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Abstract

Uncertainty estimation is a crucial aspect of
deploying dependable deep learning models
in safety-critical systems. In this study, we
introduce a novel and efficient method for de-
terministic uncertainty estimation called Dis-
criminant Distance-Awareness Representation
(DDAR). Our approach involves constructing
a DNN model that incorporates a set of pro-
totypes in its latent representations, enabling
us to analyze valuable feature information
from the input data. By leveraging a distinc-
tion maximization layer over optimal train-
able prototypes, DDAR can learn a discrimi-
nant distance-awareness representation. We
demonstrate that DDAR overcomes feature
collapse by relaxing the Lipschitz constraint
that hinders the practicality of deterministic
uncertainty methods (DUMs) architectures.
Our experiments show that DDAR is a flex-
ible and architecture-agnostic method that
can be easily integrated as a pluggable layer
with distance-sensitive metrics, outperforming
state-of-the-art uncertainty estimation meth-
ods on multiple benchmark problems.

1 Introduction

Deep neural network (DNN) models play an important
role in many safety-critical tasks, e.g., autonomous
driving, or medical diagnosis. A key characteristic
shared by these tasks is their risk sensitivity so that a
confidently wrong prediction can lead to fatal accidents
and misleading decisions. Therefore, it is of utmost
importance to develop reliable and efficient uncertainty
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estimation methods that allow for the safe deployment
in large-scale, real-world applications across computer
vision and natural language processing (Zhang, 2021;
Tran et al., 2022; Zhang et al., 2024).

However, naive DNN models do not deliver certainty
estimates or suffer from over or under-confidence, i.e.
are badly calibrated or assigned with high confidence
to out-of-domain (OOD) inputs. This has led to the
development of probabilistic approaches for uncertainty
estimation in DNN models. Bayesian Neural Networks
(BNNs) (Osawa et al., 2019; Wenzel et al., 2020) repre-
sent the dominant solution for quantifying uncertainty
but exactly modeling the full posterior is often com-
putationally intractable, and not scale well to com-
plex tasks (Mukhoti et al., 2021a). Monte Carlo (MC)
Dropout (Gal and Ghahramani, 2016), is simple to
implement but its uncertainty is not always reliable
while requiring multiple forward passes. Deep Ensem-
bles (Lakshminarayanan et al., 2017) involves training
multiple deep models from different initializations and
a different data set ordering, which outperforms BNN
but comes at the high expense of computational cost
(Ovadia et al., 2019). A shared characteristic of these
approaches is their high computational cost and large
memory requirement. Thus, efficient and scalable meth-
ods for uncertainty estimation largely remain an open
problem (Gawlikowski et al., 2023).

Recently, a set of promising works, named Determin-
istic Uncertainty Methods (DUMs) (Mukhoti et al.,
2021a) emerged for estimating uncertainty with a single
forward pass while treating its weights deterministically
(Postels et al., 2021). These methods are prone to be
efficient and scalable solutions to uncertainty estima-
tion and out-of-distribution (OOD) detection problems.
DUMs aim at learning informative latent representa-
tion of a model given that the distribution of latent
representation should be representative of the input
distribution. Then DUMs estimate uncertainty by re-
placing the final softmax layer with a distance-sensitive
function. Specifically, DUQ (Van Amersfoort et al.,
2020) defines the uncertainty as the distance between
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Figure 1: DDAR overview: an efficient, distance-aware and architecture-agnostic method for deterministic
uncertainty estimation. DDAR learns a discriminative distance-aware latent representation by leveraging the
learnable prototypes and distinction maximization layer. Combined with the RBF kernel, our method performs
accurate uncertainty estimation and competitive OOD detection capabilities.

the model output and the closest centroid and pro-
poses a novel centroid updating step based on Radial
Basis Function (RBF) networks. DUE (van Amersfoort
et al., 2021) built upon DUQ introduces deep kernel
learning by using the inducing point approximation
by incorporating a large number of inducing points
without overfitting. SNGP (Liu et al., 2020) replaces
the softmax layer with Gaussian processes (GP) with
RBF kernel to extend distance awareness to the output
layer. However, naive latent representations typically
suffer from the feature collapse (Van Amersfoort et al.,
2020) issue when OOD data are mapped to similar
feature representations as in-distribution data, which
makes OOD detection based on high-level representa-
tions impossible. To address the feature collapse issue,
DUMs strongly rely on the regularization of latent rep-
resentation with the ability to differentiate between
in-distribution and out-of-distribution data. Other-
wise, these methods have several essential challenges
and weaknesses (Postels et al., 2021).

