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Abstract

When humans reason about complex text-based questions, we leverage diagram-
matic abstractions drawn on a visual scratchpad. In this paper, we introduce and
explore the capabilities of Visual-Scratchpad, a method that augments a large
language foundation model (LLM) with diagrammatic execution and readout.
We enable the LLM to generate drawing commands and to readout abstractions
from the resulting picture. The visual readout operation uses a visual foundation
model, optionally finetuned with expert iteration. Here, we show that although
Visual-Scratchpad outperforms an inference-only LLM, it surprisingly yields worse
performance compared to a single finetuned LLM. Through experiments, we
propose that this gap is due to the failure mode of vision foundation models in
understanding abstractions in diagrams.
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Figure 1: On the left is the canonical text-based
task paradigm with an LLM, while on the right
is the Visual-Scratchpad model, which inter-
leaves execution from a language foundation
model and a readout foundation model.

Diagrams are a powerful tool for reasoning, ab-
straction, and knowledge organization. Indeed, hu-
mans turn to using visual scratchpads when solv-
ing a wide array of challenges, from puzzles to
math problems. Studies have highlighted the im-
portance of diagrams for deductive and logical rea-
soning Bauer and Johnson-Laird [1993], Allwein
and Barwise [1996], mathematical reasoning Jam-
nik [2001], Dörfler [2001], and scientific reasoning
Cheng and Simon [1995].

Can we equip large language models (LLMs) with
a visual scratchpad for diagrammatic reasoning and
thereby improve reasoning performance on text-
based tasks? Many existing works have proposed
chain-of-thought based LLM execution Wei et al.
[2022], Wang et al. [2022], Zhang et al. [2022],
which shows the importance of task decomposi-
tion for auto-regressive models, but only insofar as
having scratchpads in the text domain. More re-
cent works have explored augmenting LLMs with
physics engines Liu et al. [2022], planning algorithms Hao et al. [2023], mathematical verifiers Poesia
et al. [2023], and Python intepreters Gao et al. [2023], but their execution is constrained and they
improve performance on directly related tasks of the same domain.
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In contrast, we introduce and explore the capabilities of Visual-Scratchpad, a framework that combines
a language foundation model and a visual readout foundation model Bommasani et al. [2021], to
leverage the benefits of diagrammatic abstractions for general reasoning tasks. To do so, we enable
the LLM access to a visual scratchpad. The LLM can output draw commands to make annotations
and then readout answers from the drawn diagram. Readout is by asking a visual foundation model
to generate a natural language answer from an image and question. We hypothesize that there are
many reasoning tasks in which it is easier to visually readout answers than to reason through text
only. But importantly, the visual readout model must be able to interpret these abstractions. Can we
teach a model to interpret diagrams as humans do, when humans are often trained with decades of
embodied experiences? We use Pix2Struct Lee et al. [2023], a vision foundation model pretrained on
a wide range of visual language understanding data, as our readout model. In addition, we further
propose an expert iteration method that finetunes the base vision model with successful visual readout
trajectories from a text-based train set.

We demonstrate that Visual-Scratchpad significantly improves upon an inference-only LLM baseline
on questions about graphs and BIG-bench datasets that involve reasoning Srivastava et al. [2022].
However, we see that Visual-Scratchpad with interleaved execution of a language foundation model
and readout foundation model performs worse than a finetuned LLM only. We conduct a series of
experiments to show that visual readout for diagrammatic understanding, though simple for humans,
is still a failure mode for vision foundation models. We conjecture that this is due to the fact that
vision models lack the pretraining tasks and architecture that human vision is naturally evolved for,
as well as lack the compute and data that language foundation models are trained with.

2 Related Work

2.1 Diagrams for abstraction

Many psychologists have studied the benefits of diagrams for human reasoning Bauer and Johnson-
Laird [1993], Allwein and Barwise [1996], Kim et al. [2000], Jamnik [2001], Dörfler [2001], Chen
and Herbst [2013], Abrahamsen and Bechtel [2015], Cheng and Simon [1995], and have shown that
diagrams assist in abstraction, knowledge organization, and discovery of new conclusions. Visual-
Scratchpad aims to enable LLMs to leverage the same benefits, and provides a solution for improving
visual readout from diagrams.

