
Deep Learning-Based Alternative Route Computation

Alex Zhai Dee Guo Kostas Kollias Sreenivas Gollapudi Daniel Delling
Google Google Google Google Google

Abstract

Algorithms for the computation of alterna-
tive routes in road networks power many ge-
ographic navigation systems. A good set of
alternative routes offers meaningful options
to the user of the system and can support
applications such as routing that is robust to
failures (e.g., road closures, extreme traffic
congestion, etc.) and routing with diverse
preferences and objective functions. Algorith-
mic techniques for alternative route compu-
tation include the penalty method, via-node
type algorithms (which deploy bidirectional
search and finding plateaus), and, more re-
cently, electrical-circuit based algorithms. In
this work we focus on the practically impor-
tant family of via-node type algorithms and
aim to produce high quality alternative routes
for road networks using a novel deep learning-
based approach that learns a representation
of the underlying road network.

We show that this approach can support natu-
ral objectives, such as the uniformly bounded
stretch, that are difficult and computationally
expensive to support through traditional al-
gorithmic techniques. Moreover, we achieve
this in a practical system based on the Cus-
tomizable Route Planning (CRP) hierarchical
routing architecture. Our training methodol-
ogy uses the hierarchical partition of the graph
and trains a model to predict which bound-
ary nodes in the partition should be crossed
by the alternative routes. We describe our
methods in detail and evaluate them against
previously studied baselines, showing quality
improvements in the road networks of Seattle,
Paris, and Bangalore.

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

1 INTRODUCTION

Computing good routes between two points in a road
network is a fundamental problem at the core of popular
navigation platforms used by hundreds of millions of
people every day. To a first approximation, users are
interested in finding the route that minimizes travel
distance (or time), in which case this problem reduces
to the classical shortest path problem in graph theory.

In the real world, however, the “goodness” of a route
depends on many additional factors. Whether to ac-
commodate a user’s driving preferences, or to support
a combined objective function (e.g. trade off between
travel time and carbon emissions), or to be robust
against changes in road conditions (such as a road clo-
sure), real-world navigation platforms often produce a
larger set of candidate routes than a single “best” one.

The problem of finding these candidate routes is known
as alternative (or alternate) route computation and has
received significant attention in the literature (e.g.,
de la Barra and Anez [1993], Bader et al. [2011],
Paraskevopoulos and Zaroliagis [2013], Cam [2009],
Luxen and Schieferdecker [2012], Abraham et al. [2013],
Kobitzsch [2015], Sinop et al. [2021]). Existing ap-
proaches typically model alternate route computation
as a graph optimization problem that accounts for
both diversity (the alternates are not too similar to
each other) and quality (e.g. each alternate route is still
reasonably fast). However, computing exact optimal
solutions for these problems is intractable for general
graphs, so heuristics are always required in practice.

One important measure of a route’s quality is what we
term the uniform stretch1, defined as the maximum
factor by which a subpath of an alternate route is longer
than the corresponding shortest path (see Section 2.2.1
for more details). In other words, requiring low uniform
stretch means that if we suggest the user take a detour
from the shortest path, it should not be too significant
of a detour (see e.g. Figure 1). Although uniform
stretch captures well our intuitions about what makes
a good alternate route, it is considered very expensive to

1Based on the “uniformly bounded stretch” introduced
in Abraham et al. [2013]

Deep Learning-Based Alternative Route Computation

compute (let alone optimize) in traditional algorithms
(Abraham et al. [2013]).

1.1 Our Contributions

In this work, we propose a new approach based on
learning road network representations using deep learn-
ing models. Instead of crafting and tuning heuristic
algorithms, we directly learn a succinct representation
of the road network that implicitly encodes multiple
high-quality routes between every pair of nodes. The
alternate routes we generate are via-paths: shortest
paths from source to destination that go through a
particular other node (called a via-node). Given a road
network, we train a model that predicts good via-nodes
for any source/destination pair.

Our method is able to efficiently produce alternate
routes with low uniform stretch. By doing the heavy
lifting at model training time, we sidestep the algo-
rithmic complexities of computing uniform stretch at
query time. Additionally, we use the Customizable
Route Planning (Delling et al. [2017]) routing architec-
ture, which enables fast searches using precomputed
shortcuts. As a result, our method is practical for
real-time use cases.

We evaluate our method on real road networks for the
metropolitan areas of Seattle, Paris, and Bangalore.
The primary metric we consider is non-cuspy diversity
(defined formally in Section 2.2.2), which measures
the diversity of alternate routes returned but excludes
routes with high uniform stretch (such “cuspy” routes
would be unlikely to satisfy the user). Existing via-node
algorithms that address cuspiness are based on local
optimality heuristics, which consider whether subpaths
of the via-path are shortest paths (Abraham et al.
[2013], Kobitzsch [2013]). We compare against two such
algorithms as baselines, the standard plateau method
and the T -test introduced in Abraham et al. [2013]
(explained in Section 4.3). Our experiments show that
the model-based approach outperforms both baselines.

Finally, we note that our general framework has two
important advantages over traditional algorithmic ap-
proaches:

• Flexible and generic. Rather than come up with
new algorithmic ideas for every new use case, deep
learning models are able to optimize for a wide
range of objectives using the same framework.

• Adapts to the data. Rather than apply the same
rules to every part of the road network, a learned
representation can naturally encode routing pat-
terns specific to certain sub-regions.

Thus, we believe this framework has the potential to

be applied more broadly to other routing problems,
where instead of uniform stretch, we can optimize for
almost any other imaginable objective (e.g. simplicity
of directions, user preferences, etc.).

