reads

EY (−∇2ℓY (θ)i,j) = −
N∑
n

EYn

(
∂2i,j log π

(
Yn| fθ(xn)︸ ︷︷ ︸

ϕn

)

)
=

N∑
n

J⊤
n GΦ(fθ(xn))Jn,

where Jn = [∇(ϕn)1 · · · ∇(ϕn)P]
⊤ is a P×D Jacobian

matrix of the NN at the nth input. In other words, we
can form the FIM for the whole network by transform-
ing the FIM on its basic form with Jacobians that can
be computed using standard automatic differentiation.
Formally, this is a pullback metric from the parameter
spaceΦ to the NN parameter spaceΘ; see Section 14.2
in the Supplement for further details.

Computational cost. The core computational cost
for RLA comes from obtaining the acceleration given
the position and velocity, which is needed in each step
of the ODE integrator. We have

∂2θk
∂t2

= −1

2
Gkl

[(
∂iG

kl + ∂jGil − ∂lGij

)
vivj

]
,

which is a product of the inverse of the metric (Gkl)
and a vector. For RLA-F, the computational cost
is dominated by the inversion. The cost for draw-
ing N samples hence becomes O(NTD3), where T is
the number of evaluations during integration. RLA-
B has lower cost due to avoiding direct inversion, but
we will later see that with the Fisher metric we can
often use considerably smaller T that balances the dif-
ference. Also note that already standard ELA has cost
O(D3 +ND2) due to inversion of Hessian and multi-
variate sampling. The sampling parallelizes over N for
all methods.

5 EXPERIMENTS

Code for reproducing the experiments is available at
https://github.com/ksnxr/RLAF.

https://github.com/ksnxr/RLAF

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

Figure 5: Left: The banana distribution has two Eu-
clidean MAPs (blue) but only one Hausdorff MAP
(brown). RLA-F depends on the MAP choice, with
Hausdorff (middle) being here superior to Euclidean
(right).

5.1 Experimental setup

We evaluate three methods: RLA-F using the Fisher
metric (Section 4.2), RLA-B as proposed by Bergamin
et al. (2023), and RLA-BLog using the logarithmic
map (Section 4.1). In addition, we show results for
standard ELA and discuss the choice of the MAP es-
timate and covariance for sampling initial velocities
when relevant. We repeat the experiments 5 times
and report averaged results over the repetitions.

For evaluating the approximation accuracy, we gener-
ate 20, 000 samples using the NUTS sampler in Stan
(Stan Dev Team, 2023) as the ground truth. For low-
dimensional problems we directly compare the approx-
imation with the posterior samples by computing the
Wasserstein distance W as in Zhang et al. (2022). For
the neural network experiments we compare the model
predictions instead, due to non-identifiability of the
posterior, measured using mean squared error (MSE)
and negative log-likelihood (NLL).

Following Bergamin et al. (2023), we use a numerical
ODE solver with adaptive step sizes. We report the
actual number of integration steps T (and in some case
running time) for the exponential map as an indicator
of the complexity of the metric. The numbers are for
producing one sample since the algorithm parallelizes
trivially over the samples. For the NN experiment we
use SciPy (Virtanen et al., 2020) for integration, and
for other experiments Diffrax (Kidger, 2021). Addi-
tional details are provided in Supplement.

5.2 Banana distribution

We first compare the approximations in a 2D problem
with difficult geometry, the banana distribution

θ
ind.∼ N (0, σ2

θ) and Yn|θ ∼ N (θ1 + θ22, σ
2
Y),

where we set σθ = σY = 2, N = 100. The samples are
obtained using θ1 = 0.5 and θ22 = 0.75. The distribu-
tion has closed-form FIM (Section 4.3.3 also applies).

The distribution has two modes symmetric across the

x-axis with the same log-posterior. However, the
Hausdorff MAP is unique and at the x-axis. Figure 5
compares the resulting approximations with RLA-F
for the different MAP estimates; with Euclidean MAP,
we use Hessian precision for sampling the velocities,
whereas with Hausdorff MAP we use the Fisher pre-
cision. Table 1 shows that all Riemannian methods
clearly outperform classical ELA for this target, and
for all Riemannian methods using the Hausdorff MAP
is considerably better. Both of the newly proposed
methods outperform RLA-B.

5.3 Bayesian logistic regression

Following Girolami and Calderhead (2011) and Lan
et al. (2015), we applied Bayesian logistic regression on
five datasets (details in Supplement) using the model

Yn|θ ∼ Bernoulli(σ(θ⊤ xn)) and θ
ind.∼ N (0, α),

where σ : X → (0, 1) is the sigmoid function and
α = 100. The parameter space of the Bernoulli
model in its basic form is ϕ ∈ (0, 1) = Φ, whose
FIM is known. Therefore the Fisher metric on the
parameter space Θ becomes G = X⊤ ΛX +α−1 I,
where X = [x1 · · ·xN] is the covariate matrix (or
inputs) and Λ is a diagonal matrix with elements
Λnn = σ

(
θ⊤xn

)(
1 − σ(θ⊤xn

))
. We use Euclidean

MAP, and here the negative Hessian coincides with
the Fisher metric (Girolami and Calderhead, 2011) (so
both choices for Σ are the same).

Table 2 reports approximation accuracies for two se-
tups: With standardized (z-score) inputs to make the
geometry of the problem easier, and with the raw in-
puts where the metric also needs to handle poten-
tially large scale differences. For both cases, RLA-F is
clearly the best on all data sets, and the approxima-
tions using the Monge metric are worse than ELA. The
Fisher metric results in smoother integration surface,
especially when not standardizing the inputs, with the
Monge metric variants needing up to 1000 times more
evaluations and consequently also more time despite
lower complexity (see Supplement for times).

5.4 Neural network regression

Finally, we ran an experiment similar to the one by
Bergamin et al. (2023), with data from Snelson and
Ghahramani (2005). The task is a 1D regression prob-
lem using an NN of size 1-10-1 with tanh activation.
The methods are implemented using Daxberger et al.
(2021), with Fisher precision (the default option for

full LA), θ̂ found by standard MAP training, and prior
precision and noise optimized posthoc. MSE and NLL
are computed using 500 samples. Fisher metric and

Riemannian Laplace Approximation with the Fisher Metric

ELA RLA-B RLA-BLog RLA-F
MAP W W T W T W T
Euclidean [1.434, 0.01] [0.811, 0.009] 70.4 [0.788, 0.013] 70.4 [0.791, 0.014] 24.9
Hausdorff [1.386, 0.009] [0.341, 0.006] 51.3 [0.208, 0.007] 60.0 [0.143, 0.009] 32.7

Table 1: Banana distribution results as [mean, std]. Bold font indicates the best method. W indicates Wasserstein
distance to NUTS samples while T indicates the average number of function evaluations for one sample. For all
evaluation metrics smaller is better.

ELA RLA-B RLA-BLog RLA-F
data W W T W T W T

st
a
n
d
.

Ripl [0.106, 0.004] [0.236, 0.001] 29.7 [0.16, 0.065] 45.2 [0.064, 0.002] 12.2
Pima [0.149, 0.0] [0.274, 0.0] 41.7 [0.21, 0.007] 78.5 [0.147, 0.0] 12.2
Hear [0.529, 0.001] [0.649, 0.0] 40.2 [1.154, 0.189] 71.6 [0.514, 0.0] 13.2
Aust [0.441, 0.001] [0.522, 0.001] 51.5 [0.745, 0.203] 79.1 [0.417, 0.001] 18.0
Germ [0.388, 0.001] [0.431, 0.0] 58.4 [0.676, 0.1] 104.0 [0.387, 0.0] 14.2

ra
w

Ripl [0.437, 0.017] [0.489, 0.012] 30.2 [0.554, 0.253] 45.0 [0.247, 0.012] 12.7
Pima [0.21, 0.01] [0.294, 0.004] 5632.9 [0.216, 0.014] 1690.4 [0.112, 0.008] 15.4
Hear [0.842, 0.026] [0.96, 0.012] 7868.2 [0.898, 0.029] 3161.1 [0.644, 0.012] 17.9
Aust [0.454, 0.004] [0.455, 0.01] 18513.8 [0.467, 0.005] 12298.6 [0.378, 0.005] 18.0
Germ [0.846, 0.002] [0.92, 0.003] 3545.9 [0.898, 0.003] 2985.5 [0.823, 0.001] 17.8

Table 2: Logistic regression results as [mean, std]. Bold font indicates the best method. Italic font indicates the
integrator reached maximum number of steps in at least one run. W indicates Wasserstein distance to NUTS
samples while T indicates the average number of function evaluations for one sample. For all evaluation metrics
smaller is better.

