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Abstract

This paper endeavors to augment the robust-
ness of offline reinforcement learning (RL) in
scenarios laden with heavy-tailed rewards, a
prevalent circumstance in real-world appli-
cations. We propose two algorithmic frame-
works, ROAM and ROOM, for robust off-policy
evaluation and offline policy optimization
(OPO), respectively. Central to our frame-
works is the strategic incorporation of the
median-of-means method with offline RL, en-
abling straightforward uncertainty estimation
for the value function estimator. This not
only adheres to the principle of pessimism
in OPO but also adeptly manages heavy-
tailed rewards. Theoretical results and ex-
tensive experiments demonstrate that our
two frameworks outperform existing meth-
ods on the logged dataset exhibits heavy-
tailed reward distributions. The implemen-
tation of the proposal is available at https:
//github.com/Mamba413/ROOM.

1 INTRODUCTION

In reinforcement learning (RL, Sutton and Barto, 2018),
evaluating and optimizing policies without accessing
the environment becomes crucial nowadays, because
frequently interacting with the environment could be
prohibitively expensive or even impractical in many
real-world applications such as robotics, healthcare,
education, autonomous driving, and so on. This leads
to a surge of interest in offline RL (Levine et al., 2020;
Uehara et al., 2022), which aims to leverage only logged
data for policy evaluation and optimization.

The success of offline RL so far crucially relies on that
the reward distribution is well-behaved. However, in
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a number of real-world applications, the reward distri-
bution is usually heavy-tailed1. Heavy-tailed rewards
can be generated by various real-world decision-making
systems, such as the stock market, networking routing,
scheduling, hydrology, image, audio, and localization er-
rors, etc (Georgiou et al., 1999; Hamza and Krim, 2001;
Huang and Zhang, 2017; Ruotsalainen et al., 2018).

The heavy-tailedness pose great challenges to existing
offline RL methods. We first illustrate this via a fun-
damental problem in offline RL: off-policy evaluation
(OPE). OPE aims to evaluate the value of policies using
only logged data. One classic algorithm is fitted-Q eval-
uation (FQE), where each step is solving a regression
problem with the response variable being the observed
reward plus some estimated long-term values. Yet, it
is well-known that the performance of standard regres-
sion methods is very sensitive to heavy-tailed responses
(Lugosi and Mendelson, 2019) and will have a much
slower convergence rate. Consequently, this issue will
degrade the performance of policy evaluation.

As for offline policy optimization (OPO), the heavy-
tailed rewards pose even more challenges because the
issue of overestimation in standard RL algorithms could
be aggravated. We elaborate this with a bandit example
shown in Figure 1, a special case of RL. In this example,
the large variance in estimating the expected reward
causes a non-negligible probability of selecting the sub-
optimal arm. In settings with heavy-tailed rewards, the
empirical mean of the sub-optimal arm is subject to
an even larger variance, leading to a higher probability
of selecting the sub-optimal arm.

To accommodate the heavy-tailed rewards in offline
RL, we propose new frameworks for both OPE and
OPO by leveraging the median-of-means (MM) estima-
tor in robust statistics (Nemirovskij and Yudin, 1983;
Alon et al., 1996). Specifically, we design frameworks
that can effectively robustify existing RL algorithms
against the heavy-tailed rewards. The frameworks are
simple and easy-to-implement. Moreover, the proposed
approach also provides a natural way for qualifying

1A random variable is called heavy-tailed when its tail
distribution is heavier than the exponential distribution,
and sometimes even its variance is not well defined.
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Figure 1: Reward distributions in a two-armed bandit
example. The oracle expected rewards for the two arms
ak are given by rk (for k = 1, 2). N(ak) denotes the
number of reward observations for the k-arm. The
expected rewards estimator is given by r̂k. Due to
the limited sample size for the second sub-optimal
arm, its estimated expected reward r̂2 suffers from a
large variance. Consequently, there’s a non-negligible
probability of r̂2 > r̂1. By penalizing the uncertainty of
reward estimation, a pessimistic estimation r̂Lk lowers
bound the reward, leading to r̂L2 < r̂L1 , yielding the
optimal action.

the uncertainty of value estimation, which is crucial in
both OPE and OPO.

1.1 Contribution

The contribution of this paper is three-fold. First, we
propose a general and unified framework to improve
the robustness of existing OPE and OPO methods
against heavy-tailed rewards. By leveraging MM, our
approach naturally allows uncertainty quantification
of the estimated values. This is critical for OPE in
high-risk applications (e.g., healthcare) and also for
OPO to incorporate the principle of pessimism (Jin
et al., 2021; Bai et al., 2022) to address insufficent data
coverage.

Second, we provide rigorous theoretical analyses on
our OPE and OPO algorithms and clearly demonstrate
their advantages over existing solutions that overlook
the heavy-tailed issue. In particular, our analysis only
requires the reward to have finite (1 + α)-th moment.
On the contrary, most of the existing methods require
the rewards to be bounded (or sub-Gaussian) to achieve
similar performance.

Finally, on a couple of benchmark OpenAI environ-
ments, we observe the superiority of the proposed al-
gorithms against existing ones when the rewards are
heavy-tailed. In particular, for OPE, our methods are
1.5 to 30 times more accurate than the non-robust al-
gorithms in terms of rooted MSE; on several D4RL
benchmarks for OPO, the score of the robust version

is about 1.3 to 3 times higher than those of the vanilla
version of state-of-the-art (SOTA) algorithm.

2 RELATED WORKS

Off-Policy Evaluation. In the literature, there are
three commonly-used approaches for OPE. The first
one is the direct method (DM), which evaluates the
target policy by estimating its Q-function (Bertsekas,
2012; Farajtabar et al., 2018; Le et al., 2019; Duan
et al., 2020; Luckett et al., 2020; Liao et al., 2021; Hao
et al., 2021; Shi et al., 2022a). Importance sampling
(IS) is another popular OPE approach (Precup, 2000;
Thomas et al., 2015; Liu et al., 2018; Hanna et al.,
2019; Nachum et al., 2019; Xie et al., 2019; Dai et al.,
2020; Wang et al., 2021a), motivated by the change
of measure theorem. Sequential IS gives an unbiased
estimator but has an exponentially large variance with
respect to the horizon. Liu et al. (2018); Xie et al.
(2019) developed marginal IS estimators to break this
curse of horizon. The last approach aims to exploit
the advantages of both DM and IS, by combining them
to derive a doubly robust (DR) estimator (Thomas
and Brunskill, 2016; Jiang and Li, 2016; Farajtabar
et al., 2018; Tang et al., 2019; Kallus and Uehara, 2020;
Liao et al., 2022). We refer to Uehara et al. (2022)
for a comprehensive review for OPE. However, to our
knowledge, most existing methods cannot handle the
heavy-tailed rewards.

Offline Policy Optimization. It is well-known that
standard OPO methods (e.g., Ernst et al., 2005) may
fail to converge and produce unstable solutions due to
the distributional mismatch in the offline setting (Wang
et al., 2021b). To address this limitation, one possible
approach is to force the learned policy to choose ac-
tions close to the observed ones in the offline data (Wu
et al., 2020; Brandfonbrener et al., 2021; Fujimoto and
Gu, 2021; Kostrikov et al., 2021; Dadashi et al., 2021).
Recently, there is a streamline of research utilizing the
principle of pessimism to address the insufficient data
coverage issue (e.g., Kumar et al., 2020; An et al., 2021;
Jin et al., 2021; Xie et al., 2021; Yin et al., 2021; Yu
et al., 2021; Bai et al., 2022; Fu et al., 2022b; Kostrikov
et al., 2022; Guo et al., 2022; Shi et al., 2022b; Ue-
hara and Sun, 2022; Lyu et al., 2022; Fu et al., 2022a;
Zhou et al., 2023; Xu et al., 2023; Zhang et al., 2023;
Zhou, 2023; Chen et al., 2023). We refer interested
readers to Prudencio et al. (2023) for a recent survey
on OPO. However, existing OPO methods cannot han-
dle heavy-tailed rewards. In addition, recent OPO
methods proposed to use confidence intervals (CIs) to
quantify the uncertainty of the estimated Q-function
(Jin et al., 2021; Bai et al., 2022). These CIs could be
unreasonably wide due to the heavy-tailed rewards.
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Robust RL. Most existing works on handling heavy-
tailed rewards are only designed for bandits, a special
case of RL. Various robust mean estimators are pro-
posed for designing algorithms in finding an optimal
arm in the online setting (e.g., Bubeck et al., 2013;
Shao et al., 2018; Lu et al., 2019; Zhong et al., 2021).
However, less attention has been paid to heavy-tailed
rewards when there has a state transition. To the best
of our knowledge, Zhuang and Sui (2021); Rowland
et al. (2023); Liu et al. (2023) are the most related
papers studying this issue. They focus on an online
setting which is substantially different from our offline
setting.