1.2 Related Work

1.2.1 Alternative Routes Generation

Early approaches for alternative routes generation
were based on using different objective functions, such
as best travel-time, minimum distance, road quality,
scenery and so on (Ben-Akiva et al. [1984]). However,
this approach is not scalable, as even for a small set
of features, there will be exponentially many objective
functions. Moreover, many of the potential criteria are
not independent of each other.

A second approach is the k-shortest path problem (Yen
[1971]). This approach has been described as less effec-
tive (Bader et al. [2011]) for alternative route genera-
tion in road networks due to similarity of the produced
routes. A number of recent works have attempted
to correct this issue by incorporating explicit diversity
metrics into their problem formulations and algorithms,
with a focus on efficiently computing and optimizing
overlap between candidate paths (Häcker et al. [2021],
Chondrogiannis et al. [2020], Liu et al. [2018], Luo et al.
[2022]).

The penalty method is another approach based on
repeated Dijkstra searches that penalize edges already
used in previous searches. It was first introduced by
de la Barra and Anez [1993], with various subsequent
improvements (Bader et al. [2011], Paraskevopoulos
and Zaroliagis [2013]).

Via-node methods (Cam [2009], Luxen and Schiefer-
decker [2012], Abraham et al. [2013]), particularly the
plateau method, are the most popular approaches for
alternative route generation. The goal is to find a single
intermediate node (the via-node) and take the shortest
path from source to destination that goes through the
via-node. The key question then becomes the iden-
tification of good via-nodes. In the plateau method,
via-nodes are chosen according to high overlap between
the forward and reverse search trees in a bi-directional
Dijkstra search. For a more in-depth description of
both plateau and penalty methods, we refer the reader
to Kobitzsch [2015].

Recently, Sinop et al. [2021] proposed the use of elec-
trical flow networks for generating alternative routes.
Their algorithm models the road network as a network
of resistors and lets a unit of current travel from the
origin to the destination. Flow decomposition is then
used to produce a set of paths.

Alex Zhai, Dee Guo, Kostas Kollias, Sreenivas Gollapudi, Daniel Delling

In most of the above literature, the only measure of an
alternate path’s quality is its length. Abraham et al.
[2013] define a more comprehensive set of criteria for de-
termining the quality of an alternative route, including
the uniform stretch that we focus on in this work. As
mentioned earlier, existing algorithms that address uni-
form stretch (Abraham et al. [2013], Kobitzsch [2013])
are based on local optimality heuristics such as the
plateau method or a local search. Note however that
they are geared toward finding a single (or very few)
alternates.

Finally, we mention the work of Li et al. [2020], which
studies the incremental update of the alternative routes
as the user is in motion.

1.2.2 Neural Net-Based Models

Neural net-based models have been applied in the con-
text of road networks for various applications, most
prominent of which is predicting the average speed
of road segments. These works are often based on
graph neural networks, which account for nearby road
segments when predicting traffic speed. We refer the
reader to Jiang and Luo [2021] for a comprehensive
overview.

Along similar lines, deep learning techniques have also
been used for diverting traffic after events. For example,
Saha et al. [2020] use deep learning to reroute traffic
after accidents on freeways, and Perez-Murueta et al.
[2019] use it to divert traffic from congested zones. The
work in Raj et al. [2020] designs a deep learning-based
traffic advisory system. For further pointers in this
area, we point the reader to the review in Patil [2022].

The above literature focuses on using deep learning
to process signals such as traffic data, but not for the
actual generation of routes. Some works that use deep
learning models in a route planning context include
Kool et al. [2019], Ma et al. [2021], Vinyals et al. [2015],
Bello et al. [2016], Khalil et al. [2017], Kaempfer and
Wolf [2018], Deudon et al. [2018], Nazari et al. [2018].
However, in all these works the focus is really on solving
combinatorial optimization problems (e.g. traveling
salesperson and multi-vehicle routing problems), which
are abstracted away from the geometry of the road
network.

In this paper, we use neural networks that directly
encode structural information about an entire metro-
sized road network, with an application to generating
alternative routes. We are not aware of any previous
work that is directly comparable to ours in the machine
learning literature.

2 PRELIMINARIES

In this section we review how the CRP architecture
works, establish notation, and define our metrics of
interest.

2.1 CRP Preprocessing

We model a road network as a graph with nodes V
and weighted edges E, where weights represent the
cost (typically distance or travel time) to traverse each
edge. Additionally, we preprocess the graph following
the Customizable Route Planning (Delling et al. [2017],
henceforth “CRP”) routing architecture, which hier-
archically partitions the graph into pieces that share
few boundary nodes in order to support very efficient
searches. Below, we give a brief review of how CRP
works and establish notation for our setting.

2.1.1 Hierarchical Clustering

Given a graph, the first step of CRP is to partition
the nodes V into a small number of disjoint subsets
P1, . . . , Pk ⊂ V such that V =

⋃k
i=1 Pi. Let B be the

set of “boundary” nodes, i.e. nodes incident to an edge
that crosses between different Pi’s. The goal is to have
Pi roughly equally sized and for B to be as small as
possible. Intuitively, we want the Pi to correspond to
major geographical “regions” of the graph, and B to
correspond to major highways and bridges that you
must go through to get from one region to another.
This is usually done using min-cut algorithms.

Then, for some predetermined number of levels L, the
process is repeated recursively for each Pi up to a depth
L. The final result is L levels of partitionings, where for
each level i, we have a partitioning Pi = {Pi,1, Pi,2, . . .}
of V , and Pi is a refinement of Pi+1. We also define
Bi ⊂ V to be the set of boundary nodes for Pi.

For a cluster P ∈ Pi, we write B(P) := P ∩Bi for its
set of boundary nodes, and for a node v ∈ V , we write
Pi(v) for its partition at level i.

