
Better Batch for Deep Probabilistic Time Series Forecasting

Vincent Zhihao Zheng Seongjin Choi Lijun Sun
McGill University University of Minnesota McGill University

Abstract

Deep probabilistic time series forecasting has
gained attention for its ability to provide
nonlinear approximation and valuable un-
certainty quantification for decision-making.
However, existing models often oversimplify
the problem by assuming a time-independent
error process and overlooking serial correla-
tion. To overcome this limitation, we propose
an innovative training method that incorpo-
rates error autocorrelation to enhance prob-
abilistic forecasting accuracy. Our method
constructs a mini-batch as a collection of D
consecutive time series segments for model
training. It explicitly learns a time-varying
covariance matrix over each mini-batch, en-
coding error correlation among adjacent time
steps. The learned covariance matrix can be
used to improve prediction accuracy and en-
hance uncertainty quantification. We evalu-
ate our method on two different neural fore-
casting models and multiple public datasets.
Experimental results confirm the effective-
ness of the proposed approach in improv-
ing the performance of both models across
a range of datasets, resulting in notable im-
provements in predictive accuracy.

1 INTRODUCTION

Time series forecasting stands as one of the primary
tasks in the field of deep learning (DL) due to its
broad range of applications (Benidis et al., 2022). Es-
sentially, the problem of time series forecasting can
be classified into deterministic forecasting and proba-
bilistic forecasting. Deterministic forecasting provides
point estimates for future time series values, while

Proceedings of the 27th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2024, Valencia,
Spain. PMLR: Volume 238. Copyright 2024 by the au-
thor(s).

probabilistic forecasting goes a step further by provid-
ing a distribution that quantifies the uncertainty asso-
ciated with the predictions. As additional information
on uncertainty assists users in making more informed
decisions, probabilistic forecasting has become increas-
ingly attractive and extensive efforts have been made
to enhance uncertainty quantification. In time series
analysis, errors can exhibit correlation for various rea-
sons, such as the omission of essential covariates or
model inadequacy. Autocorrelation (also known as se-
rial correlation) and contemporaneous correlation are
two common types of correlation in time series fore-
casting. Autocorrelation captures the temporal corre-
lation present in errors, whereas contemporaneous cor-
relation refers to the correlation among different time
series at the same time.

This paper primarily investigates the issue of autocor-
relation in errors. Modeling error autocorrelation is an
important field in the statistical analysis of time series.
A widely adopted method for representing autocorre-
lated errors is assuming the error series follows an au-
toregressive integrated moving average (ARIMA) pro-
cess (Hyndman and Athanasopoulos, 2018). Similar
issues may arise in learning nonlinear DL-based fore-
casting models. Previous studies have attempted to
model error autocorrelation in deterministic DL mod-
els using the concept of dynamic regression (Sun et al.,
2021; Zheng et al., 2023), assuming that the errors
follow a first-order autoregressive process. However,
since both neural networks and correlated errors can
explain the data, these models may face challenges in
balancing the two sources in the absence of an overall
covariance structure. More importantly, these meth-
ods are not readily applicable to probabilistic models,
where the model output typically consists of parame-
ters of the predictive distribution rather than the es-
timated time series values.

In this paper, we propose a novel batch structure that
allows us to explicitly model error autocorrelation.
Each batch comprises multiple mini-batches, with each
mini-batch grouping a fixed number of consecutive
training instances. Our main idea draws inspiration
from the generalized least squares (GLS) method used

Better Batch for Deep Probabilistic Time Series Forecasting

in linear regression models with dependent errors. We
extend the Gaussian likelihood of a univariate model
to a multivariate Gaussian likelihood by incorporating
a time-varying covariance matrix that encodes error
autocorrelation within a mini-batch. The covariance
matrix is decomposed into two components, a scale
vector and a correlation matrix, that are both time-
varying. In particular, we parameterize the correla-
tion matrix using a weighted sum of several base kernel
matrices, and the weights are dynamically generated
from the output of the base probabilistic forecasting
model. This enables us to improve the accuracy of es-
timated distribution parameters during prediction by
using the learned dynamic covariance matrix to ac-
count for previously observed residuals. By explicitly
modeling dynamic error covariance, our method en-
hances training flexibility, improves time series predic-
tion accuracy, and provides high-quality uncertainty
quantification. Our main contributions are as follows:

• We propose a novel method that enhances the
training and prediction of univariate probabilis-
tic time series models by learning a time-varying
covariance matrix that captures the correlated er-
rors within a mini-batch.

• We parameterize the dynamic correlation matrix
with a weighted sum of several base kernel matri-
ces. This ensures that the correlation matrix is a
positive definite symmetric matrix with unit di-
agonals. This approach allows us to jointly learn
the dynamic weights alongside the base model.

• We evaluate the effectiveness of the proposed ap-
proach on two base models with distinct archi-
tectures, DeepAR and Transformer, using multi-
ple public datasets. Our method effectively cap-
tures the autocorrelation in errors and thus offers
enhanced prediction quality. Importantly, these
improvements are achieved through a statistical
formulation without substantially increasing the
number of parameters in the model.

2 PRELIMINARIES

2.1 Probabilistic Time Series Forecasting

Denote zt = [z1,t, . . . , zN,t]
⊤ ∈ RN the time series vari-

ables at time step t, where N is the number of time
series. Given the observed history {zt}Tt=1, the task
of probabilistic time series forecasting involves formu-
lating the estimation of the joint conditional distri-
bution p (zT+1:T+Q | zT−P+1:T ;xT−P+1:T+Q). Here,
zt1:t2 = [zt1 , . . . , zt2], and xt represents known time-
dependent or time-independent covariates, such as the

time of day or the time series identifier. Put differ-
ently, our focus is on predicting Q future values based
on P historical values and covariates. The model can
be further decomposed as

p (zT+1:T+Q | zT−P+1:T ;xT−P+1:T+Q)

=

T+Q∏
t=T+1

p (zt | zt−P :t−1;xt−P :t) , (1)

which is an autoregressive model that can be used for
performing multi-step-ahead forecasting in a rolling
manner. In this case, samples are drawn within the
prediction range (t ≥ T+1) and fed back for the subse-
quent time step until reaching the end of the prediction
range. The conditioning is usually expressed as a state
vector ht of a transition dynamics fΘ that evolves over
time ht = fΘ (ht−1, zt−1,xt). Hence, Eq. (1) can be
expressed in a simplified form as

p (zT+1:T+Q | zT−P+1:T ;xT−P+1:T+Q)

=

T+Q∏
t=T+1

p (zt | ht) , (2)

where ht is mapped to the parameters of a spe-
cific parametric distribution (e.g., Gaussian, Poisson).
When N = 1, the problem is reduced to a univariate
model:

p (zi,T+1:T+Q | zi,T−P+1:T ;xi,T−P+1:T+Q)

=

T+Q∏
t=T+1

p (zi,t | hi,t) , (3)

where i is the identifier of a time series.