Christoffel symbols follow from Section 4.3.3 and are

Gkl =
1

σ2

N∑
n=1

∂kfθ(xn)∂lfθ(xn) + α−1δkl and

vivjΓk
ij =

1

σ2
Gkl

N∑
n=1

∂lfθ(xn)
(
vivj∂2i,jfθ(xn)

)
,

as we use Gaussian prior with precision α on every θ
and Gaussian probabilistic model for Y ; see Calin and
Udrişte (2014) and Song et al. (2018) for derivations.

Following Bergamin et al. (2023), we run experiments
with training samples covering a continuous area of
inputs (complete) and with a gap between 1.5 and
3 (gap) to measure the in-between uncertainty quan-
tification (Foong et al., 2019). Table 3 quantifies
the results and shows that RLA-F is in general the
best approximation and for the complete case matches
also NUTS. As is well known, Euclidean LA does not
work without linearization of the network (Daxberger
et al., 2021). Figure 6 illustrates the two scenar-
ios, where RLA-F is effectively indistinguishable from
NUTS, whereas both RLA-B and RLA-BLog overes-
timate predictive variance and some of the posterior
samples are clearly off.

6 DISCUSSION AND
CONCLUSIONS

Main observation. Our key message is that the
Riemannian Laplace Approximation proposed by
Bergamin et al. (2023) is promising as practical and
flexible approximation, but their specific variant is bi-
ased and the bias can be relatively large already in
simple problems. The bias can be resolved by ei-
ther slightly modifying the algorithm or by considering
more suitable metrics, and the corrected approxima-
tion family has interesting theoretical properties. For
instance, with the Fisher metric, it is exact for targets
diffeomorphic with a Gaussian. This opens up new re-
search directions for the study of metrics in inference
tasks.

On Monge metric. One likely reason for the poor
empirical performance of RLA-B is the (lack of) rela-
tive scaling of the identity and the outer product in
the metric. Hartmann et al. (2022) and Yu et al.
(2023) empirically showed that for MCMC the latter
may need to be heavily down-weighted and even then
it is not always better than Euclidean. RLA-B likely
requires some form of scaling as well and downweight-
ing the latter term would reduce the bias, but selecting
the scaling remains an open problem. Hartmann et al.

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

Figure 6: NN regression with complete (top) and gap (bottom) training data. Methods from left to right: RLA-
B; RLA-BLog; RLA-F; NUTS. Gray shading denotes the part of x-axis with training data, dark line is the mean
prediction, and blue lines are samples.

Complete Gap
method MSE NLL T time MSE NLL T time
ELA [2.235, 0.617] [3.02, 0.064] N/A N/A [1.365, 0.407] [3.171, 0.075] N/A N/A
RLA-B [0.2, 0.237] [0.193, 0.003] 6677.8 34.1 [1.646, 2.722] [1.031, 0.02] 6573.2 34.0
RLA-BLog [0.107, 0.054] [0.201, 0.004] 6674.7 37.7 [0.27, 0.068] [1.122, 0.029] 4793.9 28.5
RLA-F [0.072, 0.0] [0.121, 0.002] 242.9 0.8 [0.564, 0.066] [1.063, 0.017] 727.7 2.4
NUTS [0.073, 0.0] [0.126, 0.002] N/A N/A [0.394, 0.02] [0.872, 0.029] N/A N/A

Table 3: NN regression results as [mean, std]. Bold font indicates the best method. T indicates the average
number of function evaluations for one sample while time indicates the average time for one sample. For all
evaluation metrics smaller is better.

(2023) recently proposed a possible remedy that could
be used as the basis for more accurate yet computa-
tionally efficient metric.

Recommendations. For small-to-medium prob-
lems RLA-F is clearly the best choice, based on con-
sistent best performance and stable computation. For
large-scale problems, for instance in the common use
case of NNs (Daxberger et al., 2021), RLA-B remains
currently the best choice, despite the bias.

We showed how to compute the FIM for arbitrary NNs,
but only experimented on tiny ones to facilitate di-
rect comparisons against NUTS. We also experimented
with NN regression problems of varying numbers of
parameters D and number of data points. Interest-
ingly, RLA-F can be faster than RLA-B even for D
larger than 1000; see Section 16.5.3 in the Supplement
for details. We could naturally run RLA-F for still
larger D in reasonable time, but very large models
necessarily call for a more efficient metric. A promis-
ing direction for scalable and accurate method could
build on scalable approximations for FIM (Martens
and Grosse, 2015; George et al., 2018) with practical
implementations as in Botev and Martens (2023) and
George (2021), or on exact subsampled Fisher (Benz-

ing, 2022).

Acknowledgements

HY, MH, BW and AK are supported by the Research
Council of Finland Flagship programme: Finnish
Center for Artificial Intelligence FCAI, and addition-
ally by the grants 336019, 345811, 348952, 324852.
MG is supported by EPSRC grants EP/T000414/1,
EP/R018413/2, EP/P020720/2, EP/R034710/1,
EP/R004889/1, and a Royal Academy of Engineering
Research Chair. The authors acknowledge support
from CSC – IT Center for Science, Finland, for
computational resources.

References

Arvanitidis, G., Hansen, L. K., and Hauberg, S.
(2016). A Locally Adaptive Normal Distribution.
In Advances in Neural Information Processing Sys-
tems, volume 29. Curran Associates, Inc.

Atkinson, K., Han, W., and Stewart, D. (2009). Nu-
merical Solutions of Ordinary Differential Equa-
tions. John Wiley & Sons.

Benzing, F. (2022). Gradient Descent on Neurons and

Riemannian Laplace Approximation with the Fisher Metric

its Link to Approximate Second-order Optimization.
In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 1817–1853.
PMLR.

Bergamin, F., Moreno-Muñoz, P., Hauberg, S., and
Arvantidis, G. (2023). Riemannian Laplace approx-
imations for Bayesian neural networks. In Neural
Information Processing Systems (NeurIPS).

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D.
(2017). Variational Inference: A Review for Statis-
ticians. Journal of the American Statistical Associ-
ation, 112(518):859–877. Publisher: Taylor & Fran-
cis.

Botev, A. and Martens, J. (2023). KFAC-JAX.

Boumal, N. (2023). An introduction to optimization
on smooth manifolds. Cambridge University Press.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J.,
Leary, C., Maclaurin, D., Necula, G., Paszke, A.,
VanderPlas, J., Wanderman-Milne, S., and Zhang,
Q. (2018). JAX: composable transformations of
Python+NumPy programs.

Brofos, J. A. and Lederman, R. R. (2021). On Numeri-
cal Considerations for Riemannian Manifold Hamil-
tonian Monte Carlo.

Calin, O. and Udrişte, C. (2014). Geometric Modeling
in Probability and Statistics. Springer International
Publishing, 1 edition.

Carmo, M. d. (1992). Riemannian Geometry.
Birkhäuser, Boston.

Daxberger, E., Kristiadi, A., Immer, A., Eschenhagen,
R., Bauer, M., and Hennig, P. (2021). Laplace Re-
dux - Effortless Bayesian Deep Learning. In Ad-
vances in Neural Information Processing Systems,
volume 34, pages 20089–20103. Curran Associates,
Inc.

De Bortoli, V., Mathieu, E., Hutchinson, M., Thorn-
ton, J., Teh, Y. W., and Doucet, A. (2022). Rie-
mannian Score-Based Generative Modelling. In Ad-
vances in Neural Information Processing Systems,
volume 35, pages 2406–2422. Curran Associates,
Inc.

Dormand, J. R. and Prince, P. J. (1980). A family of
embedded Runge-Kutta formulae. Journal of Com-
putational and Applied Mathematics, 6(1):19–26.

Federer, H. (1969). Geometric Measure Theory.
Springer-Verlag.

Feng, C., S., A., K., S., M., S., and Henery, R. (1992).
Statlog Project. Published: UCI Machine Learning
Repository.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z.,
Boisbunon, A., Chambon, S., Chapel, L., Coren-
flos, A., Fatras, K., Fournier, N., Gautheron, L.,
Gayraud, N. T. H., Janati, H., Rakotomamonjy, A.,
Redko, I., Rolet, A., Schutz, A., Seguy, V., Suther-
land, D. J., Tavenard, R., Tong, A., and Vayer, T.
(2021). POT: Python Optimal Transport. Journal
of Machine Learning Research, 22(78):1–8.