2.1.2 Shortcut Edges and Routing

The second step of CRP is to precompute shortcut
costs for each partition P (at each level) between each
pair of nodes in B(P). This enables efficient shortest
path searches as follows: given a source and target
pair s, t ∈ V , we can perform an ordinary Dijkstra
search, except that we always take the highest level of
precomputed shortcut that is “permissible”.

To be precise, a level-i shortcut from a boundary node
v ∈ Bi (i.e. a shortcut from v to another node in
B(Pi(v))) is permissible if Pi(v) ̸= Pi(s) and Pi(v) ̸=
Pi(t). Intuitively, this is saying that from the point of

Deep Learning-Based Alternative Route Computation

Figure 1: An example of a cuspy path. The path starts
on a highway and turns onto another highway, only to
return to the original highway.

view of search from s to t, entering and exiting Pi(v)
can be treated as a “black box”, and we don’t need to
inspect any internal nodes of Pi(v).

Thus, a CRP-based search from s to t will generally
use higher and higher level shortcuts as it leaves s and
then lower and lower level shortcuts as it approaches t.
In what follows (unless specified otherwise), whenever
we refer to a graph search, it is assumed that we are
doing a search based on CRP shortcuts as described
above.

2.2 Evaluation Metrics

2.2.1 Uniform Stretch

The stretch of a path is defined as the ratio of its cost
divided by the optimal cost. Following the notion of
“uniformly bounded stretch” introduced in Abraham
et al. [2013], we define the uniform stretch of a path
as the maximum stretch of any of its subpaths. The
uniform stretch is our primary measure of the quality
of an alternate route—our objective is to find diverse
alternate routes with low uniform stretch. For example,
if we suggest to a user a path that has uniform stretch
greater than 10, then there is some subpath where we
are suggesting the user to take 10 times as long as they
normally would, which is unlikely to be desirable. In
particular, this measure helps to rule out low-stretch
but “cuspy” paths that can often be generated by naive
via-node algorithms (see for example Figure 1).

As observed in Abraham et al. [2013], it seems difficult
to efficiently compute the exact uniform stretch, and
they propose a “T -test” approximation approach based

on searching in the neighborhood of a via-node. We
evaluate this approach in Section 4, but our focus is
on offline computation of uniform stretch that we use
to train a model (see Section 3.2.4).

Although efficiency is no longer a primary concern for
offline computation, we note that there is a way to
estimate uniform stretch that is much faster than a
naive approach of checking each subpath. Given a path
P and a threshold u, we can run a Dijkstra search
with all of the weights of edges in P multiplied by 1

u .
Then, the uniform stretch of P is below u if and only
if the resulting optimal path is our original path P .
We can then run this repeatedly for different values of
u (perhaps in a binary search) to get an estimate of
the uniform stretch. Note however that this is still not
nearly fast enough to run on more than a handful of
paths at query time.

2.2.2 Non-cuspy Diversity

To measure the overall quality of a set of alternates, we
measure the diversity of paths while not counting “bad”
paths. The diversity of a set of alternates is defined
as the sum of costs of distinct edges appearing in the
paths divided by the optimal path cost. For a given
uniform stretch threshold u, we define the non-cuspy
diversity to be the diversity excluding paths that have
uniform stretch above u. In most places we use u = 2.0.

We then measure the overall quality by computing the
non-cuspy diversity of the top n alternates produced
by the different algorithms, with varying values of n.

3 OUR APPROACH

3.1 CRP-based Via-node Alternates

We first describe the simple algorithmic component of
our alternate route generation procedure. It follows
the template of many via-node algorithms, consisting
of three main steps:

1. Candidate generation. First, we perform a for-
ward CRP search from the origin and a reverse
CRP search from the destination, keeping track
of the resulting shortest path trees. All meeting
points of the two searches are initially considered
as candidate via-nodes (the via-path through each
candidate via-node can be easily reconstructed
from the search trees). We prune out the candi-
dates whose via-paths have stretch above 1.5.

2. Scoring and ranking. We then rank the quality
of candidate via-nodes according to some scoring
mechanism. In our case, the quality is determined
by a model prediction (see Section 3.2 below).

Alex Zhai, Dee Guo, Kostas Kollias, Sreenivas Gollapudi, Daniel Delling

In particular, the model predicts whether each
via-node has uniform stretch above some speci-
fied threshold. If yes, the via-node is scored as
negative infinity and effectively removed from con-
sideration. Remaining candidate via-nodes are
ranked in increasing order of their path length.

We also compare against several other scoring pro-
cedures as baselines.

3. Selection. Finally, we select a set of the requested
size among the ranked/scored candidates. We used
a simple greedy procedure: we took the paths
one by one from highest quality to lowest, but
omitted any that had too high “overlap” (above
some threshold θ) with the paths selected so far,
progressively increasing θ if not enough paths could
be found.

Here, “overlap” of two paths p1 and p2 is defined to
be the total length of edges in both paths divided
by the smaller of the lengths of p1 and p2. We
chose (somewhat arbitrarily) thresholds of θ =
0.75, 0.85, 0.95, which produced reasonable results.

The overall procedure is summarized in pseudocode
below.

Algorithm 1 CRP-based Alternates Generation
Input: Origin s, destination t, number of alter-
nates n, via-node quality scoring function Q : V →
R
Output: List A of paths from s to t representing
the selected alternates

1: function get-alternates(s, t, n,Q)
2: ▷ Gather all candidate via-nodes from bidirec-

tional search ◁
3: Cf ← nodes in forward CRP search from s
4: Cr ← nodes in reverse CRP search from t
5: C ← Cf ∩ Cr

6: ▷ Filter high stretch candidates and sort ac-
cording to quality (best-to-worst) ◁

7: C ← {x : x ∈ C, stretch(viapath(x)) ≤ 1.5}
8: sort-descending(C,Q)
9: ▷ Build up the selected set of alternates ◁

10: A← ∅
11: for θ = 0.75, 0.85, 0.95 do
12: for x in C do
13: p← viapath(x)
14: if overlap(p, p′) ≤ θ, ∀p′ ∈ A then
15: A← A ∪ {p}
16: if |A| ≥ n then
17: return A
18: return A

3.2 Via-node Prediction Model

We now describe in detail the model used to filter out
via-paths with high uniform stretch. Although our
model is technically a single neural network, it consists
of two conceptually distinct parts: an embedding repre-
sentation of the road network and a prediction module,
detailed below.