Prior works in computer vision have introduced models that enable diagrammatic understanding.
One salient work is Pix2Struct Lee et al. [2023], a pretrained image-to-text model for visual language
understanding that serves as a readout foundation model. Pix2Struct is pretrained to learn to parse
masked screenshots of web pages into simplified HTML, and learns signals such as OCR, language
modeling, and image captioning Mishra et al. [2019], Masry et al. [2022], Bai et al. [2021], Li et al.
[2020], Wang et al. [2021], Mathew et al. [2021, 2022]. However, it lacks the ability to reason about
diagrammatic abstractions as Visual-Scratchpad requires. To augment the vision model, we leverage
weights from finetuning Pix2Struct on the AI2 Diagrams dataset, a dataset of diagrams for question
answering Kembhavi et al. [2016]. This dataset focuses on multiple choice questions which require
parsing from annotations in diagrams. We build upon Pix2Struct with AI2D, and improve the readout
foundation model further with expert iteration. Our expert iteration method finetunes the model from
successful reasoning trajectories, requiring language supervision only for training the vision model.

2.2 Large language models with APIs

In recent years, several works have proposed giving LLMs access to pre-defined APIs. Liu et al.
[2022] proposed leveraging a computational physics engine to simulate possible outcomes for physical
reasoning tasks. Poesia et al. [2023] introduced a logic guide backed by a theorem-proving language
for logical reasoning tasks. Hao et al. [2023] and Gao et al. [2023] integrated planning algorithms
and Python interpreters respectively to steer LLMs. In contrast, we propose exploring a visual
scratchpad with diagrammatic abstractions to augment LLM reasoning. Visual-Scratchpad enables
autoregressive models to generate the appropriate abstractions to visualize. Notably, these diagrams
are not designed for any specific domain, and hence can improve reasoning across different tasks.
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Figure 2: Visual-Scratchpad leverages a language foundation model to output step-by-step draw
instructions on a scratchpad, and a readout foundation model to interpret the drawn diagram.

3 Methods

We explore the capabilities of Visual-Scratchpad, which consists of a core reasoning framework
realized by a language foundation model, as well as draw and readout APIs realized by a readout
foundation model. The reasoning framework is a combination of GPT with a minimal set of visual
scratchpad usage examples that are neither constrained nor domain specific (Section 3.1). The
draw API enables the framework to output commands that draw abstractions on a visual scratchpad
(Section 3.2), while the readout API enables it to ask questions to the readout model, which extracts
information from the visual scratchpad (Section 3.3). In Figure 2, we present the full framework.

3.1 Reasoning framework

We use GPT-3.5 Brown et al. [2020] as our reasoning framework backbone, and leverage it to (1)
generate draw commands with the correct abstractions for the visual scratchpad, and (2) interpret the
natural language response from the readout model to answer the given question.

We prompt GPT with API descriptions as well as simple and general examples of draw and readout
usage. In these examples, diagrammatic draw commands are enclosed in brackets, and prefixed with
a special token DRAW. Similarly, readout questions to the visual scratchpad are invoked with the token
READOUT. Below, we show one of three examples specified in the prompt, which contains arbitrary
entity names, as well as a simpler underlying diagram compared to our evaluation set. We show in
experiments that GPT can generalize to more complex question types and diagrams.

Question: Wug is pointing to bac. bac is pointing to wom. wom is pointing to kij. Is wug pointing to
kij?

Visual scratchpad context: The question is describing a sequence of relations between some items.
Let’s carefully go through and use draw commands for each of the relations. We first annotate wug
pointing to bac [DRAW: wug POINT bac]. We then annotate bac pointing to wom [DRAW: bac
POINT wom]. Finally, we annotate wom pointing to kij [DRAW: wom POINT kij]. To find the
relation between wug and kij, we readout from the diagram [READOUT: is node wug pointing
to node kij?].

READOUT response: Yes.

Visual scratchpad context: For the question "Is wug pointing to kij?", the diagram tells us that node
wug points to node kij, hence the answer is Yes. Answer: Yes.

3.2 Drawing on a visual scratchpad

We enable the LLM to draw to a visual scratchpad with commands backed by the Mermaid dia-
gramming and charting tool library Sveidqvist [2014], Dubovitskiy [2023]. The draw commands
include annotating abstractions such as labelled nodes, as well as connections between nodes (e.g.,
unconnected, connected, directed). See Figure 3 for example images of the visual scratchpad.
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Clock is pointing to Lambda. Clock is 
pointing to Knife. Edward is pointing to 
Coconut. Edward is pointing to Knife. One 
is pointing to Coconut. One is pointing to 
Lambda. George is pointing to Lambda. 
George is pointing to Knife. Is there an 
edge that points from George to Knife?

Abirami knows Carlo. Carlo knows 
Etienne. Feng knows Grace. Carlo 
knows Adam. Feng knows Abirami. 
What is the shortest chain of 
acquaintances by which Feng can be 
introduced to Adam? Please list the 
names in order starting with Feng.

