
Multi-resolution Time-Series Transformer for Long-term Forecasting

Yitian Zhang1† Liheng Ma1† Soumyasundar Pal2 Yingxue Zhang2 Mark Coates1
1McGill University, Mila, and ILLS 2Huawei Noah’s Ark Lab

Abstract

The performance of transformers for time-
series forecasting has improved significantly.
Recent architectures learn complex tempo-
ral patterns by segmenting a time-series into
patches and using the patches as tokens. The
patch size controls the ability of transform-
ers to learn the temporal patterns at dif-
ferent frequencies: shorter patches are ef-
fective for learning localized, high-frequency
patterns, whereas mining long-term season-
alities and trends requires longer patches.
Inspired by this observation, we propose
a novel framework, Multi-resolution Time-
Series Transformer (MTST), which consists
of a multi-branch architecture for simulta-
neous modeling of diverse temporal patterns
at different resolutions. In contrast to many
existing time-series transformers, we employ
relative positional encoding, which is better
suited for extracting periodic components at
different scales. Extensive experiments on
several real-world datasets demonstrate the
effectiveness of MTST in comparison to state-
of-the-art forecasting techniques.

1 INTRODUCTION

Time-series forecasting has ubiquitous applications in
various domains including but not limited to quantita-
tive finance, weather prediction, and electricity man-
agement. Building on the success of transformers in di-
verse fields, transformer architectures were recently in-
troduced in multivariate time-series forecasting, view-
ing each timestamp as a token (Zhou et al., 2021; Wu
et al., 2021; Zhou et al., 2022). However, the effective-
ness of time-series transformers (TSTs) is disputed:

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

most TSTs are not sensitive to the temporal order of
tokens and can even be outperformed by simple lin-
ear models (Zeng et al., 2023). Recently, the work of
Zhang and Yan (2023) and Nie et al. (2023) revealed
that timestamp-level tokenization prevents attention
mechanisms from effectively capturing temporal pat-
terns. In contrast, patch-level tokenization (where a
patch is a window of timesteps) allows attention mech-
anisms to model temporal patterns within each patch
and learn the relationships between patches.

Despite the promising performance demonstrated by
patch-based TSTs, these methods fail to explicitly in-
corporate multi-scale analysis, which has proved effec-
tive in many time-series modeling domains. There-
fore, in this work, we endow patch-based TSTs with
the ability to learn multi-scale features with atten-
tion mechanisms via multi-resolution representations,
and propose a novel architecture, Multi-resolution
Time-Series Transformer (MTST) 1. Unlike previous
works that rely on subsampling, MTST constructs
a multi-resolution representation by simply adjusting
the patch-level tokenization of a time-series: a large
number of small-sized patches leads to high-resolution
feature maps; a small number of large-sized patches
results in low-resolution feature maps. By construct-
ing multiple sets of tokens with different patch-sizes,
each MTST layer can model the temporal patterns of
different frequencies simultaneously with multi-branch
self-attentions. As shown in an example from the
Electricity dataset (Figure 1), the role of the branch
with larger-size patches is mostly to capture the lower-
frequency and coarser temporal patterns; the branch
with smaller-size patches contributes to modeling the
higher-frequency and finer temporal patterns. By
processing the signals with a multi-resolution multi-
branch architecture, MTST can model complex tem-
poral signals that contain multiple seasonalities. Fur-
thermore, in order to overcome the weak sensitivity to
the ordering of time-series that is exhibited by many
TSTs, instead of employing learned/fixed absolute po-

†Equal contribution, the work was partially done when
YZ and LM were interns at Huawei Noah’s Ark Lab.

1Our code is publicly available at https://github.com
/networkslab/MTST.

https://github.com/networkslab/MTST
https://github.com/networkslab/MTST

Multi-resolution Time-Series Transformer for Long-term Forecasting

⊕

Figure 1: An example from Electricity dataset: MTST learns multi-scale temporal patterns in different branches,
where Pi stands for the patch size in i-th branch.

sitional encoding, we utilize relative positional encod-
ing, which is naturally aligned with capturing periodic
temporal patterns.

To provide support for our motivation and hypotheses,
we conduct extensive experiments on multiple time-
series forecasting benchmarks. Our proposed MTST
demonstrates state-of-the-art performance in compar-
ison with diverse forecasting methods, reaching the
lowest mean squared error on 28 out of 28 test settings.
Comprehensive ablation studies and analysis experi-
ments justify the effectiveness of proposed designs and
the consequent advantage over previous techniques.

2 PROBLEM STATEMENT

We focus on long-term forecasting of multi-
variate time-series from historical data. Let
xt=[xt,1, xt,2, · · · , xt,M]⊺ ∈ RM×1 be a multivari-
ate signal, where xt,m denotes m-th variate at time
t, for 1⩽m⩽M . The goal is to learn a model which
can forecast the future T timestamps from the recent
history of L timestamps. Here, L and T are termed
the look-back window and prediction horizon, respec-
tively. In other words, for any arbitrary time offset t0,
the model processes xt0+1:t0+L as input and provides
an estimate of xt0+L+1:t0+L+T as its output. The
estimate of xt is denoted by x̂t. We drop the time
offset t0 in all subsequent discussions for simplicity.

A training dataset Dtrn is assumed to be available
for learning the model parameters. Usually, the
time-series is spliced to construct the training set.
The k-th example in the training set is denoted by

(x
(k)
1:L,x

(k)
L+1:L+T). While x1:L+T is known in the train-

ing set, xL+1:L+T is unknown and must be estimated
in the test set.

The forecasting performance of the model is assessed
by computing the mean squared error (MSE) and the
mean absolute error (MAE) between the prediction
and the ground truth on the test set Dtest. These

metrics are defined as:

MSE =
1

MT |Dtest|
∑

k∈Dtest

L+T∑
t=L+1

||x(k)
t − x̂

(k)
t ||22 , (1)

MAE =
1

MT |Dtest|
∑

k∈Dtest

L+T∑
t=L+1

||x(k)
t − x̂

(k)
t ||1 . (2)

3 METHODOLOGY

The proposed MTST consists of N layers, as shown
in Fig. 2. Each MTST layer has multiple branches,
with Bn branches at the n-th layer. The multi-
branch architecture allows us to learn representations
of the time-series at different scales simultaneously.
Each branch contains a tokenizer (with different patch-
size), which converts the input representation into
patches. These patches are further processed as tokens
by self-attention (SA) with relative positional encod-
ing (RPE). The branch outputs are fused together to
form a single embedding to be fed to the next MTST
layer. We delve into a detailed discussion of each of
these components in this section.

Following the protocol in the previous works (Zeng
et al., 2023; Nie et al., 2023), MTST processes
each x1:L,m independently to generate the output
x̂L+1:L+T,m, and subsequently combine them to form
a multivariate forecast. This technique is termed
channel-independence and we omit the variate index
m in order to simplify the notation in the following
sections. However, MTST is not limited by channel-
independence and is readily extended to other patch-
based TSTs that model dependencies among variates,
such as the Crossformer (Zhang and Yan, 2023).

3.1 Branch specific tokenization

Temporal patches consisting of multiple successive
timestamps are essential for learning effective rep-
resentations for forecasting (Nie et al., 2023). Let
y(n−1)∈Rdn−1×1 be the dn−1-dimensional output rep-
resentation of a univariate time-series at the (n−1)-th

Yitian Zhang1†, Liheng Ma1†, Soumyasundar Pal2, Yingxue Zhang2, Mark Coates1

Layer 1

Flatten + Concatenate + Linear

Multi-head
Attention

Add & Norm

Add & Norm

Feed Forward

RPE

⋯

⋯

Patch-based Tokenization

⋯ ⋯
Transformer

Layer
⋯ ⋯

⋯ ⋯
Layer n

Layer N

Figure 2: Multi-resolution Time-Series Transformer (MTST) Architecture.

Absolute PE Relative PE

0.0

0.1

0.2

0.3

0.4

0.5

(a)

0 10 20 30 40 50

-1

0

1

-1

0

1

(b)

Figure 3: (a) Heatmaps of attention scores for absolute and relative positional encoding, (b) obtained forecasts
using a transformer with absolute and relative positional encoding.

layer of MTST. We have d0=L and y(0)=[x1, · · · , xL]
⊺.

Similarly, at the last layer, we have dN=T and
y(N)=[x̂L+1, · · · , x̂L+T]

⊺.