2.2 Error Autocorrelation

In the majority of probabilistic time series forecasting
literature, the data under consideration is typically
continuous, and the errors are assumed to follow an
independent Gaussian distribution. Consequently, the
time series variable associated with this framework is
expected to follow a Gaussian distribution:

zi,t | hi,t ∼ N
(
µ(hi,t), σ

2(hi,t)
)
, (4)

where µ(·) and σ(·) map the state vector hi,t to
the mean and standard deviation of a Gaussian dis-
tribution. For instance, the DeepAR model (Sali-
nas et al., 2020) adopts µ(hi,t) = w⊤

µ hi,t + bµ and

σ(hi,t) = log(1+ exp(w⊤
σ hi,t + bσ)) and both parame-

ters are time-varying. With Eq. (4), we can decompose
the time series variable into zi,t = µi,t + ηi,t, where
ηi,t ∼ N (0, σ2

i,t). Assuming the errors to be indepen-
dent corresponds to Cov(ηi,t−∆, ηi,t) = 0, ∀∆ ̸= 0. In

Vincent Zhihao Zheng, Seongjin Choi, Lijun Sun

0 5 10 15
lags

−1.0

−0.5

0.0

0.5

1.0
A

C
F

Time Series: A

0 5 10 15
lags

−1.0

−0.5

0.0

0.5

1.0

A
C

F

Time Series: B

Figure 1: Autocorrelation Function (ACF) of the One-
step-ahead Prediction Residuals. The results depict
the prediction outcomes generated by DeepAR for two
time series in the m4 hourly dataset. The shaded area
indicates the 95% confidence interval, highlighting re-
gions where the correlation is statistically insignificant.

the following of this paper, we focus on this setting
with Gaussian errors.

When there exists serial correlation in the error pro-
cess, we will have ηT+1:T+Q = [ηi,T+1, . . . , ηi,T+Q]

⊤

follows a multivariate Gaussian distribution N (0,Σ),
where Σ is the covariance matrix. Fig. 1 gives an
example of residual autocorrelation functions (ACF)
calculated using the prediction results of DeepAR on
two time series from the m4 hourly dataset. The plot
reveals a prevalent issue of lag-1 autocorrelation. Ig-
noring the systematic autocorrelation will undermine
the performance of forecasting.

3 RELATED WORK

3.1 Probabilistic Time Series Forecasting

Probabilistic forecasting aims to offer the predictive
distribution of the target variable rather than pro-
ducing a single-point estimate, as seen in determin-
istic forecasting. Essentially, there are two approaches
to achieve this: via the probability density function
(PDF) or through the quantile function (Benidis et al.,
2022). For example, MQ-RNN (Wen et al., 2017) em-
ploys sequence-to-sequence (Seq2Seq) recurrent neural
networks (RNNs) to directly output specific quantiles
of the predictive distribution.

In contrast, PDF-based models typically use a proba-
bilistic model to describe the distribution of the tar-
get variables, with neural networks often employed to

generate the parameters of this probabilistic model.
For example, DeepAR (Salinas et al., 2020) employs
RNNs to model the transitions of hidden state. The
hidden state at each time step is used to generate
the parameters of a Gaussian distribution. Conse-
quently, prediction samples for the target variables
can be drawn from this distribution. GPVar (Sali-
nas et al., 2019), a multivariate extension of DeepAR,
utilizes a Gaussian copula to transform the original
observations into Gaussian variables. Subsequently, a
multivariate Gaussian distribution is assumed for these
transformed variables. State space model (SSM) is
also a popular choice for the probabilistic model. For
instance, the deep SSM model proposed by Rangapu-
ram et al. (2018) employs RNNs to generate parame-
ters for the state space model, facilitating the gener-
ation of prediction samples. The normalizing kalman
filter (de Bézenac et al., 2020) combines normalizing
flows with the linear Gaussian state space model. This
integration enables the modeling of nonlinear dynam-
ics using RNNs and a more flexible probability density
function for observations with normalizing flows. The
deep factor model (Wang et al., 2019) employs a de-
terministic model and a probabilistic model separately
to capture the global and local random effects of time
series. The probabilistic model could be any classi-
cal probabilistic time series model such as a Gaussian
noise process. Conversely, the global model, parame-
terized by neural networks, is dedicated to represent-
ing the deterministic patterns inherent in time series.

Various efforts have been undertaken to improve the
quality of probabilistic forecasting. One avenue in-
volves enhancing expressive conditioning for proba-
bilistic models. For example, some approaches in-
volve replacing RNNs with Transformer to model la-
tent state dynamics, thus mitigating the Markovian
assumption inherent in RNNs (Tang and Matteson,
2021). Another approach focuses on adopting more
sophisticated distribution forms, such as normalizing
flows (Rasul et al., 2020) and diffusion models (Rasul
et al., 2021). For a recent and comprehensive review,
readers are referred to Benidis et al. (2022).

3.2 Modeling Correlated Errors

Error correlation can be categorized into two main
types: autocorrelation and contemporaneous correla-
tion. In time series analysis, autocorrelation occurs
when errors in a time series are correlated over dif-
ferent time points, while contemporaneous correlation
refers to the correlation between errors at the same
time step.

Autocorrelation has been extensively studied in clas-
sical time series models (Prado et al., 2021; Hyn-
dman and Athanasopoulos, 2018; Hamilton, 2020).

Better Batch for Deep Probabilistic Time Series Forecasting

Statistical frameworks, including autoregressive (AR)
and moving average (MA) models, have been well-
developed to address autocorrelation. One important
method is dynamic regression (Hyndman and Athana-
sopoulos, 2018), where errors are assumed to follow
an ARIMA process. Recent DL-based models have
also attempted to handle autocorrelation, such as re-
parameterizing the input and output of neural net-
works to model first-order error autocorrelation with
an AR process (Sun et al., 2021). This method en-
hances the performance of DL-based time series mod-
els, and the parameters introduced to model autocor-
relation can be jointly optimized with the base DL
model. However, it is limited to one-step-ahead fore-
casting. This method was later extended to multi-
variate models for Seq2Seq traffic forecasting tasks by
Zheng et al. (2023), assuming a matrix AR process for
the matrix-valued errors.

Contemporaneous correlation modeling often appears
in spatial regression tasks. For instance, Jia and Ben-
son (2020) proposed using a multivariate Gaussian dis-
tribution to model label correlation in the node regres-
sion problem, where the predicted label at each node is
often considered conditionally independent. This cor-
relation can later be utilized to refine predictions for
unknown nodes using information from known node la-
bels. The introduction of GLS loss in Zhan and Datta
(2023) captures the spatial correlation of errors in neu-
ral networks for geospatial data, bridging deep learn-
ing with Gaussian processes. A similar approach, in-
volving the utilization of GLS loss with random forest,
was proposed by Saha et al. (2023). Contemporaneous
correlation is also modeled in time series forecasting to
capture the interdependence between time series. The
methods range from using a parametric multivariate
Gaussian distribution (Salinas et al., 2019) to more
expressive generative models such as normalizing flows
(Rasul et al., 2020) and diffusion models (Rasul et al.,
2021). In Choi et al. (2022), a dynamic mixture of
matrix normal distributions was proposed to charac-
terize spatiotemporally correlated errors in multivari-
ate Seq2Seq traffic forecasting tasks.