We remark that there has another line of research on
robust offline RL (Chen et al., 2021; Lykouris et al.,
2021; Mo et al., 2021; Si et al., 2020; Zhang et al., 2021;
Kallus et al., 2022; Xu et al., 2022; Zhang et al., 2022),
which mainly focuses on robust decision making under
the uncertainty of the changing environment. Another
stream studies OPE/OPO under the robust Markov
decision process (Nilim and El Ghaoui, 2005) by exploit-
ing prior distributional information allow uncertainty
quantification (Mannor et al., 2016; Wiesemann et al.,
2013; Wang et al., 2022; Goyal and Grand-Clement,
2023). In summary, the goals of these research are
different from ours.

3 PRELIMINARIES

Markov decision process. We consider an infinite-
horizon discounted stationary Markov Decision Pro-
cess (MDP, Sutton and Barto, 2018), which is defined
by a tuple M := (S,A,P,R, γ) where S is the state
space, A is the action space, the transition kernel
P(•|St−1, At−1) specifies the probability mass (or den-
sity) function of St by taking action At−1 at a state
St−1, and similarly R specifies the reward. The con-
stant γ ∈ [0, 1) is the discount factor. We denote the
initial state distribution as G. For simplicity of no-
tations, we assume G is pre-specified in this paper.
G can be estimated from the empirical initial state
distribution in practice.

In the existing literature, the reward is assumed to be
uniformly bounded or at least sub-Gaussian (Thomas
and Brunskill, 2016; Fan et al., 2020; Chen and Qi,
2022; Shi et al., 2023). However, as discussed in
the introduction, such an assumption could be vio-
lated in many real applications. In this paper, we
consider a much milder assumption, that is, the re-
ward distribution R has finite (1 + α)-th moments
for some α ∈ (0, 1]. Then, the mean reward function
r(s, a) = E(Rt|St = s,At = a) exists. No other as-
sumptions are imposed and the reward distribution
can be arbitrarily heavy-tailed. Let π(a|s) : S → A be

a given policy that specifies the conditional distribu-
tion of the action given the state. We next the value
function V π(s) := Eπ [

∑∞
t=0 γ

tRt | S0 = s] and the Q-
function Qπ(s, a) := Eπ [

∑∞
t=0 γ

tRt | S0 = s,A0 = a].
Let ED[·] denote the expectation taken with respect to
the empirical measure over the offline data D.

Problem Formulation. We assume that an agent
interacts with the environmentM and collects a series
of random tuples in the form of (S,A,R, S′) using one
behavior policy. The offline dataset D consists of all
tuples with form (S,A,R, S′). There are two main
tasks in offline RL as follows.

• Off-policy evaluation (OPE): given the offline
dataset D and a given target policy π, OPE esti-
mates its value Jπ := Es∼G,a∼π(•|s)Q

π(s, a).

• Offline policy optimization (OPO): given the offline
dataset D, OPO aims to learn an optimal policy
π∗ = argmaxπ J

π.

Most existing methods for the two tasks crucially rely
on the assumption that the rewards are uniformly
bounded, yet simply employing them cannot address
the challenges posed by heavy-tailed rewards, as illus-
trated in the example below.

Failure of standard direct methods. To illus-
trate, we mainly focus on DM for OPE, which has
shown promising performances from theory and empiri-
cal studies (Duan et al., 2020; Voloshin et al., 2021). A
DM-type OPE algorithm first estimates the Q-function
as Q̂ and then estimate the value of ηπ by constructing
a plug-in estimator for Ĵπ = Es∼G,a∼π(•|s)Q̂

π(s, a).

To see the failure of DM, we first present the connection
between Q-function estimation and population mean
estimation. Define the conditional discounted state-
action visitation distribution of the tuple (s, a) follow-
ing policy π starting from (s0, a0) as dπ (a, s|a0, s0) =
(1 − γ){I(a = a0, s = s0) +

∑∞
t=1 γ

tpπt (a, s | a0, s0)}.
Then,

Qπ(s0, a0)

=(1− γ)−1E(St,At)∼dπ(a,s|a0,s0),Rt∼R(St,At)Rt.

In other words, the Q-value Qπ (s0, a0) is the popula-
tion mean of the stochastic rewards under the corre-
sponding state-action visitation distribution induced
by policy π starting from (s0, a0). The heavy tailed-
ness2 of Rt typically will carry over to the distribution

2The heavy-tailedness can be caused by either the heavy-
tailedness of R (i.e., Rt− r (St, At), the randomness of the
stochastic rewards) or that of r (St, At) (i.e., the distribution
of the mean reward following some policy). Almost all of our
discussions can accommodate both sources simultaneously.
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of
∑∞

t=0 γ
tRt conditioned on {S0 = s,A0 = a} and fol-

lowing π. In this sense, the estimation of Qπ (s0, a0)
will face the same challenge as the population mean
estimation with heavy-tailed noises3. At this case, the
estimation error of the sample mean R̄ can be upper
bounded by |R̄−µ| ≤ C ′δ−

1
1+αn− α

1+α with probability
at least 1− δ, for a constant C ′ > 0. To ensure a high-
probability result, δ shall inversely scale polynomially
in n, causing the error bound may scale polynomially
in n, which dominate the (constant) reward means.

Median-of-mean method. The key tool in our algo-
rithms is the MM estimator (Nemirovskij and Yudin,
1983; Alon et al., 1996) in robust statistics. Due to its
flexibility and that it is straightforward to produce un-
certainty quantification, MM has also been employed in
robust linear regressions as well (Zhang and Liu, 2021;
Minsker, 2015). We present its form in population
mean estimation and related property below.

Definition 1 (Population mean estimation via MM).
Let R1, . . . , Rn be n i.i.d. real-valued heavy-tailed ob-
servations under a distribution F . To estimate the
population mean, we first partition [n] = {1, . . . , n}
into K ∈ N+blocks B1, . . . , BK , each of size |Bi| ≥
⌊n/K⌋ ≥ 2. We compute the sample mean in each block
as Zk = 1

|Bk|
∑

i∈Bk
Ri. The MM estimator for the

mean value of F is defined as Median ({Z1, . . . , ZK}).
Proposition 1 (Lugosi and Mendelson (2019), The-
orem 3). Suppose R1, . . . , Rn are i.i.d. with mean µ
and the (1 + α) th moment. For any δ ∈ (0, 1), by
setting K = ⌈8 log(2/δ)⌉, we have with probability at
least 1− δ that

|µ̂n − µ| ≤ C[log(1/δ)]
α

1+αn− α
1+α

for some constant C > 0.

Comparing sample mean and the MM, we easily see
that sample mean’s dependence on the confidence pa-
rameter δ is exponentially worse than that of MM. In-
deed, a sub-Gaussian assumption is typically required
for sample mean to enjoy the same property as MM
estimator. Based on the aforementioned discussion,
we will borrow ideas from the MM to improve the
robustness of OPE and OPO.

4 MM FOR ROBUST OFFLINE RL

In this section, we start by presenting our proposal
for OPE to illustrate the main idea of utilizing MM
in offline RL to address the heavy-tailed rewards. We
then extend the idea to OPO in Section 4.2.

3One may also refer to Theorem 4 in Gerstenberg et al.
(2022) for a sufficient condition for the cumulative reward
to be heavy-tailed.
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Figure 2: Graphical illustration for ROAM. QMM(s, a) is
equal to Median({Q̂π

k (s, a)}Kk=1).

