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Abstract

The advantage of Vision Transformers over
CNNs is only fully manifested when trained over
a large dataset, mainly due to the reduced induc-
tive bias towards spatial locality within the trans-
former’s self-attention mechanism. In this work,
we present a data-efficient vision transformer
that does not rely on self-attention. Instead, it
employs a novel generalization to multiple axes
of the very recent Hyena layer. We propose sev-
eral alternative approaches for obtaining this gen-
eralization and delve into their unique distinc-
tions and considerations from both empirical and
theoretical perspectives. The proposed Hyena N-
D layer boosts the performance of various Vision
Transformer architectures, such as ViT, Swin,
and DeiT across multiple datasets. Furthermore,
in the small dataset regime, our Hyena-based ViT
is favorable to ViT variants from the recent lit-
erature that are specifically designed for solving
the same challenge. Finally, we show that a hy-
brid approach that is based on Hyena N-D for the
first layers in ViT, followed by layers that incor-
porate conventional attention, consistently boosts
the performance of various vision transformer ar-
chitectures. Our code is available at this git https
URL.

1 Introduction

Creating a versatile layer designed to effectively process N-
dimensional data within deep networks is an important re-
search direction, which has significant implications for key
application domains, such as computer vision and speech
processing. It is imperative that such a layer not only
exhibit strong inductive bias towards N-dimensional data,
but also retain the required capacity to exploit extensive
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datasets. Currently, two primary types of layers dominate
N-dimensional data domains: transformers (Vaswani et al.,
2017) and CNNs (He et al., 2016; Liu et al., 2022b).

Standard CNNs employ relatively small filters (He et al.,
2016; LeCun et al., 1989, 1998), entailing a high induc-
tive bias, particularly for N-D locality. However, they are
less efficient and effective at handling long contexts. Con-
versely, transformers exhibit a lower inductive bias (Ma
et al., 2022), but when trained on enough data, they appear
to handle N-D data effectively, by processing it as a 1-D
sequence with corresponding positional encoding (Doso-
vitskiy et al., 2020; Arnab et al., 2021; Liu et al., 2022a).

One advantage transformers hold over CNNs is their abil-
ity to deal with varying data lengths and provide a global
context at the layer level (Vaswani et al., 2017). Yet, their
quadratic complexity in sequence length presents obstacles
to processing long contexts, which are vital for many tasks.

This work aims to combine the relative strengths of both
CNN and transformers by developing a novel layer that
possesses: (i) an inductive bias towards N-dimensional
data, (ii) sufficient expressiveness, (iii) a sub-quadratic de-
pendency on sequence length, and (iv) flexibility in pro-
cessing N-dimensional data of any N-D lengths, while
maintaining global context at the layer level.

As a foundation for this new layer we employ multi-axes
long convolutions, a recent family of layers proven effec-
tive for N-dimensional data (Nguyen et al., 2022; Baron
et al., 2023). These layers employ the convolution of
the signal with a multi-axes implicit filter. Unlike prior
layers in this field, our implicit filters are not anchored
in linear recurrence (similarly to state-space layers (Gu
et al., 2021b,a)). Instead, we extend the very recent Hyena
layer (Poli et al., 2023) to accommodate N-D data. As our
theoretical analysis reveals, this results in a simpler, more
expressive, and more efficient model.

Our main contribution is the Hyena N-D layer, which gen-
eralizes the recent Hyena layer to multi-dimensional data.
We justify our design choices extensively, by empirically
and theoretically considering several parametrizations, sev-
eral decaying structures for incorporating bias of locality,
and the first multi-directional variant of Hyena, which has
negligible additional computation. Moreover,we are the
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first to theoretically characterize a form of inductive bias
inherent in the family of the Hyena layer.

As a direct application, we demonstrate that our layer can
be used as a drop-in replacement within the ViT backbone
to derive a more data- and memory-efficient model. We
also propose a hybrid model that combines attention and
Hyena 2-D layers in ViT, further improving performance.

2 Background and Notations

Implicit Global Convolution Layers Standard convolu-
tion layers are a fundamental building block of deep learn-
ing (Fukushima, 1980; LeCun et al., 1998; Ronneberger
et al., 2015). These layers parameterized a convolution fil-
ter of size L and C channels with L*C parameters, where
each element is defined explicitly. In contrast, an emerg-
ing approach implicitly defined the convolution kernel via
a learnable function. Namely, the kernel khi (filter) at posi-
tion i and channel h is defined by a function fh such that
fh(i) = ki. These methods have three main advantages:
(i) These layers can operate over an unrestricted context, as
opposed to fixed-size explicit filters. (ii) The layers have
sub-quadratic time dependency on sequence length, and
(iii) As the number of parameters is decoupled from the
sequence length, these kernels are regularized by design,
which appears to be necessary for their effectiveness (Li
et al., 2022; Fu et al., 2023). S4 (Gu et al., 2021a) and
state-space layers (Gu et al., 2021b) were the pioneers to
show the effectiveness of this approach, by parameteriz-
ing convolution kernels via the linear state-space model
(SSM), which was then simplified using diagonal and real
SSMs (Gupta et al., 2022a,b). Similar approaches by Ma
et al. (2022); Lutati et al. (2023), use learnable components,
including EMA and IIR filters, instead of SSMs to formu-
late the parameterization. As an alternative, Hyena and
CkConv (Romero et al., 2021b) established the parameter-
ization by applying standard Feedforward neural network
(FFN) layers that operate on positional encoding. These
approaches provide superior performance in several areas,
such as NLP (Mehta et al., 2022; Wang et al., 2022; Dao
et al., 2022), speech (Saon et al., 2023), RL (Lu et al., 2023;
David et al., 2022), and more, especially in tasks that re-
quire capturing long-range dependencies.