To the best of our knowledge, our study presents an
innovative training approach to addressing error au-
tocorrelation in probabilistic time series forecasting.
Our proposed method is closely related to those intro-
duced in Sun et al. (2021), Zhan and Datta (2023), and
Saha et al. (2023). While Zhan and Datta (2023), and
Saha et al. (2023) primarily concentrate on modeling
contemporaneous correlation, and Sun et al. (2021)
focuses on modeling autocorrelation in deterministic
forecasting. Our method concentrates on learning
temporally correlated errors in the probabilistic time
series forecasting context. We utilize a dynamic covari-

ance matrix to capture autocorrelation within a mini-
batch, which is simultaneously learned alongside the
base model. The introduction of the error covariance
matrix not only provides a statistical framework for
characterizing error autocorrelation but also enhances
prediction accuracy.

4 OUR METHOD

Our approach is based on the formulation presented
in Eq. (3), using an autoregressive model as the base
model. Given the primary focus of this paper on uni-
variate models, we will omit the subscript i for the
remainder of this paper. In a general sense, an autore-
gressive probabilistic forecasting model comprises two
key components: firstly, a transition model (e.g., an
RNNs) to characterize state transitions ht, and sec-
ondly, a distribution head θ responsible for mapping
ht to the parameters governing the desired distribu-
tion. Furthermore, the encoder-decoder framework is
employed to facilitate multi-step forecasting, wherein
an input sequence spanning P time steps is used to
generate an output sequence spanning Q time steps.
The likelihood is expressed as p (zt | θ(ht)) for an in-
dividual observation, and in the case of employing a
Gaussian distribution, θ(ht) takes the form of (µt, σt).
In the training batch, the target time series variable
can be decomposed as

zt = µt + σtϵt, (5)

where ϵt is the normalized error term, which usually

follows the assumption that ϵt = zt−µt

σt

iid∼ N (0, 1).
This assumption implies that ϵt are independent and
identically distributed according to a standard nor-
mal distribution. Consequently, the parameters of
the model can be optimized by maximizing its log-
likelihood:

L =

T∑
t=1

log p (zt | θ (ht)) ∝
T∑

t=1

−1

2
ϵ2t − lnσt. (6)

We adopt a unified univariate model trained across
all time series, rather than training individual models
for each time series. Moreover, if we assume the er-
ror process to be isotropic, the loss function is equiv-
alent to the Mean Squared Error (MSE) commonly
employed in training deterministic models (Sun et al.,
2021). However, this assumption of independence ig-
nores the potential serial correlation in ϵt.

4.1 Training with Mini-batch

We propose a novel training approach by constructing
mini-batches instead of using individual training in-
stances. For most existing deep probabilistic time se-
ries models including DeepAR, each training instance

Vincent Zhihao Zheng, Seongjin Choi, Lijun Sun

consists of a time series segment with a length of P+Q,
where P represents the conditioning range and Q de-
notes the prediction range. However, as mentioned,
this simple approach cannot characterize the serial cor-
relation of errors among consecutive time steps. To
address this issue, we group D consecutive time series
segments into a mini-batch, with each segment having
a length of P + 1 (i.e., Q = 1). In other words, the
new training instance (i.e., a mini-batch) becomes a
collection of D time series segments with a prediction
range Q = 1. The composition of a mini-batch is illus-
trated in Fig. 2. An example of the collection of target
variables in a mini-batch of size D (the time horizon
we use for capturing serial correlation) is given by

zt = µt + σtϵt,

zt+1 = µt+1 + σt+1ϵt+1,

. . .

zt+D−1 = µt+D−1 + σt+D−1ϵt+D−1,

(7)

where for time point t′, µt′ and σt′ are the output of the
model for each time series segment in the mini-batch,
and ϵt′ is the normalized error term. We use boldface
symbols to denote the vectors of data and parameters
in this mini-batch, e.g., zbat

t = [zt, zt+1, . . . , zt+D−1]
⊤

and the same notation applies to µbat
t and σbat

t .

Rather than assuming independence among the nor-
malized errors, we consider modeling the joint distri-
bution of the error vector in a mini-batch ϵt, denoted
as ϵbatt = [ϵt, ϵt+1, . . . , ϵt+D−1]

⊤ ∼ N (0,Ct), where
Ct is a time-varying correlation matrix. To efficiently
characterize the time-varying patterns, we parameter-
ize Ct as a dynamic weighted sum of several base ker-
nel matrices: Ct =

∑M
m=1 wm,tKm, where wm,t ≥ 0

(with
∑

m wm,t = 1) is the component weight. For
each base component, we use a kernel matrix gen-
erated from a squared-exponential (SE) kernel func-

tionKij
m = exp(− (i−j)2

l2m
) with different lengthscales lm

(e.g., lm = 1, 2, 3, . . .). An identity matrix is included
in the additive structure to capture the independent
noise process. Taken together, this parameterization
ensures that Ct is a positive definite symmetric ma-
trix with unit diagonals, thus being a valid correla-
tion matrix. A small neural network is attached to
the original model to project the hidden state to the
weights by setting the number of nodes in the final
hidden layer to M (i.e., the number of components).
A softmax layer is used as the output layer to ensure
that these weights sum up to 1. The parameters of the
small neural network can be learned jointly with the
base model.

The utilization of a time-varying correlation matrix,
as opposed to a static correlation matrix, offers the
advantage of enabling the model to adapt dynami-

cally to the evolving structure of the error process.
For example, the model can assign a higher weight
to a kernel matrix generated by a kernel function
with a lengthscale of l = 3 when strong and long-
range correlations are present in the current context,
whereas it can favor the identity matrix when errors
become white noise. This parameterization empow-
ers the model to capture positive autocorrelation that
diminishes over time lags. Alternatively, one could
opt for a fully learnable positive definite symmetric
Toeplitz matrix to parameterize the correlation ma-
trix, which can also accommodate negative and com-
plex correlations. With this formulation, the distribu-
tion of ϵt becomes a multivariate Gaussian, which also

leads to zbat
t ∼ N

(
µbat

t ,Σbat
t

)
. The D × D covari-

ance of the associated target variables can be decom-
posed as Σbat

t = diag(σbat
t)Ct diag(σ

bat
t). As both

µbat
t and σbat

t are default outputs of the base proba-
bilistic model, the likelihood for a specific time series
can be constructed for each mini-batch, and the overall
likelihood is given by

L =

T−D+1∑
t=1

log p
(
zbat
t | µbat

t ,Σbat
t

)
. (8)

By allowing overlap, a total of T −D+1 mini-batches
can be generated for each time series from the training
data.