Denote by Pbn the patch size and by Sbn the stride
(length of the non-overlapping region between two
successive patches) at the bn-th branch. Then the
tokenizer Tbn : Rdn×1→RJbn×Pbn converts y(n−1)

into Jbn=⌈(dn−1−Pbn)/Sbn⌉ + 1 overlapping patches
in a sliding-window fashion. Specifically, we com-

pute Ỹ(bn,n)=[ỹ
(bn,n)
1 , · · · , ỹ(bn,n)

Jbn
]⊺=Tbn(y(n−1)) as

follows:

ỹ
(bn,n)
j =y

(n−1)
[(j−1)Sbn+1:(j−1)Sbn+Pbn] , (3)

for j = 1, · · · , Jbn . Here Ỹ(bn,n) denotes the output

of the tokenizer and ỹ
(bn,n)

⊺

j is its j-th row (token).
In order to make sure that the number of tokens is
an integer, we pad the last dimension of y(n−1) at the
end of the last token (Jbn−1)Sbn+Pbn−dn−1 times, if
(dn−1−Pbn) is not divisible by Sbn .

A high value of Jbn (equivalently, a low value of Pbn)
allows the bn-th branch to focus on shorter patches,
resulting in higher-resolution modeling of short-term
temporal features. By contrast, longer patches facili-
tate learning of longer-term seasonalities and trends.

3.2 Self-attention

The self-attention in MTST is performed on the patch-
level tokens in each branch independently. We omit
the layer index n and branch index bn temporarily to
simplify notation. Attn : RJ×P→RJ×D is applied to
the tokens to capture the relationships between them.
Specifically, we compute Z̃=[z̃1, · · · , z̃J]⊺=Attn(Ỹ) as
follows:

αij=Softmaxj

((WQỹi)
T (WK ỹj)√
D

+wT
pospij

)
, (4)

z̃i=
∑
j

αijWV ỹj . (5)

Multi-resolution Time-Series Transformer for Long-term Forecasting

Here, pij∈RDpos×1 and αij∈[0, 1] represent the rel-
ative positional encoding and the attention score
between the i-th and j-th tokens, respectively;
WQ,WK,WV∈RD×P and wpos∈RDpos×1 are learn-
able weights. As in (Vaswani et al., 2017), we setD=P
and use a multi-head variant of this attention mech-
anism with different sets of weight matrices in each
head. Moreover, similar to other transformer layers,
the output of the self-attention operation is processed
with a particular combination of residual connections,
normalizations, and a feed-forward network. These
details are shown schematically in Figure 2, but are
deferred to the Appendix (Section A.1) to avoid nota-
tional clutter.

3.2.1 Relative positional encoding

Instead of absolute PE, employed in most previous
TSTs, we introduce relative PE (RPE), which encodes
the distances between each pair of tokens. Figure 3
demonstrates that the use of relative PE enables each
token to identify similar tokens on a synthetic dataset
with strong periodic patterns with considerably better
accuracy. This results in improved forecasting.

Our relative PE is defined as pij :=sign(i−j)PE(|i−j|),
where sign denotes the sign function and the function
PE : Z+→RDpos is defined as

PE2t(i):= sin(i/100002t/Dpos) ,

PE2t+1(i):= cos(i/100002t/Dpos) , (6)

for t ∈ {1, . . . , Dpos/2}.

3.3 Fusing representations from all branches

At each layer, the token representations obtained
from all branches are fused to form a single embed-
ding. This allows sharing of information across scales,
which helps in learning expressive representations of
the time-series. The fusing is carried out by succes-
sive application of flattening, concatenation, and a
linear transformation. First each Z̃(bn,n)∈RJbn×Pbn

is flattened to a row vector of length Jbn ·Pbn .
Next, the flattened vectors are concatenated to form
z(n) = [Flatten(Z̃(1,n)), · · · , Flatten(Z̃(Bn,n))]T ∈
R
(∑Bn

bn=1 Jbn ·Pbn

)
×1. Finally a linear layer, with weight

W(n)∈Rdn×
(∑Bn

bn=1 Jbn ·Pbn

)
and bias b(n) ∈ Rdn×1, is

used to obtain y(n), i.e.,

y(n) = W(n)z(n) + b(n) . (7)

We refer to the combination of operations as Fuse.
The n-th layer of the MTST can be summarized as:

y(n)=Fuse
(
Attn

(
T1(y

(n−1))
)
, . . ., Attn

(
TBn(y

(n−1))
))

.

(8)

4 RELATED WORK

4.1 Long-horizon Time-Series Forecasting

Multivariate time-series forecasting has been an ac-
tive research area for decades. Until recently, statisti-
cal modeling based algorithms were the most effective,
but many deep learning techniques have emerged and
achieved impressive forecasting (Oreshkin et al., 2020;
Salinas et al., 2020; Sen et al., 2019). However, con-
volutional and recurrent architectures fail to capture
long-range dependency, leading to poor long-term fore-
casting. In order to address this, transformer-based
models have been proposed. Earlier versions treated
each timestamp as a token and performed forecast-
ing in a sequence-to-sequence manner (Li et al., 2019;
Zhou et al., 2021). Several time-series transformers
(TSTs), such as Autoformer (Wu et al., 2021) and
FEDformer (Zhou et al., 2022), incorporated induc-
tive biases such as trends and seasonalities.

Zeng et al. (2023) demonstrated that timestamp-level
tokenization prevents models from capturing tempo-
ral patterns. A simple linear model outperforms most
timestamp-level TSTs. Crossformer (Zhang and Yan,
2023) and PatchTST (Nie et al., 2023) address this
by using patches (windows of multiple timesteps) as
tokens, inspired by the patch-based transformer for
images in (Dosovitskiy et al., 2020).

Although previous patch-based methods achieve excel-
lent forecasting, they cannot disentangle multi-scale
features. In contrast, our proposed MTST is designed
to perform multi-resolution decomposition to natu-
rally extract multiple periodicities.

4.2 Multi-scale Feature Learning

Several recent time-series forecasting techniques have
incorporated multi-scale analysis. NHiTS (Challu
et al., 2022) introduces multi-rate signal sampling and
hierarchical interpolation to model features at mul-
tiple granularities. MICN (Wang et al., 2023) in-
corporates convolution with different kernel sizes to
learn multi-scale features. TimesNet (Wu et al., 2023)
strives to capture the multi-periodicity in time-series
by converting 1D sequences to a set of 2D tensors.
Among transformer-based models, Pyraformer (Liu
et al., 2021a) forms a multi-resolution representa-
tion via pyramidal attention. Scaleformer (Shabani
et al., 2023) proposes a multi-resolution representa-
tion framework for existing timestamp-based TSTs via
down/up-sampling. However, migrating existing mul-
tiscale techniques to token-based TSTs is not trivial:
the subsampling/downsampling techniques in previous
work result in sub-optimal representations for patches,
because the methods are not cognizant of the chrono-

Yitian Zhang1†, Liheng Ma1†, Soumyasundar Pal2, Yingxue Zhang2, Mark Coates1

logical order at the timestamp level (Marin et al.,
2023).

Although these methods have tried to incorporate
multi-resolution analysis, the attempts have proved in-
effective. Pyraformer and Scaleformer’s forecasts are
dramatically inferior to those of PatchTST, which is
incapable of forming explicit multi-scale decomposi-
tions.

4.3 Positional Encoding

To enable transformers to sense token positions,
learned or fixed sinusoidal absolute positional encod-
ing (PE) is usually injected into tokens before the en-
coders (Vaswani et al., 2017). Huang et al. (2019)
observe that relative PE (Shaw et al., 2018) can bet-
ter model periodic patterns, which is crucial in time-
series. In contrast to all previous TSTs that use ab-
solute PE, MTST employs a flexible relative PE (Dai
et al., 2019), whose design provides useful inductive
bias for forecasting.

5 EXPERIMENTS

5.1 Benchmarking MTST

5.1.1 Datasets

We evaluate the performance of our proposed MTST
on seven widely-used public benchmark datasets,
including Weather, Traffic, Electricity and four
ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2).
Weather is a collection of 2020 weather data from 21
meteorological indicators, including air temperature
and humidity, provided by the Max-Planck Institute
for Biogeochemistry2. Traffic is a dataset provided by
Caltrans Performance Measurement System (PeMS),
collecting hourly data of the road occupancy rates
measured by different sensors on San Francisco Bay
area freeways from California Department of Trans-
portation3. Electricity contains hourly time-series of
the electricity consumption of 321 customers from 2012
to 2014 (Trindade, 2015; Wu et al., 2021)4. ETT
datasets are composed of a series of sensor measure-
ments, including load and oil temperature, collected
from electricity transformers between 2016 and 2018,
provided by Zhou et al. (2021). Following the standard
pipelines, the datasets are split into training, valida-
tion, and test sets with the ratio of 6:2:2 for four ETT
datasets and 7:1:2 for the remaining datasets. Detailed

2https://www.bgc-jena.mpg.de/wetter
3https://pems.dot.ca.gov
4Wu et al. (2021) selected 321 of 370 customers from the

original dataset in Trindade (2015). This version is widely
used in the follow-up works.

statistics of the datasets are summarized in Table 1.