4.1 MM for OPE

This section introduces the Robust Off-policy evaluA-
tion via Median-of-means (ROAM) framework. For ease
of exposition, we first focus on the DM in this paper.
Specifically, the discussions above motivate us to con-
sider leveraging the MM scheme for robust estimation
of Qπ (see an illustration in Figure 2). We first split all
trajectories D into K partitions {Dk}Kk=1. Notice that
data subsets across the K splits are i.i.d. Next, with
any given DM-type OPE algorithm BaseOPE, we ob-
tain K i.i.d. estimates {Q̂π

k}Kk=1 for Qπ. However, with
heavy-tailed rewards, these estimates may also have
large errors and distributed with heavy tails around
Qπ. As discussed above, this is similar to the sample
average in every split for population mean estimation.
Therefore, we propose to extend MM to OPE by first
applying the median operator to the K Q-functions
and then calculate the integrated value estimate as
Ĵπ = Es∼G,a∼π(•|s) Median({Q̂π

k(s, a)}Kk=1). We sum-
marize the procedure in Algorithm 1. Notably, our
approach employs a split-and-aggregation strategy to
estimate a robust Q function, which is markedly dif-
ferent from the standard MM method for estimating
a scalar. As such, verifying the robustness of the esti-
mated Q function necessitates a non-trivial analysis of
the proposed procedure.

Algorithm 1 Robust Off-policy Evaluation via
Median-of means based Direct Method (ROAM-DM)

input Policy π, data D, data partitions number K, de-
cay rate γ, base DM-type OPE algorithm BaseOPE

1: Partition trajectories D into K disjoint parts:
D1, . . . ,DK .

2: for k = 1, . . . ,K do
3: Q̂π

k ← BaseOPE (π,Dk, γ)
4: end for
5: Ĵπ ← Es∼G,a∼π(•|s)Median({Q̂π

k (s, a)}Kk=1).

output Ĵπ.

Uncertainty quantification. In many high-risk ap-
plications such as mobile health studies, in addition to



Jin Zhu, Runzhe Wan, Zhengling Qi, Shikai Luo, Chengchun Shi

a point estimate on a target policy’s value, it is cru-
cial to quantify the uncertainty of the value estimates,
which has attracted increasing attention in recent years
(Dai et al., 2020; Shi et al., 2021; Liao et al., 2021,
2022; Kallus et al., 2022). One prominent advantage of
leveraging MM in OPE is that it is straightforward to
produce uncertainty quantification. Specifically, with
{Q̂π

k}Kk=1, we can have K integrated value estimators
as {Ĵπ

k }Kk=1. Notice that {Ĵπ
k }Kk=1 are i.i.d.. When

each Ĵπ
k is unbiased, Qq({Ĵπ

k }Kk=1) is a natural 1 − q
lower confidence bound for ηπ, where Qq(·) returns the
q-th lower quantile value among a set. In contrast, it
is nontrivial to obtain uncertainty quantification with
other robust estimators like the truncated mean.

Variants. Our proposal is general and has a few theo-
retical guaranteed variants. First, instead of applying
the median operator to the Q-values in Step 5 in Al-
gorithm 1, we can apply the median operator to the
estimated integral value Ĵπ

k = Es∼G,a∼π(•|s)Q̂
π
k (s, a) to

obtain Ĵπ = Median({Es∼G,a∼π(•|s)Q̂
π
k (s, a)}Kk=1). We

study this variant, called ROAM-Variant, by empirical
studies.

Next, we can extend the framework of MM to give
a robust IS estimator. To illustrate this extension,
we take the marginal important sampling (MIS) esti-
mator (Liu et al., 2018; Xie et al., 2019) as our ex-
ample. The MIS estimator first estimates the state-
action density ratio ωπ(s, a) := dπ(s)π(a|s)/b(s, a) as
ω̂π(s, a). Here, b(s, a) is the state-action density of
behavior policy, dπ(s) is the average visitation distri-
bution, defined as dπ(s) = (1− γ)

∑∞
t=0 γ

tdπt (s) where
dπt (s) is the distribution of state st when we execute
policy π. Then, the MIS estimates the value of π as
Ĵπ := ED [ω̂π(S,A)R]. To apply the MM procedure,
we partition D into K disjoint parts D1, . . . ,DK ; then
for each Dk, we estimate ratios ω̂π

k (s, a) and compute
Ĵπ
k := EDk

[ω̂π
k (S,A)R]. Finally, we define the robust

IS estimator as Ĵπ = Median({Ĵπ
k }Kk=1). We sum-

marize our method in Algorithm 3 in Appendix A2.1,
which we refer to as ROAM-MIS. Our method can be sim-
ilarly extended to accommodate doubly robust meth-
ods (Thomas and Brunskill, 2016; Kallus and Uehara,
2020).

4.2 MM for OPO with Pessimism

In this section, we introduce the extension of our
proposal to OPO, called Robust OPO via Median-
of-means (ROOM). To illustrate, we focus on value-
based OPO algorithms in this section. A value-based
OPO algorithm typically first estimates the optimal
Q-function as Q̂∗, and then derives the correspond-
ing optimal policy as either π̂∗(s) = argmaxa Q̂

∗(s, a)

or π̂∗(s) = argmaxπ∈Π Es∼G,a∼π(•|s)Q̂
∗(s, a) (when a

policy class Π is prespecified). Popular methods in-
clude fitted Q-iteration (FQI, Ernst et al., 2005), LSTD
Q-learning (LSTD-Q, Lagoudakis and Parr, 2003), etc.

To design a robust value-based OPO algorithm, we can
follow a similar procedure for OPE as in Section 4.1.
Specifically, we can first split D into K folds to estimate
K independent optimal Q-functions {Q̂∗

k}Kk=1, then
output a policy π̂∗(s) = argmaxa Median({Q̂∗

k(s, a)}).
We present this algorithm in Algorithm 2, which we
call ROOM for Value-based Method (ROOM-VM).

Algorithm 2 Robust OPO via Median-of-means for
Value-based Method (ROOM-VM)

input Data D, decay rate γ, number of data partitions
K, base value-based OPO algorithm BaseOPO

1: Partition data D into K parts: D1, . . . ,DK .
2: for k = 1, . . . ,K do
3: Q̂∗

k ← BaseOPO (Dk, γ)
4: end for
5: π̂∗(s)← argmax

a
Median({Q̂∗

k(s, a)}Kk=1) for any s.
output Policy π̂∗.

Pessimism for robust OPO. Insufficient data cover-
age is known as a critical issue to offline RL (Levine
et al., 2020; Xu et al., 2023). When some state-action
pairs are less explored, the related value estimation
tends to have high variance and hence classical RL
algorithms may produce a sub-optimal policy. The
pessimistic principle effectively mitigates this issue, by
taking the uncertainty of the value function estimation
into consideration; see Figure 1 for an illustration.

Employing the pessimism principle relies crucially on
the construction of the uncertain set for the value
function. However, as pointed out by Zhou et al. (2023),
it is often challenging to derive a credible lower bound
in general, and the tuning is typically sensitive. The
issue becomes more serious when there exist heavy-
tailed rewards. One prominent advantage of our MM
procedure is that the pessimism mechanism can be
naturally and efficiently incorporated. Specifically, we
can replace the Median(·) operator in the Step 5 of
Algorithm 2 by:

π̂∗(s)← argmax
a
Qq({Q̂∗

k(s, a)}Kk=1) for any s.

By choosing q < 0.5, we naturally obtain a pessimistic
estimation for addressing insufficient data coverage.
Moreover, quantile optimization is known to be robust
(Wang et al., 2018) against heavy-tailed rewards as well
(notice that the median operator is just a special case
of quantile operators). Therefore, by this design, one
can expect our method can address both insufficient
data coverage and heavy-tailed rewards.
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We conclude this section with the comparison the stan-
dard methods. Standard methods construct the lower
confidence bound of Q∗(s, a) rely on subtracting the
sample standard deviation (multiplied by a factor) from
the sample mean, both are obtained from bootstrap-
ping or concentration inequalities (see, e.g., Kumar
et al. (2019, 2020); Bai et al. (2022)). However, as
Hall (1990) points out, non-parametric bootstrap of
the sample mean for heavy-tailed variables may not
lead to a Gaussian asymptotic distribution. Therefore,
pessimistic RL algorithms based on bootstrapping may
not work in heavy-tailed environments. Similar chal-
lenges apply to concentration inequality-based methods,
especially when the variance does not exist.