Implicit N-D global convolution Recently, this ap-
proach extended into multi-dimensional data, using im-
plicit parametrization for N-dimensional filters, which is
shown to be an effective method for computer vision
tasks (Nguyen et al., 2022; Baron et al., 2023; Knigge et al.,
2023). The S4ND (Nguyen et al., 2022) was the first to
present the effectiveness of such an approach. It parame-
terized N-D filters by composing independent SSM-based
filters per axis, and during the forward path the filters were
aggregated to create a N-D global filter, by taking the outer
product of the per-axis filters. This approach was very ef-

ficient. However, Baron et al. (2023) show that the ap-
proach of learning kernels separately per axis can be lim-
ited in terms of expressiveness, which makes it advisable
to leverage it with more expressive mechanisms. In this
light, our layer is the first to construct N-D implicit filters
without relying on the SSM system. CCNN (Knigge et al.,
2023), which is built on top of a CNN backbone and Flex-
Conv (Romero et al., 2021a), rely on an extension of the
CKconv (Romero et al., 2021b) mechanism for creating N-
dimensional implicit filters.

Hyena The Hyena layer parameterized implicit scalar
filters of size L per channel c ∈ [C] by Hc := hc

1, ·, hc
L

by employing FFN FFN c : Rd → R on positional embed-
ding pe(l) ∈ Rd such that ∀l ∈ [L] : hc

l = FFN c(PE(l)).
This mechanism can generate kernels of any size, enabling
the layer to process unrestricted context. Inspired by at-
tention, Hyena implements an expressive data-controlled
linear operator, which relies on interleaving implicit long
convolutions with element-wise multiplication. In terms of
performance, the Hyena layer introduces exceptional per-
formance, reaching transformer quality with a more effi-
cient model, and with sub-quadratic complexity.

To add inductive bias towards 1-D locality, the Hyena layer
multiplies the filters derived from the FFN with a window
function. This function is expressed as follows:

window(t) = exp(−αt) + γ (1)

Transformers The Transformer (Vaswani et al., 2017)
is the most dominant architecture in modern DL, especially
in NLP. These models rely on the self-attention mechanism
to capture dependencies between tokens. Given an input
sequence X := x1, · · · , xL, the input is first projected to
a set of keys (K), queries (Q), and values (V ), which are
then used to compute the output as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (2)

where dk is the dimension of the keys.

Vision Transformers The Vision Transformer
(ViT) (Dosovitskiy et al., 2020) is an attention-based
model architecture for computer vision tasks. In contrast
to conventional Convolutional Neural Networks (CNNs)
that utilize local correlations via convolutional filters, the
ViT reshapes an image into a 1-D sequence of fixed-size
patches, which are processed by a stack of transformer
encoder layers. Since transformers are permutation invari-
ant, positional encoding is incorporated. The self-attention
mechanism within the transformer enables each patch to be
considered in relation to all others, thereby facilitating the
learning of both local and long-range dependencies within
the image. The output from the transformer is a sequence
of embedded patches, with a specific classification token
utilized for classification tasks, similar to BERT (Devlin
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et al., 2018). In ViT, the architecture doesn’t impose any
explicit spatial locality bias, which results in a flexible
model that - given a sufficient amount of training data -
can capture complex dependencies across the image.

Over the years, the ViT model has seen numerous en-
hancements. For instance, DeiT (Touvron et al., 2021)
optimizes performance through data augmentation, token-
based distillation, and regularization, thereby achieving
strong benchmark results even with less data. The Swin
Transformer (Liu et al., 2021) introduces a model with
more spatial inductive bias, which adapts a hierarchical
structure by partitioning images into non-overlapping win-
dows and then processing them hierarchically. Moreover,
(Dai et al., 2021; Guo et al., 2022; d’Ascoli et al., 2021)
amplify ViT’s efficiency by integrating convolutional lay-
ers into the ViT architecture. Furthermore, approaches such
as (Xie et al., 2021; Carion et al., 2020; Chen et al., 2022)
introduced specific modifications to ViT, enabling it to ex-
cel in detection and semantic segmentation tasks.

Notation Our notation follows the Hyena literature as
closely as possible (Poli et al., 2023; Nguyen et al., 2023).
Specifically, we denote the number of channels by C, and
the filter on channel c ∈ [C] by Hc. We denote the num-
ber of dimensions by N , and the sequence length at any
dimension by Ln for n ∈ [N ], L := ΠN

n=1Ln as the total
sequence length, Lmax := maxNn=1 Ln as the maximal se-
quence length, and N̂ as the depth of the Hyena recurrence.

For the notations of the Hyena architecture, we denote the
FFN network by FFN : RM → R(N̂+1)C , the positional
encoding function by (PE) : R → RM , where M is the
size of the FFN input layer. Finally, we denote the window
function by window : R → R.