Foong, A. Y. K., Li, Y., Hernández-Lobato, J. M., and
Turner, R. E. (2019). ’In-Between’ Uncertainty in
Bayesian Neural Networks.

Frank, P., Leike, R., and Enßlin, T. A. (2021). Geo-
metric Variational Inference. Entropy, 23(7).

George, T. (2021). NNGeometry: Easy and Fast
Fisher Information Matrices and Neural Tangent
Kernels in PyTorch.

George, T., Laurent, C., Bouthillier, X., Ballas, N.,
and Vincent, P. (2018). Fast Approximate Natural
Gradient Descent in a Kronecker Factored Eigenba-
sis. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

George Casella, R. L. B. (2001). Statistical Inference.
Duxbury Press, 2° edition.

Girolami, M. and Calderhead, B. (2011). Riemann
manifold Langevin and Hamiltonian Monte Carlo
methods. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 73(2):123–214.

Greff, K., Klein, A., Chovanec, M., Hutter, F., and
Schmidhuber, J. (2017). The Sacred Infrastructure
for Computational Research. In Huff, K., Lippa, D.,
Niederhut, D., and Pacer, M., editors, Proceedings
of the 16th Python in Science Conference, pages 49
– 56.

Grosse, R. (2022). Chapter 3: Metrics.

Harris, C. R., Millman, K. J., Walt, S. J. v. d., Gom-
mers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., Kerkwijk, M. H. v., Brett,
M., Haldane, A., Ŕıo, J. F. d., Wiebe, M., Peter-
son, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and
Oliphant, T. E. (2020). Array programming with
NumPy. Nature, 585(7825):357–362. Publisher:
Springer Science and Business Media LLC.

Hartmann, M., Girolami, M., and Klami, A.
(2022). Lagrangian manifold Monte Carlo on Monge
patches. In Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics,
volume 151 of Proceedings of Machine Learning Re-
search, pages 4764–4781. PMLR.

Hartmann, M. and Vanhatalo, J. (2019). Laplace
approximation and natural gradient for Gaussian

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

process regression with heteroscedastic student-t
model. Statistics and Computing, 29(4):753–773.

Hartmann, M., Williams, B., Yu, H., Girolami, M.,
Barp, A., and Klami, A. (2023). Warped geometric
information on the optimisation of Euclidean func-
tions.

Hauberg, S. (2018). Directional Statistics with the
Spherical Normal Distribution. In 2018 21st In-
ternational Conference on Information Fusion (FU-
SION), pages 704–711.

Jermyn, I. H. (2005). Invariant Bayesian estimation
on manifolds. The Annals of Statistics, 33:583–605.

Kidger, P. (2021). On Neural Differential Equations.
PhD Thesis, University of Oxford.

Kingma, D. P. and Ba, J. (2015). Adam: A Method for
Stochastic Optimization. In 3rd International Con-
ference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Knollmüller, J. and Enßlin, T. A. (2020). Metric Gaus-
sian Variational Inference.

Kristiadi, A., Dangel, F., and Hennig, P. (2023). The
Geometry of Neural Nets’ Parameter Spaces Under
Reparametrization.

Kunstner, F., Hennig, P., and Balles, L. (2019). Lim-
itations of the empirical Fisher approximation for
natural gradient descent. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Lan, S., Stathopoulos, V., Shahbaba, B., and Giro-
lami, M. (2015). Markov Chain Monte Carlo From
Lagrangian Dynamics. Journal of Computational
and Graphical Statistics, 24(2):357–378.

Lee, John M. (2018). Introduction to Rieman-
nian Manifolds. Graduate Texts in Mathemat-
ics. Springer International Publishing AG, Cham,
Switzerland, 2nd edition.

Lehmann, G. C. (2003). Theory of Point Estimation.
Springer texts in statistics. Springer, 2nd ed edition.

Magnusson, M., Bürkner, P., and Vehtari, A. (2022).
posteriordb: a set of posteriors for Bayesian infer-
ence and probabilistic programming.

Margossian, C. C. and Blei, D. M. (2023). Amortized
Variational Inference: When and Why?

Martens, J. (2020). New Insights and Perspectives on
the Natural Gradient Method. Journal of Machine
Learning Research, 21(146):1–76.

Martens, J. and Grosse, R. (2015). Optimizing Neu-
ral Networks with Kronecker-factored Approximate
Curvature. In Proceedings of the 32nd International

Conference on Machine Learning, volume 37 of Pro-
ceedings of Machine Learning Research, pages 2408–
2417, Lille, France. PMLR.

Meurer, A., Smith, C. P., Paprocki, M., Čert́ık, O.,
Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov,
S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S.,
Granger, B. E., Muller, R. P., Bonazzi, F., Gupta,
H., Vats, S., Johansson, F., Pedregosa, F., Curry,
M. J., Terrel, A. R., Roučka, v., Saboo, A., Fer-
nando, I., Kulal, S., Cimrman, R., and Scopatz,
A. (2017). SymPy: symbolic computing in Python.
PeerJ Computer Science, 3:e103.

Minka, T. P. (2001). Expectation propagation for ap-
proximate bayesian inference. In Proceedings of the
17th Conference in Uncertainty in Artificial Intel-
ligence, UAI ’01, page 362–369. Morgan Kaufmann
Publishers Inc.

Neal, R. M. (2003). Slice sampling. The Annals of
Statistics, 31(3):705 – 767. Publisher: Institute of
Mathematical Statistics.

OpenAI (2023). ChatGPT.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mo-
hamed, S., and Lakshminarayanan, B. (2021). Nor-
malizing Flows for Probabilistic Modeling and In-
ference. Journal of Machine Learning Research,
22(57):1–64.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc.

Patterson, S. and Teh, Y. W. (2013). Stochastic Gra-
dient Riemannian Langevin Dynamics on the Prob-
ability Simplex. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates,
Inc.

Petersen, K. B. and Pedersen, M. S. (2012). The Ma-
trix Cookbook.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaus-
sian processes for machine learning. Adaptive com-
putation and machine learning. MIT Press.

Ripley, B. D. (1994). Neural networks and related
methods for classification (with discussion). Jour-
nal of the Royal Statistical Society series B, pages
409–456.

Ripley, B. D. (1996). Pattern Recognition and Neural
Networks. Cambridge University Press.

Riemannian Laplace Approximation with the Fisher Metric

Rue, H., Martino, S., and Chopin, N. (2009). Approx-
imate bayesian inference for latent gaussian models
by using integrated nested laplace approximations.
Journal Of The Royal Statistical Society, 71:319–
392.

Schervish, M. (2012). Theory of Statistics. Springer
Series in Statistics. Springer New York.

Smith, J. W., Everhart, J. E., Dickson, W. C.,
Knowler, W. C., and Johannes, R. S. (1988). Using
the ADAP Learning Algorithm to Forecast the On-
set of Diabetes Mellitus. In Proceedings of the An-
nual Symposium on Computer Application in Medi-
cal Care, Orlando.

Snelson, E. and Ghahramani, Z. (2005). Sparse Gaus-
sian Processes using Pseudo-inputs. In Advances in
Neural Information Processing Systems, volume 18.
MIT Press.

Song, Y., Song, J., and Ermon, S. (2018). Accelerating
Natural Gradient with Higher-Order Invariance. In
Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 4713–4722. PMLR.

Stan Dev Team (2023). CmdStanPy.

Stan Development Team (2023). Stan Modeling Lan-
guage Users Guide and Reference Manual.

Tierney, L. and Kadane, J. B. (1986). Accurate ap-
proximations for posterior moments and marginal
densities. Journal of the American Statistical Asso-
ciation, 81(393):82–86.

van der Vaart, A. (1998). Asymptotic Statistics. Cam-
bridge University Press, Cambridge, UK.

Vershynin, R. (2018). High-Dimensional Probability:
An Introduction with Applications in Data Science.
Cambridge Series in Statistical and Probabilistic
Mathematics. Cambridge University Press.

Virtanen, P., Gommers, R., Oliphant, T. E., Haber-
land, M., Reddy, T., Cournapeau, D., Burovski,
E., Peterson, P., Weckesser, W., Bright, J., van der
Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,
Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,
Larson, E., Carey, C. J., Polat, I., Feng, Y., Moore,
E. W., VanderPlas, J., Laxalde, D., Perktold, J.,
Cimrman, R., Henriksen, I., Quintero, E. A., Harris,
C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors
(2020). SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods,
17:261–272.