Datasets ETTh1/2 ETTm1/2 Traffic Electricity Weather

Variates 7 7 862 321 21
Timesteps 17,420 69,680 17,544 26,304 52,696
Granularity 1 hour 15 min 1 hour 1 hour 10 min

Table 1: The statistics of datasets used in the experi-
ments

1 2 3 4 5 6 7 8
Rank

MTST

PatchTST

DLinear

MICN

Fedformer

TimesNet

Autoformer

Pyraformer

Figure 4: Boxplot for ranks of the algorithms (based
on their MSE) across seven datasets and four predic-
tion horizons. The medians and means of the ranks
are shown by the vertical lines and the black trian-
gles respectively; whiskers extend to the minimum and
maximum ranks.

5.1.2 Baselines and Experimental Setup

We evaluate our proposed model in comparison with
the state-of-the-art (SOTA) time-series transformer –
PatchTST (Nie et al., 2023); three multiscale time-
series models – MICN (Wang et al., 2023), Times-
Net (Wu et al., 2023), and Pyraformer (Liu et al.,
2021a); as well as a simple and competitive linear base-
line – DLinear (Zeng et al., 2023). We also include
two earlier timestamp-based time-series transformers
for reference – Fedformer (Zhou et al., 2022) and Aut-
oformer (Wu et al., 2021).

For fair comparison, we follow the experimental setup
in Nie et al. (2023) so that the prediction hori-
zon T∈{96, 192, 336, 720} and the look-back window
L=336. We report the baseline results from Nie et al.
(2023)5 except for TimesNet and MICN, for which we
reproduce their results with L=336 based on the offi-
cially released code. Since Scaleformer (Shabani et al.,
2023) has multiple variants, and the best-performing
variant differs according to the dataset under study, we

5The results for Fedformer, Autoformer and Pyraformer
are the best on each dataset from multiple look-back win-
dows L ∈ {24, 48, 96, 192, 336, 720}.

Multi-resolution Time-Series Transformer for Long-term Forecasting

Table 2: Multivariate long-term forecasting results with L = 336 and T ∈ {96, 192, 336, 720}. Bold and under-
lined denote the best and second-best results respectively. ∗ indicates statistically significant difference between
the top-2 results.

Models MTST PatchTST DLinear MICN TimesNet Fedformer Autoformer Pyraformer

Dataset T MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

96 0.356∗ 0.244∗ 0.367 0.251 0.410 0.282 0.473 0.293 0.595 0.318 0.576 0.359 0.597 0.371 2.085 0.468
192 0.375∗ 0.251∗ 0.385 0.259 0.423 0.287 0.483 0.298 0.615 0.326 0.610 0.380 0.607 0.382 0.867 0.467
336 0.386∗ 0.256∗ 0.398 0.265 0.436 0.296 0.491 0.303 0.616 0.326 0.608 0.375 0.623 0.387 0.869 0.469
720 0.425∗ 0.279∗ 0.434 0.287 0.466 0.315 0.559 0.327 0.655 0.353 0.621 0.375 0.639 0.395 0.881 0.473

Electricity

96 0.127∗ 0.222∗ 0.130 0.222 0.140 0.237 0.157 0.266 0.178 0.284 0.186 0.302 0.196 0.313 0.386 0.449
192 0.144∗ 0.238∗ 0.148 0.240 0.153 0.249 0.175 0.287 0.187 0.289 0.197 0.311 0.211 0.324 0.386 0.443
336 0.162∗ 0.256∗ 0.167 0.261 0.169 0.267 0.200 0.308 0.208 0.307 0.213 0.328 0.214 0.327 0.378 0.443
720 0.199∗ 0.289∗ 0.202 0.291 0.203 0.301 0.228 0.338 0.245 0.321 0.233 0.344 0.236 0.342 0.376 0.445

Weather

96 0.150∗ 0.199∗ 0.152 0.199 0.176 0.237 0.178 0.249 0.163 0.219 0.238 0.314 0.249 0.329 0.896 0.556
192 0.194∗ 0.240∗ 0.197 0.243 0.220 0.282 0.243 0.269 0.211 0.259 0.275 0.329 0.325 0.370 0.622 0.624
336 0.246∗ 0.281∗ 0.249 0.283 0.265 0.319 0.278 0.338 0.286 0.311 0.339 0.377 0.351 0.391 0.739 0.753
720 0.319∗ 0.333∗ 0.320 0.335 0.323 0.362 0.320 0.360 0.359 0.363 0.389 0.409 0.415 0.426 1.004 0.934

ETTh1

96 0.358∗ 0.390∗ 0.375 0.399 0.375 0.399 0.413 0.442 0.421 0.440 0.376 0.415 0.435 0.446 0.664 0.612
192 0.396∗ 0.414∗ 0.414 0.421 0.405 0.416 0.451 0.462 0.511 0.498 0.423 0.446 0.456 0.457 0.790 0.681
336 0.391∗ 0.420∗ 0.431 0.436 0.439 0.443 0.556 0.528 0.484 0.478 0.444 0.462 0.486 0.487 0.891 0.738
720 0.430∗ 0.457∗ 0.449 0.466 0.472 0.490 0.658 0.607 0.554 0.527 0.469 0.492 0.515 0.517 0.963 0.782

ETTh2

96 0.257∗ 0.326∗ 0.274 0.336 0.289 0.353 0.303 0.364 0.366 0.417 0.332 0.374 0.332 0.368 0.645 0.597
192 0.309∗ 0.361∗ 0.339 0.379 0.383 0.418 0.403 0.446 0.426 0.447 0.407 0.446 0.426 0.434 0.788 0.683
336 0.302∗ 0.366∗ 0.331 0.380 0.448 0.465 0.603 0.550 0.406 0.435 0.400 0.447 0.477 0.479 0.907 0.747
720 0.372∗ 0.416∗ 0.379 0.422 0.605 0.551 1.106 0.852 0.427 0.457 0.412 0.469 0.453 0.490 0.963 0.783

ETTm1

96 0.286∗ 0.338∗ 0.290 0.342 0.299 0.343 0.308 0.360 0.356 0.385 0.326 0.390 0.510 0.492 0.543 0.510
192 0.327∗ 0.366 0.332 0.369 0.335 0.365 0.343 0.384 0.452 0.428 0.365 0.415 0.514 0.495 0.557 0.537
336 0.362∗ 0.389 0.366 0.392 0.369 0.386 0.395 0.411 0.419 0.425 0.392 0.425 0.510 0.492 0.754 0.655
720 0.414∗ 0.421 0.420 0.424 0.425 0.421 0.427 0.434 0.452 0.451 0.446 0.458 0.527 0.493 0.908 0.724

ETTm2

96 0.162∗ 0.251∗ 0.165 0.255 0.167 0.260 0.169 0.268 0.188 0.276 0.180 0.271 0.205 0.293 0.435 0.507
192 0.220 0.291 0.220 0.292 0.224 0.303 0.247 0.333 0.242 0.310 0.252 0.318 0.278 0.336 0.730 0.673
336 0.272∗ 0.326∗ 0.278 0.329 0.281 0.342 0.290 0.351 0.300 0.346 0.324 0.364 0.343 0.379 1.201 0.845
720 0.358∗ 0.379∗ 0.367 0.385 0.397 0.421 0.417 0.434 0.391 0.403 0.410 0.420 0.414 0.419 3.625 1.451

#Rank-1st (total=28) 28 26 1 0 0 3 0 0 0 0 0 0 0 0 0 0

do not include it in the comparison. We provide a com-
parison with Scaleformer in the Appendix (Table 8).
Note that in all experiments, models are trained and
evaluated for each prediction horizon independently.

5.1.3 Hyperparameters

In all our experiments, we use instance-normalization
and denormalization (Kim et al., 2022) on the input
and prediction, respectively. In each MTST layer,
the transformer layer contains scaled dot-product at-
tention and batch normalization (Ioffe and Szegedy,
2015), with the use of relative PE. The model is trained
using the Adam optimizer (Kingma and Ba, 2015) to
minimize the MSE loss over the training set. The de-
tailed hyperparameter configuration of MTST associ-
ated with the model architecture and the training pro-
cess for each dataset/horizon is provided in Section B.2
of the Appendix.

5.1.4 Experimental Results

Table 2 reports the experimental results for seven
benchmarks. The performance is measured by MSE
and MAE; the best and second-best results for each
case (dataset, horizon, and metric) are highlighted in

bold and underlined, respectively. We conduct the
Wilcoxon signed rank test (Wilcoxon, 1945) with boot-
strap sampling with significance level 5% on the top-2
results; we use ∗ to denote a significant difference.

Our proposed model, MTST, achieves SOTA perfor-
mances in all cases (7 datasets, 4 horizons, and 2 met-
rics). MTST outperforms, with statistical significance,
the previous SOTA patch-based TST – PatchTST – on
27 out of 28 cases for the MSE metric.