5 THEORY

In this section, we focus on deriving the statistical
properties of ROAM, designed for OPE. Meanwhile, our
analysis can be easily extended to obtain the upper
error bound of the estimated Q-function via ROOM-VM
for OPO. We begin with a set of technical assumptions.

Assumption 1 (Independent transitions). D contains
n i.i.d. copies of (S,A,R, S′).

Assumption 2 (Heavy-tailed rewards) There exists
some α ∈ (0, 1] such that E[|R|1+α] <∞.

Assumption 3 (Sequential overlap). ωπ is bounded
away from 0.

We make a few remarks. First, the independence con-
dition in Assumption 1 is commonly imposed in the
literature to simplify the theoretical analysis (see e.g.,
Sutton et al., 2008; Chen and Jiang, 2019; Fan et al.,
2020; Uehara et al., 2020). It can be relaxed by im-
posing certain mixing conditions on the underlying
MDP (Kallus and Uehara, 2022; Chen and Qi, 2022;
Bhandari et al., 2021). Second, as we have commented
earlier, nearly most existing works require the rewards
to be uniformly bounded. On the contrary, Assump-
tion 2 requires a very mild moment condition. When
α < 1, this assumption even allows the variance of
the reward to be infinity. Therefore, it is commonly
used in the robust learning for bandits/RL literature
(Bubeck et al., 2013; Zhuang and Sui, 2021). Assump-
tion 3 corresponds to the sequential overlap condition
that is widely imposed in the OPE literature (see e.g.,
Kallus and Uehara, 2020; Shi et al., 2021). It essentially
requires the support of the stationary state-action dis-
tribution under the behavior policy to cover that of the
discounted state-action visitation distribution under π.

We first study the theoretical properties of ROAM-MIS.

Theorem 1. Assume Assumptions 1-3 hold. Then for
any δ > 0, by setting K = ⌈8 log(2/δ)⌉, we have with

probability 1 − δ that |Ĵπ
MIS − Jπ| is of the order of

magnitude

M
(1+α)
R

[
∥ω̂π − ωπ∥∞ + ∥ωπ∥∞[log(1/δ)]

α
1+αn− α

1+α

]
,

where M
(1+α)
R = (E|R|1+α)

1
1+α and ℓ∞-norm of any

function ω is defined as ∥ω∥∞ := supx |ω(x)|.

According to Theorem 1, the estimation error of the pro-
posed ROAM-MIS estimator can be decomposed into the
sum of two terms. The first term depends crucially on
the estimation error of the MIS ratio. By definition, the
MIS ratio is independent of the reward distribution. As
such, existing solutions are applicable to compute ω̂π to
obtain a tight estimation error bound. The second term
depends on δ only through (log(1/δ))

α
1+α , which demon-

strates the advantage of MM. It also relies on ∥ωπ∥∞,
which measures the degree of distribution shift due to
the discrepancy between the behavior and target poli-
cies. Finally, notice that both terms are proportional to
(E[|R|1+α])

1
1+α . Compared with Proposition 1 for the

classical MM estimation, Theorem 1 shows ROAM-MIS
presents a much greater challenge. Although this may
seem intuitive, our quantitative analysis reveals two
key insights: (i) the error of the estimated ratio has an
additive effect on the OPE error, and (ii) the moment
of reward introduces an additional scaling effect on the
OPE error.

We next study ROAM-DM. For illustration purposes,
we focus on a particular BaseOPE algorithm, the
LSTD algorithm (Bradtke and Barto, 1996; Boyan,
1999). In particular, let ϕ(S,A) denote a set of uni-
formly bounded basis functions, we parameterize the
Q-function Qπ(s, a) ≈ ϕ⊤(s, a)θ∗ for some θ∗ and esti-
mate this parameter by solving the following estimating
equation with respect to θ,

ED

{∑
a

ϕ(S,A)[R+ ϕ⊤(S′, a)θ − ϕ⊤(s, a)θ]
}
= 0.

Denote the resulting estimator as θ̂. Let ξπ(S,A) =∑
a E[π(a|S′)ϕ(S′, a)|S,A]. We impose some addi-

tional assumptions.

Assumption 4 (Realizability) There exists some θ∗

such that Qπ(s, a) = ϕ⊤(s, a)θ∗ for any s and a.

Assumption 5 (Invertibility) The minimum eigenvalue
of [Eϕ(S,A)ϕ⊤(s, a)−γEξπ(S,A)ξ⊤π (S,A)], denoted by
λmin, is strictly positive.

We again, make some remarks. First, Assumption 4 is a
widely-used condition in the OPO literature to simplify
the theoretical analysis (Duan et al., 2020; Jiang and
Huang, 2020; Min et al., 2021; Zhan et al., 2022). It can
be relaxed by allowing the Q-function to be misspecified,
i.e., infθ E|Qπ(s, a) − ϕ⊤(s, a)θ|2 > 0 (see, e.g., Chen
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and Jiang, 2019). Second, Assumption 5 is commonly
imposed in the literature (Luckett et al., 2020; Perdomo
et al., 2022; Shi et al., 2022a). It can be viewed as a
version of the Bellman completeness assumption when
specialized to linear models (Munos and Szepesvári,
2008). Moreover, according to Theorem 3 in Perdomo
et al. (2022), invertibility is a necessary condition for
solving any OPE problem using a broad class of linear
estimators such as LSTD.
Theorem 2. Assume Assumptions 1, 2, 4 and 5 hold.
Then for any δ > 0 such that λmin ≫ (n/ log δ−1)−1/2,
by setting K = ⌈8 log(2/δ)⌉, we have with probability
1− δ that |Ĵπ

DM − Jπ| is of the order of magnitude

λ−1
min(E|R|

1+α)
1

1+α (log(1/δ))
α

1+α n
−α
1+α .

Using similar arguments in the proof of Theorem 2 (see
Appendix A1.2), we can show that the estimation error
of the standard LSTD estimator grows at a polynomial
order of δ−1. This again demonstrates the advantage of
our proposal. Moreover, Theorem 2 shows that, λ−1

min

serves a unique factor when compared to the classical
MM estimator. Like Theorem 1, the (1 + α)-moment
of the reward have a scaling effect on the OPE error.
And thus, Theorem 2 highlights the challenges of ro-
bustifying the Q function and quantitatively illustrates
the crucial terms for controlling the error of MM-based
LSTD. To the best of our knowledge, this has largely
unexplored in literature. Lastly, from the proof of The-
orem 2, we can prove ROAM-Variant also possesses the
same order of error bound.

Finally, the subsequent theorem shows that ROOM de-
rives a “robusified” pointwise lower bound of Q∗(s, a).
For illustration purposes, we concentrate on a specific
BaseOPO method, the LSTD-Q algorithm.
Theorem 3. If Assumptions 1, 2, 4 hold and Assump-
tion 5 holds for π∗, then for any (s, a) ∈ S × A, the
following event

Q∗(s, a)− λ−1
min(E|R|

1+α)
1

1+αn
−α
1+α ≥ Qq({Q̂k(s, a)}Kk=1)

hold with probability at least 1− exp(−2K(2q − 1)2).

Notably, the gap between Q∗(s, a) and pessimistic Q
function estimation is proportional to E|R|1+α, which
exists even when rewards are heavy-tailed. Therefore,
compared to pessimistic methods based on subtracting
standard deviation, our proposal provides a robust
lower bound and addresses heavy-tailedness and data
coverage simultaneously.