Yang, R. and Berger, J. (1996). A Catalog of Non-
informative Priors. Discussion papers. Institute of
Statistics and Decision Sciences, Duke University.

Yu, H., Hartmann, M., Williams, B., and Klami,
A. (2023). Scalable Stochastic Gradient Rieman-
nian Langevin Dynamics in Non-Diagonal Metrics.
Transactions on Machine Learning Research.

Zhang, L., Carpenter, B., Gelman, A., and Vehtari,
A. (2022). Pathfinder: Parallel quasi-Newton vari-
ational inference. Journal of Machine Learning Re-
search, 23(306):1–49.

Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes]

(b) The license information of the assets, if ap-
plicable. [Yes]

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]

Riemannian Laplace Approximation with the Fisher Metric

Riemannian Laplace Approximation with the Fisher Metric:
Supplementary Materials

7 CONTENTS

This supplement complements the main article, by providing the proofs for the theorems, presenting details
about the experiments as well as some additional empirical results, and expanding the theoretical basis. For
clarity, we number the Sections, Equations etc. with a range that does not overlap with the main paper.

Section 8 provides the proofs of the theorems stated in the main paper. Section 9 justifies the usage of Hausdorff
MAP along with Fisher precision. Section 10 extends the theoretical discussion of the approximation in general,
by providing a theorem characterising the coverage of RLA. Section 12 provides background on numerically
solving ODEs and demonstrates how to formulate solving the exponential and logarithmic maps as ODE prob-
lems. Section 13 demonstrates how to obtain the Christoffel symbols based on a differentiable expression of the
Riemannian metric using JAX (Bradbury et al., 2018), and Section 14 provides additional details concerning
the computation of the Fisher metric and the resulting Christoffel symbols for certain models. Section 15 pro-
vides all sorts of details for the empirical experiments reported in the main article. Finally, Section 16 provides
additional experimental results, for instances visual illustrations that were omitted from the main paper due to
space constraints as well as demonstration of the methods for one more target distribution.

Code for reproducing the experiments is available at https://github.com/ksnxr/RLAF.

8 PROOFS

8.1 Theorem 1

Theorem 1. For Gaussian (or uniform) prior and Gaussian likelihood with fixed covariance, the Fisher metric
is constant.

Proof. Consider the prior distribution on the parameters of interest. We consider two cases, the first where the
prior is Gaussian with a fixed covariance and the second where the prior is uniform. For the first case, we have
θ ∼ N (µ,S) for some µ and S. Therefore,

log π(θ) = −k
2
log(2π)− 1

2
log det(S)− 1

2
(θ−µ)⊤ S−1(θ−µ),

and
∂2 log π(θ)

∂ θ2
= −S−1 .

The negative Hessian is therefore constant. For the second case, where the prior is uniform, the negative Hessian
is 0 everywhere, thus is also constant.

Consider the Gaussian distribution Y |θ ∼ N (θ,Σ) for some fixed Σ. We have

∂2 log π(y |θ)
∂ θ2

= −Σ−1,

which does not depend on y, thus the FIM is constant.

Therefore, the resulting Fisher metric is constant.

https://github.com/ksnxr/RLAF

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

8.2 Theorem 2

Theorem 2. Under the conditions of Bernstein-von Mises theorem, the Fisher metric converges to a fixed matrix
at the limit of infinite data.

Proof. At the limit of infinite data, up to the regularity conditions characterised by the Bernstein-von Mises
theorem (van der Vaart, 1998), the likelihood dominates the prior and the posterior converges in distribution
to a Gaussian given by N (θMLE, (NI(θMLE))

−1), where θMLE denotes the maximum likelihood estimate. In
other words, with the same conditions, the prior’s contribution converges to 0, and the likelihood converges to a
Gaussian function, up to a scaling, given by N (θMLE |θ, (NI(θMLE))

−1).

Since the FIM of the Gaussian model is given by NI(θMLE), which is constant for all θ, the FIM of the limiting
model is also constant, and the resulting convergence limit of the metric of the current model is also constant.

8.3 Theorem 3

Theorem 3. With an invariant prior, e.g. Jeffreys prior, RLA-F with Hausdorff MAP is exact for probabilis-
tic models whose target distributions are diffeomorphic with Gaussians, for which the negative Hessian at the
Hausdorff MAP coincides with the Fisher metric.

Proof. Consider first the simple case with no transformations, such that the probabilistic model reduces to the
following form

π(µ |ψ) = N (µ |ψ,S),
π(ψ) = Jeffreys(ψ).

The FIM for ψ is constant, given by S−1. Therefore, The prior corresponds to a uniform distribution in the
Euclidean sense, and the posterior is given by

π(ψ |µ) = N (ψ |µ,S).

It is clear that RLA-F is exact for this posterior.

Consider now a diffeomorphic transformation ϕ : ψ → θ. It is well known that the Fisher Information Matrix au-
tomatically transforms according to the correct transformation rule of a Riemannian metric (Martens, 2020; Kris-

tiadi et al., 2023). The distribution of the transformed parameters is given by π(θ |µ) = π(ϕ−1(θ)|µ)
∣∣∣det ∂ ϕ−1

∂ θ

∣∣∣.
It coincides with the posterior of the probabilistic model

π(µ |θ) = N (µ |ϕ−1(θ),S),

πJ(θ) =
√

detGΘ(θ),

since Jeffreys prior accounts for the change of variable of the transformation,

πJ(θ) =
√

detGΘ(θ) =

∣∣∣∣det ∂ ϕ−1

∂ θ

∣∣∣∣√detGΨ(ϕ−1(θ)).

The parameters that give the maximum value under the Hausdorff measure π(θ |µ)(detGΘ(θ))−
1
2 ∝

π(µ |ϕ−1(θ)) are always given by the MLE estimate θ̂ = ϕ(µ).

The argument for exactness is as follows. Consider the two manifoldsM : (Ψ,GΨ) and N : (Θ,GΘ). Since the
corresponding metrics satisfy the transformation rule

GΘ =

(
∂ψ

∂ θ

)⊤

GΨ
∂ψ

∂ θ
, (4)

there exists an isomorphism between the tangent spaces ofM and N . As a result, the exponential map onM
and N and the tangent vectors at the center of the distribution transform correctly. Since RLA-F is exact for
the distribution corresponding toM, it is also exact for the distribution corresponding to N .

Riemannian Laplace Approximation with the Fisher Metric

Moreover, the negative Hessian at the Hausdorff MAP coincides with the Fisher metric. This can be seen from
the transformation rule of Hessian matrix under a transformation given by θ = ϕ(ψ)

∇2
θf =

(
∂ψ

∂ θ

)⊤

∇2
ψf

(
∂ψ

∂ θ

)
+ [∇2

θ ϕ
−1
1 (θ), . . . ,∇2

θ ϕ
−1
n (θ)] (∇ψf ⊗ In) ,

because for the MAP estimate, ∇ψf = 0.

9 USING HAUSDORFF MAP AND FISHER PRECISION

In Section 4.3.1, we briefly discussed the choices of using Hausdorff MAP together with Fisher precision. Here
we provide additional remarks on this.

We use notations inspired by Kristiadi et al. (2023). Consider a reparametrization ϕ : ψ → θ. Denote its
Jacobian as J , with

Jij =
∂θi
∂ψj

.

As noted by Kristiadi et al. (2023), the transformation rule of vector components is

vΘ = J vΨ,

and the transformation rule of covector components is

wΘ = J−⊤wΨ .

Recall that the FIM transforms as a Riemannian metric under one-to-one mappings (Martens, 2020; Kristiadi
et al., 2023). Therefore, with an invariant prior or ignoring the effect of the prior, the resulting metric transforms
automatically.

Typical MAP estimates are not invariant under reparametrization. However, we can define an invariant MAP
estimate by taking into account the Riemannian structure (Kristiadi et al., 2023). Specifically, instead of calcu-
lating the maximum of the PDF under Lebesgue measure, we calculate it under the Hausdorff measure. Denote
the PDF under Lebesgue measure as πΘ(θ), and the PDF under Hausdorff measure as πGΘ(θ). Then, using the
Riemannian volume form (Lee, John M., 2018), we have

πGΘ(θ) =
πΘ(θ)√
detGΘ(θ)

.

Theorem 4. The PDF under Hausdorff measure is invariant across reparametrization.

Proof.

πGΘ(θ) =
πΨ(ϕ−1(θ))

√
detJ−1(θ)√

det
(
J−T (θ)GΨ(ϕ−1(θ))J−1(θ)

)
=

πΨ(ϕ−1(θ))√
detGΨ(ϕ

−1(θ))
=

πΘ(θ)√
detGΘ(θ)

.