3.2.1 Embedding Representation

A key property of real-world road networks is that
desirable routes tend to all go through the same small
set of major roads. We account for this phenomenon by
building our model’s representation of the road network
on top of the CRP partitioning described in Section
2.1. Recall that we have a hierarchy of L levels, with
the i-th level consisting of partitions Pi and boundary
nodes Bi. We then learn a vector embedding

e : V ⊔
(⊔
Pi

)
⊔
(⊔

Bi

)
→ Rd,

which assigns a d-dimensional vector to each node, par-
tition, and boundary node in the CRP graph.2 By
having separate embeddings at each CRP level, we can
encode graph information at different spatial resolu-
tions.

3.2.2 Prediction Module

We train a prediction module that takes as input a
triple (s, t, v) ∈ V × V × V , where s and t are origin
and destination nodes, and v is a via node. The module
then outputs a prediction of whether v is a good via-
node for going from s to t.

The prediction module consists of two components. The
first is a query encoding module q : Rd×(2L+2) → Rm

that encodes the query (s, t) into an m-dimensional
vector. Its input is the embedding vectors of s and t
concatenated with the embeddings of their CRP parti-
tions at each level, i.e.

q(s, t) := q(e(s), e(P1(s)), . . . , e(PL(s)),

e(t), e(P1(t)), . . . , e(PL(t))),

where in a slight abuse of notation we think of q also
as a function of s and t.

The second component is a classification head c :
Rm+d → R that takes in the query encoding and via-
node embedding and outputs a probability that the
via-node is “good”. The end-to-end calculation is thus

P̂(good via) = c(q(s, t), e(v)).

2Note the use of disjoint union. The same node may ap-
pear in multiple Bi, but it is assigned separate embeddings
per level.

Deep Learning-Based Alternative Route Computation

Our approach allows flexibility in defining what is con-
sidered “good”, but for our experiments, a via-node was
considered good if its via-path had uniform stretch at
most 2.

3.2.3 Architecture Details

We use L = 6 and d = m = 64. For the embedding e
and query encoder q, we leverage BERT (Devlin et al.
[2019]), a transformer architecture that is widely used
in natural language processing. Customarily, it takes
as input a sequence of text tokens, where each token
has a learned embedding. Instead of text tokens, we
use graph nodes and partitions with a fixed sequence
length of 2L+ 2. Our version of BERT uses 4 layers,
8 attention heads, and intermediate dimension 256.
BERT produces encoded outputs of the same dimension
as the embeddings at each input position; we read off
the final output of q from the first position.

For the classification head c, we simply use a two-
layer multilayer perceptron with hidden dimension 128
and output dimension 2, followed by softmax binary
classification.

3.2.4 Training Procedure

We randomly sampled 10 million origin/destination
pairs and computed a CRP bidirectional search for
each. We then used the via-node candidates found by
the bidirectional search as training examples, using a
path search as described in Section 2.2 to determine
whether the resulting via-paths had uniform stretch
above our threshold of 2. The model was trained for
approximately 50 epochs until convergence.

3.2.5 Resource Usage

Even though the training stage is a resource-intensive
process and the memory footprint of the model is sig-
nificant, both are well within the realm of practicality.
Specifically, in our experiments, the training time was
in the order of tens of hours, and the model used 1.2
GB of memory for a 1.5 million node network.

4 EXPERIMENTS

We evaluated on data from a popular navigation engine
in 3 metro areas: Seattle, Paris, and Bangalore. Each
road network consisted of between 1.5M and 2M nodes
(see Table 1 for detailed CRP statistics).

We sampled a query set of 100 random ori-
gin/destination pairs for each metro and evaluated the
alternates produced by each of four via-node ranking
methods:

• The standard plateau heuristic where the size of a
route’s plateau (cost of the part of the route that
belongs to both the forward and backward trees)
is compared with the total route cost.

• The T -test heuristic (Abraham et al. [2013]) where
routes that have a locally suboptimal stretch
around the via node are rejected.

• A high quality (but slow and impractical) bench-
mark where alternates are thoroughly evaluated
in terms of their uniform stretch before being re-
turned.

• The deep learning-based scoring approach that we
propose in this work.

We produce n alternate routes (n = 5, 10, 15, 20, 25, 30)
from each ranking method using the algorithm de-
scribed in Section 3.1. We used the same parameters
for each method, with the only difference being the
scoring function Q in Algorithm 1. The alternates were
then evaluated according to the noncuspy diversity
metric described in Section 2.2.2 with uniform stretch
threshold u = 2.0.

4.1 Ranking Procedures

We now explain in more detail how each one of the
algorithms that we evaluate handles the ranking stage
of the search algorithm.

4.2 Plateau Baseline

The plateau of a via-path is the part of the path that is
included in both the forward and the backward shortest
path trees (e.g., in all routes the via node is by definition
in the plateau, and in the shortest path, the whole route
is the plateau). To find the plateau, one can begin at
the via-node and start moving forward/backward in
the path and test whether each hop is included in both
trees produced by the bidirectional search. Note that
since we use CRP-based searches, in our setting these
hops are CRP shortcuts. Thus, the plateau sizes we
find are lower approximations of the true plateau size.