We rank the algorithms in Table 2 based on their MSE
and order them based on their average rank across
seven datasets and four prediction horizons. Figure 4
shows the boxplot of rank. We observe that the pro-
posed MTST achieves the best average rank and lowest
variability across all settings.

As a multi-scale convolution-based approach, MICN
demonstrates competitive performance for small pre-
diction horizons T , but encounters more severe per-
formance degradation for larger T . This matches the
observations in previous works that convolution-based
models struggle to capture long-range dependencies.
This motivates the development of transformer-based
models for long-term forecasting. Notably, DLinear, a

Yitian Zhang1†, Liheng Ma1†, Soumyasundar Pal2, Yingxue Zhang2, Mark Coates1

Table 3: Ablation study on multi-branch architecture.

Models MTST (Base) w/o Low-RES. w/o High-RES.

Dataset T MSE MAE MSE MAE MSE MAE

ETTh1

96 0.358 0.390 0.373 0.402 0.372 0.400
192 0.396 0.414 0.397 0.418 0.399 0.424
336 0.391 0.420 0.397 0.428 0.399 0.424
720 0.430 0.457 0.435 0.460 0.430 0.457

ETTh2

96 0.257 0.326 0.260 0.329 0.266 0.335
192 0.309 0.361 0.311 0.364 0.317 0.370
336 0.302 0.366 0.304 0.369 0.311 0.376
720 0.372 0.416 0.373 0.417 0.380 0.422

ETTm1

96 0.286 0.338 0.290 0.341 0.285 0.338
192 0.327 0.366 0.334 0.372 0.322 0.364
336 0.362 0.389 0.367 0.389 0.365 0.386
720 0.414 0.421 0.422 0.421 0.419 0.423

Weather

96 0.150 0.199 0.151 0.199 0.151 0.199
192 0.194 0.240 0.196 0.240 0.196 0.243
336 0.246 0.281 0.246 0.280 0.247 0.280
720 0.319 0.333 0.322 0.335 0.324 0.335

Traffic

96 0.356 0.244 0.357 0.244 0.362 0.249
192 0.375 0.251 0.379 0.253 0.378 0.253
336 0.386 0.258 0.388 0.257 0.391 0.261
720 0.425 0.281 0.425 0.279 0.427 0.283

#Rank-1 (total=20) 18 15 2 7 3 6

simple linear model, outperforms earlier timestamp-
based TSTs (Fedformer, Autoformer, Pyraformer)
with a noticeable performance gap, indicating the inef-
fectiveness of the timestamp-based TSTs and the need
to develop patch-based TSTs.

5.2 Ablation Study and Analysis Experiment

5.2.1 Ablation: Multi-Resolution

We conduct an ablation experiment to study the use-
fulness of the multi-resolution representation on 5
datasets: ETTh1, ETTh2, ETTm1, Weather, and
Traffic, under the same setup of the main experi-
ment. To verify the importance of each resolution, we
compare MTST against two variants: w/o Low-RES.
stands for the variant without the lowest-resolution
representations (i.e., the branch with the largest-sized
patch), which mainly contributes to low-frequency
temporal patterns; w/o High-RES. denotes the variant
removing the highest-resolution representations (i.e.,
the branch with the smallest-sized patches), which
mainly aims to capture high-frequency temporal pat-
terns.

From Table 3, we can see that removing either res-
olution generally leads to performance degradation.
However, removing the highest-resolution branch re-
sults in slightly better performance in a few cases for
small datasets (e.g., ETTm1). This is potentially due
to overfitting, which usually focuses on high-frequency
components.

Table 4: Ablation study on positional encoding.

MTST w/ RPE (ours) SinAPE LenaredAPE

Dataset T MSE MAE MSE MAE MSE MAE

ETTh1

96 0.358 0.390 0.362 0.392 0.363 0.394
192 0.396 0.414 0.400 0.417 0.400 0.420
336 0.391 0.420 0.389 0.419 0.390 0.419
720 0.430 0.457 0.440 0.464 0.435 0.462

ETTh2

96 0.257 0.326 0.258 0.328 0.258 0.328
192 0.309 0.361 0.309 0.363 0.311 0.365
336 0.302 0.366 0.305 0.371 0.306 0.373
720 0.372 0.416 0.377 0.422 0.375 0.420

ETTm1

96 0.286 0.338 0.297 0.346 0.290 0.342
192 0.327 0.366 0.332 0.370 0.330 0.370
336 0.362 0.389 0.369 0.390 0.366 0.388
720 0.414 0.421 0.419 0.423 0.420 0.425

Weather

96 0.150 0.199 0.150 0.197 0.150 0.198
192 0.194 0.240 0.194 0.240 0.194 0.240
336 0.246 0.281 0.247 0.281 0.247 0.282
720 0.319 0.333 0.326 0.339 0.320 0.333

Traffic

96 0.356 0.244 0.361 0.247 0.360 0.246
192 0.375 0.251 0.381 0.257 0.381 0.256
336 0.386 0.258 0.393 0.263 0.397 0.266
720 0.425 0.281 0.432 0.288 0.431 0.286

#Rank-1 (total=20) 19 17 4 4 2 4

48 96 192 336 720

L

0.25

0.28

0.30

0.33

0.35

M
S
E

T=96, ETTh1

48 96 192 336 720

L

0.15

0.20

0.25
T=96, Traffic

48 96 192 336 720

L

0.40

0.50

0.60

0.70

M
S
E

T=720, ETTh1

48 96 192 336 720

L

0.20

0.22

0.24

0.26

0.28
T=720, Traffic

Figure 5: MSE at different look-back windows on
ETTh1 and Traffic datasets, L∈{48, 96, 192, 336, 720}
and T=96 and 720.

5.2.2 Ablation: Positional Encoding

Positional encoding is known to be an important
component in transformer design. However, previ-
ous TSTs employ absolute positional encoding by de-
fault. Therefore, we conduct an ablation experiment
to study whether the choice of positional encoding for
time-series forecasting is important. Using our de-
sign of MTST with relative positional encoding (RPE)

Multi-resolution Time-Series Transformer for Long-term Forecasting

(a) 318-th variate on 4646-th example on Electricity.

(b) 4-th variate on 807-th example on Traffic.

Figure 6: Visualization of forecasts for PatchTST and MTST (L=336 and T=336).

as the base model, we compare with the widely used
fixed absolute positional encoding (SinAPE), intro-
duced by Vaswani et al. (2017), as well as the learned
absolute positional encoding (LearnedAPE) used in
PatchTST (Nie et al., 2023). The APE is injected
into the token representations after patch-based tok-
enization in each branch of every layer.

From the results of the PE ablation study (shown in
Table 4), the incorporation of the relative PE is ben-
eficial to the outcome of forecasting for most cases.
The observation also matches the finding from previ-
ous works in other domains that RPE performs better
than APE when periodicities are important (Huang
et al., 2019).

5.2.3 Analysis: Look-back Window

In the main experiment (Table 2), MTST reaches
state-of-the-art performance with L = 336. We now
conduct a more in-depth study into MTST’s behavior
for different look-back windows. For the ETTh1 and
Traffic datasets, we train and evaluate our model with
L ∈ {48, 96, 192, 336, 720} independently, and compare
with the second and third best models (PatchTST and
DLinear).

We visualize the results with T = 96 and 720 in Fig-
ure 5. Although all algorithms show improved perfor-
mance with increasing the look-back window in most

cases, the advantages of MTST over PatchTST and
DLinear are retained over nearly all look-back win-
dows for T = 96 and 720.

5.2.4 Analysis: Qualitative Comparisons

To complement the quantitative results, Figure 6 pro-
vides visualizations of two randomly chosen test exam-
ples from the Electricity and Traffic datasets. We plot
the ground truth in the look-back window L = 336
and prediction horizon T = 336, as well as the predic-
tions fromMTST.We include PatchTST as a represen-
tative single-scale patch-based TST. More visualiza-
tions are included in the Appendix (Section E). From
Figure 6, we observe that although both PatchTST
and MTST can capture the overall temporal patterns,
MTST’s forecasts are superior to that of PatchTST.
Specifically, in Figure 6a, MTST is less impacted by
the abnormally deep trough near the end of the look-
back window, potentially owing to the low-resolution
branch, and consequently performs better on predict-
ing the overall trend. In Figure 6b, PatchTST is more
impacted by the low amplitude of the first high-peak
in the second weekly cycle in the look-back window,
while MTST can forecast the amplitude of the first
high peak better, potentially due to the finer predic-
tion of the high-resolution branch.