3 Method

Motivation A well-known drawback of self-attention is its
relatively weak inductive bias. This is even more relevant
when handling two-dimensional data. In order to design
a data-efficient ViT, we choose not to incorporate 2-D in-
ductive bias into the self-attention mechanism in ViT (as
done in (Liu et al., 2021; Xu et al., 2021)), and instead em-
ploy an alternative sequence layer within the ViT engine.
Recently, several novel sequence layers showed impressive
results in 1-D sequence modeling, specifically in improv-
ing complexity (Peng et al., 2023; Poli et al., 2023; Dao
et al., 2022). This motivated us to explore the utility of
such layers as a drop-in replacement for ViT.

Among those layers, we focus on the Hyena (Poli et al.,
2023) layer for two main reasons: (i) It is built on sim-
ple mechanisms, such as multiplicative element-wise gat-
ing and implicit global filters. Hence, it provides a flexible
structure that can be modified to incorporate image-specific
inductive bias. (ii) Given that traditional convolution lay-

ers are known for their significant inductive bias in vision
tasks, it is reasonable to assume that the implicit global
convolution layers that are part of Hyena would possess
similar capabilities. In this light, our work can be consid-
ered as a further step towards combining convolution lay-
ers and ViT. In contrast to previous work (Dai et al., 2021;
Guo et al., 2022; d’Ascoli et al., 2021), we employ im-
plicit global convolution layers, rather than standard con-
volution layers, which do not focus exclusively on short-
range dependencies. Furthermore, since the Hyena layer
has a sub-quadratic dependency on sequence length, it can
lead to a significantly more efficient ViT. This is especially
valuable for tasks that involve processing high-resolution
images, such as medical imaging.

The Hyena-ND Layer The Hyena layer is composed
of three main components: (i) implicit global filters (ii)
a data control mechanism in the form of gating (element-
wise multiplications), and (iii) a short filter implemented
by a 1-D convolutional layer. The scalability of the last
two components to accommodate multidimensional data is
straightforward, as the second component is dimension-
agnostic, and the extension of (iii) to handle multidimen-
sional data can be realized simply, via a standard 2-D con-
volutional layer. Therefore, our main contribution in intro-
ducing the Hyena N-D layer is the creation of N-D implicit
filters, which can be utilized for N-D convolution. In the
following two sections, we list two alternative strategies for
the construction of these filters, and illustrate them in Fig.
1. For simplicity, although the Hyena N-D formulation can
naturally correspond to N dimensions, we assume N = 2.

3.1 Using N-Dimensional Hyena as a Composition

The most straightforward way employs multiple indepen-
dent 1-D filters, similarly to S4ND (Nguyen et al., 2022).
To obtain an N-D filter for each channel, a 1-D filter
Hn := (hn

1 , h
n
2 , . . . , h

n
Ln

) of length Ln is independently
learned for each axis n ∈ [N ]. The N 1-D filters are then
combined to form a single global N-D filter via an outer
product operation per channel:

H = H1 ⊗H2 ⊗ . . . HN

a notable drawback of this method is that parameteriz-
ing each dimension independently is unnatural for several
modalities, for example images, and can result in poor in-
ductive bias. We denote the layer as Hyena N-D product.

3.2 Using Implicit N-Dimensional Hyena Filter

In contrast to the previous approach for generalizing Hyena
to N-dimensional data, this approach attempts to keep the
spirit of the original Hyena in the design of N-D implicit
filters rather than build a N-dimensional layer on top of the
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Figure 1: Method: (Left) An image can be organized as a 1-D sequence of patches with a classification token, or as a 2-D
sequence of patches. The original attention-based ViT processed the patches as a 1-D sequence; Hyena-based ViT operates
directly on a 2-D sequence of patches. (Right) The Hyena 2-D layer architecture is compared to the original Hyena. The
modifications are in the parametrization of implicit filters, the type of global convolution, and the short filter type. Hyena
2-Dproduct uses the implicit filters of Hyena 1-D as a black-box while Hyena 2-D extends the 1-D layer.

1-D Hyena layer. To do so, N-D implicit filters and N-D
windows are defined.

N-D Implicit Filter The implicit filters of the conventional
(i.e., 1-D) Hyena are defined by:

ht = window(t) · FFN(PE(t)) (3)

where the window function is described in Eq. 1 and the
FFN denotes a simple feed-forward network. A simple ex-
tension of Eq. 3 into multidimensional filters with N di-
mensions n1, n2, · · · , nN , can be described by:

Hi1,...,iN = window(i1, i2, . . . , iN )FFN(PE(i1, i2, . . . , iN ))
(4)

N-D Window The Hyena 1-D window is defined by

window(t) = exp(−αt) + γ (5)

where t is the time-stamp, α is a decaying parameter and
γ is a bias term. The following two window functions are
considered for the 2-D case:

windowsymmetric(i, j) = exp(−α(i+ j)) + γ (6)

windowdimensional(i, j) = exp(−αi+ βj) + γ (7)

In Hyena 1-D, the parameter α changes to regulate effec-
tive filter lengths across separate channels. This is accom-
plished by generating a sequence of evenly spaced non-
learnable α values. For the 2-D case, we modified α and
β across separate channels and shuffled them randomly to

obtain a diverse set of windows. We analyzed the two win-
dow functions, as well as the decision to make α, β and γ
as constants in Tab 5. We also ablate the empirical contri-
bution of the window mechanism by omitting it entirely.