Once the plateau sizes are calculated, the alternates
are ranked based on the difference between the cost of
the alternate and the size of the plateau, lower values
being considered better (e.g., for the shortest path the
value is 0 since the whole shortest path belongs to both
trees of the bidirectional search and the plateau equals
the complete route).

4.3 T -test Baseline

In this algorithm, we filter out some bad candidates
by applying the “T -test” introduced in Abraham et al.

Alex Zhai, Dee Guo, Kostas Kollias, Sreenivas Gollapudi, Daniel Delling

Seattle Paris Bangalore
partitions # boundary nodes # partitions # boundary nodes # partitions # boundary nodes

Level 0 1647889 1635219 1965248
Level 1 4183 34176 4616 43871 4839 41441
Level 2 1148 11695 1247 16662 1277 14777
Level 3 161 2371 167 4562 160 3487
Level 4 34 753 37 1799 41 1497
Level 5 8 188 9 772 10 545
Level 6 3 80 2 183 2 153

Table 1: Number of CRP partitions and boundary nodes at each level for the graphs we used.

[2013]. Briefly, for a given parameter T ∈ [0, 1], the
T -test is performed on a via-node v as follows: take the
via-path P corresponding to v and take the subpath of
P centered around v of cost approximately 2T times
the cost of P . The test is passed if this subpath is a
shortest path. (We refer to Abraham et al. [2013] for
precise details.) After removing all candidates that do
not pass the T -test, we rank the remaining via-nodes
by the same scoring as the plateau method.3

4.4 Uniform Stretch Filter Benchmark

In this algorithm, we perform an expensive exact com-
putation on each candidate route to determine if its
uniform stretch exceeds the specified threshold. We
then exclude any path with uniform stretch exceeding
the threshold and rank the rest by ascending total cost.
Thus, this algorithm is guaranteed never to return a
cuspy route.

Due to the expensive computation on every single candi-
date via-node, this algorithm is not practical. However,
we include it to show the headroom for other methods.

4.5 Model Prediction

In this method, we use the model described in Sec-
tion 3.2 to predict for each via-node in the candidate
set whether its via-path has uniform stretch exceed-
ing the threshold u. We then exclude any via-node
predicted to exceed the uniform stretch threshold and
rank the rest by ascending cost, as above.

4.6 Results

Figure 2 shows the non-cuspy diversity (cuspiness
threshold u = 2.0) averaged over 100 query samples
in each of the 3 metro areas. We find that the model
prediction method outperforms both the plateau and T -

3We note that Abraham et al. [2013] recommends a
variant of the plateau ranking function that is more suited
towards finding a single alternate route. We experimented
with several variants and did not observe significant dif-
ferences, so we just use the plateau ranking function for
simplicity.

Figure 2: Diversity and number of cuspy paths for
Seattle, Paris, and Bangalore metros, with uniform
stretch threshold 2.0.

Deep Learning-Based Alternative Route Computation

Ranking method Scoring time (ms) Path expansion time (ms) Total time (ms)
Uniform Stretch Filter 34186.10 169.35 34378.31

Model Prediction 6.15 179.70 208.19
Plateau 0.50 188.23 214.61

T -test (T = 0.01) 738.18 194.67 958.43
T -test (T = 0.02) 816.35 191.97 1033.24

Table 2: Average latencies across three metros for generating 30 alternates.

test baselines (T = 0.01, 0.02)4 on non-cuspy diversity.
Furthermore, it returns significantly fewer cuspy paths
than the baselines. Perhaps surprisingly, we see that
the T -test method actually performs worse than the
plateau method on our metrics, despite involving extra
steps to filter out bad routes. To investigate further,
we directly measured the effectiveness of the T -test as
a signal for detecting cuspy routes.

Recall that for a given query, the initial bidirectional
search returns a set of candidate via-nodes. Each can-
didate via-node is considered either cuspy if its uniform
stretch exceeds the threshold u or non-cuspy otherwise.
Given a predictor of non-cuspiness, we can measure its
precision (fraction of predicted non-cuspy nodes that
were actually non-cuspy) and recall (fraction of non-
cuspy nodes that were predicted as such) on this set.
We compared precision/recall curves for the following
predictors:

1. Model prediction. A node is predicted as non-
cuspy if its model-predicted probability of being
good is above a threshold p, where we varied p in
equally spaced increments from 0 to 1.

2. Plateau. A node is predicted as non-cuspy if the
ratio of its plateau size to its via-path cost is above
a threshold r, where we varied r in equally spaced
increments from 0 to 0.2.

3. T -test. A node is predicted as non-cuspy if it
passes the T -test. We varied T in equally spaced
increments from 0 to 0.2.

Our precision and recall results are shown in Figure
3. As can be seen in the plot, our learned model is a
much stronger predictor of non-cuspiness than either
heuristic method. Although the T -test does remove
bad candidates, it also removes good ones, and for
larger values of T (T ≈ 0.1), we found that often only
a few candidates passed the T -test. This is consistent
with the original usage of the T -test, which was in the
context of finding only a single (or very few) alternates
(Abraham et al. [2013]).

4Best-performing T values among a range we tested from
0 to 0.2.

Figure 3: Precision and recall for detecting non-cuspy
candidate via-nodes. The precision and recall were
measured individually on each of 100 sample queries,
and these precision/recall values were then averaged
over the query set.

We also evaluated the algorithms at a cuspiness thresh-
old of u = 1.5, shown in Appendix 7.1, Figure 4.
At this threshold, our model still matches or outper-
forms both baselines in non-cuspy diversity and returns
significantly fewer cuspy paths. The difference can
be observed qualitatively in Appendix 7.2 Figure 6,
which shows a query in the Seattle metro area. The
model prediction-based alternates do not have signifi-
cant cusps, while the plateau method returns several
clearly undesirable routes.