This naturally leads to the following corollary

Corollary 1. The Hausdorff MAP is invariant across reparameterization.

The following theorem shows that we can ignore the first order gradients in the Taylor series expansions as in
Equation (2) of the main paper

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

Theorem 5. Under normal coordinates, the Hausdorff MAP is a critical point under Lebesgue measure.

Proof. It is a standard result in Riemannian geometry that for a Riemannian manifold, at each tangent space
there exists a normal coordinate (Lee, John M., 2018), such that the components of the metric at the point form
an identity matrix, and all first partial derivatives of the metric vanishes at the point (see Proposition 5.24 from

Lee, John M., 2018). Therefore, consider such a transformation to the normal coordinate ϕ : ψ → θ. θ̂ = ϕ(ψ̂)

is the Hausdorff MAP due to Theorem 1. Recall the definition of Hausdorff MAP; it is clear that ∂πG(θ̂)
∂θi

= 0.

Moreover, since the first partial derivatives of the metric vanishes under a normal coordinate, recall ∂(det(X)) =

det(X) Tr
(
X−1 ∂X

)
(Petersen and Pedersen, 2012), we have

∂
√

detG(θ̂)
∂θi

= 0. Therefore,

∂π(θ̂)

∂θi
=
∂πG(θ̂)

√
detG(θ̂)

∂θi
=
∂πG(θ̂)

∂θi

√
detG(θ̂) + πG(θ̂)

∂

√
detG(θ̂)

∂θi
= 0.

Under an invariant prior or ignoring the effect of prior, the Fisher metric transforms as a Riemannian metric, and
RLA-F with Hausdorff MAP and Fisher precision can be interpreted as forming the approximate Gaussian with
Fisher metric in place of the negative Hessian at θ̂ under normal coordinates and transforming the approximation
back to the current approximation.

The following theorem justifies using the Fisher metric as the precision of the Gaussian approximation from a
differential geometry viewpoint.

Theorem 6. When the precision of a Gaussian distribution is a Riemannian metric, the samples from the
Gaussian follow the transformation rule of the tangent vectors.

Proof. We analyze the transformation property of samples from the resulting Gaussian distribution.

The transformation of the components of a Riemannian metric, which is a (0, 2) tensor, follows

GΘ = J−⊤GΨ J
−1 .

The transformation rule of the inverse of the Riemannian metric follows

G−1
Θ = J G−1

Ψ J⊤ = (J LΨ)(J LΨ)⊤,

where L indicates the decomposition of the inverse of the metric. We therefore have

LΘ = J LΨ,

and the samples from the resulting Gaussian distribution transform in the same way as vector components.

10 COVERAGE OF RLA SAMPLES

An interesting insight is that, under mild assumptions, we can obtain samples over the entire RD space for any
metric and any starting point.

Theorem 7. For target distributions of unconstrained parameters, if the induced Riemannian manifold (Θ, g)
is connected, there always exists one length-minimizing geodesic starting from the MAP and passing through an
arbitrary point θ on the induced manifold.

Proof. Under unconstrained parametrization, for a point p on the connected Riemannian manifold Θ, the
geodesics are defined on the entire tangent space. Therefore, using Lemma 6.18 from (Lee, John M., 2018),
for any two points p, q ∈ Θ, there exists one length-minimizing geodesic.

Riemannian Laplace Approximation with the Fisher Metric

11 BIAS OF RLA-B

Consider a D dimensional Gaussian distribution with mean 0 and covariance ID. Isotropic multivariate Gaus-
sian distributions are known to be rotation invariant (Vershynin, 2018), and the distribution is the same from
all directions at the origin. Moreover, the distances from the samples to the origin follow a χ distribution by
definition. Also hinted by Vershynin (2018), it is clear that we can represent samples from an isotropic multi-
variate Gaussian distribution of dimension D such that the directions are sampled uniformly at random from a
sphere, and the distances to the origin sampled from a χ distribution with degrees of freedom D. In this case,
for RLA-B, an algorithm based on the Riemannian metric using the gradient information of the distribution, is
also rotation invariant, and the geodesics travel in straight lines. As such, we can consider an arbitrary direction
without losing generality.

Specifically, we consider the following case

v =

v...
v

D

,x =

x...
x

D

,∇ℓ =

−x...
−x

D

,v0 =

v0...
v0

D

,

where a sample with initial velocity v0 reaches position x, at which point the gradient is given by ∇ℓ and the
sample has velocity v, with every occurrence of the same letter denoting the same value, and v, x and v0 being
non-negative. It is clear that all particles with v0 of the above form reach x(t) at some time. In the following
analysis, we assume that all the samples reach the point x within time 1 for the value of v0 considered for
simplicity; this generally holds for sufficiently small x. Recall that ∥v(t)∥2 + ⟨v(t),∇ℓ⟩2 = ∥v0∥2 due to the
property of the geodesic, we have

Dv2 + (Dvx)
2
= Dv20 ,

v2 +Dx2v2 = v20 ,

v2 =
v20

1 +Dx2
.

As such, for fixed v0 and x, with RLA-B, as D increases, v decreases. However, under the Euclidean metric,
given v0 and x, v is constant for all D. This demonstrates that, for a fixed v0, the final distance traveled by the
sample decreases as D increases, and, in a sense, the resulting algorithm leads to additional bias as D increases.

Additionally, we can consider the expected value of v at a given position x under v0. We can define the distribution
of v0 such that it induces the correct distribution of distances to the origin, in which case

√
Dv0 follows a χ

distribution with degrees of freedom D. We have

E [v] = E

√ v20
1 +Dx2

 = E
[

v0√
1 +Dx2

]
.

Consider a positive x. It is clear that 1√
1+Dx2

decreases as D increases. For smaller D, the expected velocity as

calculated above may increase as D increases, since E [v0] itself may increase. However, as D approaches infinity,

E
[√

Dv0

]
approaches

√
D − 1, E [v0] approaches 1 and E [v] approaches 0.

The above theoretical analysis complements the empirical evidence as shown in Figure 3, which demonstrates
that the bias, as measured by the Wasserstein distances from approximate samples to true samples computed
for the first dimension, grows continuously as D increases from 1 to 10.

12 GEODESIC ODE

In this section, we provide some background on the numerical solutions of ODEs, while also demonstrating the
formulations of exponential map and logarithmic map as ODE problems. Unless otherwise stated, the technical
contents are based on Atkinson et al. (2009).

Generally, an ODE system can be written in the form of

dx(t)

dt
= f(t,x(t)),

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

where x is an unknown function dependent on time t, and f is a function describing the change in x.

The geodesic equation induces the following ODE system

d[θ(t),v(t)]

dt
= [v(t),a(t)],

where a(t) is given by the geodesic equation, such that

ak(t) = −vi(t)vj(t)Γk
ij(t).

It is a nonlinear second order ODE.

An initial value problem (IVP) solves for x(b) given the following conditions

dx(t)

dt
= f(t,x(t)), t0 ≤ t ≤ b,

x(t0) = x0 .

Probably the simplest solver is Euler’s method, which divides the times into a discrete set of nodes t0 < t1 <
t2 < · · · < tN ≤ b, and iteratively solves it as

x(n+ 1) = x(n) + hf(tn,xn).

However, this is a naive method, and often leads to large integration errors. In practice, one commonly used solver
is Dormand-Prince’s 5(4) method (Dormand and Prince, 1980); this is the default option in SciPy (Virtanen
et al., 2020). It generally requires 6 function evaluations per step.

A general nonlinear two-point boundary value problem (BVP) can be formulated as

x′′(t) = f(t,x(t),x′(t)), a < t < b,

A

[
x(a)
x′(a)

]
+B

[
x(b)
x′(b)

]
=

[
γ1

γ2

]
,

where A and B are square matrices, and the conditions on the second line are known as the boundary conditions.

The logarithmic map of the geodesic ODE can be formulated as a BVP, by observing that we can make the
following choices

A =

[
I 0
0 0

]
, B =

[
0 0
I 0

]
, γ1 = xa, γ2 = xb,

and can thus be solved by a BVP solver.

13 CHRISTOFFEL SYMBOLS BASED ON EXPRESSION OF THE
RIEMANNIAN METRIC

With modern autodiff frameworks, it is possible to directly calculate the Christoffel symbols for a given θ, given
that we have a differentiable expression of the Riemannian metric. As noted by Song et al. (2018), we only need
the quantities in the form of

Γk
ijv

ivj .