4 Model Extension

Multi Directional Layer Since the Hyena layer is
causal, previous data elements will not be affected by sub-
sequent ones. While this property is essential for language
modeling, it is very unnatural for computer vision tasks,
since it limits the model’s capability and contradicts the
ViT principles. To address this limitation, we introduce
a multi-directional extension to our layer. The following
two versions are explored: (a) a 4-directional version, in
which before each layer, the input is projected into 4 sep-
arate representations, then each representation is rotated.
For any representation, the Hyena layer is applied, and then
a channel-wise linear layer aggregates the 4 signals. (b) a 2-
directional version, in which a rotation is applied between
the Hyena layers. These strategies are compared empiri-
cally in Tab 4.

Combining with Attention Although the empirical
analysis in Sec. 6 demonstrates that when dealing with
smaller datasets, Hyena 2-D surpasses attention as the core
layer of ViT, it is unclear whether attention can be used to
boost the model’s performance further. Perhaps, Hyena 2D
provides distinct benefits that are different from those of the
attention model and the two can be fused synergistically to
create a better hybrid model.
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To delve deeper into this aspect, we suggest two main
strategies for integrating those layers: (i) Alternate: In this
approach, for each pair of self-attention layers in the ViT
backbone, we replace the first layer with Hyena 2-D. This
approach can be interpreted as using Hyena 2-D to add in-
ductive bias to the attention mechanism, similarly to (Ma
et al., 2022; Baron et al., 2023). (ii) Hyena First: Em-
ploying Hyena 2-D for the first half of the layers, and at-
tention for the rest. The motivation for using Hyena first is
that image-specific inductive bias is more important at the
lower layers of the architecture, while the top layers inte-
grate information from across the image.

Sec. 6.1 analyzes these methods empirically. To further
understand the potential of the Hyena-First approach, we
tried a similar version that employs self-attention for the
first layers, denoted as Attention First. We found that the
Hyena First approach outperformed the others. We also ob-
served that the Alternate approach is superior to attention-
free models, which demonstrates that the layers are com-
plementary. This observation could potentially boost per-
formance even in larger models or larger datasets.

5 Model Analysis

5.1 Complexity

The Hyena forward path consists of three steps: (i) con-
structing implicit filters, (ii) Applying N-D convolution,
and (iii) computing the input and output projections, where
the complexity of the last step is minimal.

Under the assumption that the hidden FFN dimension is
smaller than the number of channels (M ≤ C), the time
and space complexity of creating implicit filters in Hyena
1-D, Hyena N-D and Hyena N-Dproduct are LCM . For all
variants, the computation of the kernel does not depend on
the batch size B, making it more efficient for large batches.

Next, we apply an N-dimensional convolution between the
kernel and the input. Since the convolution can be effi-
ciently computed with FFT, the total time complexity is
O(BCL log(L) for any dimension N, and the total space
complexity is O(BLC). As can be seen, the convolu-
tion complexity dominates the overall complexity for large
batches. An empirical analysis of this advantage in linear
space-complexity is given in 6.3.

5.2 Expressiveness and inductive bias

We next characterize the expressiveness of the Hyena N-D
layer variants, starting by introducing a theoretical analysis
of the expressiveness of the Hyena N-D layers and then
comparing it to other methods for creatingN-D filters.

Assumptions In this section, every theorem assumes that
the FFN network uses sign activations and M > 1. Fur-

thermore, for simplicity, both the positional encoding and
window functions are considered to be identity functions.

Tensor rank as a criterion for expressiveness We start
by introducing our criteria for measuring the expressive-
ness of the Hyena N-D layer. Inspired by Cohen et al.
(2016), which employs tensor rank as a criterion for ex-
pressiveness, and previous work in the domain that uses
rank as a criterion for the expressiveness of filters (Baron
et al., 2023), we adopt this criterion. We apply tensor rank
for the N-D kernels constructed in the Hyena N-D layer,
and prove the following theorems that demonstrate the gap
in expressiveness:
Theorem 5.1. A single channel of the Hyena N-Dproduct
implicit filter can only express kernels of rank 1.
Theorem 5.2. Given a N-dimensional sequence such that
∀n ∈ [N ] : Ln = r, a single channel of the Hyena N-
D implicit filter with hidden dimension F ≥ 2Nr and at
least 2 hidden layers with sign activations can express N-D
kernels of tensor rank r′ for any r′ ∈ [2, . . . , r].

These results are based on the unique structure of Hyena fil-
ters, which are obtained by employing a learnable function
over positional encoding. Hence, we can represent an N-D
filter with N dimensions of size Ln per dimension with an
equivalent N-dimensional tensor A such that:

Ai1,i2,...iN := MLP(PE(i1, i2, . . . iN )) , (8)

where ∀j ∈ [N ] : ij ∈ [Ln].

Equipped with this formulation, the proof of Theorem 5.2
is specified in Appendix A; the proof of 5.1 is trivial, and
derives from the fact that to compute a global multi-axis
kernel H, Hyena N-Dproduct takes the outer product opera-
tion on the per-axis kernels Hn ∈ HLn×1 for all n ∈ [N ].
Since each kernel is a vector, it is clear that:

rank(H) = rank(H1 ⊗H2 ⊗ . . .⊗HD) = 1 (9)

Inductive bias towards low rank Theorem 5.2 was orig-
inally designed to evaluate the expressiveness of the Hyena
N-D layer. Nevertheless, it offers valuable insights into the
implicit regularization and the inductive bias of the implicit
filter mechanism. Theorem 5.2 introduces a linear parame-
ter scaling type of regularization and it is evident that when
the hidden dimension of the FFN layer increases, the poten-
tial rank increases as well, and the filters are biased toward
low-rank tensors.