6 EXPERIMENTS

Experiments for OPE. We first describe the proce-
dure to generate the offline dataset D with heavy-tailed

rewards. We first train a policy online under M using
PPO (Schulman et al., 2017) and denote it as π∗, the
optimal policy. Let the behaviour policy be a ϵ-greedy
policy based on π∗, i.e., πb := (1− ϵ)π∗ + ϵπr where πr

is a random policy. We set ϵ = 0.05 in our experiments.
We use πb to interact with the environment to collect
an offline dataset D′ with 100 episodes. In D′, we add
i.i.d. zero-mean heavy-tailed random variables νdf to
the rewards and obtain the dataset D. We set νdf as
a scaled tdf random variable, i.e., νdf := κν′df/σ

2, in
which ν′df comes from a tdf distribution and σ is the
standard deviation of α-truncated tdf random variable
where α = 0.02. The degree of freedom (df) controls the
degree of heavy-tailedness, and κ controls the impact
of heavy-tailed noises.

With the offline data D, we investigate the performance
of ROAM-DM, ROAM-MIS, and ROAM-Variant on estimat-
ing the value of π∗ by comparing with the vanilla FQE
algorithm on a classical OpenAI Gym tasks, Cartpole.
To ablate the effect of computing K functions, we also
compare with mean-aggregation-based methods, named
MA-DM and MA-MIS. Moreover, considering the trun-
cated mean (TM) as a useful technique in robust statis-
tics, we also take it into consideration by implementing
TM upon MIS, denoted by TM-MIS. Finally, since the
FQE algorithm iteratively performs temporal difference
(TD) updates, it is natural to leverage the structure
of the MDP by applying MM to the TD updates. We
formulate this idea for the FQE in Algorithm 4 in Ap-
pendix A2.2 and denote this algorithm as ROAM-FQE.
For all methods, we use a linear model ϕ⊤(s, a)θ to
model Qπ∗

(s, a), where ϕ(s, a) includes the main ef-
fects and two-order interactions of the feature vec-
tor (s⊤, a⊤)⊤, generated by the PolynomialFeatures
method of scikit-learn (Pedregosa et al., 2011).

Given the ground truth Jπ∗
computed via Monte Carlo,

the mean squared errors of all methods are reported
in Figure 3a, aggregated over 100 replicates in each
case. From Figure 3a, all methods’ MSEs reasonably
decrease as the degree of freedom increases. The vanilla
FQE method is outperformed by our methods, due to
that it is not robust to heavy-tailed noises. The differ-
ences between FQE and our methods diminish when df
increases, which is reasonable. Although TM-MIS does
outperform the vanilla MIS, it is generally surpassed
by ROAM-MIS. Additionally, ROAM-MIS, ROAM-DM and
ROAM-Variant have a tiny difference, while ROAM-FQE
surpasses all of them. This implies using MM at each
iteration of FQE largely mitigates the negative impact
of heavy-tailed rewards such that the whole dataset
can be fully utilized during iterations. Finally, the com-
parison between ROAM-DM (or ROAM-MIS) and MA-DM (or
MA-MIS) reveals the mean-ensemble strategy cannot
handle heavy-tailed rewards.
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Figure 3: (a) OPE task: the trend of log(MSE) with
the degree of freedom (DF). (b) OPO task: The trend
of regret with respect to the DF. κ takes value 1.0 (Left
panel) and 2.0 (Right panel) in each subfigure. The
error bar corresponds to 95% CI.

Compared with bootstrap-based ROAM. Since our
proposal can be interpreted as the ensemble of Q func-
tions with a Median operator, another heuristic variant
is using bootstrap instead of data partition. We con-
ducted a comparison between this variant (denoted
with the suffix “B-”) and ROAM-type methods, adopting
the same settings as in the previous section. The re-
sults are visualized in Figure 4. It is evident that the
vertical gap between ROAM-DM and B-ROAM-DM is negli-
gible. Furthermore, they perform significantly better
than the corresponding MA-type methods. This phe-
nomenon also holds for MIS-type methods presented
in the right panel. Therefore, we can conclude that
bootstrap serves as an alternative implementation for
the proposed procedure.

Experiments for OPO (Cartpole environment).
We study our algorithms: (i) ROOM-VM and (ii)
ROOM-VM with pessimism (denoted as P-ROOM-VM),
where BaseOPO are set as FQI. We compare two
benchmark algorithms: FQI and the pessimistic-
bootstrapping (PB) methods (Bai et al., 2022). See
Appendix A3.2.1 for detailed implementations. Moti-
vated by the powerful performance of ROAM-FQE, we
also consider employing MM (and its pessimism version)
in the TD update of FQI. We name these algorithms
ROOM-FQI and P-ROOM-FQI, and defer their definitions
to Algorithm 5 in the Appendix. We generate 400
episodes to form an offline dataset following the same

DM MIS
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Figure 4: The left panel presents the results for DM
methods, and the right one displays the results for MIS
methods. To prevent point overlap, random noise has
been added to each point on the x-axis.

procedure described in experiments for OPE. To evalu-
ate the performance of a learned policy π̂∗, we compute
its regret compared with the optimal policy.

We report the numerical results of 100 replications
in Figure 3b. We see that the regret of FQI reason-
ably decreases when df goes up, but it decreases more
slowly when κ enlarges. We can also observe that PB
improves over FQI, because it can properly address
the insufficient data coverage issue in OPO. However,
due to the existence of heavy-tailed rewards, ROOM-VM
and ROOM-FQI can outperform PB. Even though we
have no theoretical guarantee for ROOM-FQI, it shows a
better numerical performance compared with ROOM-VM.
Finally, we turn to P-ROOM-VM and P-ROOM-FQI in Fig-
ure 3b. As expected, P-ROOM-VM (or P-ROOM-FQI) per-
forms better than ROOM-VM (or ROOM-FQI) because it
addresses the insufficient data coverage issue and the
heavy-tailedness simultaneously.

Experiments for OPO (D4RL datasets). We
evaluate our proposed approach on the MuJoCo and
Kitchen environments in the D4RL benchmarks (Fu
et al., 2020), which cover diverse dataset settings and
domains. We generate heavy-tailed datasets by adding
i.i.d. noises into the reward observations, similar as
the previous part. To show that the generality of our
framework, in these datasets, we use another SOTA
algorithm, sparsity Q-learning (SQL, Xu et al. (2023)),
as our BaseOPO algorithm. For the sake of fairness, we
also take into account the mean aggregation (denoted
as MA), which replaces the Median operator in Step 5
of Algorithm 2 with the Mean operator. Setting the
discount factor γ = 0.99, we train each algorithm for
one million time steps and evaluate it every 5000 time
steps. Each evaluation consists of 10 episodes.

We report the performance in Figure 5 and show learn-
ing curves in Figures A1 and A2. It is worth noting that,
in all cases, our methods are superior to the vanilla
SQL algorithm. The superiority can be highly signifi-
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Figure 5: Results on D4RL datasets. Each bar corre-
sponds to the average normalized score that is taken
over the final 10 evaluations and 5 seeds. The error
bar captures the 2 times standard error over 5 seeds.

cant. For example, on the halfcheetah-expert dataset,
ROOM-VM and P-ROOM-VM achieve a 30% improvement
over SQL, and in the kitchen environment, our proposal
shows a 200% improvement in SQL’s returns. This again
shows that our proposal can effectively address the chal-
lenge of heavy-tailed rewards even in complex environ-
ments. The superiority of our proposal over MA reveals
that the mean ensemble cannot handle heavy-tailed re-
wards but harm numerical performance because it has
to use fewer samples to learn Q functions. Notably, in
almost all cases, P-ROOM-VM surpasses ROOM-VM because
P-ROOM-VM can more effectively address the issue of se-
vere data insufficiency coverage. Furthermore, we also
study the cases where BaseOPO is IQL (Kostrikov et al.,
2022). The results reported in Appendix A4.2 again
show that our proposal has better performance than
vanilla IQL, reflecting the versatility of our proposal.
Finally, motivated by the success of the bootstrap-
based variant and P-ROOM-FQI, we can further extend
our proposal to the actor-critic paradigm and train
agent with the whole dataset. Additionally, by setting
q = 0.0, this heuristic implementation leads to the ex-
act SAC-N proposed by An et al. (2021), which is shown
to be robust on heavy-tailed rewards in Figure A3 in
the Appendix A4.3.