Finally, Table 2 shows the average time it took to
produce 30 alternates, averaged across our queries from
all three metros. The scoring time column measures the
time spent evaluating each candidate via-node, which is
the only part that varies between the different ranking
methods. Path expansion time refers to the time spent
expanding the CRP shortcuts once the via-nodes are
selected.

The running time of our model-based approach and the
plateau baseline are both slightly over 200ms, with the
vast majority of that time spent in path expansion. In
particular, both scoring steps ran in well under 10ms,
fast enough for practical applications. Note that we did
not optimize the path expansion, since it was shared
across all methods we evaluated.

Both the T -test and uniform stretch filter ran signif-
icantly slower due to having to non-trivially process

Alex Zhai, Dee Guo, Kostas Kollias, Sreenivas Gollapudi, Daniel Delling

each candidate via-node. Typically queries had hun-
dreds of such candidates, even after filtering out those
with stretch above 1.5 (see Appendix 7.1, Figure 5).
Our implementation of the T -test could have been op-
timized in various ways, but we did not do so given its
relatively low performance on evaluation metrics.

5 CONCLUSION

In this work, we propose a new approach to finding
alternative routes in road networks based on a neural
network model that learns a good representation of the
underlying graph. Using our model, we are able to pro-
duce routes with low uniform stretch, something which
is expensive to achieve using traditional algorithms.

Our work opens up possibilities for future research.
Continuing along the lines of alternates generation, one
can explore other training objectives besides uniform
stretch. For example, we could change the model to
output an embedding vector f(v) ∈ Rd for each via-
node candidate v. Then, we could train the model so
that f(v) and f(v′) are close if and only if the via-paths
of v and v′ have high overlap. This would provide a
fast way of clustering candidate paths without having
to make expensive path overlap computations.

Another future direction is to optimize the model. Al-
though our model is already practical for metro-sized
graphs (or even larger), we believe there is potential
to scale much further. The embeddings for each indi-
vidual node account for most of the model size. We
could imagine a model that instead operates on only
level 1 boundary nodes (around 40x fewer, see Table 1)
and relies on local searches to connect the origin and
destination to the level 1 boundary.

Finally, we believe that the paradigm of training a
road network representation can be a general way to
incorporate almost any kind of additional information
when suggesting a route (whether as an alternate or as
a main route). By augmenting the training procedure
with richer data, we could train a model that suggests
routes that account for traffic and traffic variability,
vehicle types, individual user preferences, and more.

6 ACKNOWLEDGEMENTS

We thank our colleagues Pranjal Awasthi and Zhengdao
Chen for fruitful discussions on topics related to this
work.

References
Camvit: Choice routing. http://www.camvit.com,

2009.

Ittai Abraham, Daniel Delling, Andrew V. Goldberg,
and Renato F. Werneck. Alternative routes in road
networks. ACM J. Exp. Algorithmics, 18, 2013.

Roland Bader, Jonathan Dees, Robert Geisberger, and
Peter Sanders. Alternative route graphs in road net-
works. In Alberto Marchetti-Spaccamela and Michael
Segal, editors, Theory and Practice of Algorithms
in (Computer) Systems, pages 21–32, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-19754-3.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad
Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. CoRR,
abs/1611.09940, 2016. URL http://arxiv.org/
abs/1611.09940.

M Ben-Akiva, M J Bergman, Andrew J Daly, and Ro-
hit Ramaswamy. Modeling inter-urban route choice
behaviour. In International Symposium on Trans-
portation and Traffic Theory, pages 299–330. VNU
Press, 1984.

Theodoros Chondrogiannis, Panagiotis Bouros, Jo-
hann Gamper, Ulf Leser, and David B. Blumen-
thal. Finding k-shortest paths with limited over-
lap. VLDB J., 29(5):1023–1047, 2020. doi: 10.
1007/s00778-020-00604-x. URL https://doi.org/
10.1007/s00778-020-00604-x.

Tomas de la Barra and B Perezand J Anez. Multidi-
mensional path search and assignment. In PTRC
Summer Annual Meeting (SAM), 1993.

Daniel Delling, Andrew V. Goldberg, Thomas Pajor,
and Renato F. Werneck. Customizable route plan-
ning in road networks. Transp. Sci., 51(2):566–591,
2017.

Michel Deudon, Pierre Cournut, Alexandre Lacoste,
Yossiri Adulyasak, and Louis-Martin Rousseau.
Learning heuristics for the TSP by policy gradient.
In Willem Jan van Hoeve, editor, Integration of
Constraint Programming, Artificial Intelligence, and
Operations Research - 15th International Conference,
CPAIOR 2018, Delft, The Netherlands, June 26-29,
2018, Proceedings, volume 10848 of Lecture Notes
in Computer Science, pages 170–181. Springer, 2018.
doi: 10.1007/978-3-319-93031-2_12. URL https:
//doi.org/10.1007/978-3-319-93031-2_12.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understand-
ing. In Jill Burstein, Christy Doran, and Thamar
Solorio, editors, Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short

 http://www.camvit.com
http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1611.09940
https://doi.org/10.1007/s00778-020-00604-x
https://doi.org/10.1007/s00778-020-00604-x
https://doi.org/10.1007/978-3-319-93031-2_12
https://doi.org/10.1007/978-3-319-93031-2_12

Deep Learning-Based Alternative Route Computation

Papers), pages 4171–4186. Association for Computa-
tional Linguistics, 2019.