Specifically, DUMs mitigate the feature collapse issue
through regularization techniques to mimic distances
between latent representations to distances in the orig-
inal input space. This is often achieved by adding
constraints over the bi-Lipschitz constant, which en-
forces a lower and upper bound to expansion and con-
traction performed by a DNN model (Postels et al.,
2021). The upper bound enforces smoothness, i.e.,
small changes in the input do not lead to large changes
in the latent space and the lower bound enforces sen-
sitiveness, i.e., different inputs are mapped to distinct
latent spaces. Primarily, there are two methods to im-
pose the bi-Lipschitz constraint: (1) Gradient Penalty
(Van Amersfoort et al., 2020) directly constrains the
gradient of input but leads to large computational cost

due to backpropagation through the input’s gradients;
(2) Spectral Normalization (Miyato et al., 2018) nor-
malizes the weights of each residual layers using their
spectral norm, which is computationally more efficient
compared with gradient penalty but requires the use
of residual layers so it is not architecture-agnostic (van
Amersfoort et al., 2021; Liu et al., 2020). Moreover,
both regularization in distance-awareness representa-
tions have limitations in explicitly preserving sample-
specific information. In other words, they may discard
useful information in the latent representation depend-
ing on the underlying distance metric (Postels et al.,
2020; Wu and Goodman, 2020; Franchi et al., 2022).
Although the distance-awareness representation with
the above regularization shows promising results, it
does not explicitly preserve sample-specific informa-
tion. In other words, it may discard useful information
in its latent representation depending on the underly-
ing distance metric. To fill the gap, this work aims to
answer the following questions:

• Can we build a simple and efficient uncertainty esti-
mation method without feature collapse issue?

• Is that possible to learn a distance-aware representa-
tion while preserving sample-specific information?

• Is the feature extractor architecture-agnostic, with
higher flexibility, not limited by residual layers?

To answer these core questions, we develop DDAR (Dis-
criminant Distance-Awareness Representation) - a novel
method for deterministic uncertainty estimation, which
is efficient, distance-aware, and architecture-agnostic.
As shown in Fig. 1, we first build a DNN model im-
bued with a set of prototypes over its latent presen-
tations. These prototypes allow us to better analyze
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useful feature information from the input data. Then
we learn a discriminant distance-awareness representa-
tion (DDAR) by leveraging a distinction maximization
layer over optimal trainable prototypes. DDAR is sim-
pler, more efficient, and easy to use as a pluggable
layer integrating with distance-sensitive metrics. We
further propose adding two constrained losses to im-
prove the informative and discriminative properties
of the latent representation. We demonstrate that
DDAR addresses the feature collapse by relaxing the
Lipschitz constraint hindering the practicality of DUM
architectures. Through several experiments on toy ex-
amples, image classification, and text OOD detection,
DDAR shows superior performance over the state-of-
the-art uncertainty estimation baseline methods, specif-
ically single-forward pass methods. Compared with the
ensemble-based methods, DDAR is also competitive
but more computationally efficient.

2 Background

Prototype Learning. Prototype learning (Wen
et al., 2016; Li et al., 2021; Gao et al., 2021) has been
applied to feature extraction to build more discrimi-
native features by compacting intra-class features and
dispersing the inter-class ones. Specifically, few-shot
learning studies are based on the prototypical networks
(Snell et al., 2017) for their simplicity and competitive
performance. Given a small support set of N labeled
examples S = {(x1, y1), ..., (xN , yN )} where xi ∈ RD is
the feature vector nd yi is the label. Prototypical net-
works compute a prototype, ck of each class through an
embedding function fθ : RD → RM . Each prototype
is the mean vector of the embedded support points
belonging to its class k:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fθ(xi), i = 1, ...,K. (1)

Thus embedded new query points are classified via a
softmax over distance to class prototypes:

pθ(y = k|x) ∝ exp(−d(fθ(x), ck)) (2)

where d is a distance function: RM × RM → [0,+∞].
The training is performed by minimizing the negative
log-probability J (θ) = − log pθ(y = k|x) of the true
class k via stochastic gradient descent (SGD). The
prototype networks can be easily extended to tackle
zero-shot learning where each class comes with meta-
data giving a high-level description of the class rather
than a small number of labeled examples. The pro-
totype for each class can be obtained by learning an
embedding of the meta-data into a shared space.