Trade-off: Computation and robustness. We

close this section with an examination of the trade-
off between computation and robustness as K varies.
The results in Figure 6 present the performance of
ROAM-FQE in the Cartpole environment. As anticipated,
the runtime of our proposal scales linearly with K. Yet,
the computation is not demanding and can terminate
in less than one second on a personal laptop. In terms
of statistical performance, we observed that a moderate
K — which well balances accuracy within each fold
and accuracy of MM operator — achieves the highest
accuracy while requiring no more than half a second
to terminate.

log(MSE) Runtime (seconds)

3 5 7 9 11 3 5 7 9 11
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3.5
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K

method FQE ROAM−Variant ROAM−DM ROAM−FQE

Figure 6: The log(MSE) (left) and runtime (right) of
Algorithm 1 as K increases.

7 CONCLUSIONS AND FUTURE
WORKS

Motivated by the real needs for robust offline RL meth-
ods against heavy-tailed rewards, we leverage the MM
method in robust statistics to design a new frameworks
that can robustify existing OPE and OPO algorithms.
Our key insight is that employing MM to offline RL
does more than just tackle heavy-tailed rewards–it of-
fers valid uncertainty quantification to easily address
insufficient coverage issue in offline RL as well. This
insight is highly novel and, to our knowledge, has not
been previously introduced in literature. Theoretical
analysis demonstrates the advantages of our methods
and extensive numerical studies support the empirical
performance of our methods. An interesting future
research direction is exploring the idea of leveraging
the nature of heavy-tailed rewards and extending al-
gorithms in Dubey and Pentland (2019) to the RL
setting.
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Robust Offline Reinforcement Learning with Heavy-Tailed Rewards:
Supplementary Materials

A1 THEORETICAL PROOF

We use c and C to denote some general constants whose values are allowed to vary over time. Under Assumption 1,
let {(Si, Ai, Ri, S

′
i)}i denote the i.i.d. transition tuples.

A1.1 Proof of Theorem 1

Proof. Let m = n/K. The key to prove Theorem 1 is to show that for some properly chosen constant c(α) that
depends only on α and

∆ ≥ c(α)(E|R|1+α)
1

1+α

[
∥ω̂π − ωπ∥∞ + ∥ωπ∥∞

( 1

m

) α
1+α
]
, (1)

then

P
(∣∣∣ 1

m

m∑
i=1

ω̂π(Si, Ai)Ri − Jπ
∣∣∣ ≥ ∆

)
≤ 0.2. (2)

The rest of the proof can similarly be established based on the arguments in the proof of Theorem 1 of Lugosi
and Mendelson (2019) and we omit the details to save space.

We focus on proving (2) below. We begin by considering the following decomposition,

1

m

m∑
i=1

ω̂π(Si, Ai)Ri − Jπ =
1

m

m∑
i=1

ωπ(Si, Ai)Ri − Jπ +
1

m

m∑
i=1

[ω̂π(Si, Ai)− ωπ(Si, Ai)]Ri.

For the first term, under Assumptions 2 and 3, the (1 + α)th moment of ωπ(S,A)R is upper bounded by
∥ωπ∥∞E|R|1+α. Using the results in Bubeck et al. (2013) and Devroye et al. (2016), we can show that there
exists some constant c > 0 that depends only α such that

P
{∣∣∣ 1

m

m∑
i=1

ωπ(Si, Ai)Ri − Jπ
∣∣∣ ≥ c(E|R|1+α)

1
1+α ∥ωπ∥∞

( 1

m

) α
1+α
}
≤ 0.1. (3)

As for the second term, it is upper bounded by ∥ω̂π − ωπ∥∞(m−1
∑m

i=1 |Ri|). Consider m−1
∑m

i=1 |Ri|. We
decompose it into the sum of m−1

∑m
i=1(|Ri|−E|R|) and E|R|. Similar to (3), we can show m−1

∑m
i=1(|Ri|−E|R|)

satisfies the following,

P
{∣∣∣ 1

m

m∑
i=1

|Ri| − E|R|
∣∣∣ ≥ c(E|R|1+α)

1
1+α

( 1

m

) α
1+α
}
≤ 0.1. (4)

In addition, according to Hölder’s inequality, we have E|R| ≤ (E|R|1+α)
1

1+α . This together with (4) implies that
the second term can be upper bounded by C∥ω̂π − ωπ∥∞(E|R|1+α)

1
1+α for some constant C > 0, with probability

at least 0.9. Combining this together with (1) and (3) yields (2).
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A1.2 Proof of Theorem 2

Proof. Similar to the proof of Theorem 1, it suffices to show that each base OPE estimator satisfies (2) for any

∆ ≥ c(α)λ−1
min(E|R|

1+α)
1

1+α

( 1

m

) α
1+α

.

Under the realizability assumption and the boundedness assumption on ϕ, the estimation error of the base OPE
estimator is of the same order of magnitude as that of the based LSTD estimator θ̂. It suffices to show that each
base θ̂ satisfies (2) for any

∆ ≥ cλ−1
min(E|R|

1+α)
1

1+α

( 1

m

) α
1+α

,

where c denotes some positive constant that depends only on α.

By definition, θ̂ − θ∗ equals [
1
m

∑m
i=1 ϕ(Si, Ai){ϕ(Si, Ai)− γ

∑
a π(a|S′

i)ϕ(S
′
i, a)}⊤

]−1

×
[

1
m

∑m
i=1 ϕ(Si, Ai){Ri + γ

∑
a π(a|S′

i)Q
π(S′

i, a)−Qπ(Si, Ai)}
]
.

Under the matrix invertibility assumption, using similar arguments in the proof of Lemma 3 of Shi et al. (2022a),
we can show that the ℓ2 norm of the matrix[ 1

m

m∑
i=1

ϕ(Si, Ai){ϕ(Si, Ai)− γ
∑
a

π(a|S′
i)ϕ(S

′
i, a)}⊤

]−1

can be upper bounded by Cλ−1
min with probability approaching 1. As for the second term, using the results in Bubeck

et al. (2013) and Devroye et al. (2016), we can show that its ℓ2 norm is upper bounded by E(|R|1+α)
1

1+αm− α
1+α

with probability at least 0.9. Combining these results yield that

P
(
∥θ̂ − θ∗∥2 ≥ c(E|R|1+α)

1
1+α

( 1

m

) α
1+α
)
≤ 0.2,

for some constant c > 0. The proof is hence completed.

A1.3 Proof of Theorem 3

We first the following Lemma that would be used in our proof.

Lemma 1 (Bubeck et al. (2013)). Let ϵ ∈ (0, 1] and X1, . . . , Xn be i.i.d. random variable with mean µ and
(1 + ϵ)-th moment E|X − µ|1+ϵ = v. Suppose each fold has N observations such that n = NK, then for each

l ∈ {1, . . . ,K}, the sample mean µ̂l =
1
N

lN∑
t=(l−1)N+1

Xt satisfies

P (|µ− µ̂l| ≥ J) ≤ 6v

n1+ϵ

where for any J > 0.

Next, we prove Lemma 2, once it holds, we can follow a very similar proof for Theorem 2 to obtain the conclusion
in Theorem 3.

Lemma 2. Under the same notations and conditions in Lemma 1, then µ̂Q
q , the q-th quantile of {µ̂1, . . . , µ̂K},

satisfies

P

(
µ̂− (12v)

1
1+ϵ

(
1

N

) ϵ
1+ϵ

> µ̂q

)
≥ 1− exp(−2K(2q − 1)2).
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Proof. According to Lemma 1, for each l ∈ {1, . . . ,K}, we have

P (µ− J ≤ µ̂l) ≥ P (|µ̂l − µ| ≤ J) ≥ 1− 6v

nϵJ1+ϵ
.

Let Yl = I(µ− J ≤ µ̂l) with p := E(Yl) ≥ 1− 6v
nϵJ1+ϵ . Then, according to the definition of µ̂q, we have

P (µ− J ≤ µ̂q) = P

(
K∑
l=1

Yl ≥ qK

)
≤ exp

(
−2K(q − p)2

)
, (5)

where the second inequality comes from the Hoeffding inequality. Note that for

J =

(
6v

q

) 1
1+ϵ
(

1

N

) ϵ
1+ϵ

,

we can easily see that p ≥ 1− q ≥ q (due to q ≤ 0.5), and thus, Equation (5) can be simplified to:

P (µ− J ≤ µ̂q) ≤ exp
(
−2K(2q − 1)2

)
.