Christian Häcker, Panagiotis Bouros, Theodoros Chon-
drogiannis, and Ernst Althaus. Most diverse near-
shortest paths. In Xiaofeng Meng, Fusheng Wang,
Chang-Tien Lu, Yan Huang, Shashi Shekhar, and
Xing Xie, editors, SIGSPATIAL ’21: 29th Inter-
national Conference on Advances in Geographic In-
formation Systems, Virtual Event / Beijing, China,
November 2-5, 2021, pages 229–239. ACM, 2021. doi:
10.1145/3474717.3483955. URL https://doi.org/
10.1145/3474717.3483955.

Weiwei Jiang and Jiayun Luo. Graph neural network for
traffic forecasting: A survey. CoRR, abs/2101.11174,
2021. URL https://arxiv.org/abs/2101.11174.

Yoav Kaempfer and Lior Wolf. Learning the multiple
traveling salesmen problem with permutation invari-
ant pooling networks. CoRR, abs/1803.09621, 2018.
URL http://arxiv.org/abs/1803.09621.

Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra
Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 30: Annual
Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 6348–6358, 2017. URL https:
//proceedings.neurips.cc/paper/2017/hash/
d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.
html.

Moritz Kobitzsch. An alternative approach to al-
ternative routes: Hidar. In Hans L. Bodlaen-
der and Giuseppe F. Italiano, editors, Algorithms
- ESA 2013 - 21st Annual European Symposium,
Sophia Antipolis, France, September 2-4, 2013. Pro-
ceedings, volume 8125 of Lecture Notes in Com-
puter Science, pages 613–624. Springer, 2013. doi:
10.1007/978-3-642-40450-4_52. URL https://
doi.org/10.1007/978-3-642-40450-4_52.

Moritz Kobitzsch. Alternative Route Techniques and
their Applications to the Stochastics on-time Arrival
Problem. PhD thesis, Karlsruhe Institute of Technol-
ogy, 2015.

Wouter Kool, Herke van Hoof, and Max Welling. At-
tention, learn to solve routing problems! In 7th
International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019.

Lingxiao Li, Muhammad Aamir Cheema, Mo-
hammed Eunus Ali, Hua Lu, and David Taniar. Con-
tinuously monitoring alternative shortest paths on

road networks. Proc. VLDB Endow., 13(11):2243–
2255, 2020. URL http://www.vldb.org/pvldb/
vol13/p2243-li.pdf.

Huiping Liu, Cheqing Jin, Bin Yang, and Aoying Zhou.
Finding top-k shortest paths with diversity. In 34th
IEEE International Conference on Data Engineering,
ICDE 2018, Paris, France, April 16-19, 2018, pages
1761–1762. IEEE Computer Society, 2018. doi: 10.
1109/ICDE.2018.00238. URL https://doi.org/10.
1109/ICDE.2018.00238.

Zihan Luo, Lei Li, Mengxuan Zhang, Wen Hua, Yehong
Xu, and Xiaofang Zhou. Diversified top-k route
planning in road network. Proc. VLDB Endow.,
15(11):3199–3212, 2022. URL https://www.vldb.
org/pvldb/vol15/p3199-luo.pdf.

Dennis Luxen and Dennis Schieferdecker. Candi-
date sets for alternative routes in road networks.
In Ralf Klasing, editor, Experimental Algorithms -
11th International Symposium, SEA 2012, Bordeaux,
France, June 7-9, 2012. Proceedings, volume 7276 of
Lecture Notes in Computer Science, pages 260–270.
Springer, 2012.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song,
Le Zhang, Zhenghua Chen, and Jing Tang. Learning
to iteratively solve routing problems with dual-aspect
collaborative transformer. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances
in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 11096–11107, 2021.

MohammadReza Nazari, Afshin Oroojlooy, Lawrence V.
Snyder, and Martin Takác. Reinforcement learning
for solving the vehicle routing problem. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 9861–9871, 2018. URL https:
//proceedings.neurips.cc/paper/2018/hash/
9fb4651c05b2ed70fba5afe0b039a550-Abstract.
html.

Andreas Paraskevopoulos and Christos D. Zaroliagis.
Improved alternative route planning. In Daniele Fri-
gioni and Sebastian Stiller, editors, 13th Workshop
on Algorithmic Approaches for Transportation Mod-
elling, Optimization, and Systems, ATMOS 2013,
September 5, 2013, Sophia Antipolis, France, vol-
ume 33 of OASICS, pages 108–122. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2013.

https://doi.org/10.1145/3474717.3483955
https://doi.org/10.1145/3474717.3483955
https://arxiv.org/abs/2101.11174
http://arxiv.org/abs/1803.09621
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d9896106ca98d3d05b8cbdf4fd8b13a1-Abstract.html
https://doi.org/10.1007/978-3-642-40450-4_52
https://doi.org/10.1007/978-3-642-40450-4_52
http://www.vldb.org/pvldb/vol13/p2243-li.pdf
http://www.vldb.org/pvldb/vol13/p2243-li.pdf
https://doi.org/10.1109/ICDE.2018.00238
https://doi.org/10.1109/ICDE.2018.00238
https://www.vldb.org/pvldb/vol15/p3199-luo.pdf
https://www.vldb.org/pvldb/vol15/p3199-luo.pdf
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/9fb4651c05b2ed70fba5afe0b039a550-Abstract.html

Alex Zhai, Dee Guo, Kostas Kollias, Sreenivas Gollapudi, Daniel Delling

Priyadarshan Patil. Applications of deep learn-
ing in traffic management: A review. In-
ternational Journal of Business Intelligence and
Big Data Analytics, 5(1):16–23, Jan. 2022.
URL https://research.tensorgate.org/index.
php/IJBIBDA/article/view/26.