Deterministic Uncertainty Estimation. DUQ
(Van Amersfoort et al., 2020) builds on the RBF func-

tion which requires the preservation of input distances
in the output space which is achieved using the gradient
penalty. Compared with approximated GPs used in
DUE (van Amersfoort et al., 2021) and SNGP (Liu
et al., 2020) which rely on Laplace approximation with
random Fourier feature and inducing point approxi-
mation, we prefer the simpler and more efficient RBF
function as the distance metric for estimating uncer-
tainty, which is defined as the distance between the
model output and the class centroids:

Kc(fθ, ψc) = exp

[
−∥Wcfθ(x)− ψc∥22

n · 2σ2

]
, (3)

where fθ is the feature extractor parametrized by θ, ψc

is the centroid for class c, Wc is a weight matrix with
a length scale parameter σ, n is the centroid size, and
Ψ = {ψ1, ...ψc} is the class centroids. The loss function
LRBF is defined by the sum of binary cross entropy
between a one-hot binary encoding of the label yc and
each class kernel value Kc:

LRBF = −
∑
c

yc log(Kc) + (1− yc) log(1−Kc). (4)

The training is performed by stochastic gradient de-
scent on θ and W = {W1, ...,Wc}. However, the loss
in Eq. (4) is prone to feature collapse without further
regularization of DNN. Gradient penalty (Van Amers-
foort et al., 2020) can address this issue but leads to
large computational overhead as it requires differentia-
tion of the gradients of the input with respect to the
DNN parameters.

3 Methodology

In this section, we aim to address the three core ques-
tions by proposing a new DUM approach, based on a
discriminative distance-aware representation that im-
proves both scalability and flexibility. This is achieved
by following the principle of DUMs of learning a sensi-
tive and smooth representation but not by enforcing
directly the Lipschitz constraint.

Specifically, we start with a theoretical analysis of
feature collapse and understand the essential property
of the Lipschitz function. We then propose learning
optimal prototypes to better capture the distance-aware
property and to improve the discriminative property
with the help of the distinction maximization layer.
Finally, we carefully design the discriminant loss with
regularization to constrain the hidden representations
to mimic distances from the input space. Our DDAR
method is lighter, faster and only needs a single forward
pass, while it can be used as a pluggable learning
layer on any top of the feature extractor, which is
architecture-agnostic.
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3.1 Feature Collapse Issue

Most DUMs address the feature collapse issue through
regularization methods for constraining the hidden rep-
resentations to mimic distances from the input space.
This is typically achieved by enforcing constraints over
the Lipschitz constant of the DNN (Van Amersfoort
et al., 2020; Liu et al., 2020). Specifically, given the fea-
ture extractor fθ(x), the bi-Lipschitz condition implies
that for any pair of inputs x1 and x2:

L1∥x1 − x2∥ ≤ ∥fθ(x1)− fθ(x2)∥ ≤ L2∥x1 − x2∥. (5)

where L1 and L2 are positive and bounded Lipschitz
constants 0 < L1 < 1 < L2. The lower Lipschitz bound
L1 deals with the sensitivity to preserve distances in
the latent space thus avoiding feature collapse. The
upper Lipschitz bound L2 enforces the smoothness and
robustness of a DNN by preventing over-sensitivity to
perturbations in the input space of x.

Typically, DUM approaches aim for bi-Lipschitz DNNs
with small Lipschitz constants but this is sub-optimal
based on the concentration theory (Boucheron et al.,
2013).

Theorem 1. Assume x is a set of random vectors,
drawn from a Gaussian distribution N (0, σ2Id) and
let f : Rd → R be a Lipschitz function with Lipschitz
constant τ , then we have

p(|f(x)− E(f(x))| > s) ≤ 2 exp(− s2

2τ2σ2
) (6)

for all s > 0. That means the smaller the Lipschitz
constant τ is, the more the concentration of the samples
around their mean increases, which results in increased
feature collapse.

This motivates us to develop a new DUM strategy
that does not rely on the network to comply with the
Lipschitz constraint. In the meantime, the desired
Lipschitz function will separate the dissimilar samples
far from each other while retaining the similar samples
as closely as possible.

3.2 Distance-aware Latent Representation

The DUM foundation is built upon the RBF function
(or other kernel functions) which requires distance pre-
serving (Van Amersfoort et al., 2020). Instead of focus-
ing on preserving distance in the input space, we aim
to deal with the distances in the latent space, named
distance-aware latent representation. This is achieved
by imposing a set of prototypes over the latent repre-
sentations. Inspired by the prototype learning (Snell
et al., 2017), we leverage these prototypes to better
analyze features from the new queries (samples) in light

of the knowledge acquired by the DNN from the train-
ing data. Unlike the prototypical networks that use
fixed prototypes (mean vector of the embedded support
points), we propose to learn the optimal prototypes (as
learnable parameters) for improving distance awareness
in the latent space.