4.2 Multi-step Rolling Prediction

An autoregressive model performs forecasting in a
rolling manner by drawing a sample of the target vari-
able at each time step, feeding it to the next time step
as input, and continuing this process until the desired
prediction range is reached. Our method can provide
extra calibration for this process using the proposed
correlation matrix Ct. Assume that we have obser-
vations till time step t and recall that the collection
of normalized errors in a mini-batch jointly follows a
multivariate Gaussian distribution. For the next time
step (t + 1) to be predicted, we have the conditional
distribution of ϵt+1 given the past (D − 1) errors us-
ing the conditional distribution properties of jointly
Gaussian variables:

ϵt+1 | ϵt, ϵt−1, . . . , ϵt−D+2

∼ N
(
C∗C

−1
obsϵobs, 1−C∗C

−1
obsC

⊤
∗

)
, (9)

where ϵobs = [ϵt−D+2, . . . , ϵt−1, ϵt]
⊤ ∈ RD−1 repre-

sents the set of observed (D−1) residuals at forecasting
step t+ 1. Here, Cobs denotes the (D − 1)× (D − 1)
partition of Ct+1 that captures the correlations within
ϵobs, and C∗ denotes the 1× (D−1) partition of Ct+1

that captures the correlations between ϵt+1 and ϵobs,

Better Batch for Deep Probabilistic Time Series Forecasting

𝑧!,#

𝑧!,#$%

𝑧!,#$&'%

conditioning range (𝑃) prediction range (𝑄)

…
autocorrelation

range (𝐷)

Figure 2: Example of a Mini-batch. Colored parts denote the time series segments that construct the mini-batch.
Each mini-batch has a time span of P +D, and only one-step-ahead prediction is involved during training.

i.e., Ct+1 =

[
Cobs C⊤

∗
C∗ 1

]
, where the weights for gen-

erating Ct+1 are obtained from the hidden state of the
base model at time step t+1. Note that we remove the
time index in Cobs, C∗ and ϵobs for brevity. To obtain
a sample of the target variable z̃t+1, we can first draw
a sample of the normalized error ϵ̃t+1 using Eq. (9).
Since both µt+1 and σt+1 are deterministic outcomes
from the base model, z̃t+1 can be derived by

z̃t+1 = µt+1 + σt+1ϵ̃t+1. (10)

Based on Eq. (9) and Eq. (10), it can be seen that the
final distribution for zt+1 becomes

zt+1 | ht+1, ϵobs ∼ N
(
µ̄t+1, σ̄

2
t+1

)
, (11)

where
µ̄t+1 = µt+1 + σt+1C∗C

−1
obsϵobs,

σ̄2
t+1 = σ2

t+1

(
1−C∗C

−1
obsC

⊤
∗

)
.

(12)

Multi-step rolling prediction can be accomplished by
treating the sample ϵ̃t+1 as a newly observed residual.
Following this process for all subsequent time steps
results in a trajectory of {ϵ̃t+q}Qq=1.

5 EXPERIMENTS

5.1 Datasets and Models

We apply the proposed framework to two base predic-
tion models: DeepAR (Salinas et al., 2020) and an au-
toregressive decoder-only Transformer (i.e., the GPT
model (Radford et al., 2018)). A Gaussian distribution
head is employed to generate the distribution param-
eters for probabilistic forecasting based on the hidden
state outputted by the model. It should be noted that
our approach can be applied to other autoregressive
univariate models without any loss of generality, as
long as the final prediction follows a Gaussian distri-
bution. We implemented these models using PyTorch
Forecasting (Beitner, 2020). Both models utilize in-
put data consisting of lagged time series values from

the preceding time step, accompanied by supplemen-
tary features including time of day, day of the week,
and unique time series identifiers. We refer readers to
the Supplementary Materials (SM) for comprehensive
information on the experiment setup.

To assess our method’s effectiveness, we conducted ex-
tensive experiments on diverse real-world time series
datasets sourced from GluonTS (Alexandrov et al.,
2020). These datasets serve as important benchmarks
in evaluating time series forecasting models. The pre-
diction range (Q) and the number of rolling evalua-
tions were acquired from each dataset’s configuration
within GluonTS. Sequential splits into training, valida-
tion, and testing sets were performed for each dataset,
with the validation set’s temporal length matching
that of the testing sets. The temporal length of the
testing set was computed using the prediction range
and the number of rolling evaluations. For example,
the testing set for traffic contains 24 + 7 − 1 = 30
time steps, indicating 24-step predictions (Q) made in
a rolling manner across 7 consecutive prediction start
timestamps. The details of datasets are summarized in
Table 1. Standardization of the data was carried out
using the mean and standard deviation obtained from
each time series within the training set. Predictions
were subsequently rescaled to their original values for
computing evaluation metrics.

5.2 Evaluation against Baseline

We evaluate the proposed approach by comparing it
with models trained using Gaussian likelihood loss. To
simplify the comparison and ensure fairness in terms
of the data used during training, we set the autocorre-
lation range (D) to be identical to the prediction range
(Q). This alignment ensures that each mini-batch in
our method covers a time horizon of P+D, while in the
conventional training method, each training instance
spans a time horizon of P +Q. By setting D = Q, we
guarantee that both methods involve the same amount
of data per batch, given the same batch sizes. Further-

Vincent Zhihao Zheng, Seongjin Choi, Lijun Sun

Table 1: Dataset Summary.

Dataset Granularity # of time series # of time steps Q Rolling evaluation

m4 hourly hourly 414 1,008 48 1
exchange rate workday 8 6,101 30 5
m1 quarterly quarterly 203 48 8 1
pems03 5min 358 26,208 12 24
pems08 5min 170 17,856 12 24
solar hourly 137 7,033 24 7
traffic hourly 963 4,025 24 7
uber daily daily 262 181 7 1
uber hourly hourly 262 4,344 24 1

Table 2: CRPSsum Accuracy Comparison.

DeepAR Transformer

w/o w/ rel. impr. w/o w/ rel. impr.

m4 hourly 0.1529±0.0011 0.1421±0.0003 7.06% 0.1487±0.0011 0.1431±0.0009 3.77%
exchange rate 0.0069±0.0001 0.0059±0.0000 14.49% 0.0081±0.0001 0.0074±0.0001 8.64%
m1 quarterly 0.3767±0.0006 0.3076±0.0018 18.34% 0.4449±0.0034 0.3302±0.0046 25.78%
pems03 0.0870±0.0000 0.0811±0.0000 6.78% 0.0907±0.0000 0.0845±0.0001 6.84%
pems08 0.0650±0.0001 0.0588±0.0000 9.54% 0.0622±0.0000 0.0591±0.0001 4.98%
solar 0.7627±0.0008 0.7063±0.0005 7.39% 0.6657±0.0010 0.5379±0.0010 19.20%
traffic 0.2765±0.0001 0.2387±0.0001 13.67% 0.2422±0.0002 0.2036±0.0001 15.94%
uber daily 0.0897±0.0003 0.0890±0.0001 0.78% 0.0827±0.0003 0.0827±0.0002 0.00%
uber hourly 0.1549±0.0007 0.1532±0.0005 1.10% 0.1503±0.0007 0.1462±0.0008 2.73%

avg. rel. impr. 8.80% avg. rel. impr. 9.76%

Note: The better results are in boldface (lower is better). All results are based on three runs of each model.

Table 3: Quantile Loss Accuracy Comparison using DeepAR.