A2 ALGORITHM DETAILS

A2.1 The ROAM-MIS Algorithm

Algorithm 3 Robust Off-policy Evaluation via Median-of-means based Marginal Important Sampling (ROAM-MIS)

input Policy π, data D, number of data partitions K, decay rate γ, base marginal important sampling ratio
estimation algorithm BaseMIS

1: Partition trajectories D into K parts: D1, . . . ,DK .
2: for k = 1, . . . ,K do
3: ω̂π

k ← BaseMIS(π,Dk, γ)
4: end for
5: Ĵπ ← Median({EDk

[ω̂π
k (S,A)R]}Kk=1)

output Ĵπ

A2.2 The ROOM-FQE Algorithm

Algorithm 4 derives robust intermediate estimators by replacing the heavy-tailed target Y = R+γEa∼π(S′)Q (S′, a)

with a MM-type target Y = R+ γEa∼π(S′) Median({Q̂π
k (S

′, a)}Kk=1). However, one issue is that, these estimators
{Q̂π

k}Kk=1 (and all estimators after this update including the final ones) in Algorithm 4 are not independent any
longer. Therefore, it is not clear whether or not MM can still have theoretical benefits. Thus we only study this
variant empirically.

Algorithm 4 Robust Off-policy Evaluation via Median-of-means based Fitted Q-Evaluation (ROAM-FQE)

input Policy π, Data D, decay rate γ, number of iterations M , number of partitions K.
1: Partition data D into K disjoint parts: D1, . . . ,DK

2: Initialize K Q-functions Q̂π
1 , . . . , Q̂

π
K with corresponding parameters w1, . . . , wK

3: for m = 1, . . . ,M do
4: for k = 1, . . . ,K do
5: For each (S,A,R, S′) ∈ Dk, compute: Y ← R+ γMedian({Ea∼π(S′)Q̂

π
k (S

′, a)}Kk=1)

6: Update Q̂π
k by: wk ← argmin

wk

EDk
(Y − Q̂π

k (S,A;wk))
2

7: end for
8: end for
9: Ĵπ ← Es∼G,a∼π(s) Median({Q̂π

k (s, a)}Kk=1)

output Ĵπ
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A2.3 The ROOM-FQI Algorithm

Analogous to Algorithm 4, for iterative OPO algorithms, we can apply MM in every TD update. Take FQI as an
example, we replace the definition of Y in the Step 5 of Algorithm 4 by: Y ← R+γMedian({maxa Q̂

∗
k (S

′, a)}Kk=1),
then we can obtain a robust FQI algorithm.

Algorithm 5 Robust Offline-Policy Optimization via Median-of-mean based Fitted Q-Iteration (ROOM-FQI)

input Data D, decay rate γ, number of iterations M , number of data partitions K.
1: Partition data D into K disjoint parts: D1, . . . ,DK .
2: Initialize Q-functions Q̂∗

1, . . . , Q̂
∗
K with parameters w1, . . . , wK .

3: for m = 1, . . . ,M do
4: for k = 1, . . . ,K do
5: For each (S,A,R, S′) ∈ Dk, compute: Y = R+ γmax

a
Median({Q̂∗

k(S
′, a)}Kk=1).

6: Update Qk: wk ← argmin
wk

EDk
(Y − Q̂∗

k(S,A;wk))
2.

7: end for
8: end for
9: π̂∗(s)← argmax

a
Median({Q̂∗

k(s, a)}Kk=1).

output Policy π̂∗

Moreover, we also consider its pessimistic variant by using a quantile operator Qq(·) rather than the median
operator in Step 5 of Algorithm 5. We denoted such a variant as P-ROOM-FQI.

A3 EXPERIMENTS: DETAILS

A3.1 Settings for OPE

In the experiments for OPE (see Section 6), we implement the minimax-optimal off-policy evaluation algorithm
(Duan et al., 2020) as the benchmarke FQI algorithm. Specifically, we use Ridge in scikit-learn with ℓ2-penalty
fixed at 0.01. The implemented FQI algorithm serves as the BaseOPE algorithm for ROAM-DM. The implementation
of ROAM-FQE also uses the same Ridge to update Qwk

in the Step 6 in Algorithm 4. The maximum number of
iterations of all algorithms in Section 6 are fixed at 100.

Next, we discuss the tuning of our algorithms. The only additional tuning parameter of ROAM-type algorithms is
the number of partitions K, compared with its corresponding base algorithm. In our experiments, fixing K = 5
already provides the desired performance and maintains a high computational efficiency. In Appendix A4.4, we
try a range of values for K and find that our algorithms are insensitive to this tuning parameter. One may choose
this parameter via an adaptive method (Lugosi and Mendelson, 2019) as well.

A3.2 Settings for OPO

A3.2.1 Cartpole environment

For the experiments for OPO at Section 6, we implement the ridge-regression-based FQI algorithm as the
benchmarked algorithm and the BaseOPO algorithm for ROOM-VM. The FQI uses Ridge in scikit-learn to solve
the optimal Q-function. We implement the ROOM-FQI with the same ridge regression with the same settings. For
pessimistic variant of ROOM-type algorithms, we need an additional tuning parameter q, i.e., the quantile level. As
argued in Zhou et al. (2023), the fact that one quantile explicitly corresponds to one confidence level makes the
tuning much easier than most existing methods where the relationship between the pessimism parameters and the
confidence level is implicit and unknown. According to empirical results in Appendix A4.5, we find q ∈ [0.1, 0.4]
perform fairly well. We fix q = 0.1 in our experiments.

We also implement a pessimistic-bootstapping OPO method, PB, to give a more comprehensive comparison. It is
the same as ROOM-VM except the two modifications:

• the Step 1 in Algorithm 2 is changed to: “Sample K bootstrapped samples from D: D1, . . . ,DK”;
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• the Step 5 in Algorithm 2 is modified to:

π̂(s)← argmax
a

[
Mean({Q̂∗

k(s, a)}Kk=1)− 2× Std({Q̂∗
k(s, a)}Kk=1)

]
for any s.

A3.2.2 Mujoco environments

Datasets. All D4RL datasets (Fu et al., 2020) on MuJoCo environments in the experiments are the “v2” version.
The datasets on the Kitchen environment are the “v0” version.

Network architecture. The implementations of SQL is based on an open-source implementations from GitHub4,
which largely reproduce the results in Kostrikov et al. (2022). Following the same architecture in SQL, both
the critic and value networks are two-layer multi-layer perceptron (MLP) with 256 hidden nodes and ReLU
activations. We recruit a deterministic policy network whose architecture is the same as critic network.

The implementation of N-SAC is upon a public Github repository for SAC5. Our implementation completely
adopt the same actor-critic architecture in An et al. (2021). Specifically, the critic network is a three-layer MLPs
with 256 hidden nodes and ReLU activations. The policy in SAC-N is a Gaussian policy network which enables
automatic entropy tuning. As for SAC-N (STD) to be introduced in Section A4.3, it inherits the same architecture
and hyperparameters as SAC-N.

Hyperparameters. For the behavior-regularized term α in SQL, we set α = 10 since Table 3 in Xu et al. (2023)
reports α = 10 leads to the best average result in MuJoCo environment. For the remaining parameters in SQL, we
set them as their default hyperparameters, which are listed in Table A1. Notice that, once we complete training
ROOM-VM, the learned critics can be reused for MA and P-ROOM-VM. We recruit this programming trick to reduce
the time for experiments.

Table A1: The hyperparameters of SQL used in the experiments for D4RL tasks.

Hyperparameter Value

SQL

Optimizer Adam (Kingma and Ba, 2014)
Value/Critic learning rate 3−4

Actor learning rate Cosine schedule (Loshchilov and Hutter, 2017)
Critic target update rate 5× 10−3

Mini-batch size 256
behavior-regularized α 10

ROOM-VM & MA Data partition K 5

P-ROOM-VM Quantile q 0.0

We summarized the hyperparameters for train SAC-N in Table A2.