Beyond the distance-aware property, the discriminative
property is also critical to latent representation. The
center loss (Wen et al., 2016) used in prototype learning
can help DNN to build more discriminative features
by compacting intra-class features and dispersing the
inter-class ones. In this work, we propose to use a
distinction maximization (DM) layer (Macêdo et al.,
2022) as a hidden layer over latent representation. This
way enables us to preserve the discriminative proper-
ties of the latent representations compared to placing
DM as the last layer. Compared with the softmax
layer, the DM layer shows competitive performance
in classification accuracy, uncertainty estimation, and
OOD detection, while maintaining deterministic neural
network inference efficiency (Macêdo et al., 2021, 2022).

Let’s define z ∈ Rn to be the latent representation of
x given feature extractor fθ, i.e., z = fθ(x), which is
the input to the DM layer. Given a set of prototypes,
P = {p1, ...,pm} of m vectors that are trainable, we
define a distinction maximization (DM) layer using
cosine distance

Dp(z,pi) =

[
< z,p1 >

∥z∥2∥p1∥2
, · · · , < z,pm >

∥z∥2∥pm∥2

]⊤
. (7)

The vectors pi in Eq. (7) can help in better placing an
input sample in the learned latent space using these
prototypes as references. Also, it is flexible to assign
an arbitrarily large number of prototypes such that a
richer latent mapping is defined by a finer convergence
of the latent space.

Then we apply the distinction maximization to the
feature representation and subsequently use the expo-
nential function as the activation function. This way
aims to sharpen similarity values and thus facilitates
the alignment of the data embedding to the prototypes.
Thus the update latent representation f̃(θ) tends to be
more distinctive

f̃θ(x) = exp(−Dp(fθ(x))) = exp(−Dp(z)). (8)

Note that the vector weights pm are optimized jointly
with θ and Wc in Eq. (3) and pm can also work as
indicators for better analyzing informative patterns in
the discriminant latent representation such that DDAR
is distance preserving that satisfies the bi-Lipschitz
function property.

Proposition 1. Consider a hidden mapping f : X →
F , the discriminant latent representation f̃θ(x) is a
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Lipschitz function, which satisfies

∥ exp(−Dp(z1))− exp(−Dp(z2))∥ ≤ τ∥z1 − z2∥. (9)

Then f̃ is distance preserving with τ ∈ R+.

3.3 Discriminant Loss with Regularization
Constraints

To better address feature collapse, we improve the dis-
crimination of latent space by adding constraints to the
binary cross entropy loss in Eq. (4). To fully leverage
the benefits of learnable prototypes, we propose two
measures to (1) avoid the collapse of all prototypes
into a single prototype. (2) not rely only on a single
prototype. Thus we first add a constraint to force the
prototypes to be dissimilar using the negative sum of
cosine distance:

Ldissimilar = −
∑
i<j

< pi,pj >

∥pi∥2∥pj∥2
, (10)

which avoids the collapse of all prototypes to a single
prototype. Next, we constrain the latent representation
Dp(fθ(x)) to not rely only on a single prototype by
adding an entropy regularization loss:

Lentropy =

n∑
k=1

σ(Dp(z))k · log(σ(Dp(z))k), (11)

where σ is the softmax layer, and the subscript index
k means the k-th coefficient of a tensor. Adding these
two constraints in Eq. (10) and (11) to the RBF loss
in Eq. (4), we can achieve more discriminative features
by increasing the distance between prototypes and
enlarging the dispersion of different prototype features.
Therefore the total loss for training is defined by

Ltotal = LRBF + λ(Ldissimilar + Lentropy), (12)

where λ ∈ [0, 1] is the coefficient weight of the con-
straints. To avoid additional hyperparameters, we only
use one coefficient to evaluate the effect of regular-
ization constraints. Naively we can introduce another
parameter to adjust the weight between Ldissimilar and
Lentropy. Note that we use the distinctive latent rep-
resentation f̃θ(x) in Eq. (8) to compute the RBF loss
LRBF rather than the original latent representation
fθ(x) in Eq. (3). We name this proposed method as
Discriminant Distance-Aware Representation (DDAR),
where the training procedure is shown in Algorithm 1.