0.5-risk 0.9-risk

w/o w/ rel. impr. w/o w/ rel. impr.

m4 hourly 0.1066±0.0006 0.0999±0.0006 6.29% 0.0579±0.0006 0.0497±0.0003 14.16%
exchange rate 0.0043±0.0001 0.0042±0.0000 2.33% 0.0028±0.0000 0.0018±0.0000 35.71%
m1 quarterly 0.2011±0.0004 0.1671±0.0016 16.91% 0.3101±0.0013 0.2489±0.0030 19.74%
pems03 0.0601±0.0001 0.0563±0.0000 6.32% 0.0337±0.0000 0.0287±0.0000 14.84%
pems08 0.0456±0.0001 0.0410±0.0000 10.09% 0.0208±0.0000 0.0187±0.0000 10.10%
solar 0.5336±0.0009 0.4896±0.0005 8.25% 0.1827±0.0001 0.1699±0.0004 7.01%
traffic 0.1608±0.0000 0.1402±0.0001 12.81% 0.1167±0.0001 0.1051±0.0001 9.94%
uber daily 0.0598±0.0006 0.0603±0.0004 -0.84% 0.0392±0.0005 0.0369±0.0002 5.87%
uber hourly 0.1091±0.0005 0.1040±0.0003 4.67% 0.0541±0.0003 0.0574±0.0003 -6.10%

avg. rel. impr. 7.42% avg. rel. impr. 12.36%

Note: The better results are in boldface (lower is better). All results are based on three runs of each model.

more, we follow the default configuration in GluonTS
by setting the context range equal to the prediction
range, i.e., P = Q.

In our proposed method, we introduce a small num-
ber of additional parameters dedicated to projecting
the hidden state into component weights wm,t, which
play a pivotal role in generating the dynamic corre-
lation matrix Ct. In practice, the selection of base
kernels should be data-specific, and one should per-
form residual analysis to determine the most appro-
priate structure. For simplicity, we use M = 4 base

kernels—three SE kernels with l = 1, 2, 3, respectively,
and an identity matrix. The different lengthscales cap-
ture different decaying rates of autocorrelation. The
time-varying component weights can help the model
dynamically adjust to different correlation structures
observed at different time points.

We use two different probabilistic scores, namely, the
Continuous Ranked Probability Score (CRPS) (Gneit-
ing and Raftery, 2007) and the quantile loss (ρ-risk)
(Salinas et al., 2020), as the evaluation metrics for un-

Better Batch for Deep Probabilistic Time Series Forecasting

certainty quantification. CRPS is defined as

CRPS(F, y) = EF |Y − y| − 1

2
EF |Y − Y ′| , (13)

where y is the observation, F is the cumulative dis-
tribution function (CDF) of the target variable zt, Y
and Y ′ are independent copies of a set of prediction
samples associated with this distribution. To facilitate
direct comparison between datasets, we use CRPSsum
calculated by first summing CRPS across the entire
testing horizon of all time series and then normalizing
the results by the sum of the corresponding observa-
tions. The quantile loss is defined as

Lρ

(
Z, Ẑρ

)
= 2(Ẑρ − Z)

(
(1− ρ)IẐρ>Z − ρIẐρ≤Z

)
,

(14)
where I is a binary indicator function that equals 1
when the condition is met, Ẑρ represents the pre-
dicted ρ-quantile, and Z represents the ground truth
value. The quantile loss serves as a metric to as-
sess the accuracy of a given quantile, denoted by
ρ, from the predictive distribution. Following Sali-
nas et al. (2020), we summarize the quantile losses
for the testing set across all time series segments by
evaluating a normalized summation of these losses:(∑

i Lρ

(
Zi, Ẑ

ρ
i

))
/ (

∑
i Zi). In this paper, we eval-

uate the 0.5-risk and the 0.9-risk. Comprehensive de-
tails regarding the computation of the CRPS and ρ-
risk can be found in the SM.

In Table 2, we present a comparative analysis of
prediction performance using CRPSsum. The vari-
ants combined with our proposed method (denoted as
“w/”) are compared to their respective original im-
plementations optimized with Gaussian likelihood loss
(denoted as “w/o”). The results demonstrate the ef-
fectiveness of our approach in enhancing the perfor-
mance of both models across a wide range of datasets,
yielding notable improvements in predictive accuracy.
Our method yields an average improvement of 8.80%
for DeepAR and 9.76% for Transformer. It should be
noted that our method exhibits versatile performance
improvements that vary across different datasets. This
variability can be attributed to a combination of fac-
tors, including the inherent characteristics of the data
and the baseline performance of the original model
on each specific dataset. Notably, when the origi-
nal model already achieves exceptional performance
on a particular dataset, our method could demon-
strate minimal enhancement (e.g., uber daily and
uber hourly). Moreover, the degree of alignment be-
tween our kernel assumption and the true error auto-
correlation structure significantly impacts the perfor-
mance of our method.

Furthermore, an additional comparison using quan-
tile loss with DeepAR is shown in Table 3, present-

ing the outcomes for 0.5-risk and 0.9-risk. A note-
worthy observation is the greater improvement in 0.9-
risk (12.36%) compared to 0.5-risk (7.42%) with our
method, implying that the model trained using our
approach may provide more reliable prediction inter-
vals for quantifying data uncertainty. Further analyses
using other evaluation metrics such as MSE alongside
naive baselines are also reported in the SM.

02-08 02-09 02-10 02-11
Time (date)

0.0

0.2

0.4

0.6

06:00 16:00

a
Component Weights

w0(l=1)

w1(l=2)

w2(l=3)

w3(I)

0 10 20
lags

0.0

0.2

0.4

0.6

0.8

1.0 b
ACF: 06:00

0 10 20
lags

0.0

0.2

0.4

0.6

0.8

1.0 d
ACF: 16:00

0 8 16 24 32 40

0

8

16

24

32

40

c
§batt : 06:00

0 8 16 24 32 40

0

8

16

24

32

40

e
§batt : 16:00

0.000

0.002

0.004

0.006

0.008

0.010

0.000

0.002

0.004

0.006

0.008

0.010

Figure 3: (a) Component weights for generating the
correlation matrix of an example time series from the
m4 hourly dataset. Parameters w0, w1, w2 represent
the component weights for kernel matrices associated
with lengthscales l = 1, 2, 3, respectively, and w3 is
the component weight for the identity matrix. Shaded
areas distinguish different days; (b) and (d): The auto-
correlation function (ACF) indicated by the resulting
error correlation matrix Ct at 6:00 and 16:00. Given
the rapid decay of the ACF, we only plot 24 lags to
enhance clarity in our visualization; (c) and (e): The
corresponding covariance matrix of the associated tar-
get variables Σbat

t = diag(σbat
t)Ct diag(σ

bat
t) at 6:00

and 16:00, respectively.

5.3 Interpretation of Correlation

A key element of our method lies in its ability to cap-
ture error autocorrelation through the dynamic con-
struction of a covariance matrix. This is achieved

Vincent Zhihao Zheng, Seongjin Choi, Lijun Sun

by introducing a dynamic weighted sum of kernel
matrices with different lengthscales. The choice of
lengthscale significantly influences the structure of
autocorrelation—a small lengthscale corresponds to
short-range positive autocorrelation, while a large
lengthscale can capture positive correlation spanning
long lags.