We provide a JAX (Bradbury et al., 2018) implementation to obtain the above quantities as below. 1

import jax
import jax . numpy as jnp
import jax . s c ipy as j sp

1In all presented experiments jax.numpy.linalg.solve is used instead of jax.scipy.linalg.solve. However, the implementa-
tion in jax.scipy could make use of the positive definite structure of the matrix, theoretically leading to faster inversions,
and we thus present this implementation.

Riemannian Laplace Approximation with the Fisher Metric

de f c h r i s t o f f e l f n (g , theta , v) :
Adapted based on ChatGPT
d g = jax . jacfwd (g) (theta)

Compute the Ch r i s t o f f e l symbols
p a r t i a l 1 = jnp . einsum (” j l i , i , j−>l ” , d g , v , v)
p a r t i a l 2 = jnp . einsum (” i l j , i , j−>l ” , d g , v , v)
p a r t i a l 3 = jnp . einsum (” i j l , i , j−>l ” , d g , v , v)
r e s u l t = j sp . l i n a l g . s o l v e (g (theta) , 0 . 5 ∗ (p a r t i a l 1 + p a r t i a l 2 − p a r t i a l 3) ,
assume a=”pos ”)

re turn r e s u l t

In the above code, theta and v are the current position and velocity, and g is a differentiable function that
returns the Riemannian metric given the position. It is possible to analytically derive the Christoffel symbols
given the expression of the metric. We observe that using analytical expressions can lead to more efficient and
numerically stable results. We show some analytical derivations in Section 14. However, we observed that for
small scale problems, using the numerical results are often fast and accurate enough.

14 FISHER METRIC AND CHRISTOFFEL SYMBOL FOR SPECIFIC
MODELS

14.1 Logistic regression

In Section 5.3, we considered Bayesian logistic regression. Here we present some derivations on the Christoffel
symbols of Fisher metric for that problem.

For logistic regression, the partial derivatives of the Fisher metric are given by (Girolami and Calderhead, 2011)

∂G(θ)

∂θi
=X⊤ ΛV iX,

where, using sk to denote s(Xk θ), we have Λkk = sk(1− sk) and V i
kk = (1− 2sk)Xni.

One interesting property is the following (Lan et al., 2015)

∂(G(θ))jl
∂θi

=
∂(G(θ))il

∂θj
=
∂(G(θ))ij

∂θl
.

In order to see that, note that

∂(G(θ))jl
∂θi

= (X⊤ ΛV iX)jl =
∑
k

Xkj(ΛV
i)kkXkl =

∑
k

Xkjsk(1− sk)(1− 2sk)XkiXkl

=
∂(G(θ))il

∂θj
=
∂(G(θ))ij

∂θl
.

Therefore, the resulting Christoffel symbols have a relatively simple form, given by

Γm
ij =

1

2
Gml (∂iGjl + ∂jGil − ∂lGij) =

1

2
Gml∂iGjl.

14.2 Neural Networks (NN)

Here we expand the discussions on FIM for NNs in Section 4.3.3 of the main paper.

Recall the probabilistic model π(y |ϕ) in its basic form. Given an NN that maps X fθ7→ Φ where Φ is a P -
dimensional parameter space with given Fisher metric, we can define a Fisher metric on the parameter space of

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

the NN as follows. Using the chain rule for the Hessian matrix of ℓy(θ) w.r.t θ, observe that the extra expression
involving the score function will be zero in expectation (Schervish, 2012, Definition 2.78, p. 111). Therefore, the
metric tensor w.r.t θ reads

E(−∇2ℓY (θ)i,j) = E

(
−

N∑
n

∂2i,j log π
(
Yn|ϕn)

)

=

N∑
n

P∑
p

P∑
q

E
(
−∂2q,p log π

(
Yn|ϕn)

)
∂i(ϕn)p∂j(ϕn)q.

=

N∑
n

P∑
p

P∑
q

Gq,p(ϕn)∂i(ϕn)p∂j(ϕn)q

=

N∑
n

P∑
p

P∑
q

Gq,p(fθ(xn))∂i(fθ(xn))p∂j(fθ(xn))q,

where the expectation taken w.r.t Y is over the Hessian of ℓY (θ) on ϕ (in between 2nd and 3rd step) and that
comes for granted once the Fisher metric is known in the basic form of the probabilistic model π(y |ϕ). In the
last passage we see that ∂i(fθ(xn))p is the Euclidean derivative with respect to θi of the p

th output of the neural
network f evaluated at the nth input. Then using matrix notations we write,

G(θ) =

N∑
n

J⊤
n GΦ(fθ(xn))Jn,

where Jn = [∇(ϕn)1 · · · ∇(ϕn)P]
⊤ denotes the P ×D Jacobian matrix of the NN at the nth input.

Now, it is clear from the above form that its structure resembles that of a pullback metric in Riemannian
manifolds. To see this fix the inputs (or covariates) in the input space and look instead to the output of the NN

as a map Θ
hn→ Φ with hn(θ) = fθ(xn) ∀n. Once we have endowed a metric gΦ on Φ and defined a map for every

n, the pullback metric on Θ given all the inputs can be formally written as the sum of all input information
related to θ. That is,

gΘ(u,v) =

N∑
n

gΦ
(
dhn(θ)[u],dhn(θ)[v]

)
,

where dhn(θ)[·] : TθΘ→ Tϕn
Φ is the differential at a point θ ∀n. Since ϕn = fθ(xn) can be seen as a function

of θ, the differential takes the form dhn(θ)[v] = Jn v. Plugging this into the expression above and using that
the matrix of coefficients of the metric gΦ is Gϕ, we obtain the metric tensor above; similar observation can be
found in e.g. Grosse (2022). Also note that because the function hn may not be one-to-one for all n, xn ∈ X ,
the metric tensor G(θ) may not satisfy the definition of a pullback (see Carmo, 1992).

15 EXPERIMENTAL DETAILS

In this section, we describe the computation environment, some implementation details, the employed methods
to find the MAP estimate, to obtain the NUTS samples, to integrate the ODEs and to calculate the Wasserstein
distances, and describe the basic setups for several experiments.

15.1 Computation environment

Apart from some preliminary ones, all experiments are carried out on the computer cluster using CPUs with
type Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz. When we benchmark the running times of the algorithms,
we always use two cores for each task. The detailed configurations differ based on the nature of the jobs.

15.2 Implementation details

Sacred (Greff et al., 2017) is used to manage the experiments. Code for experiments other than neural network
ones are implemented mainly using JAX (Bradbury et al., 2018), benefiting from fast computations of gradients

Riemannian Laplace Approximation with the Fisher Metric

and other quantities and easy vectorizations. Code for neural network experiments are written mainly in PyTorch
(Paszke et al., 2019), using torch.func to obtain the gradients and hessian vector products, etc, because we build
on the existing library provided by Daxberger et al. (2021). We always use the default data types of the libraries
(float64 in NumPy (Harris et al., 2020) and float32 in PyTorch and JAX) when initializing the variables. Note
that in experiments other than neural network ones, the random numbers are generated by NumPy; In neural
network experiments, they are generated by PyTorch.

Bergamin et al. (2023) formed the metric as identity plus the outer product of gradients of negative log-posterior,
while Hartmann et al. (2022) formed the metric as identity plus a scaled version of the outer product of gradients
of log-posterior. We note that, when the scaling of Monge metric is 1, these are strictly mathematically equivalent
formulations. In experiments other than neural network ones, similar to Monge metric (Hartmann et al., 2022),
we form the metric as identity plus the outer product of gradients of log-posterior; for neural network experiments,
we form the metric similar to Bergamin et al. (2023).

We used SymPy (Meurer et al., 2017) to verify some derivations, and ChatGPT (OpenAI, 2023) as an assistance
for writing code, scientific discussions etc.

15.3 Finding the MAP estimate

For experiments other than neural network experiments, unless there is an analytical solution of the MAP
estimate, we find the MAP estimate by collecting 20 runs of BFGS optimization with random initialization
using the implementation from Virtanen et al. (2020) which yield negative log-posterior values other than plus
infinity or NaN, with maximum number of iterations 1e6. We choose the run that yields the smallest negative
log-posterior with numpy.argmin.

For neural network experiments, we find the MAP estimate using lr = 1e− 2, weight decay = 1e− 5 for 20000
epochs with the Adam (Kingma and Ba, 2015) optimizer. The prior precision and noise std are optimized
posthoc following standard procedure from Daxberger et al. (2021). During the optimization process, we fix the
random seeds, in order to have consistent prior precision and noise std for NUTS.