Yitian Zhang1†, Liheng Ma1†, Soumyasundar Pal2, Yingxue Zhang2, Mark Coates1

6 CONCLUSION

In this paper, we incorporate multi-scale analysis
into patch-based time-series transformers, and ac-
cordingly propose a novel framework, termed Multi-
resolution Time-Series Transformer (MTST), for fore-
casting. Contrary to up/down-sampling techniques
used in previous work, we use multiple patch-based to-
kenizations with different patch-sizes together with the
multi-branch transformer architecture in each MTST
layer, which enables flexibly modeling of temporal pat-
terns of different scales. Additionally, we propose to
incorporate relative positional encoding in our design,
which is well-matched to the seasonality character-
istics present in many real-world datasets. Exten-
sive experimental results on seven multivariate time-
series datasets demonstrate that the proposed MTST
outperforms the previous state-of-the-art approaches.
The example visualization of the prediction from each
branch on real-world datasets also provides validation
for our hypothesis on multi-scale learning. Further-
more, we have conducted ablation studies on multiple
resolutions and positional encoding, which justify our
design choices.

7 ACKNOWLEDGEMENT

We acknowledge the support of the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC), [funding reference number 260250].
Cette recherche a été financée par le Conseil de
recherches en sciences naturelles et en génie du Canada
(CRSNG), [numéro de référence 260250].

References

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An em-
pirical evaluation of generic convolutional and recur-
rent networks for sequence modeling. arXiv e-prints:
arXiv 1803.01271.

Bolya, D., Fu, C.-Y., Dai, X., Zhang, P., Feichten-
hofer, C., and Hoffman, J. (2023). Token merging:
Your ViT but faster. In Proc. Int. Conf. Learn.
Representations.

Challu, C., Olivares, K. G., Oreshkin, B. N., Garza,
F., Mergenthaler-Canseco, M., and Dubrawski, A.
(2022). N-HiTS: Neural hierarchical interpolation
for time series forecasting. In Proc. AAAI Conf.
Artif. Intell.

Chen, L.-C., Papandreou, G., Kokkinos, I., Mur-
phy, K., and Yuille, A. L. (2018). DeepLab:
Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected
CRFs. IEEE Trans. Pattern Anal. Mach. Intell.,
40(4):834–848.

Chen, Z., Ma, Q., and Lin, Z. (2021). Time-aware
multi-scale RNNs for time series modeling. In Proc.
Int. Joint Conf. Artif. Intell.

Cui, Z., Chen, W., and Chen, Y. (2016). Multi-scale
convolutional neural networks for time series classi-
fication. arXiv preprint: arXiv 1603.06995.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., and
Salakhutdinov, R. (2019). Transformer-XL: Atten-
tive language models beyond a fixed-length context.
In Proc. Annu. Meeting Assoc. Comput. Linguist.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-
senborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit,
J., and Houlsby, N. (2020). An image is worth 16x16
words: Transformers for image recognition at scale.
In Proc. Int. Conf. Learn. Representations.

Holt, C. C. (2004). Forecasting seasonals and trends
by exponentially weighted moving averages. Int. J.
Forecasting, 20(1):5–10.

Huang, C.-Z. A., Vaswani, A., Uszkoreit, J., Simon, I.,
Hawthorne, C., Shazeer, N., Dai, A. M., Hoffman,
M. D., Dinculescu, M., and Eck, D. (2019). Mu-
sic transformer: Generating music with long-term
structure. In Proc. Int. Conf. Learn. Representa-
tions.

Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder,
R. D. (2008). Forecasting with exponential smooth-
ing: the state space approach. Springer Science &
Business Media.

Ioffe, S. and Szegedy, C. (2015). Batch normalization:
Accelerating deep network training by ueducing in-
ternal covariate shift. In Proc. Int. Conf. Mach.
Learn.

Kim, T., Kim, J., Tae, Y., Park, C., Choi, J.-H., and
Choo, J. (2022). Reversible instance normalization
for accurate time-series forecasting against distribu-
tion shift. In Proc. Int. Conf. Learn. Representa-
tions.

Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Proc. Int. Conf. Learn.
Representations.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018).
Modeling long-and short-term temporal patterns
with deep neural networks. In Int. ACM SIGIR
Conf. Research Development Inf. Retr.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang,
Y.-X., and Yan, X. (2019). Enhancing the locality
and breaking the memory bottleneck of transformer
on time series forecasting. In Adv. Neural Inf. Pro-
cess. Syst.

Lim, B., Arık, S. Ö., Loeff, N., and Pfister, T.
(2021). Temporal fusion transformers for inter-

Multi-resolution Time-Series Transformer for Long-term Forecasting

pretable multi-horizon time series forecasting. Int.
J. Forecast., 37(4):1748–1764.

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariha-
ran, B., and Belongie, S. (2017). Feature pyramid
networks for object detection. In Proc. IEEE Conf.
Comput. Vis. and Pattern Recog.

Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu,
A. X., and Dustdar, S. (2021a). Pyraformer: Low-
complexity pyramidal attention for long-range time
series modeling and forecasting. In Proc. Int. Conf.
Learn. Representations.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z.,
Lin, S., and Guo, B. (2021b). Swin transformer: Hi-
erarchical vision transformer using shifted windows.
In Proc. IEEE/CVF Int. Conf. Comput. Vis.

Makridakis, S. and Hibon, M. (1997). ARMA mod-
els and the Box–Jenkins methodology. J. Forecast.,
16(3):147–163.

Marin, D., Chang, J.-H. R., Ranjan, A., Prabhu, A.,
Rastegari, M., and Tuzel, O. (2023). Token pooling
in vision transformers for image classification. In
Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis.

Nie, Y., Nguyen, N. H., Sinthong, P., and
Kalagnanam, J. (2023). A time series is worth 64
words: Long-term forecasting with transformers. In
Proc. Int. Conf. Learn. Representations.

Oreshkin, B. N., Carpov, D., Chapados, N., and Ben-
gio, Y. (2020). N-BEATS: Neural basis expansion
analysis for interpretable time series forecasting. In
Proc. Int. Conf. Learn. Representations.

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
Net: Convolutional networks for biomedical image
segmentation. In Proc. Med. Image. Comput. Com-
put. Assist. Interv.

Salinas, D., Flunkert, V., Gasthaus, J., and
Januschowski, T. (2020). DeepAR: Probabilistic
forecasting with autoregressive recurrent networks.
Int. J. Forecast., 36(3):1181–1191.

Sen, R., Yu, H.-F., and Dhillon, I. S. (2019). Think
globally, act locally: A deep neural network ap-
proach to high-dimensional time series forecasting.
In Adv. Neural Inf. Process. Syst.

Shabani, M. A., Abdi, A. H., Meng, L., and Sylvain,
T. (2023). Scaleformer: Iterative multi-scale refining
transformers for time series forecasting. In Proc. Int.
Conf. Learn. Representations.

Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-
attention with relative position representations. In
Proc. Conf. North Amer. Chapter Assoc. Comput.
Linguistics: Human Language Technologies.

Smyl, S. (2020). A hybrid method of exponential
smoothing and recurrent neural networks for time
series forecasting. Int. J. Forecast., 36(1):75–85.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and
Wojna, Z. (2016). Rethinking the inception archi-
tecture for computer vision. In Proc. IEEE Conf.
Comput. Vis. Pattern Recog.

Trindade, A. (2015). ElectricityLoadDia-
grams20112014. UCI Machine Learning Repository.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Aidan N Gomez, Kaiser, L., and Polo-
sukhin, I. (2017). Attention is all you need. In Adv.
Neural Inf. Process. Syst.

Vijay, E., Jati, A., Nguyen, N., Sinthong, G., and
Kalagnanam, J. (2023). TSMixer: Lightweight
MLP-mixer model for multivariate time series fore-
casting. In Proc. ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining.

Wang, H., Peng, J., Huang, F., Wang, J., Chen, J., and
Xiao, Y. (2023). MICN: Multi-scale local and global
context modeling for long-term series forecasting. In
Proc. Int. Conf. Learn. Representations.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang,
D., Lu, T., Luo, P., and Shao, L. (2021). Pyra-
mid Vision Transformer: A Versatile Backbone for
Dense Prediction without Convolutions. In Proc.
IEEE Int. Conf. Comput. Vis.

Wen, R., Torkkola, K., Narayanaswamy, B., and
Madeka, D. (2017). A multi-horizon quantile recur-
rent forecaster. arXiv preprint: arXiv 1711.11053.

Wilcoxon, F. (1945). Individual comparisons by rank-
ing methods. Biometrics Bulletin, 1(6):80–83.

Wu, H., Hu, T., Liu, Y., Zhou, H., Wang, J., and
Long, M. (2023). Timesnet: Temporal 2d-variation
modeling for general time series analysis. In Proc.
Int. Conf. Learn. Representations.

Wu, H., Xu, J., Wang, J., and Long, M. (2021). Aut-
oformer: Decomposition transformers with auto-
correlation for long-term series forecasting. In Adv.
Neural Inf. Process. Syst.

Yu, F. and Koltun, V. (2016). Multi-scale context
aggregation by dilated convolutions. In Proc. Int.
Conf. Learn. Representations.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. (2023). Are
transformers effective for time series forecasting? In
Proc. AAAI Conf. Artif. Intell.