In Fig. 3, we present the generated component weights
and the resulting autocorrelation function (i.e., the
first row in the learned correlation matrix Ct) of an
example time series from the m4 hourly dataset over a
four-day duration. In particular, we observe that the
component weights (w0, w1), corresponding to the ker-
nel matrices with l = 1 and l = 2, consistently remain
close to zero across the entire observation period. This
suggests that the prevailing autocorrelation structure
in this dataset is most effectively characterized by the
kernel matrix associated with l = 3.

Furthermore, we observe the dynamic adjustment of
correlation strengths facilitated by the identity matrix
over time. Specifically, when w3 (weight assigned to
the identity matrix) increases, the error process tends
to exhibit greater independence. In contrast, when the
weight w2 for the kernel matrix with l = 3 is larger,
the error process becomes more correlated. Figs. 3
(b, d) reveal that the autocorrelation at 6:00 in the
morning is less pronounced compared to that observed
at 16:00. Additionally, Fig. 3 (a) demonstrates pro-
nounced daily patterns in autocorrelation, particularly
when errors exhibit an increased correlation around
16:00 each day. This underscores the crucial need for
our methodology to dynamically adapt the covariance
matrix, enabling the effective modeling of these tem-
poral variations. Figs. 3 (c, e) depict the covariance
matrix of the respective target variables within the
autocorrelation horizon. The diagonal elements repre-
sent the variance of the target variables generated by
the base model, while the off-diagonal elements depict
the covariance of the target variables that are facili-
tated by our approach.

5.4 Computational Cost

The proposed method introduces additional computa-
tional cost due to the evaluation of the log-likelihood
for the multivariate Gaussian distribution in Eq. (8).
Specifically, this evaluation involves calculating the in-
verse and determinant of the covariance matrix Σbat

t .
However, we can significantly expedite these computa-
tions by employing Cholesky decomposition, particu-
larly when the dimensionalityD is small. We provide a
detailed account of the computational expenses in the
SM. Remarkably, our method does not necessarily lead
to an increase in training time per epoch or the num-
ber of epochs required for convergence. Consequently,

the total training time remains comparable to that of
conventional training methods in certain scenarios.

6 CONCLUSION

This paper introduces an innovative training approach
to model error autocorrelation in probabilistic time
series forecasting. The method involves using mini-
batches in training and learning a time-varying co-
variance matrix that captures the correlation among
normalized errors within a mini-batch. Taken to-
gether with the standard deviation provided by the
base model, we are able to model and predict a time-
varying covariance matrix. We implement and eval-
uate the proposed method using DeepAR and Trans-
former on various public datasets, and our results con-
firm the effectiveness of the proposed solution in im-
proving the quality of uncertainty quantification. The
broader impact of our method can be observed in two
aspects. First, since Gaussian errors are commonly as-
sumed in probabilistic forecasting models, our method
can be applied to enhance the training process of such
models. Second, the learned autocorrelation can be
leveraged to improve multi-step prediction by calibrat-
ing the distribution output at each forecasting step.

There are several directions for future research. First,
the kernel-based covariance matrix may be too restric-
tive for capturing temporal processes. Investigating
covariance structures with greater flexibility, such as
parameterizing Ct as a fully learnable positive defi-
nite symmetric Toeplitz matrix (e.g., AR(p) process
has covariance with a Toeplize structure) and directly
factorizing the covariance matrix Σt = U tU

⊤
t (e.g.,

Wishart process as in Wilson and Ghahramani (2011))
or the precision matrix Λt = Σ−1

t = V tV
⊤
t (e.g., us-

ing Cholesky factorization as in Fortuin et al. (2020)),
could be promising avenues. Second, our method can
be extended to multivariate models, in which the tar-
get output becomes a vector instead of a scalar. A pos-
sible solution is to use a matrix Gaussian distribution
to replace the multivariate Gaussian distribution used
in the current method. This would allow us to learn
a full covariance matrix between different target se-
ries, thereby capturing any cross-correlations between
them.

Acknowledgements

We express our gratitude to all reviewers for their in-
sightful suggestions and comments. We acknowledge
the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC). Vincent Zhi-
hao Zheng acknowledges the support received from the
FRQNT B2X Doctoral Scholarship Program.

Better Batch for Deep Probabilistic Time Series Forecasting

References

Alexandrov, A., Benidis, K., Bohlke-Schneider, M.,
Flunkert, V., Gasthaus, J., Januschowski, T., Mad-
dix, D. C., Rangapuram, S., Salinas, D., Schulz, J.,
et al. (2020). Gluonts: Probabilistic and neural time
series modeling in python. The Journal of Machine
Learning Research, 21(1):4629–4634.

Beitner, J. (2020). Pytorch forecasting. Feb 22, 2024.

Benidis, K., Rangapuram, S. S., Flunkert, V., Wang,
Y., Maddix, D., Turkmen, C., Gasthaus, J., Bohlke-
Schneider, M., Salinas, D., Stella, L., et al. (2022).
Deep learning for time series forecasting: Tutorial
and literature survey. ACM Computing Surveys,
55(6):1–36.

Choi, S., Saunier, N., Trepanier, M., and Sun, L.
(2022). Spatiotemporal residual regularization with
dynamic mixtures for traffic forecasting. arXiv
preprint arXiv:2212.06653.

de Bézenac, E., Rangapuram, S. S., Benidis, K.,
Bohlke-Schneider, M., Kurle, R., Stella, L., Hasson,
H., Gallinari, P., and Januschowski, T. (2020). Nor-
malizing kalman filters for multivariate time series
analysis. Advances in Neural Information Process-
ing Systems, 33:2995–3007.

Fortuin, V., Baranchuk, D., Rätsch, G., and Mandt, S.
(2020). Gp-vae: Deep probabilistic time series im-
putation. In International Conference on Artificial
Intelligence and Statistics, pages 1651–1661. PMLR.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper
scoring rules, prediction, and estimation. Journal of
the American Statistical Association, 102(477):359–
378.

Hamilton, J. D. (2020). Time series analysis. Prince-
ton University Press.

Hyndman, R. J. and Athanasopoulos, G. (2018). Fore-
casting: principles and practice. OTexts.

Jia, J. and Benson, A. R. (2020). Residual correlation
in graph neural network regression. In Proceedings
of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pages 588–
598.

Prado, R., Ferreira, M. A., and West, M. (2021). Time
series: modeling, computation, and inference. CRC
Press.

Radford, A., Narasimhan, K., Salimans, T., Sutskever,
I., et al. (2018). Improving language understanding
by generative pre-training.

Rangapuram, S. S., Seeger, M. W., Gasthaus, J.,
Stella, L., Wang, Y., and Januschowski, T. (2018).
Deep state space models for time series forecast-
ing. Advances in Neural Information Processing Sys-
tems, 31.

Rasul, K., Seward, C., Schuster, I., and Vollgraf, R.
(2021). Autoregressive denoising diffusion models
for multivariate probabilistic time series forecasting.
In International Conference on Machine Learning,
pages 8857–8868. PMLR.

Rasul, K., Sheikh, A.-S., Schuster, I., Bergmann, U.,
and Vollgraf, R. (2020). Multivariate probabilistic
time series forecasting via conditioned normalizing
flows. arXiv preprint arXiv:2002.06103.