4 Experiments

We show the performance of DDAR in two dimensions,
with the two-moon dataset, and show the effect of
discriminant distance-aware property on addressing

Algorithm 1 The DDAR algorithm
1: Requirements:

- Feature extractor fθ : x → Rd with feature space
dimensionality d and deep neural network parameters θ
- Hyperparameters: number of prototypesm, loss weight
λ, length scale σ in RBF, learning rate η, batch size b
- Training and testing datasets: in-distribution data xin
(e.g., CIFAR-10/100) and OOD data xood (e.g., SVHN)

2: Initialize: Prototype parameters {p1, ...,pm} of m
vectors, pi ∈ R and RBF kernel weight matrix Wc

(size n× d)
3: for train step = 1 to max step do
4: Extract the feature embedding fθ(x)
5: Compute the discriminant embedding f̃θ(x) =

exp(−Dp(fθ(x))) after the DM layer
6: Calculate the RBF loss LRBF using Eq. (3)
7: Calculate the dissimilar loss Ldissimilar in Eq. (10)
8: Calculate the entropy loss Lentropy using Eq. (11)
9: Combine all loss terms for total loss Ltotal in Eq. (12),

Ltotal = LRBF + λ(Ldissimilar + Lentropy),
10: Update DNN parameters θ, RBF kernel weight ma-

trix Wc and prototype parameters p via stochastic
gradient descent:
(θ,Wc,p)← (θ,Wc,p) + η ∗ ∇θ,Wc,pLtotal

11: Update centroids Ψ = {ψ1, ..., ψC} using an exponen-
tial moving average of the feature vectors belonging
to that class

12: end for

feature collapse issues. We further test the OOD detec-
tion performance on CIFAR-10/100 vs SVHN datasets
compared with multiple SOTA baselines. To verify
the DDAR capability on data modalities beyond im-
ages, we also evaluate the DDAR method on practical
language understanding tasks using the CLINC bench-
mark dataset (Larson et al., 2019). We run all baseline
methods in similar settings using publicly available
codes and hyperparameters for related methods. Some
of the results are reported by the literature such that
we can directly compare them.

4.1 Toy Example: Two Moons

To illustrate the DDAR method, we first consider the
two moons benchmark where the dataset consists of
two moon-shaped distributions separable by a nonlinear
decision boundary. We use the scikit-learn implemen-
tation to draw 500 samples from each in-domain class
(blue and orange dots). We use a deep feature extractor,
ResFFN-12-128, which consists of 12 residual layers
with 128 hidden neurons used by (Liu et al., 2020). The
embedding size is 128, the dropout rate is 0.01. We use
64 prototypes for this case and train this task using
Adam optimizer with a learning rate of 0.01, batch size
of 64 and set the length scale σ of 0.3 in Eq. (3), λ of
0.1 in Eq. (12).

Fig. 2 shows the results of decision boundary and pre-
dictive uncertainty. DDAR performs the expected be-
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Figure 2: Uncertainty results of different baseline methods on the two moon 2D classification benchmarks. Yellow
indicates uncertainty, while dark blue indicates certainty. The first row is the decision boundary (class probability)
and the second row is the predictive uncertainty.

havior for high-quality predictive uncertainty: correctly
classifiers the samples with high confidence (low uncer-
tainty) in the region supported by the training data
(dark blue color), and shows less confidence (high un-
certainty) when samples are far away from the train-
ing data (yellow color), i.e., distance-awareness prop-
erty. SNGP (Liu et al., 2020) is also able to maintain
distance-awareness property via spectral normalization
and shows a similar uncertainty surface. However, the
other baseline methods, e.g., Deterministic (softmax)
NN, MC Dropout (Gal and Ghahramani, 2016), and
Deep Ensemble (Lakshminarayanan et al., 2017), quan-
tify their predictive uncertainty based on the distance
from the decision boundaries so only assign uncertainty
along the decision boundary but certain elsewhere,
which is not distance aware. They are overconfident
since they assign high certainty to OOD samples even if
they are far from the data. LDU (Macêdo et al., 2022)
shows a similar overconfident result without leveraging
OOD samples into training.

Figure 3: Addressing feature collapse. 2D project
of feature embedding of regular DNN (left), DDAR
embedding (middle), and DDAR embedding after the
DM layer, trained on the two moons dataset.

Feature Collapse. Fig. 3 shows the PCA projec-
tion of the feature embedding of two moons dataset
for feature collapse illustration. The objective for the

regular DNN model introduces a large amount of dis-
tortion of the space, collapsing the two-class samples
and OOD samples to a single line, making it almost
impossible to use distance-awareness metric on these
features. Specifically, the OOD samples move from
a separated area in the input space on top of class
data in the feature space, which fails in OOD detection
tasks and results in unreliable predictive uncertainty
estimation. In contrast, the feature embedding learned
by the DDAR method allows a better disentangling of
the latent space without overlapping the two classes.
Furthermore, the learned embedding after the DM layer
accurately maintains the relative distances of the two
classes and OOD data.