Pedro Perez-Murueta, Alfonso Gómez-Espinosa, Ce-
sar Cardenas, and Miguel Gonzalez-Mendoza. Deep
learning system for vehicular re-routing and con-
gestion avoidance. Applied Sciences, 9(13), 2019.
ISSN 2076-3417. doi: 10.3390/app9132717. URL
https://www.mdpi.com/2076-3417/9/13/2717.

Pratyush Raj, M Sravan Kumar, and Priyanka Dwivedi.
An embedded deep learning based traffic advisory
system. In 2020 5th IEEE International Confer-
ence on Recent Advances and Innovations in Engi-
neering (ICRAIE), pages 1–5, 2020. doi: 10.1109/
ICRAIE51050.2020.9358364.

Rajib Saha, Mosammat Tahnin Tariq, and Mohammed
Hadi. Deep learning approach for predictive analytics
to support diversion during freeway incidents. Trans-

portation Research Record, 2674(6):480–492, 2020.
doi: 10.1177/0361198120917673.

Ali Kemal Sinop, Lisa Fawcett, Sreenivas Gollapudi,
and Kostas Kollias. Robust routing using electrical
flows. In Xiaofeng Meng, Fusheng Wang, Chang-
Tien Lu, Yan Huang, Shashi Shekhar, and Xing
Xie, editors, SIGSPATIAL ’21: 29th International
Conference on Advances in Geographic Information
Systems, Virtual Event / Beijing, China, November
2-5, 2021, pages 282–292. ACM, 2021.

Oriol Vinyals, Meire Fortunato, and Navdeep
Jaitly. Pointer networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information
Processing Systems, volume 28. Curran Asso-
ciates, Inc., 2015. URL https://proceedings.
neurips.cc/paper_files/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.pdf.

Jin Y. Yen. Finding the k shortest loopless paths in
a network. Management Science, 17(11):712–716,
1971. ISSN 00251909, 15265501.

https://research.tensorgate.org/index.php/IJBIBDA/article/view/26
https://research.tensorgate.org/index.php/IJBIBDA/article/view/26
https://www.mdpi.com/2076-3417/9/13/2717
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

Deep Learning-Based Alternative Route Computation

Checklist

1. For all models and algorithms presented, check if you include:

(a) A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes] Please see
Sections 2 and 3.

(b) An analysis of the properties and complexity (time, space, sample size) of any algorithm. [No] We did
not provide analysis of Algorithm 1 as it is not central to the point of the paper. However, we are happy
to provide a more detailed analysis if requested.

(c) (Optional) Anonymized source code, with specification of all dependencies, including external libraries.

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of all theoretical results. [Not Applicable]
(b) Complete proofs of all theoretical results. [Not Applicable]
(c) Clear explanations of any assumptions. [Not Applicable]

3. For all figures and tables that present empirical results, check if you include:

(a) The code, data, and instructions needed to reproduce the main experimental results (either in the
supplemental material or as a URL). [No] We provide descriptions of the experiments and the steps
needed to complete them but not actual code. We have ran our experiments on an actual system which
includes proprietary data and code.

(b) All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes] We have given
most important training details in 3.2. We are happy to provide further details if requested.

(c) A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random
seed after running experiments multiple times). [No] We have provided clear definitions of metrics used
in Section 2.2. We did not include error bars because we felt they were not very informative and would
hurt the presentation of the plots.

(d) A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud
provider). [No] We have not shared details about the computing infrastructure used because it includes
proprietary information.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you
include:

(a) Citations of the creator If your work uses existing assets. [Not Applicable]
(b) The license information of the assets, if applicable. [Not Applicable]
(c) New assets either in the supplemental material or as a URL, if applicable. [Not Applicable]
(d) Information about consent from data providers/curators. [Not Applicable]
(e) Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content.

[Not Applicable]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

(a) The full text of instructions given to participants and screenshots. [Not Applicable]
(b) Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if

applicable. [Not Applicable]
(c) The estimated hourly wage paid to participants and the total amount spent on participant compensation.

[Not Applicable]

Alex Zhai, Dee Guo, Kostas Kollias, Sreenivas Gollapudi, Daniel Delling

7 APPENDIX

7.1 Additional Figures

Figure 4: Diversity and number of cuspy paths for Seattle, Paris, and Bangalore metros, with uniform stretch
threshold 1.5. Note that the uniform stretch filter is still applied at a 2.0 threshold, so it produces some paths
with uniform stretch above 1.5.

Figure 5: The distribution of the number of potential via-nodes found by bidirectional search.

Deep Learning-Based Alternative Route Computation

7.2 Qualitative Examples

(a) model prediction (b) plateau

Figure 6: Example alternates generated for a query in Seattle. The model-scored results (left) included no cuspy
paths, while the plateau (right) results include noticeable cusps.

(a) (b)

Figure 7: Close-up of some bad paths returned by the plateau method in Figure 6. In (a), the path makes an
unnecessary detour from the highway to go through a via-node. In (b), the returned path (purple) takes a very
circuitous route compared to the main path (green).

	INTRODUCTION
	Our Contributions
	Related Work
	Alternative Routes Generation
	Neural Net-Based Models

	PRELIMINARIES
	CRP Preprocessing
	Hierarchical Clustering
	Shortcut Edges and Routing

	Evaluation Metrics
	Uniform Stretch
	Non-cuspy Diversity

	OUR APPROACH
	CRP-based Via-node Alternates
	Via-node Prediction Model
	Embedding Representation
	Prediction Module
	Architecture Details
	Training Procedure
	Resource Usage

	EXPERIMENTS
	Ranking Procedures
	Plateau Baseline
	T-test Baseline
	Uniform Stretch Filter Benchmark
	Model Prediction
	Results

	CONCLUSION
	ACKNOWLEDGEMENTS
	APPENDIX
	Additional Figures
	Qualitative Examples