Saha, A., Basu, S., and Datta, A. (2023). Random
forests for spatially dependent data. Journal of the
American Statistical Association, 118(541):665–683.

Salinas, D., Bohlke-Schneider, M., Callot, L., Medico,
R., and Gasthaus, J. (2019). High-dimensional mul-
tivariate forecasting with low-rank gaussian copula
processes. Advances in Neural Information Process-
ing Systems, 32.

Salinas, D., Flunkert, V., Gasthaus, J., and
Januschowski, T. (2020). Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. In-
ternational Journal of Forecasting, 36(3):1181–1191.

Sun, F.-K., Lang, C., and Boning, D. (2021). Adjust-
ing for autocorrelated errors in neural networks for
time series. Advances in Neural Information Pro-
cessing Systems, 34:29806–29819.

Tang, B. and Matteson, D. S. (2021). Probabilistic
transformer for time series analysis. Advances in
Neural Information Processing Systems, 34:23592–
23608.

Wang, Y., Smola, A., Maddix, D., Gasthaus, J., Fos-
ter, D., and Januschowski, T. (2019). Deep factors
for forecasting. In International Conference on Ma-
chine Learning, pages 6607–6617. PMLR.

Wen, R., Torkkola, K., Narayanaswamy, B., and
Madeka, D. (2017). A multi-horizon quantile recur-
rent forecaster. arXiv preprint arXiv:1711.11053.

Wilson, A. G. and Ghahramani, Z. (2011). Generalised
wishart processes. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial In-
telligence, pages 736–744.

Zhan, W. and Datta, A. (2023). Neural networks for
geospatial data. arXiv preprint arXiv:2304.09157.

Zheng, V. Z., Choi, S., and Sun, L. (2023). Enhancing
deep traffic forecasting models with dynamic regres-
sion. arXiv preprint arXiv:2301.06650.

Checklist

1. For all models and algorithms presented, check if
you include:

Vincent Zhihao Zheng, Seongjin Choi, Lijun Sun

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes/No/Not Applicable]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes/No/Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes/No/Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes/No/Not Applica-
ble]

(b) Complete proofs of all theoretical results.
[Yes/No/Not Applicable]

(c) Clear explanations of any assumptions.
[Yes/No/Not Applicable]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Yes/No/Not Applicable]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes/No/Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes/No/Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Yes/No/Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Yes/No/Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes/No/Not
Applicable]

(d) Information about consent from data
providers/curators. [Yes/No/Not Applica-
ble]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Yes/No/Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partic-
ipants and screenshots. [Yes/No/Not Appli-
cable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Yes/No/Not
Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Yes/No/Not Applica-
ble]

Better Batch for Deep Probabilistic Time Series Forecasting:
Supplementary Materials

1 DATASET DETAILS

We conducted experiments on a diverse set of real-world datasets retrieved from GluonTS (Alexandrov et al.,
2020), including:

• m4 hourly (Makridakis et al., 2020): This dataset consists of hourly time series data from various domains,
covering microeconomics, macroeconomics, finance, industry, demographics, and other fields. The data
originates from the M4-competition.

• exchange rate (Lai et al., 2018): It provides daily exchange rate information for eight different countries
spanning the period from 1990 to 2016.

• m1 quarterly (Makridakis et al., 1982): Quarterly time series data from seven different domains.

• pems03 (Chen et al., 2001): Traffic flow records sourced from Caltrans District 3 and acquired through the
Caltrans Performance Measurement System (PeMS). The records are aggregated at a 5-minute interval.

• pems08 (Chen et al., 2001): Traffic flow records sourced from Caltrans District 8 and acquired through the
Caltrans Performance Measurement System (PeMS). The records are aggregated at a 5-minute interval.

• solar (Lai et al., 2018): Hourly time series representing solar power production data in the state of Alabama
for the year 2006.

• traffic (Caltrans, 2015): Hourly traffic occupancy rate recorded by sensors installed in the San Francisco
freeway system between January 2008 and June 2008.

• uber daily (Commission, 2015): Daily time series of Uber pickups in New York City from February to July
2015.

• uber hourly (Commission, 2015): Hourly time series of Uber pickups in New York City from February to
July 2015.

These datasets are widely used for benchmarking time series forecasting models. Each dataset follows its default
configurations in GluonTS, including granularity and prediction range (Q). In our experiments, we set the
context range (P) to match the prediction range, in line with the default setting in GluonTS. For simplicity, we
configure the autocorrelation horizon (D) to also equal the prediction range (Q). Essentially, in this paper, we
have P = Q = D.

Better Batch for Deep Probabilistic Time Series Forecasting: Supplementary Materials

2 CONTINUOUS RANKED PROBABILITY SCORE

Since the target time series variable is assumed to follow a normal distribution, the CRPS can be conveniently
calculated as

CRPS(F, y) = y(2F (y)− 1) + 2f(y)− 1√
π
, (1)

CRPS (Fµ,σ, y) = σCRPS

(
F,

y − µ

σ

)
, (2)

where y is the observation, for normal distribution, f(x) = 1√
2π

exp (−x2

2), F (x) =
∫ x

−∞ f(t)dx, and Fµ,σ(x) =

F (x−µ
σ). µ and σ denote the mean and standard deviation evaluated by 100 samples drawn from the predictive

distribution.

3 COMPARE WITH NAIVE BASELINES

We compare the proposed methods with two naive baselines: ARIMA (Box et al., 2015) and ETS exponential
smoothing (Hyndman et al., 2008) using a more standard metric, namely mean squared error (MSE):

MSE =
1

n

n∑
i=1

(
Zi − Ẑi

)2

, (3)

where Ẑi represents the sample mean for DeepAR and Transformer, computed from 100 samples drawn from the
predictive distribution. In contrast, for ARIMA and ETS, the models provide deterministic forecasts directly.
We conducted this experiment using the auto.arima function from the pmdarima package (Smith et al., 2017) and
the ETSModel function from the statsmodels package (Seabold and Perktold, 2010). The auto.arima function
can automatically determine the optimal order for an ARIMA model. The training data’s temporal length was
set to be ten times that of the prediction range. The results are summarized in Table S1. Note that results for
datasets with insufficient temporal length for training ARIMA models are not provided.

Table S1: MSE Accuracy Comparison.

ARIMA ETS DeepAR Transformer

w/o w/ w/o w/

m4 hourly 3416.2127 3718.8369 1482.3241 1358.1923 1295.8058 1357.3287
exchange rate 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001
pems03 1074.7741 1019.2916 618.2632 515.2057 647.8133 583.6474
pems08 1093.7592 793.8637 361.2450 325.1754 356.8268 320.8344
solar 1988.4526 1434.8300 1637.4979 1323.0383 1339.4904 949.7088
traffic 0.0013 0.0021 0.0011 0.0008 0.0009 0.0008
uber daily 39688.8170 19413.8089 19366.8854 18370.4863 15591.5254 15718.5710
uber hourly 371.6443 613.9445 64.9663 64.6354 62.1469 60.6224

Note: The better results between the “w/o” and “w/” variants are highlighted in boldface (lower values
indicate better performance). All results are based on three runs of each model.