4.2 OOD Detection: CIFAR-10/100 vs SVHN

Baseline Methods. We compare DDAR with two
baselines for uncertainty estimation - MC Dropout
(Gal and Ghahramani, 2016) (with 10 dropout sam-
ples) and Deep Ensemble (Lakshminarayanan et al.,
2017) (with 10 models). We also include the soft-
max entropy of a regular DNN as a simple baseline.
We choose three deterministic uncertainty methods
(DUMs) - DUQ (Van Amersfoort et al., 2020), SNGP
(Liu et al., 2020), and LDU (Macêdo et al., 2022) as
representatives of distance-awareness (discriminative
approaches) for uncertainty estimation. Also, we eval-
uate DDU (Mukhoti et al., 2021a) and MIR (Postels
et al.) as representatives of informative representation
(generative approaches (Winkens et al., 2020; Charpen-
tier et al., 2020)), which fit a class-conditional GMM to
their regularized latent representations and use the log-
likelihood as an uncertainty proxy (Postels et al., 2021).
For DDAR, we consider two cases with 256 (DDAR-256)
and 64 (DDAR-64) prototypes respectively.
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Table 1: OOD detection results: CIFAR-10 vs SVHN OOD.
Method Accuracy (↑) ECE (↓) AUROC (↑)
DNN (Softmax) 94.3 ± 0.11 0.024 ± 0.003 0.928 ± 0.005
MC Dropout (Gal and Ghahramani, 2016) 95.7 ± 0.13 0.013 ± 0.002 0.934 ± 0.004
Deep Ensemble (Lakshminarayanan et al., 2017) 96.4 ± 0.09 0.011 ± 0.001 0.947 ± 0.002
DUQ (Van Amersfoort et al., 2020) 95.8 ± 0.12 0.027 ± 0.001 0.939 ± 0.007
SNGP (Liu et al., 2020) 95.7 ± 0.14 0.017 ± 0.003 0.940 ± 0.004
LDU (Macêdo et al., 2022) 95.5 ± 0.17 0.021 ± 0.002 0.945 ± 0.004
DDU (Mukhoti et al., 2021a) 95.1 ± 0.12 0.014 ± 0.002 0.936 ± 0.003
MIR (Postels et al.) 94.9 ± 0.15 0.021 ± 0.003 0.912 ± 0.005
DDAR with 256 prototypes 96.0 ± 0.12 0.015 ± 0.002 0.949 ± 0.003
DDAR with 64 prototypes 95.8 ± 0.13 0.016 ± 0.002 0.947 ± 0.003

Table 2: OOD detection results: CIFAR-100 vs SVHN OOD.
Method Accuracy (↑) ECE (↓) AUROC (↑)
DNN (Softmax) 80.4 ± 0.11 0.082 ± 0.002 0.763 ± 0.011
MC Dropout (Gal and Ghahramani, 2016) 80.2 ± 0.22 0.031 ± 0.002 0.800 ± 0.014
Deep Ensemble (Lakshminarayanan et al., 2017) 82.5 ± 0.19 0.041 ± 0.002 0.832 ± 0.007
DUQ (Van Amersfoort et al., 2020) 79.7 ± 0.20 0.112 ± 0.002 0.777 ± 0.026
SNGP (Liu et al., 2020) 82.5 ± 0.16 0.030 ± 0.004 0.821 ± 0.019
LDU (Macêdo et al., 2022) 81.3 ± 0.15 0.052 ± 0.003 0.822 ± 0.003
DDU (Mukhoti et al., 2021a) 81.6 ± 0.14 0.029 ± 0.003 0.826 ± 0.009
MIR (Postels et al.) 80.9 ± 0.18 0.037 ± 0.002 0.788 ± 0.011
DDAR with 256 prototypes 82.5 ± 0.17 0.032 ± 0.002 0.829 ± 0.008
DDAR with 64 prototypes 82.0 ± 0.17 0.035 ± 0.002 0.826 ± 0.009

Datasets. We train the DDAR model on CIFAR-10
and CIFAR-100 image classification tasks. Following
the benchmarking setup suggested in (Ovadia et al.,
2019), we evaluate the model’s predictive accuracy and
expected calibration error (ECE) (Guo et al., 2017)
under clean CIFAR-10/100 testing data. To evaluate
the model’s OOD performance, we choose the stan-
dard OOD task (Van Amersfoort et al., 2020) using
SVHN as the OOD data for a model trained on CIFAR-
10/100. We normalize the OOD datasets using the
in-distribution training data (CIFAR-10/100) and use
the Area Under the Reciever Operator Curve (AUROC)
metric to report the OOD detection (image classifica-
tion) performance.