Zhang, Y. and Yan, J. (2023). Crossformer: Trans-
former utilizing cross-dimension dependency for
multivariate time series forecasting. In Proc. Int.
Conf. Learn. Representations.

Yitian Zhang1†, Liheng Ma1†, Soumyasundar Pal2, Yingxue Zhang2, Mark Coates1

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong,
H., and Zhang, W. (2021). Informer: Beyond effi-
cient transformer for long sequence time-series fore-
casting. In Proc. AAAI Conf. Artif. Intell.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., and
Jin, R. (2022). FEDformer: Frequency enhanced
decomposed transformer for long-term series fore-
casting. In Proc. Int. Conf. Mach. Learn.

Multi-resolution Time-Series Transformer for Long-term Forecasting

SUPPLEMENTARY MATERIAL

A IMPLEMENTATION DETAILS

A.1 Detailed Architecture of Transformer Layers in MTST

As written in Section 3.2 of the main paper, here we describe the full architectural details of the transformer
layer. The output of the self-attention operation Z̃=Attn(Ỹ) is further processed with a particular combination
of residual connections, batch normalizations (Ioffe and Szegedy, 2015), and a two-layer feed-forward network
FFNθ : RD → RD as follows:

Z̃′ = BN
(
Ỹ + Attn(Ỹ)

)
, (9)

Z̃′′ = BN
(
Z̃′ + FFNθ(Z̃

′)
)
. (10)

Here, BN(·) stands for batch-normalization, and θ denotes the learnable weights and biases inside the FFN.

Subsequently, Z̃′′-s from different branches are fused together as described in Section 3.3.

A.2 Computational Complexity

As a transformer-based model, the asymptotic computational complexity of the operations in the n-th layer
of MTST is O(J2

b′n
), where Jb′n=⌈(dn−1−Pb′n

)/Sb′n
⌉ + 1 is the number of tokens in the branch with the finest

resolution. In other words, MTST has the same asymptotic computational complexity as PatchTST when
Jb′n equals the number of tokens in PatchTST. As Jb′n << L, the computational requirement of MTST scales
favorably compared to most timestamp-based TSTs with O(L2) complexity.

From the hyperparameter search, we empirically observe that MTST reaches its optimal performance with
shallower architectures compared to PatchTST, as shown in Table 6. Therefore, despite having multiple branches,
the training time of MTST is similar to that of PatchTST. Examples from 2 datasets with a single NVIDIA V100
GPU and 72 threads of Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz are shown in Table 5. All our experiments
were conducted with these hardware devices.

Table 5: Training time (L=336, T=96).

Dataset Traffic ETTm2

Model MTST PatchTST MTST PatchTST

Time(s) / Epoch 513.916 412.918 69.871 62.876
Epoch 68 77 28 28

Total time(h) 9.707 8.832 0.543 0.489

B EXPERIMENTAL DETAILS

B.1 Baseline settings

The default look-back windows for different baseline models, as identified in the original papers and the code,
can differ from each other. For Transformer-based models, the default look-back window is L = 96. TimesNet
and MICN follow the same setting for a fair comparison.

However, this can possibly lead to a poorer performance than if the algorithms are provided with a longer horizon.
A short 96 time-stamp look-back window is often inadequate for forecasting over longer horizons of more than 300
timestamps. For example, MICN shows that the overall prediction performance gradually improves as the size
of the look-back window increases. Therefore, we re-run TimesNet and MICN with a look back window L = 336,
which is the default experimental setting used by PatchTST and DLinear. We also conduct the experiments for
MTST under the same look-back window for fair comparison.

Yitian Zhang1†, Liheng Ma1†, Soumyasundar Pal2, Yingxue Zhang2, Mark Coates1

In MICN, the principal hyperparameters are stride=kernel. We use the same setting when increasing the L
from 96 to 336, selecting the stride and kernel from {12, 16}. TimesNet selects the top-k amplitude values and
obtains the most significant frequencies {f1, ..., fk} with amplitudes {Af1 , ..., Afk}. Based on the calculation, the
input is derived using k different periods. We follow the setting for L=96 with k=5, indicating 5 different scales.

B.2 Hyperparameters

For fair comparison, most hyperparameter values are borrowed from the experimental study reported by Nie
et al. (2023). At each branch in each layer, the transformer layer consists of an attention mechanism with 16
heads, and a 2-layer feed-forward network with a hidden dimension of 256 and an output dimension of 128.
We only perform grid search for the number of layers, N∈{1, 2, 3}, the number of branches, B∈{2, 3, 4}, and
the patch-sizes in different branches Pb∈{4, 8, 16, 24, 36, 48, 64, 96}. The stride length is set to a default value
of S = P/2. The detailed hyperparameter configurations of MTST for all datasets are shown in Table 6. The
model parameters are learned by minimizing the MSE of the forecasts on the training set using the Adam
optimizer (Kingma and Ba, 2015).

Table 6: Hyperparameters of MTST

Dataset Traffic ELC Weather ETTh1 ETTh2 ETTm1 ETTm2

Layer number N 1 1 2 2 1 2 2

Branch Number B 3 3 2 2 2 2 2

Patch length P
T = {96, 192} [8,16,48] [8,16,48] [24,96]

[8,16] [16,96] [16,96] [16,96]
T = {336, 720} [8,32,96] [8,32,96] [16,96]

Stride length S
T = {96, 192} [4,8,24] [4,8,24] [12,48]

[4,8] [8,48] [8,48] [8,48]
T = {336, 720} [4,16,48] [4,16,48] [8,48]

Feed forward Dropout 0.2 0.2 0.2 0.3 0.3 0.2 0.2

Fusing layer Dropout 0 0 0 0.1 0.3 0 0

Batch size 10 32 128 256 256 128 128

Initial leraning rate 5e−4 5e−4 5e−4 1e−4 1e−4 1e−4 1e−4

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Forecasting Results with Standard Deviations

To quantify the variability of our experimental results in Table 2, we repeat each experiment three times with
different random seeds (2021, 2022, and 2023), resulting in different initializations of the model parameters
in each run. The results shown in Table 2 of the main paper is obtained from the trained model, which was
initialized by setting the random seed to 2021. The mean and standard derivation of the MSE of MAE across
multiple trials are reported in Table 7. The variances are small, which indicates that using a different random
seed has minimal impact on the forecast.

C.2 Results for a Shorter Look-back Window (L=96)

For a fair comparison, we also conduct the experiments under the L=96 setting that is the default for MICN,
TimesNet, and other transformer-based models, except PatchTST. For the shorter look-back window, we slightly
modify the patch length for each branch since we need P<L to obtain the tokens. By default, MTST has 2
layers and 2 branches across all datasets and horizons. At each layer, the patch length is set to P=[12, 16]. Other
hyper-parameters follows the L = 336 setting in Table 2.

As shown in Table 8, MTST secures Rank 1 in 19 cases out of 28 cases in terms of MSE and 25 cases in
terms of MAE. As a strong contender, PatchTST claims top performance on ETTm1 dataset. This matches our
observations in the ablation study of the usefulness of multi-resolution, which illustrates that the one branch
patch-based TST could have slightly better performance for small datasets because of the overfitting on high-
resolution components. MTST’s consistent success across various metrics and look-back windows highlights its
adaptability and reliability in addressing time-series forecasting challenges, making it a compelling choice for
real-world applications.

Multi-resolution Time-Series Transformer for Long-term Forecasting

Table 7: Multivariate forecasting results with different random seeds in MTST and PatchTST at L=336.

Model MTST PatchTST

Dataset T MSE MAE MSE MAE

Traffic

96 0.355 ± 0.0005 0.243 ± 0.0009 0.367 ± 0.0006 0.250 ± 0.0007
192 0.375 ± 0.0008 0.252 ± 0.0005 0.386 ± 0.0004 0.259 ± 0.0004
336 0.387 ± 0.0005 0.257 ± 0.0009 0.399 ± 0.0010 0.267 ± 0.0016
720 0.423 ± 0.0012 0.281 ± 0.0008 0.438 ± 0.0097 0.291 ± 0.0104

Electricity

96 0.127 ± 0.0003 0.221 ± 0.0006 0.130 ± 0.0006 0.223 ± 0.0006
192 0.145 ± 0.0000 0.238 ± 0.0003 0.148 ± 0.0002 0.240 ± 0.0002
336 0.162 ± 0.0003 0.257 ± 0.0003 0.166 ± 0.0006 0.260 ± 0.0006
720 0.198 ± 0.0007 0.289 ± 0.0002 0.202 ± 0.0006 0.292 ± 0.0006