4 EXPERIMENT DETAILS

4.1 Model Architecture

In this paper, we employ DeepAR (Salinas et al., 2020) and an autoregressive decoder-only Transformer model,
specifically, the GPT model (Radford et al., 2018), as our base prediction models. The architectures of these two
models are visualized in Fig. S1 and Fig. S2. In the Transformer model, we adapt the output to the parameters
of the predictive distribution, namely the mean and standard deviation. To achieve the autoregressive property,
we apply a subsequent mask to the input sequence, ensuring that attention scores are computed exclusively based
on the inputs preceding the current time step.

𝐡!,#$% 𝐡!,# 𝐡!,#&%

𝑧!,#$%, 𝑥!,#$& 𝑧!,#$&, 𝑥!,# 𝑧!,# , 𝑥!,#'&

𝑝 𝑧!,#$&|𝜃!,#$&	 𝑝 𝑧!,#|𝜃!,#	 𝑝 𝑧!,#'&|𝜃!,#'&	

𝑧!,#$% 𝑧!,# 𝑧!,#&%

𝐡!,#$% 𝐡!,# 𝐡!,#&%

�̃�!,#$%, 𝑥!,#$& �̃�!,#$&, 𝑥!,# �̃�!,# , 𝑥!,#'&

𝑝 𝑧!,#$&|𝜃!,#$&	 𝑝 𝑧!,#|𝜃!,#	 𝑝 𝑧!,#'&|𝜃!,#'&	

�̃�!,#$% �̃�!,# �̃�!,#&%

network

inputs

sample �̃�~𝑝 & |𝜃

Figure S1: Summary of DeepAR (Salinas et al., 2020). Training (left): At each time step t, the inputs to
the network are the target value from the previous time step zi,t−1, the covariates xi,t, and the hidden state
from previous time step hi,t−1. The network output hi,t is then used to compute the distribution parameters
θi,t = (µi,t, σi,t). For prediction (right), a sample z̃ ∼ p(·|θi,t) is drawn and used as input for the next time step
in the prediction range, resulting in the generation of a single sample trace. Repeating this prediction process
generates multiple traces that collectively represent the joint predictive distribution. Within our framework, the
component weights wi,t are derived from the same hidden state hi,t used for projecting the θi,t.

Masked Self Attention

Layer Norm

Feed Forward

Layer Norm

+

+

Target and Covariates
Embed

Distribution Outputs

3×

Figure S2: Summary of the Decoder-only Transformer (Radford et al., 2018). Similarly to DeepAR, Transformer
uses ground truth values as inputs during training. However, during the prediction phase, we draw samples and
utilize them as inputs for the subsequent time step within the prediction range.

4.2 Features

For datasets featuring hourly granularity, we incorporate two covariates: “hour of day” and “day of week”, as
time-varying covariates. In the case of daily datasets, we exclusively employ “day of week” as the time-varying
covariate. Furthermore, we utilize the identifier of each time series as a static covariate. These covariates are
then concatenated with the RNN or Transformer input at each time step post-encoding by the embedding layer.
Additionally, to normalize the target values of the time series, we scale them using the mean and standard
deviation specific to each time series, obtained from the training dataset.

4.3 Hyperparameters

We employ batch sizes of 64, limiting each epoch to a maximum of 100 batches. The LSTM hyperparameters in
DeepAR are adapted from Salinas et al. (2020): comprising three layers of LSTM, each containing 40 nodes, with
a dropout rate of 0.1. Additionally, a single linear layer serves as the distribution head to output the distribution

Better Batch for Deep Probabilistic Time Series Forecasting: Supplementary Materials

parameters. Separate linear layers, along with ELU activation functions, are employed to produce component
weights for the base kernel matrices. We configure the Transformer to have a comparable number of parameters
with DeepAR. Specifically, we stack three Transformer decoding layers, each with a hidden size of 42, and utilize
2 attention heads (H = 2). The dropout rate for the Transformer is also set to 0.1.

4.4 Training Details

Every model underwent training for up to 100 epochs, employing a learning rate of 0.001 with the Adam optimizer.
The training process was governed by an early stopping strategy with a patience of 10 epochs. Following the
training phase, we restored the best-performing model, determined by validation loss. Details regarding training
cost per epoch and the number of epochs until training termination are presented in Table S2.

Table S2: Training Cost Comparison.

DeepAR Transformer

w/o w/ w/o w/
time epochs time epochs time epochs time epochs

m4 hourly 20 99 156 97 20 68 30 95
exchange rate 17 57 92 33 25 48 28 39
m1 quarterly 15 10 32 10 28 17 18 18
pems03 76 65 50 50 84 51 46 45
pems08 49 25 39 79 68 34 35 99
solar 42 14 53 59 50 51 30 33
traffic 82 59 55 99 87 59 38 34
uber daily 36 39 14 52 43 48 23 48
uber hourly 34 46 33 74 38 67 20 98

Note: “w/o” implies the original implementation of models optimized with Gaussian
likelihood loss, whereas “w/” implies the model combined with our method. “time”
represents the training time per epoch in seconds.

4.5 Hardware Environment

Our experiments were conducted under a computer environment with one Intel(R) Xeon(R) CPU E5-2698 v4 @
2.20GHz and four NVIDIA Tesla V100 GPU.

References

Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J., Januschowski, T., Maddix, D. C.,
Rangapuram, S., Salinas, D., Schulz, J., et al. (2020). Gluonts: Probabilistic and neural time series modeling
in python. The Journal of Machine Learning Research, 21(1):4629–4634.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis: forecasting and
control. John Wiley & Sons.

Caltrans (2015). Caltrans performance measurement system. https://pems.dot.ca.gov.

Chen, C., Petty, K., Skabardonis, A., Varaiya, P., and Jia, Z. (2001). Freeway performance measurement system:
mining loop detector data. Transportation Research Record, 1748(1):96–102.

Commission, N. T. L. (2015). Uber tlc foil response. https://www.nyc.gov/site/tlc/index.page.

Hyndman, R., Koehler, A. B., Ord, J. K., and Snyder, R. D. (2008). Forecasting with exponential smoothing:
the state space approach. Springer Science & Business Media.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018). Modeling long-and short-term temporal patterns with
deep neural networks. In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, pages 95–104.

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., Newton, J., Parzen, E., and
Winkler, R. (1982). The accuracy of extrapolation (time series) methods: Results of a forecasting competition.
Journal of Forecasting, 1(2):111–153.

Makridakis, S., Spiliotis, E., and Assimakopoulos, V. (2020). The m4 competition: 100,000 time series and 61
forecasting methods. International Journal of Forecasting, 36(1):54–74.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al. (2018). Improving language understanding by
generative pre-training.

Salinas, D., Flunkert, V., Gasthaus, J., and Januschowski, T. (2020). Deepar: Probabilistic forecasting with
autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–1191.

Seabold, S. and Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. In Pro-
ceedings of the 9th Python in Science Conference, volume 57, pages 10–25080. Austin, TX.

Smith, T. G. et al. (2017). pmdarima: Arima estimators for Python. https://www.alkaline-ml.com/pmdarima.