Table A2: The hyperparameters of SAC-N used in the experiments for D4RL tasks.

Hyperparameter Value

Critic/actor learning rate 3−4

Critic target update rate 5× 10−3

Mini-batch size 256
Ensemble number (a.k.a., K) 10

Temperature 0.2

4https://github.com/gwthomas/IQL-PyTorch
5https://github.com/pranz24/pytorch-soft-actor-critic

https://github.com/gwthomas/IQL-PyTorch
https://github.com/pranz24/pytorch-soft-actor-critic
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Figure A1: Learning curves of SQL, MA, ROOM-VM, P-ROOM-VM on D4RL MuJoCo locomotion datasets.

A3.3 Computation Details

Hardware infrastructure. The experiments in Carpole environment will finish in 5 hours on a personal laptop
with 2.6 GHz 6-Core Intel Core i7 and 16 GB memory.

As for the experiments for D4RL datasets, ROOM-VM generally consumes 14 hours to train a agent on a task with
a machine with GPU Tesla P-100, while SAC-N roughly takes round 30 hours to train on the same device.

Time complexity analysis. Let the computational cost of the base algorithm be c(N) for a dataset with N
transition tuples. Our algorithm in general yields O(K × c(N/K)). For those based methods that have a linear
computational cost in N (e.g., FQE and FQI; see derivations in Shi et al. (2021)), our computational cost is at
the same order. Moreover, our method is embarrassingly parallel.

A4 ADDITIONAL EXPERIMENTS AND RESULTS

A4.1 Learning Curves of SQL

Figures A1 and A2 present the learning curves on MuJoCo and Kitchen environments, where the evaluations is
conducted every 5000 training steps. Each curve is averaged over 5 seeds and is smoothed by simple moving
averages over three periods.
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Figure A2: Learning curves of SQL, MA, ROOM-VM, P-ROOM-VM on D4RL Kitchen datasets.

A4.2 Comparison with IQL

To show that our framework is general, in these datasets, we use another SOTA algorithm, implicit Q-learning
(IQL, Kostrikov et al. (2022)), as our BaseOPO algorithm. We run IQL using the open-source implementation.
Notably, the simplicity of ROOM-VM requires minimal modifications of the existing implementation. We adopt
the data generation and model evaluation in Section 6.

We report the performance in Table A3. In almost all cases, our method is significantly superior to IQL. Notably,
ROOM-VM can tackle the insufficient coverage challenge by employing IQL that can cope with insufficient coverage
(Xu et al., 2023). Moreover, the superiority of ROOM-VM and P-ROOM-VM are clearer in the walker and hopper
environments, because these two environments are more challenging than others. For example, the returns of
ROOM-VM and P-ROOM-VM on walker-medium are 20% higher than that of IQL, and the returns of ROOM-VM and
P-ROOM-VM on hopper-expert are about 200% of IQL’s returns. It is also worth noting that P-ROOM-VM shows
comparable performance with ROOM-VM in most cases, and P-ROOM-VM has superior performance in the expert
generating datasets because this setup has more severe data insufficient coverage issue.

Table A3: Results for D4RL datasets. Each result is the division of average normalized score of ROOM-VM (or
P-ROOM-VM) and IQL. We takes over the final 10 evaluations and 5 seeds. ± captures the 2 times standard error
over 5 seeds.

Task Name ROOM-VM P-ROOM-VM

halfcheetah-expert 1.04 ± 0.02 1.03 ± 0.02
walker2d-expert 1.02 ± 0.02 1.02 ± 0.02
hopper-expert 1.89 ± 0.12 2.14 ± 0.13
halfcheetah-medium 0.99 ± 0.01 0.98 ± 0.01
walker2d-medium 1.31 ± 0.08 1.40 ± 0.06
hopper-medium 1.32 ± 0.03 1.28 ± 0.02
halfcheetah-medium-replay 1.04 ± 0.04 1.02 ± 0.05
walker2d-medium-replay 1.56 ± 0.26 0.95 ± 0.16
hopper-medium-replay 1.15 ± 0.14 1.20 ± 0.11

A4.3 Robustness of SAC-N

It’s noteworthy that SAC-N (An et al., 2021) can be interpret to P-ROOM-FQI, as it assesses uncertainty by taking
the pointwise minimum (i.e., setting q = 0.0) of multiple Q-functions but trained on the entire dataset with an
soft-actor-critic (SAC) paradigm. Hence, we can be regarded as a heuristic implementation of our approach, and
we can expect that it enjoys robustness on heavy-tailed rewards.

To illustrate, we implement SAC-N and compare with SAC-N (STD), a method that achieves pessimistic estimation
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for Q function by pointwisely subtracting two times standard deviation of N functions. To rephrase, SAC-N
(STD) replaces the pointwise quantile Qq({Qk(s, a)}Nk=1) with Mean({Qk(s, a)}Nk=1) − 2 × Std({Qk(s, a)}Nk=1).
We demonstrate the numerical performance SAC-N and SAC-N (STD) on halfcheetah-medium-v2 in Figure A3.
From the left panel of Figure A3, we can see that the results of SAC-N are highly resembles to the results of
Figure 1 in An et al. (2021). More importantly, despite SAC-N and SAC-N (STD) shares almost the same learning
behavior when datasets has no heavy-tailed rewards (see left panel of Figure A3), we can see that SAC-N is shown
to be much robust to the heavy-tailed noises while SAC-N (STD) completely fails at this case. Therefore, it is also
highly recommended to use SAC-N in environments with heavy-tailed rewards.
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Figure A3: Learning curves comparing the performance of SAC-N against SAC-N-STD on the halfcheetah-medium-
v2 dataset where the left panel corresponds to the case that heavy-tailed noises are not taken into consideration
and the right one vice versa. Curves are averaged over 5 seeds and are smoothed by simple moving averages over
three periods.

A4.4 Selection of K

In this part, we aim to study how the selection of K influence the performance of ROAM-DM. Out of simplicity, we
consider values for K ∈ {3, 4, . . . , 10}, while the other settings adopt that in Section 6. The estimation error of
each algorithm is visualized in Figure A4. From Figure A4, we can see that, our methods exceeds FQE for all
K ∈ {3, 4, . . . , 10}. This implies that, whatever K is taken, our methods are more suitable than FQE for offline
data with heavy-tailed rewards. It is also worthy to note that, the optimal value of K varies across algorithms
and the degree of freedom of the heavy-tailed rewards. In terms of degree of freedom, since it is unknown in
practice, there has no general criteria to decide the optimal K. We suggest K = 5 as a rule-of-thumb selection for
all of our methods because this selection can result in a good performance. Notice that the comparison between
ROAM-based methods and mean aggregation methods reveals taking the median operator is crucial for robustness
— the mean aggregation achieves a poor performance.

A4.5 Selection of Pessimistic

In this part, we aim to study how the selection of q influence the performance of ROAM-DM and ROOM-FQI. We
consider values for q ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, while the other settings adopt that in the experiments on Cartpole
environment. We visualize the regret of each algorithm in Figure A4, from which we see that, our methods surpass
FQI whatever the value of q. Besides, like the choice for K, both algorithms and the degree of freedom of the
heavy-tailed rewards have an impact on the optimal value of q. Figure A5 shows q ∈ [0.1, 0.4] is a rule-of-thumb
criterion for the guarantee of admirable numerical performance.
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Figure A4: The Ablation on the tuning parameter K for the OPE problem at the Cartpole environment. Each
panel corresponds to a certain degree of freedom.
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Figure A5: The ablation on the tuning parameter q for the OPE problem at the Cartpole environment. Each
panel corresponds to a certain degree of freedom.

A5 BROADER IMPACT STATEMENT

Our approach provides offline RL methods to be applied to systems with heavy-tailed rewards. While our
method can properly handle heavy-tailed rewards, it may also neglect the potential societal impact. For instance,
heavy-tailed rewards in finance system may arise from fraudulent transactions or attacks on banking systems,
which deserves adequate attention. One possible approach to monitor heavy-tailed rewards involves measures the
gap between the two sides of Bellman equation. If the resulting value exhibits high variance, then the rewards
warrants monitoring.