Weather

96 0.151 ± 0.0008 0.199 ± 0.0016 0.153 ± 0.0024 0.200 ± 0.0023
192 0.194 ± 0.0005 0.240 ± 0.0005 0.198 ± 0.0015 0.243 ± 0.0010
336 0.247 ± 0.0008 0.282 ± 0.0005 0.249 ± 0.0012 0.284 ± 0.0014
720 0.321 ± 0.0012 0.335 ± 0.0009 0.319 ± 0.0002 0.335 ± 0.0003

ETTh1

96 0.360 ± 0.0017 0.391 ± 0.0012 0.375 ± 0.0008 0.400 ± 0.0004
192 0.397 ± 0.0022 0.415 ± 0.0009 0.413 ± 0.0012 0.421 ± 0.0006
336 0.391 ± 0.0016 0.419 ± 0.0009 0.428 ± 0.0033 0.433 ± 0.0028
720 0.433 ± 0.0021 0.460 ± 0.0021 0.446 ± 0.0035 0.464 ± 0.0027

ETTh2

96 0.257 ± 0.0000 0.325 ± 0.0000 0.275 ± 0.0005 0.336 ± 0.0006
192 0.310 ± 0.0005 0.361 ± 0.0009 0.339 ± 0.0010 0.379 ± 0.0014
336 0.303 ± 0.0008 0.367 ± 0.0008 0.329 ± 0.0010 0.382 ± 0.0027
720 0.372 ± 0.0005 0.417 ± 0.0008 0.378 ± 0.0010 0.421 ± 0.0009

ETTm1

96 0.287 ± 0.0009 0.340 ± 0.0005 0.289 ± 0.0009 0.342 ± 0.0007
192 0.331 ± 0.0025 0.368 ± 0.0021 0332 ± 0.0008 0.370 ± 0.0007
336 0.364 ± 0.0014 0.391 ± 0.0008 0.366 ± 0.0022 0.391 ± 0.0012
720 0.416 ± 0.0017 0.422 ± 0.0008 0.420 ± 0.0056 0.424 ± 0.0033

ETTm2

96 0.162 ± 0.0000 0.251 ± 0.0005 0.164 ± 0.0011 0.254 ± 0.0010
192 0.220 ± 0.0005 0.291 ± 0.0005 0.222 ± 0.0008 0.294 ± 0.0014
336 0.272 ± 0.0005 0.326 ± 0.0005 0.278 ± 0.0020 0.330 ± 0.0010
720 0.358 ± 0.0000 0.380 ± 0.0005 0.365 ± 0.0024 0.383 ± 0.0010

Table 8: Multivariate long-term forecasting results with MTST. Look back window L=96 and prediction lengths
T∈{96, 192, 336, 720}. The best results are in bold and the second best are nderlined. The baseline results are
from the original papers except for DLinear, which is reproduced for L=96.

Models MTST PatchTST Dlinear MICN TimesNet Crossformer Scaleformer Fedformer Autoformer Pyformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Traffic

96 0.422 0.271 0.477 0.305 0.650 0.397 0.519 0.309 0.593 0.321 - - 0.564 0.351 0.587 0.366 0.613 0.388 2.085 0.468
192 0.437 0.281 0.471 0.299 0.600 0.372 0.537 0.315 0.617 0.336 - - 0.570 0.349 0.604 0.373 0.616 0.382 0.867 0.467
336 0.451 0.285 0.485 0.305 0.606 0.374 0.534 0.313 0.629 0.336 0.530 0.300 0.576 0.349 0.621 0.383 0.622 0.337 0.869 0.469
720 0.490 0.309 0.518 0.325 0.646 0.395 0.577 0.325 0.640 0.350 0.573 0.313 0.602 0.360 0.626 0.382 0.660 0.408 0.881 0.473

Electricity

96 0.160 0.248 0.174 0.259 0.194 0.277 0.164 0.269 0.168 0.272 - - 0.182 0.297 0.193 0.308 0.201 0.317 0.386 0.449
192 0.171 0.263 0.178 0.265 0.193 0.280 0.177 0.285 0.184 0.289 - - 0.188 0.300 0.201 0.315 0.222 0.334 0.386 0.443
336 0.188 0.281 0.196 0.282 0.207 0.296 0.193 0.304 0.198 0.300 0.404 0.423 0.210 0.324 0.214 0.329 0.231 0.338 0.378 0.443
720 0.230 0.315 0.237 0.316 0.242 0.328 0.212 0.321 0.220 0.320 0.433 0.438 0.232 0.339 0.246 0.355 0.254 0.361 0.376 0.445

Weather

96 0.175 0.216 0.178 0.219 0.197 0.255 0.161 0.229 0.172 0.220 - - 0.163 0.226 0.217 0.296 0.266 0.336 0.896 0.556
192 0.219 0.255 0.224 0.259 0.239 0.297 0.220 0.281 0.219 0.261 - - 0.221 0.290 0.276 0.336 0.307 0.367 0.622 0.624
336 0.276 0.296 0.278 0.298 0.284 0.332 0.278 0.331 0.280 0.306 0.495 0.515 0.282 0.340 0.339 0.380 0.359 0.395 0.739 0.753
720 0.351 0.346 0.350 0.346 0.348 0.385 0.311 0.356 0.365 0.359 0.526 0.542 0.369 0.396 0.403 0.428 0.419 0.428 1.004 0.934

ETTh1

96 0.376 0.393 0.393 0.408 0.383 0.396 0.421 0.431 0.384 0.402 - - - - 0.376 0.419 0.449 0.459 0.664 0.612
192 0.429 0.422 0.445 0.434 0.433 0.426 0.474 0.487 0.436 0.429 - - - - 0.420 0.448 0.500 0.482 0.790 0.681
336 0.444 0.436 0.484 0.451 0.491 0.467 0.569 0.551 0.491 0.469 0.440 0.461 - - 0.459 0.465 0.521 0.496 0.891 0.738
720 0.469 0.466 0.480 0.471 0.527 0.518 0.770 0.672 0.521 0.500 0.519 0.524 - - 0.506 0.507 0.514 0.512 0.963 0.782

ETTh2

96 0.276 0.333 0.294 0.343 0.329 0.380 0.299 0.364 0.340 0.374 - - - - 0.346 0.388 0.358 0.397 0.645 0.597
192 0.353 0.382 0.377 0.393 0.431 0.443 0.441 0.454 0.402 0.414 - - - - 0.429 0.439 0.456 0.452 0.788 0.683
336 0.357 0.395 0.381 0.409 0.455 0.460 0.654 0.567 0.452 0.452 - - - - 0.496 0.487 0.482 0.486 0.907 0.747
720 0.406 0.430 0.412 0.433 0.773 0.631 0.956 0.716 0.462 0.468 - - - - 0.463 0.474 0.515 0.511 0.963 0.783

ETTm1

96 0.323 0.360 0.321 0.360 0.346 0.374 0.316 0.362 0.338 0.375 - - - - 0.379 0.419 0.505 0.475 0.543 0.510
192 0.363 0.386 0.362 0.384 0.383 0.393 0.363 0.390 0.374 0.387 - - - - 0.426 0.441 0.553 0.496 0.557 0.537
336 0.393 0.406 0.392 0.402 0.417 0.418 0.408 0.426 0.410 0.411 0.404 0.427 - - 0.445 0.459 0.621 0.537 0.754 0.655
720 0.453 0.441 0.450 0.435 0.479 0.457 0.481 0.476 0.478 0.450 0.569 0.528 - - 0.543 0.490 0.671 0.561 0.908 0.724

ETTm2

96 0.174 0.256 0.178 0.260 0.187 0.281 0.179 0.275 0.187 0.267 - - - - 0.203 0.287 0.255 0.339 0.435 0.507
192 0.243 0.302 0.249 0.307 0.272 0.349 0.307 0.376 0.249 0.309 - - - - 0.269 0.328 0.281 0.340 0.730 0.673
336 0.301 0.340 0.313 0.346 0.344 0.395 0.325 0.388 0.321 0.351 - - - - 0.325 0.366 0.339 0.372 1.201 0.845
720 0.397 0.395 0.400 0.398 0.438 0.444 0.502 0.490 0.408 0.403 - - - - 0.421 0.415 0.433 0.432 3.625 1.451

Rank 1 19 25 3 5 0 0 4 0 1 0 1 0 0 0 2 0 0 0 0 0

Yitian Zhang1†, Liheng Ma1†, Soumyasundar Pal2, Yingxue Zhang2, Mark Coates1

C.3 Results on ILI Dataset

The influenza-like illness (ILI) dataset6 contains the weekly time-series of ratio of patients seen with ILI and the
total number of the patients in the United States between 2002 and 2021. It has 7 variates and 966 timestamps,
and is thus a smaller dataset compared to the others we study. Therefore, we use a different setting, following
the experimental setup in Nie et al. (2023), so that the prediction horizon T∈{24, 36, 48, 60} and the look-back
window L=104. We report the baseline results from Nie et al. (2023) except for TimesNet and MICN, for which
we reproduce their results with L=104 based on the officially released code. Note that the results for Fedformer
and Autoformer are the best from multiple look-back windows L∈{24, 36, 48, 60, 104, 144}.