Since regularization is seen as a crucial attribute for the
effectiveness of global convolution layers (Li et al., 2022;
Fu et al., 2023), it is imperative to rigorously define the type
of regularization present in the Hyena filters. To the best of
our knowledge, this is the first time the inductive bias of
the Hyena layer has been formalized.

Comparison of complexity and expressiveness with
other layers Tab. 1 compares the expressiveness and com-
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Criteria: Complexity Expressiveness

Layer Time Space 2-D N-D

Hyena 1-D LMC LMC - -

Multi-dimensional layers

S4ND C(L̃+ Ñ ′) C(L+N ′) 1 1
2-D SSM LLnCN LLnCN 2 N.a

Hy. N-Dprod LMC LMC 1 1
Hy. N-D LMC LMC 2 N

Table 1: Complexity and expressiveness for N-dimensional
implicit filters with equal length Ln per dimension. Tildes
denote log factors. We compare our Hyena N-D variants
(Hy.) from Sec. 3, and the two baselines (i) S4ND (Nguyen
et al., 2022) and (ii) 2-D SSM (Baron et al., 2023). For the
baselines, state size is denoted by N ′. Expressiveness is
analyzed using the tensor rank of the kernel. For simplicity,
we assume that C ≥ M .

plexities of implicit N-dimensional convolution layers. The
baseline layers are S4ND (Nguyen et al., 2022) and 2D-
SSM (Baron et al., 2023). As can be seen, Hyena N-D is the
first layer that can express full-rank kernels for any dimen-
sion. Moreover, it has the same complexity as the Hyena
1-D layer when given sequences with an equal number of
elements for any number of dimensions.

6 Experiments

We evaluated our method on image classification bench-
marks across several ViT backbones, including ViT, Swin,
and DeiT in Sec. 6.1, followed by empirically justifying the
choices made in the Hyena N-D layer design in Sec. 6.2.
Finally, in Sec. 6.3 we empirically analyzed the memory
efficiency of our layer against standard ViT and the FLOP
count in 6.4.

Experimental setup All experiments are conducted us-
ing PyTorch. The results of all experiments were averaged
over 3 seeds, and we set the FFN dimension at 32 for all
datasets. As a deliberate decision, we do not perform hy-
perparameter tuning of the backbone and training proce-
dure, apart from stochastic depth. All hyperparameters are
copied from the baseline, which is (Lee et al., 2021) for
ViT and Swin, and the DeiT repository (Touvron et al.,
2021) for experiments on CelebA. Naturally, these param-
eters were optimized for the vanilla (attention-based) trans-
formers. For low-resolution datasets, we followed Lee et al.
(2021), which shows how to adjust ViT and Swin for small
datasets. For high-resolution ones, we chose DeiT due to
its improved training procedure over vanilla ViT.

6.1 Hyena N-D as the core layer of ViT

We evaluate our method on CIFAR-100, Tiny-ImageNet
and CelebA, three classification benchmarks with different
scales. We report results both for architectures in which the
self-attention mechanism is replaced with N-D hyena and
for the hybrid methods of Sec. 4. As we show below, there
is a clear advantage to the Hyena-first hybrid method over
the other variants, which can be considered as ablations.

Baselines We compare our models with vanilla attention, a
standard CNN (ResNet 110), CCNN (Knigge et al., 2023),
which employs continuous convolutional kernels, enabling
it to handle multiple tasks without modifying the architec-
ture, thanks to its unique structure, S4ND (Nguyen et al.,
2022) and two improved versions of attention for the ViT,
Swin and DeiT backbone: (i) SL-transformers (Lee et al.,
2021), which constitute a data-efficient version of ViT for
handling small datasets, and (ii) 2-D SSM (Baron et al.,
2023) that incorporates inductive bias into the attention
mechanism using a layer that is built on top of a two-
dimensional state-space model. Both layers are specifically
designed to improve the inductive bias of the self-attention
layer within the ViT backbone. Furthermore, we compare
our Hyena 2-D based hybrid models with a strong hybrid
model that combines attention and CNNs in ViT back-
bones. We use the ViTC (and the corresponding DeiTC)
method from (Xiao et al., 2021) as a hybrid baseline.

ViT experiments For the ViT backbone, we first remove
the class token, since Hyena N-D operates on an ordered
2-D sequence. Then we replace each attention layer with
Hyena, Hyena 2-D, or Hyena 2-Dproduct. As can be seen
in the upper part of Tab. 2, employing Hyena 1-D in-
stead of attention improves the results by 1.44% on CIFAR-
100 and 2.61% on Tiny-Imagenet. The empirical contri-
bution of using Hyena 2-D instead of Hyena on those two
datasets is 0.45% and 0.32% respectively. The hybrid mod-
els also seem effective. The Hyena-2D First approach con-
sistently surpasses the other approaches, performing on av-
erage 1.2% higher than the Alternate hybrid approach, 3.46
% higher than the attention first hybrid approach, and 4.23
% higher than the standard attention model.