15.4 NUTS samples

We use CmdStanPy (Stan Dev Team, 2023) to generate the NUTS samples. Following the default options for
reference posterior in posteriordb (Magnusson et al., 2022), we run the NUTS sampler using 10 chains, a thinning
of 10, a warm-up of 10000 iterations and 20000 iterations per chain. We fix the random seeds for reproducibility,
generating a total of 20000 samples.

For sampling from banana distribution, based on preliminary runs, we set adapt delta to be 0.95. We otherwise
keep the hyper parameters to be their default values.

15.5 ODE integration

For the exponential maps, other than neural network experiments, ODE integrations are carried out using Diffrax
(Kidger, 2021). Inspired by the default settings of the function solve ivp in SciPy (Virtanen et al., 2020), we
use Dormand-Prince’s 5(4) method (Dormand and Prince, 1980). Diffrax reports the number of steps num steps
used by the integrator. In order to make the results approximately comparable to the number of function
evaluations nfev reported by SciPy, we multiply num steps by 6, the number of function evaluations per step of
Dormand-Prince’s 5(4) method. We use adaptive step size with initial step size chosen by the algorithm, with
rtol = 1e − 3 and atol = 1e − 6, matching the default option of SciPy. We set the maximum number of steps
allowed to be 4096 (approximately equivalent to 24576 function evaluations), following the default configuration
of Diffrax. For neural network experiments, following Bergamin et al. (2023), we use SciPy’s solve ivp and use
the default hyper parameters.

For the logarithmic maps, we implement it using analytical gradients and hessian vector products in NumPy.

In all experiments apart from logistic regression (in which we use analytical gradients), we use the gradients and
hessian vector products calculated by the autodiff framework.

We always use analytical expressions for the Fisher metric. For logistic regression and NN experiments, we use

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

analytical expressions of the Christoffel symbols, while in other experiments the Christoffel symbols are solved
numerically based on the metric.

When reporting the numbers of function evaluations, we report the numbers of function evaluations required to
solve the exponential maps. We observe that in certain scenarios the number of integration steps can exceed the
upper limit. In which case, we treat the number of steps for those samples exceeding the limit as the limit 4096
while calculating T , and calculate the Wasserstein distance of the samples not exceeding the limit.

15.6 Calculating the Wasserstein distance

We use Python Optimal Transport (Flamary et al., 2021) to calculate the Wasserstein distance, which can be
formulated as (Flamary et al., 2021)

min
γ
⟨γ,M⟩F ,

s.t. γ 1 = a,

γ⊤ 1 = b,

γ ≥ 0,

where γ is the transportation plan, M is the distance matrix induced by the Euclidean metric for the two sets
of samples, and a and b are uniform numbers summing up to 1 with the lengths the same as the numbers of
respective samples. The maximum number of iterations is set to be 1e10.

Wasserstein distance is a proper distance metric, and it becomes zero when the two distributions are the same.

15.7 Squiggle

The experiment presented in Section 4.3.2 was carried out using the following hyper parameters on the squiggle
distribution

a = 1.5, S =

[
5.0 0.0
0.0 0.05

]
.

15.8 Banana distribution

Results for sampling from banana distribution were presented in Section 5.2. The Fisher metric for banana
distribution can be found in Brofos and Lederman (2021), and is given by

G(θ1, θ2) =

[1
σ2
θ
+ N

σ2
y

2Nθ2
σ2
y

2Nθ2
σ2
y

1
σ2
θ
+

4Nθ2
2

σ2
y

]
.

15.9 Bayesian logistic regression

We report the details on the 5 logistic regression datasets as used in Section 5.3, covering the dimensionality of
parameter of interest D and the number of data points N .

Ripley (Ripley, 1994, 1996), abbreviated as Ripl : D = 3, N = 250.

Pima (Smith et al., 1988): D = 8, N = 532.

Heart (Feng et al., 1992), abbreviated as Hear : D = 14, N = 270.

Australian (Feng et al., 1992), abbreviated as Aust : D = 15, N = 690.

German (Feng et al., 1992), abbreviated as Germ: D = 25, N = 1000.

15.10 Neural networks

In Section 5.4, we performed experiments on NN regression tasks. Similar to Bergamin et al. (2023), we use the
dataset from Snelson and Ghahramani (2005), which has 200 data points with labels, with the x coordinates
distributed between 0 and 6.

Riemannian Laplace Approximation with the Fisher Metric

Figure 7: The first row shows approximations starting from one of the Euclidean MAPs, and the second row
shows approximations starting from the Hausdorff MAP. Each row from left to right: ELA; RLA-B; RLA-BLog;
RLA-F

For complete training set, a test set of size 50 is selected from the 200 data points with labels with random seed
1. As mentioned in the main paper, the gap training set is constructed by using data points with labels with x
coordinates not between 1.5 and 3.0.

16 ADDITIONAL EXPERIMENTAL RESULTS

16.1 Samples from banana distribution

In Section 5.2, we consider the problem of sampling from banana distribution. We reported the numerical qualities
of the results in Table 1, and the different MAP estimates and the resulting approximations using RLA-F in
Figure 5. Here we provide additional plots that show how all other variants work for the same problem.

In the Banana distribution, there are two Euclidean MAPs, with approximately the same log-posterior and
approximately symmetric on the two sides of axis.

The results of starting from one Euclidean MAP and the Hausdorff MAP are shown in Figure 7. We report the
results of sampling from one particular Euclidean MAP; starting from the other Euclidean MAP would simply
(approximately) mirror the approximation.

Visually, RLA-B, RLA-BLog and RLA-F all adapt to the local curvature. RLA-B is generally narrower, and
is slightly in the wrong direction. RLA-BLog alleviates these issues similar to RLA-F, and for all methods the
Hausdorff MAP is clearly better as already indicated by the numerical results in the main paper.

16.2 Squiggle

In Section 4.3.2, RLA-B was demonstrated to struggle sampling from a squiggle distribution. Moreover, in
the particular runs shown in Figure 4 which generated 10000 samples respectively, RLA-B took on average 75
function evaluations, while RLA-F only took 32.

We note that its properties can vary. Figure 8 shows the results of RLA-B and RLA-F on another version of
squiggle, given by

a = 1.5, S =

[
10.0 0.0
0.0 0.001

]
.

The high density area is clearly narrower. While in this version of squiggle RLA-B seems to yield better
results than the version as shown in the main paper, there still exists a non-negligible mismatch. Moreover, the
resulting integration problem seems more difficult than using RLA-F: For this particular run, RLA-F only took
41 function evaluations on average compared to 300 for RLA-B; Moreover, there were at least one sample where
RLA-B exceeded the maximum steps, while there were no such issues with RLA-F.

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

Figure 8: Samples from RLA-B (left) and RLA-F (right) on another version of squiggle.

Figure 9: Results on funnel. From left to right: ELA; RLA-B; RLA-BLog; RLA-F.

16.3 Funnel

Here we demonstrate how the approximations work in one more case of a distribution of complex geometry that
is diffeomorphic with a Gaussian. We consider the problem of sampling from the funnel distribution (Neal, 2003).
It can be formulated as

p(θ) = N (θD|0, σ)
D−1∏
d=1

N
(
θd|0, exp

(
1
2θD

))
.

Consider the two dimensional funnel. It admits a natural reparameterization, and can be formulated as a
transformed version of multivariate Gaussian (Stan Development Team, 2023), given by

ψ ∼ N (0, I),

θ = ϕ(ψ) =

[
exp(σψ2/2)ψ1

σψ2

]
.

As such, it is possible to obtain a Riemannian metric, following the general procedure in Section 4.3.2 of the
main paper. We have

ϕ−1(0) = 0,(
∂ θ

∂ψ

)−1

=

[
exp
(
− 1

2θ2
)
− 1

2θ1 exp
(
− 1

2θ2
)

0 1
σ

]
,

Gθ =

(
∂ θ

∂ψ

)−⊤(
∂ θ

∂ψ

)−1

.

The samples obtained using RLA-F on a two dimensional funnel with σ = 3 are shown in Figure 9. Interestingly,
all variants capture the marginal distribution of θ2 well even though many MCMC methods struggle to reach the
narrow funnel. However, ELA and RLA-B fail to expand in the direction of θ1 for larger values of θ2. RLA-BLog
alleviates the issue but is still not perfect, but RLA-F is exact.