Model and Optimization. Each baseline method
shares the same ResFFN-12-128 architecture as used
in two moons for training on CIFAR-10/100 datasets.
Each method has a hyperparameter for the regular-
ization of its latent representation, and we choose the
hyperparameter so that it minimizes the validation loss.
To compare the variation of each method, all results
are averaged over 5 independent runs on an NVIDIA
V100 GPU. We use 64 and 256 prototypes for each
case and train the tasks using Adam optimizer with a
learning rate of 0.01, and batch size of 128.

Results. To evaluate OOD detection performance, we
use the standard setting based on training on CIFAR-
10 and CIFAR-100 as in-distribution data and SVHN
as OOD data. The performance of different baselines
for CIFAR-10 and CIFAR-100 are shown in Table 1

and 2 (The top 2 results are highlighted in bold). Note
that our DDAR method shows superior results, specif-
ically on the AUROC and Accuracy metrics. With
the increasing of prototypes, DDAR shows improved
performance on OOD detection. This is because more
prototypes increase the flexibility to model complex
distributions of the discriminant latent representation.

Table 3: Ablation study of loss weight λ on CIFAR-100.
λ Accuracy (↑) ECE (↓) AUROC (↑)

0.01 81.9 ± 0.18 0.043 ± 0.003 0.801 ± 0.012
0.05 82.1 ± 0.16 0.037 ± 0.002 0.817 ± 0.009
0.1 82.5 ± 0.17 0.032 ± 0.002 0.829 ± 0.008
0.5 82.4 ± 0.15 0.039 ± 0.003 0.824 ± 0.006
1.0 82.5 ± 0.17 0.035 ± 0.002 0.820 ± 0.007

Table 4: Effect of loss given λ = 0.1 on CIFAR-100.
Loss Accuracy (↑) ECE (↓) AUROC (↑)
Ld 81.3 ± 0.13 0.041 ± 0.003 0.813 ± 0.009
Le 82.0 ± 0.19 0.033 ± 0.002 0.822 ± 0.007

Ld & Le 82.5 ± 0.17 0.032 ± 0.002 0.829 ± 0.008

Ablation Studies. We further investigate the effect of
constrained loss terms and the corresponding weights
on the OOD detection performance. Table 3 and Table
4 show the ablation studies on the choice of loss weight
λ and loss terms Ldissimilar (Ld) and Lentropy (Le) on
CIFAR-100 task respectively. Note that the loss weight
λ = 0.1 is the best choice for this case and the two
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Table 5: OOD detection results for BERT on CLINC dataset, averaged over 10 random trials.
Method Accuracy (↑) ECE (↓) AUROC (↑)
DNN (Softmax) 96.5 ± 0.11 0.024 ± 0.002 0.897 ± 0.01
MC Dropout (Gal and Ghahramani, 2016) 96.1 ± 0.10 0.021 ± 0.001 0.938 ± 0.01
Deep Ensemble (Lakshminarayanan et al., 2017) 97.5 ± 0.03 0.013 ± 0.002 0.964 ± 0.01
DUQ (Van Amersfoort et al., 2020) 96.0 ± 0.04 0.059 ± 0.002 0.917 ± 0.01
SNGP (Liu et al., 2020) 96.6 ± 0.05 0.014 ± 0.005 0.969 ± 0.01
DDAR with 256 prototypes 97.5 ± 0.04 0.014 ± 0.002 0.969 ± 0.01
DDAR with 64 prototypes 96.3 ± 0.05 0.017 ± 0.002 0.961 ± 0.02

constrained losses contribute consistent improvements
individually and together.

4.3 Conversational Language Understanding

To demonstrate the effectiveness of the proposed
distance-awareness representation on data modalities
beyond images, we further evaluate the DDAR method
on practical language understanding tasks where un-
certainty estimation is highly critical: detecting out-of-
scope dialog intent (Larson et al., 2019; Vedula et al.,
2019; Yaghoub-Zadeh-Fard et al., 2020; Zheng et al.,
2020). For a dialog system (e.g., chatbot) built for
in-domain services, it is essential to understand if an
input natural utterance from a user is out-of-scope or
in-scope. In other words, the model should know when
it abstains from or activates one of the in-domain ser-
vices. To this end, this problem can be formulated as
an OOD detection problem where we consider training
an intent understanding model to detect in-domain
services or out-of-domain services.