Compared to the recent baselines 2-D SSM and SL-ViT,
we found empirically that the Hyena 2-D based ViT is su-
perior to those two variants by a significant margin. For
instance, on the ViT backbone, the Hyena 2-D based ViT
performs, on average, 3.83% higher than attention with 2D-
SSM and 0.385% higher than SL-ViT. The results of the
hybrid model are even better, but we did not test hybrid
models for these variants.

Swin experiments The Swin backbone improves the ViT
architecture by adopting two principles: (i) using a hier-
archical structure of decreasing size patches across layers,
which is implemented in the backbone level, and (ii) us-
ing shifted windows for better capture of spatial dependen-
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cies, which is implemented efficiently in the layer-level via
a modified attention mask. As we replace each attention
layer with several Hyena variants that do not support mask
handling, we omit the second principle.

The empirical results, presented in Tab 2(bottom) show
that Hyena-based ViT is favorable to the attention-based
models, even without leveraging this shifting strategy. In
CIFAR-100, using Hyena 1-D instead of attention improves
results by 1.26%, and in Tiny-Imagenet, by 1.34%. Us-
ing Hyena 2-Dinstead of Hyena 1-D boosts results further,
to 1.96% and 2.03%, respectively. We observed that the
Hyena-based model notably surpasses the baselines. For
instance, the performance advantage is 1.645% over atten-
tion with 2D-SSM and 1.17% above SL-ViT.

Similarly to ViT, in Swin, the Hyena-2D First hybrid model
approach consistently surpasses the other approaches, per-
forming on average 2.42% higher than the Alternate hybrid
approach, 6.18 % higher than the Attention first hybrid ap-
proach, and 5.45 % higher than the standard Swin model.

Dataset: CIFAR-100 Tiny-Imagenet

Layer Acc. # Params(M) Acc. # Params(M)

ResNet 110 ‡ 79.86 1.70 62.96 1.70

ViT variants:
ViT‡ 72.72 2.71 55.14 2.75
ViT-S4ND‡ 72.60 2.72 56.10 2.75
ViT (no CLS)‡ 75.27 2.71 59.34 2.75
ViT w. 2-D SSM‡ 74.07 2.72 57.66 2.75
SL-ViT‡ 76.92 2.90 61.07 2.92
CCNN 6,380‡ 73.16 2.00 N.A N.A

Hyena 1-D 76.71 2.72 61.95 2.74
Hyena 2-Dproduct 77.16 2.79 62.23 2.74
Hyena 2-D 76.82 2.73 62.27 2.74

ViTC 75.15 2.74 63.17 2.76
Hybrid Hyena 2-DFirst 78.42 2.72 64.66 2.74
Hybrid AttentionFirst 74.97 2.72 61.2 2.74
Hybrid Alternate 77.35 2.72 63.32 2.74

Swin variants:
Swin‡ 77.60 7.11 60.06 7.15
Swin-S4ND‡ 79.26 7.22 64.6 7.25
SL-Swin‡ 79.99 10.2 64.95 10.4
Swin w/ 2-D SSM‡ 80.12 7.15 65.77 7.18

Hyena 1-D 78.86 7.23 61.81 7.29
Hyena 2-Dproduct 80.82 7.51 65.43 7.64
Hyena 2-D 81.31 7.28 66.92 7.31

Hybrid Hyena 2-DFirst 81.50 7.19 67.06 7.23
Hybrid AttentionFirst 76.49 7.19 59.70 7.23
Hybrid Alternate 79.8 7.19 63.92 7.23

Table 2: Variants of ViT (top half) and Swin (bottom half)
for small datasets. Results marked with ‡ are as reported in
previous literature.

DeiT experiments Similarly to ViT, we first remove the
CLS token and measure performance for each layer. We

Layer Acc. # Params

DeiT‡ 89.73 5.532
DeiT (w/o CLS token)‡ 88.48 5.531
DeiT w/ 2-D SSM‡ 89.84 5.541

DeiT w/ Hyena 1-D 80.93 5.81
DeiT w/ Hyena 2-Dproduct 88.16 5.84
DeiT w/ Hyena 2-D 88.68 5.66

DeiTC 89.82 5.63
Hybrid DeiT Hyena 2-DFirst 90.39 5.61
Hybrid DeiT AttentionFirst 88.27 5.61
Hybrid DeiT Alternate 90.16 5.61

Table 3: Variants of DeiT for the Celeb-A dataset. Results
marked with ‡ are as reported in previous literature.

Layer 1-Dir 2-Dir 4-Dir

Hyena 2-Dproduct 86.76 88.16 88.09
Hyena 2-D 87.33 88.68 88.31

Table 4: Ablation results for multi-directional methods, on
Celeb-A and the DeiT-S backbone.

Layer Constant Learnable Symm. w/o

Hyena 2-Dproduct 86.76 85.83 N/A 86.54
Hyena 2-D 87.33 85.97 86.29 86.79

Table 5: Ablation results for window methods (tested on
1-Dir), on Celeb-A and the DeiT-S backbone.

conduct the experiments on the large-scale CelebA dataset.
The original image size is 178x218, and it is resized to
224x224 to match the standard DeiT patch size. The
dataset includes 40-way multi-label attribute classification.
We report the average accuracy for all 40 tasks, train-
ing the models for 20 epochs, similarly to the procedure
of (Nguyen et al., 2022; Baron et al., 2023) on this dataset.