Riemannian Laplace Approximation with the Fisher Metric

Figure 10: Neural network regression with ELA. Left: complete data; right: gap data.

16.4 Bayesian logistic regression

In Section 5.3, we considered Bayesian logistic regression. We observed that for RLA-B and RLA-BLog, there
can be huge differences in terms of number of function evaluations between standardized and raw inputs. We
hypothesize that this is in part caused by the large differences in the scales of the raw inputs, and hence the
gradient term in Monge metric, which is of quadratic nature, has very different scales across dimensions. This
induces strong curvature and leads to challenging numerical integration problems.

We benchmark the time to obtain a single sample based on a sample from Gaussian distribution in seconds of
different algorithms and report them in Table 4. We use a slightly optimized version of function for logarithmic
map implemented in NumPy and functions for exponential maps are implemented in JAX. We use SciPy for
integrations, averaging the obtained times over 2500 samples. RLA-F consistently takes less time to obtain one
sample, despite requiring direct matrix inversions.

16.5 Neural networks

In Section 5.4, we presented NN regression results. Here we present further visualizations. Figure 10 explicitly
shows how ELA fails to generate meaningful samples for this problem.

16.5.1 Numerical stability

In Figure 6, we purposefully reported runs which resulted in relatively well-behaved predictive distributions for
the methods under comparison. RLA-F is numerically stable but the other methods occasionally fail. This is
demonstrated in Figures 11 and 12 that show (examples of) bad runs where both RLA-B and RLA-BLog have
extremely bad and isolated samples that influence even the mean prediction significantly. For completeness,
Figure 13 shows the only run among the 10 independent runs where RLA-F has any issues, in form of two minor
outlier samples that do not have notable influence on the whole predictive distribution.

16.5.2 Standardized data

In the neural network regression experiment from the main paper, we directly run the neural network on the
original dataset from Snelson and Ghahramani (2005). We later observed that using standardized data may
lead to reduced running times for all methods while reducing possible numerical issues, and we report the
results in Table 5 and Figure 14. Interestingly, while in the main experiment RLA-B was demonstrated to
lead to predictions wider than predictions based on NUTS samples, with standardized data it leads to narrower

stand. raw
data RLA-B RLA-BLog RLA-F RLA-B RLA-BLog RLA-F
Ripl 0.011 0.048 0.006 0.011 0.045 0.006
Pima 0.016 0.26 0.006 1.989 1.183 0.006
Hear 0.015 0.638 0.007 2.33 2.683 0.006
Aust 0.02 0.734 0.01 6.183 4.632 0.008
Germ 0.026 2.215 0.014 1.435 3.4 0.015

Table 4: Time per sample in seconds for logistic regression. Bold font indicates the fastest method. Smaller is
better.

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

Figure 11: Bad runs with RLA-B on neural networks. The left shows the complete case, and the right shows the
gap case.

Figure 12: Bad runs with RLA-BLog on neural networks. The left shows the complete case, and the right shows
the gap case.

predictions. RLA-BLog reduces the narrowness, while being noisier. RLA-F samples are similar to NUTS
samples, while needing significantly fewer function evaluations and being faster in terms of running times.

16.5.3 Scalability experiment

We next consider a larger scale experiment similar to (Bergamin et al., 2023). We generate synthetic regression
datasets with varying numbers of data points with the data generation mechanism based on Daxberger et al.
(2021), and consider fully connected neural networks of size [1, N,N, 1] with varying N . An example of the
generated dataset and the average time to obtain one sample in seconds of RLA-B and RLA-F under different
number of data points and different number of parameters are shown in Figure 15. Interestingly, RLA-F can be
faster than RLA-B for D up to 1000. With large number of data points, RLA-F becomes slower due to needing
per-sample gradients. However, this may be resolved by mini-batching.

16.6 Empirical Fisher

Some works have considered an alternative Riemannian metric known as the Empirical Fisher Information
Matrix, given by

N∑
n=1

∇ log π(yn|θ)∇ log π(yn|θ)⊤.

There have been arguments that it may not lead to desirable behaviors (Kunstner et al., 2019). Lan et al. (2015)
also considers another Empirical Fisher Information Matrix whose estimates are more accurate than the previous

Complete Gap
method MSE NLL T time MSE NLL T time
ELA [0.718, 0.231] [2.538, 0.041] N/A N/A [1.497, 0.221] [2.659, 0.032] N/A N/A
RLA-B [0.072, 0.0] [0.11, 0.001] 2065.4 10.4 [0.149, 0.011] [0.599, 0.022] 2109.5 10.6
RLA-BLog [0.072, 0.0] [0.121, 0.002] 1428.1 10.2 [0.107, 0.008] [0.706, 0.028] 1415.3 10.0
RLA-F [0.071, 0.0] [0.115, 0.001] 77.7 0.3 [0.122, 0.003] [0.805, 0.01] 88.7 0.3
NUTS [0.073, 0.0] [0.122, 0.001] N/A N/A [0.093, 0.003] [0.684, 0.017] N/A N/A

Table 5: NN regression results with standardized data as [mean, std]. T indicates the average number of function
evaluations for one sample while time indicates the average time for one sample. Bold font indicates the best
method. For all evaluation metrics smaller is better.

Riemannian Laplace Approximation with the Fisher Metric

Figure 13: Bad run with RLA-F on neural networks, for the gap case.

Figure 14: NN regression with complete (top) and gap (bottom) standardized training data. Methods from left
to right: RLA-B; RLA-BLog; RLA-F; NUTS. Gray shading denotes the part of x-axis with training data, dark
line is the mean prediction, and blue lines are samples.

ones. We tried replacing the FIM with the above empirical version in the Fisher metric, terming the resulting
metric as Empirical Fisher metric, and performed a range of preliminary experiments to evaluate whether the
Empirical Fisher could also be used inside the metric in RLA, always using numerical Christoffel symbols.

While it works reasonably well for sampling from banana distribution, yielding a Wasserstein distance of
[0.799, 0.008] with Euclidean MAP and [0.141, 0.003] with Hausdorff MAP (reported as [mean, std]), it becomes
much worse for Bayesian logistic regression, as shown in Table 6. Especially, for the experiment on Heart dataset
without standardization, it is much worse than Euclidean. We therefore did not explore it further.

data W T

st
an

d
. Ripl [0.106, 0.004] 12.0

Pima [0.148, 0.0] 12.1
Hear [0.53, 0.0] 13.8

ra
w

Ripl [0.426, 0.011] 12.1
Pima [0.199, 0.001] 12.5
Hear [0.942, 0.02] 17.0

Table 6: Logistic regression results with Empirical Fisher metric, reported as [mean, std]. W indicates Wasserstein
distance to NUTS samples while T indicates the average number of function evaluations for one sample. For all
evaluation metrics smaller is better.

Hanlin Yu, Marcelo Hartmann, Bernardo Williams

Figure 15: Scalability experiment. Left: An example dataset. Right: Running times of RLA-B and RLA-F
under different settings.

	INTRODUCTION
	PRELIMINARIES
	Laplace Approximation
	Riemannian geometry

	RIEMANNIAN LA
	Principle and algorithm

	IMPROVING RIEMANNIAN LA
	RLA-B with logarithmic map
	Fisher Information Matrix as metric
	Fisher metric
	Hausdorff MAP
	Theoretical basis
	Computation of the Fisher metric

	EXPERIMENTS
	Experimental setup
	Banana distribution
	Bayesian logistic regression
	Neural network regression

	DISCUSSION AND CONCLUSIONS
	CONTENTS
	PROOFS
	Theorem 1
	Theorem 2
	Theorem 3

	USING HAUSDORFF MAP AND FISHER PRECISION
	COVERAGE OF RLA SAMPLES
	BIAS OF RLA-B
	GEODESIC ODE
	CHRISTOFFEL SYMBOLS BASED ON EXPRESSION OF THE RIEMANNIAN METRIC
	FISHER METRIC AND CHRISTOFFEL SYMBOL FOR SPECIFIC MODELS
	Logistic regression
	Neural Networks (NN)

	EXPERIMENTAL DETAILS
	Computation environment
	Implementation details
	Finding the MAP estimate
	NUTS samples
	ODE integration
	Calculating the Wasserstein distance
	Squiggle
	Banana distribution
	Bayesian logistic regression
	Neural networks

	ADDITIONAL EXPERIMENTAL RESULTS
	Samples from banana distribution
	Squiggle
	Funnel
	Bayesian logistic regression
	Neural networks
	Numerical stability
	Standardized data
	Scalability experiment

	Empirical Fisher