We follow the problem setup (Liu et al., 2020) and use
the CLINC out-of-scope intent detection benchmark
dataset (Larson et al., 2019) which contains 150 in-
domain services data with 150 training sentences in
each domain, and 1500 natural out-of-domain utter-
ances. We train a BERT model only on in-domain data
and evaluate their predictive accuracy on the in-domain
test data, their calibration, and OOD detection perfor-
mance on the combined in-domain and out-of-domain
data. The results are shown in Table 5. In this case,
we only compare the baseline methods, including DNN,
MC Dropout, Deep Ensemble, DUQ, and SNGP. As
shown, consistent with the previous vision experiments,
our DDAR method shows competitive performance,
which outperforms other single model approaches and
is close to the deep ensemble in prediction accuracy and
to SNGP in confidence calibration and OOD AUROC.

5 Related Work

Deterministic Uncertainty Methods. Unlike the
conventional uncertainty estimation methods, including
Bayesian Neural Networks (BNNs) (Osawa et al., 2019;
Wenzel et al., 2020), MC Dropout (Gal and Ghahra-

mani, 2016), and Deep Ensemble (Lakshminarayanan
et al., 2017), a promising line of work recently emerged
for estimating uncertainties of a DNN with a single
forward pass while treating its weights deterministi-
cally (Postels et al., 2021). By regularizing the hidden
representations of a model, these methods represent
an efficient and scalable solution to uncertainty esti-
mation and to the related out-of-distribution (OOD)
detection problem. In contrast to BNNs, Deterministic
Uncertainty Methods (DUMs) quantify epistemic uncer-
tainty using the distribution of latent representations
(Alemi et al., 2018; Wu and Goodman, 2020; Charp-
entier et al., 2020; Mukhoti et al., 2021b; Charpentier
et al., 2021) or by replacing the final softmax layer
with a distance-sensitive function (Mandelbaum and
Weinshall, 2017; Van Amersfoort et al., 2020; Liu et al.,
2020; van Amersfoort et al., 2021). Note that there
is another line of work, which proposes a principled
approach for variance propagation in DNNs (Postels
et al., 2019; Haußmann et al., 2020; Loquercio et al.,
2020) but these approaches fundamentally differ from
DUMs due to their probabilistic treatment of the pa-
rameters, even though they are efficient approaches
and also relied on a single forward pass for uncertainty
estimation.

Addressing Feature Collapse. The critical chal-
lenge in DUMs is how to address the feature collapse
issue. Currently, there are two main paradigms - dis-
tance awareness and informative representations. The
distance awareness avoids feature collapse by relating
distances between latent representations to distance in
the input space. The primary methods are to impose
the bi-Lipschitz constraint by using a two-sided gradi-
ent penalty (Van Amersfoort et al., 2020) or spectral
normalization (Liu et al., 2020; van Amersfoort et al.,
2021; Mukhoti et al., 2021a). While distance-awareness
achieves remarkable performance on OOD detection, it
does not explicitly preserve sample-specific information.
An alternative line of work addresses this challenge by
learning informative representations (Alemi et al., 2018;
Wu and Goodman, 2020; Postels et al., 2020), thus forc-
ing discriminative models to preserve information in
its hidden representations. While distance-awareness is
based on the choice of a specific distance metric tying
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together input and latent space, informative represen-
tations incentivize a DNN to store more information
about the input. There are several approaches in this
paradigm, including contrastive learning (Chen et al.,
2020; Wu and Goodman, 2020; Winkens et al., 2020),
reconstruction regularization (Postels et al., 2020), en-
tropy regularization (Charpentier et al., 2020), and in-
vertible neural networks (Behrmann et al., 2019; Ardiz-
zone et al., 2020; Nalisnick et al., 2019; Ardizzone et al.,
2018).

6 Conclusions

In this work, we develop a novel DDAR method for de-
terministic uncertainty estimation. This is achieved by
learning a discriminant distance-aware representation
that leverages a distinction maximization layer over a
set of learnable prototypes. Compared with the base-
line DUMs, our DDAR is a simple and efficient method
without the feature collapse issue while the feature
extractor is architecture-agnostic with higher flexibility
not limited by residual neural networks. Through sev-
eral experiments on synthesis data, image classification,
and text OOD detection benchmarks, we show that
DDAR outperforms the different SOTA baselines in
terms of prediction accuracy, confidence calibration,
and OOD detection performance.

The limitation of this work is a lack of a deep theo-
retical understanding of feature collapse although the
empirical improvements are clearly shown. We plan
to dig into the theoretical propriety of feature collapse
with better model interpretability and explainability.
Future work could also investigate the scalability of
DDAR on large-scale computer vision tasks, and large
language models (LLMs).
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