As can be seen in Tab. 3, contrary to the finding in Tab.
2, removing the classification token and replacing atten-
tion with Hyena 1-D impacts the results negatively. How-
ever, when we integrated Hyena 2-D, the results improved
by 6% over the Hyena 1-D baseline. Incorporating the
bi-directional Hyena 2-D variant boosted results by 1.35%,
matching the attention-based model (without a classifica-
tion token). However, the original DeiT (attention with
classification token) is still more accurate.

As before, the Hyena-2D First approach outdoes the other
approaches, performing 0.23% higher than the Alternate
hybrid approach, 2.12 % higher than the Attention first hy-
brid approach, and 0.66 % higher than the standard DeiT.
It also outperforms by 0.55% the 2-D SSM-base baseline,
which is slightly better than DeiT itself.
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6.2 Model variants

In this section we justify our design choices to employ a
bidirectional layer with a constant window and without the
product variant.

Multi-directional Tab. 4 explores two approaches for
efficiently modifying the Hyena layer to consider multi-
directional data. As expected, for both Hyena N-D and
Hyena N-Dproduct, the multi-directional approach improves
the results by ∼1-1.5 %. We observe that the 2-D approach,
which rotates the input before each step on the Hyena recur-
rence performed slightly better than the 4-directional ap-
proach. It is also important to note that the 2-directional
version has negligible additional computation than the 1-
directional variant.

Window function As detailed in Sec. 3.2, we explore
several window functions, which are evaluated in Tab. 5.
First, we compare the symmetric (Eq. 6) and the dimen-
sional (Eq. 7) windows functions within the Hyena 2-D
layer. We found that the dimensional function performs
1.04 % better, hence we choose it as our standard window
function. Next, we ablate the window mechanism by omit-
ting it and observe a degradation in accuracy of 0.54 % for
Hyena 2-D and 0.26 % for Hyena 2-Dproduct. Finally, we
try to learn the window function by parameterizing Eq. 7
separately for each channel. This decreases the results by
1.36% for Hyena 2-D and by 0.93% for Hyena 2-Dproduct.

6.3 Efficiency for large amounts of patches

One additional benefit of Hyena-based ViT compared to
Attention-based ViT is its enhanced complexity in terms of
time and memory, as detailed in Sec. 5.1. To evaluate the
memory efficiency of Hyena-ViT in comparison to the stan-
dard ViT, we conducted experiments using different patch
sizes and measured the peak GPU memory consumption
during the forward pass. Fig. 2 demonstrates the signifi-
cantly improved memory consumption of Hyena-ViT.

Employing a large number of patches can be critical in two
main scenarios: (i) processing high-resolution images, and
(ii) working with smaller patches. Previous studies have
shown that overly large patches can negatively impact the
accuracy of ViT, and smaller patches generally tend to pro-
vide better image-specific inductive bias. We examined
how the patch size of Hyena-Hybrid ViT affects accuracy
in Fig. 3. The results indicate that Hybrid-ViT also benefits
from smaller patches, without a quadratic increase in mem-
ory consumption in half of the layers. Thus, Hyena-Hybrid
ViT and Hyena-ViT present an opportunity to develop cost-
effective ViT models with significantly smaller patches at
the same cost.

Figure 2: Peak Memory Consumption for Attention-Based
and Hyena-Based ViT per patch size

Figure 3: Impact of patch size on the accuracy of Attention-
based ViT and Hyena Hybrid ViT. For both Attention and
Hyena layers we use the best variants: a CLS token for the
Attention layer and a 2-directional layer for the Hyena 2-D.

6.4 FLOP analysis

To further analyze FLOP differences between ViT variants,
Fig. 4 compares models with an embedding dimension of
128 and having L =

√
L×

√
L patches. Evidently, Hyena

and Hyena 2-D are similar in FLOP counts, whereas stan-
dard attention lags behind.

6.5 Empirical validation of the tensor rank

In Sec. 5.2, a relationship is established between two prop-
erties of the Hyena N-D implicit filter mechanism. Specif-
ically, theorem 5.2 provides an insightful connection be-
tween the hidden dimension of the FFN and the tensor rank
of the generated filters. Although the theorem is proven
under specific conditions, such as the use of the identity
function for positional encoding and employing sign acti-
vations, Fig. 5 demonstrate that the same trend is evident
in practice, regardless of those simplifications. , both at
initialization (bottom) and post-training (top). It can be ob-
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Figure 4: The x-axis shows the number of patches, while
the y-axis indicates the FLOPS required by each model.
Colors represent different models: Attention in black,
Hyena in blue, and Hyena 2-D in red.

Figure 5: Kernel rank for the trained Hyena-ViT.

served that a smaller FFN dimension (e.g., 4) corresponds
to the highest empirical probability of observing kernels
with a rank of 1. In contrast, a larger FFN dimension (e.g.,
128) is associated with the highest empirical probability of
obtaining a kernel with a rank greater than 4.

7 Limitations

The move to N-D Hyena-based pooling instead of atten-
tion prevents us from using the CLS token, which could be
useful. As future work, we would like to add such tokens
not as a concatenation, but rather as a conditioning signal.
Furthermore, as shown in Swin, self-attention can be eas-
ily modified with a domain-dependent mask that enforces
a specific shape of inductive bias. Our N-D Hyena lacks
such a mechanism. As future work, we would like to inves-
tigate whether the N-D window can be modified for similar
purposes.