For the hyperparameters for this dataset, we haveN=1 layer withB=2 branches. At each branch, the transformer
consists of an attention mechanism with 4 heads, and the 2-layer feed-forward network with hidden dimension
of 128 and output dimension of 32. The patch length for each branch P = [12, 24] and stride length S = [2, 4].
The findings presented in Table 9 indicate that MTST surpasses all baseline models across all horizons in terms
of the MSE metric.

Table 9: Multivariate long-term forecasting results for the ILI dataset with L=104 and T∈{24, 36, 48, 60}. Bold
and underlined denote the best and second-best results respectively. ∗ indicates statistically significant difference
between the top-2 results.

Models MTST PatchTST DLinear MICN TimesNet Fedformer Autoformer

Dataset T MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ILI

24 1.499* 0.790* 1.522 0.814 2.215 1.081 2.345 1.043 2.157 0.978 2.624 1.095 2.906 1.182
36 1.413* 0.789* 1.430 0.834 1.963 0.963 2.330 1.001 2.318 1.031 2.516 1.021 2.585 1.038
48 1.605* 0.877 1.673 0.854* 2.130 1.024 2.386 1.051 2.121 1.005 2.505 1.041 3.024 1.145
60 1.499* 0.814* 1.529 0.862 2.368 1.096 2.616 1.131 1.975 0.975 2.742 1.122 2.761 1.114

D RELATED WORK

D.1 Long-term Time-Series Forecasting

Multivariate time-series forecasting has been an essential research focus for decades, being developed from vari-
ous conventional statistical models (Makridakis and Hibon, 1997; Hyndman et al., 2008; Holt, 2004) to diverse
deep-learning techniques. Viewing time-series as sequential data and inspired by early auto-regressive statistical
models, earlier deep learning methods propose to model time-series with recurrent neural networks (RNNs) (Sali-
nas et al., 2020; Smyl, 2020; Lai et al., 2018; Lim et al., 2021; Wen et al., 2017). Besides RNNs, convolution
neural networks (CNNs) have also been widely used to extract features from time-series (Bai et al., 2018; Wang
et al., 2023; Cui et al., 2016) However, most RNN and CNN-based approaches struggle to capture long-term
dependency, which is crucial for long-term time-series forecasting. Recently, several works have proposed model
architectures based on multiple-layer perceptrons (MLPs) (Oreshkin et al., 2020; Challu et al., 2022; Vijay et al.,
2023) and demonstrated satisfactory performance for long-term forecasting.

Driven by the same motivation, numerous transformer-based models have been introduced to the time-series
domain to better capture long-range dependency. Due to the high computational cost of attention mechanisms,
earlier works in time-series transformers (TSTs) focus on the efficiency of learning long time-series sequences (Li
et al., 2019; Zhou et al., 2021). Another line of work, concentrating on prediction performance, incorporates
various inductive biases of time-series into achitecture designs: trend-seasonal decomposition and auto-correlation
in Autoformer (Wu et al., 2021), multi-scale feature representation in Pyraformer (Liu et al., 2021a) and
ScaleFormer (Shabani et al., 2023) as well as signal patterns of multiple frequencies in FEDformer (Zhou et al.,
2022).

The aforementioned TSTs are all based on timestamp-level tokenization. A recent study argued that these
TSTs are incapable of learning temporal patterns and can be outperformed by a simple linear model (Zeng
et al., 2023). Subsequently, PatchTST (Nie et al., 2023) introduced patch-level tokenization (Dosovitskiy et al.,
2020) and reached state-of-the-art performance for various time-series benchmarks. Another related approach
is CrossFormer (Zhang and Yan, 2023), which aims to capture both cross-time and cross-variate dependencies

6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

Multi-resolution Time-Series Transformer for Long-term Forecasting

using attention. However, due to the non-cognizance of the original chronological order from patching, how to
incorporate the inductive biases of time-series into TSTs with patch-level tokenization remains an open question.
According to the best of our knowledge, our proposed method is one of the first to incorporate multi-scale features
as an inductive bias into patch-based time-series transformers.

D.2 Multi-scale Feature Learning

Combining multiple scales of contextual features has proven beneficial in processing complex, information-rich
signals such as images, videos, and time-series. For example, several works proposed learning of multi-scale
features in the image domain, including learning with convolution of different scales (Yu and Koltun, 2016;
Chen et al., 2018; Szegedy et al., 2016), and constructing multi-resolution representations via subsampling (Ron-
neberger et al., 2015; Lin et al., 2017). Notably, following the introduction of patch-based transformers in
computer vision, several works have constructed hierarchical representations via merging patches instead of
subsampling (Wang et al., 2021; Liu et al., 2021b; Bolya et al., 2023).

Similar techniques have been introduced for modeling time-series in recent years. For non-transformer-based
models, several works propose to capture multi-scale features with different operators in a multi-branch archi-
tecture: MCNN (Cui et al., 2016) utilizes different downsampling transformations followed by convolution and
max-pooling; MICN (Wang et al., 2023) incorporates convolution with different kernel sizes in each branch;
TAMS-RNNs (Chen et al., 2021) propose multi-scale RNNs with multiple hidden states. NHits (Challu et al.,
2022) introduces multi-rate signal sampling schemes to the NBeats architecture to model multi-granularity fea-
tures.

Among transformer-based models, Pyraformer (Liu et al., 2021a) proposes pyramidal attention with inter-scale
and intra-scale connections to build multi-resolution representations with a focus on reducing computational
complexity. Scaleformer (Shabani et al., 2023) uses mean-pooling for downsampling to reach multi-resolution
representations for timestamp-level tokens. However, pooling techniques typically result in sub-optimal repre-
sentation when applied to patch-level tokens, due to non-cognizance of the original chronological order (Marin
et al., 2023). Therefore, we explore the alternative method to construct multi-resolution representations with
adjusting patch sizes.

E FORECAST VISUALIZATION

We visualize the long-term forecasting results of MTST and other baselines in Figure 7 and Figure 8. Here we
show the results of predicting 336 steps ahead on Electricity and Traffic dataset. In comparison to PatchTST and
DLinear, as shown in Figure 7a and 7b, MTST exhibits superior performance in capturing the weekend patterns
within the data specifically. This proficiency is attributed to the low-resolution component, which captures long-
term seasonality and trends. Moreover, from Figure 7c and Figure 8c, we can see that MTST outperforms in scale
prediction compared to MICN. Furthermore, MTST demonstrates superior prediction accuracy, particularly when
it comes to forecasting peaks in the Traffic dataset (Figure 8). This enhanced performance can potentially be
attributed to the finer predictions generated by the high-resolution branch of MTST. To validate this hypothesis,
we conducted an experiment where the high-resolution branch was removed. The results, as illustrated in
Figure 9, clearly indicate a noticeable decline in performance of MTST w/o HighRes, emphasizing the significant
contribution of the high-resolution branch in enabling finer predictions.

Yitian Zhang1†, Liheng Ma1†, Soumyasundar Pal2, Yingxue Zhang2, Mark Coates1

(a) Comparison of MTST and PatchTST

(b) Comparison of MTST and DLinear

(c) Comparison of MTST and MICN.

Figure 7: 11-th variate on 28-th test sample on Electricity.

Multi-resolution Time-Series Transformer for Long-term Forecasting

(a) Comparison of MTST and PatchTST

(b) Comparison of MTST and DLinear

(c) Comparison of MTST and MICN.

Figure 8: 11-th variate on 765-th test sample on Traffic.

Figure 9: 4-th variate on 804-th test sample on Traffic.

	INTRODUCTION
	PROBLEM STATEMENT
	METHODOLOGY
	Branch specific tokenization
	Self-attention
	Relative positional encoding

	Fusing representations from all branches
	RELATED WORK
	Long-horizon Time-Series Forecasting
	Multi-scale Feature Learning
	Positional Encoding
	EXPERIMENTS
	Benchmarking MTST
	Datasets
	Baselines and Experimental Setup
	Hyperparameters
	Experimental Results

	Ablation Study and Analysis Experiment
	Ablation: Multi-Resolution
	Ablation: Positional Encoding
	Analysis: Look-back Window
	Analysis: Qualitative Comparisons

	CONCLUSION

	ACKNOWLEDGEMENT
	IMPLEMENTATION DETAILS
	Detailed Architecture of Transformer Layers in MTST
	Computational Complexity

	EXPERIMENTAL DETAILS
	Baseline settings
	Hyperparameters

	ADDITIONAL EXPERIMENTAL RESULTS
	Forecasting Results with Standard Deviations
	Results for a Shorter Look-back Window (L=96)
	Results on ILI Dataset

	RELATED WORK
	Long-term Time-Series Forecasting
	Multi-scale Feature Learning
	FORECAST VISUALIZATION