8 Discussion and Future Work

In this work, we extend the recent Hyena layer into multi-
dimensional data and demonstrate that it can be leveraged
to create a data- and memory-efficient variant of ViT. We
show that a few design choices, such as (i) inserting in-
ductive bias of 2-dimensional locality via employing 2-D
instead of 1-D implicit filters, (ii) extending the layer to be
a multi-directional operator, and (iii) merging attention and
Hyena in a specific manner can notably improve the perfor-
mance of ViT across various benchmarks.

For future research, we plan on exploring the empirical
power of the Hyena 2-D layer in scenarios corresponding to
its advantages. As one clear advantage of Hyena-based ViT
over vanilla ViT is time- and memory complexity, employ-
ing Hyena-ViT in scenarios that require processing large
amounts of patches, as well as low-budget restrictions, is
very promising. Finally, we are interested in benchmarking
Hyena-ViT on tasks beyond classification, such as segmen-
tation and generation, as well as applying the layer directly
to other N-D modalities, such as speech and video.
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A Expressiveness

Theorem A.1. Given an N-dimensional sequence such that
∀d ∈ [N ] : Ln = r, a single channel of the Hyena N-
D implicit filter with hidden dimension F ≥ 2Nr and at
least 1 hidden layers with sign activations can express N-D
kernels of tensor rank r′ for any r′ ∈ [2, . . . , r]

Proof. We prove the theorem by showing that a single
channel of the Hyena N-D implicit filter can express the
N-dimensional identity tensor (Bi et al., 2022) for any di-
mension D > 1 in Lemma. A.3. Thus, it is clear that a
single channel of the Hyena N-D implicit filter can express
full-rank kernels, and then we generalize the proof to ker-
nels of any rank r ∈ [D]

We start by introducing the identity tensor:

Definition A.2. Identity tensor (Bi et al., 2022): The ele-
ments of the N-dimensional identity tensor I are given by

Ij1,j2,··· ,jN =

{
1 if j1 = j2 = · · · = jN

0 otherwise

Lemma A.3 (Hyena N-D as the identity tensor). The
Hyena N-D implicit filter with hidden dimension F ≥ 2Nr
and at least 2 hidden layers with sign activations can ex-
press the identity tensor of dimension r.

Generalization to any rank

Based on Lemma A.3, we can construct an FFN that em-
bodies the identity tensor.

A unique characteristic of this FFN construction is the abil-
ity to adjust tensor rank through weight modifications in the
final layer. Specifically, the weights W3 are defined as:

w3
1,i =

{
1 if i ≤ r′

0 otherwise

By this configuration, only the first r’ neurons significantly
influence the output, effectively transforming the tensor
rank from r to r’

Following the weight adjustment specified above, the ten-
sor can be truncated to its initial r′ elements across every
dimension. These elements inherently define an identity
tensor of rank r′ . Any elements beyond this truncated set
are zeros. Given the properties of tensor rank, the intro-
duction of these zero elements does not augment the tensor
rank.

Proof of Lemma A.3. We prove the lemma using a general
example. For simplicity, we assume that the positional en-
coding function is the identity function. Thus, we consider
the following FFN network:

FFN Definition Let the input layer have N neurons, the
first hidden layer 2Nr neurons, the second hidden layer r
neurons, and the output layer 1 neuron.

Given an input vector x ∈ [r]N that represents the posi-
tional encoding:

The output of the hidden layers is:

h1 = sign (W1x+ b1) , h2 = sign (W2h1 + b2)

where W2 ∈ Rh2×h1 , b2 ∈ Rh2 , W1 ∈ Rh1×n and b1 ∈
Rh1 .

and the output of the network is:

y = sign (W3h2 + b3)

where W3 ∈ R1×h2 and b3 ∈ R1.

FFN Substitution We will substitute values in
W1,W2,W3 and b1,b2,b3 such that the FFN im-
plements the identity tensor. To achieve this, we use the
first layer to obtain a one-hot representation per dimension,
which the last two layers will convert into the desired
function.

Thus, we will substitute the values of the first hidden layer
W1 which is denoted by w1

i,j and b1 as follows:

w1
i,j =


1 if i ≤ Nr and floor(i/N) = j

−1 if i > Nr and floor(i/N) = j +Nr

0 otherwise

bi =


i− 1

2 if i ≤ Nr

i+ 1
2 if i > Nr

0 otherwise

Given the output of the first layer

h1 := (h1
1, h1

2, · · · , h1
2Nr)

it is easy to see that the pair of neurons h1
Ni+j , h1

N(r+i)+j

are active if and only if xi = j.

Similarly, we define the second layer as follows:

w2
i,j =

{
1 if j%r = i

0 otherwise

b2 = (−δ,−δ, · · · ,−δ), δ = −2N +
1

2

Given the output of the second layer

h3 := (h2
1, h2

2, · · · , h2
r)

it easy to see that ∀i ∈ [N ], j ∈ Ln : h2
j = 1 if and only

if ∀i ∈ [N ] : xi = j.
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Hence, by using the last layer as an ”OR” gate, which can
be achieved by setting the last layer as follows:

w3
1,i =

{
1 if i ≤ r

0 otherwise

b3 = −1

2

It is clear that the FFN network implements the identity
tensor.
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