There is an empty fruit basket. 
Then, one cherry is added. 
Then, one lemon is added. 
Then, one lemon is removed. 
Then, one fig is added. Then, 
one banana is added. Then, 
which fruits are in the basket?

Answer: Cherry, fig, bananaAnswer: Yes Answer: Feng, Abirami, Carlo, Adam

LLMLLMLLM

Visual readout modelVisual readout modelVisual readout model

Figure 3: Examples of Visual-Scratchpad executing draw commands on a scratchpad.

We render the full image when the readout command is evoked with the Mermaid diagramming
library. This visual scratchpad image then becomes input to the readout model, along with the
question generated by the LLM.

3.3 Readout from a visual scratchpad

The Visual-Scratchpad framework finetunes a visual readout foundation model to better understand
abstractions in the scratchpad image. We use Pix2Struct Lee et al. [2023], a visual question answering
model pretrained on a variety of visual language understanding tasks, and finetune it to more
accurately interpret abstractions from the drawn diagram given a question generated by the LLM. To
do so, we propose expert iteration on a training dataset to train the vision model. The model is first
finetuned on noisy GPT generated data, to then bootstrap learning from the text-based train set.

We generate question and answer pairs with GPT, by tasking the LLM to first create a graph with
diverse node names and of arbitrary complexity, then generate corresponding question and answers.
We specify only one example of the downstream question, and encourage GPT to generate data
that follows a more faithful question and answer distribution to the target task. We prompt GPT to
generate 5 diverse question and answer pairs in this way, until a target number of 5000 train and 500
validation examples is achieved.

In expert iteration, we first train a base Pix2Struct model with noisy GPT generated data, then use this
model to find successful, expert readout trajectories on the training dataset. Visual-Scratchpad then
further finetunes itself on this refined data, to decrease the effect of noisy data on the readout model.
See Algorithm 1 for a detailed description. Notably, Visual-Scratchpad only requires text-based data
to train the visual readout foundation model, by collecting scratchpad image and readout answer pairs
that enable the LLM to correctly answer the question. The scratchpad is automatically generated by
the LLM, and the readout answer by the vision foundation model. Although this training procedure
requires a dataset from the downstream task, the training requires finetuning of Pix2Struct, instead of
the LLM itself, which can be costly.

4 Experiments

We present analyses of Visual-Scratchpad on three datasets with different text-based reasoning
tasks. In Section 4.1, we examine comparisons of this interleaved execution of language and visual
foundation model to prior LLMs. In Section 4.2, we present ablations of Visual-Scratchpad across
six variations, to better understand the framework’s capabilities and failure modes.
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Algorithm 1 Visual-Scratchpad with expert iteration.
Input: Dtrain: the labeled train question answering dataset; f : LLM backbone in Visual-Scratchpad;
R(v, q; θ): readout model; e single question example from test dataset.

Output: θ: R(v, q; θ).

1: Generate visual question answering data Dgen from f with e in the prompt.
2: PretrainR with Dgen.
3:
4: Dexpert ← []
5: for i ← 0 do
6: (qtrain, atrain) ∼ Dtrain
7: v, q← f(qtrain)
8: a← f(R(v, q; θ))
9: if a = atrain then

10: Update Dexpert with (v, q,R(v, q; θ)).
11: end if
12: end for
13: FinetuneR with Dexpert.

Table 1: Comparison of Visual-Scratchpad to prior work; Visual-Scratchpad outperforms an inference
only LLM model, but yields worse performance compared to a finetuned LLM model.

Method Train Diagrams Acquaintances Fruit basket
GPT-3.5 ✗ 0.42 0.66 0.60

GPT-3.5-Finetuned ✓ 0.88 0.90 1.00
GPT-3.5-Visual-Scratchpad ✓ 0.78 0.88 0.92

We evaluate Visual-Scratchpad on a Diagrams dataset, which we generated with questions about
different types of graphs, as well as two BIG-bench Srivastava et al. [2022] datasets that require
multi-step reasoning. The Diagrams dataset is constructed with base graphs of the following forms:
unconnected, connected, and directed. Questions include those that ask for a viable path between two
nodes in a graph, existence of directed edges, number of nodes in the diagram, etc. The questions and
answers are procedurally generated. Additionally, we test on the BIG-bench datasets: Acquaintances
and Fruit basket. They contain questions describing complex relations, and require natural language
answers such as ordering of entities. All datasets include 5000 train, 500 val, and 50 test examples,
following the evaluation dataset of BIG-bench. We use exact match as an accuracy metric.

4.1 Comparison to prior work

We compare Visual-Scratchpad to the inference-only base GPT model and the finetuned GPT model.
In Table 1, we see that the Visual-Scratchpad framework significantly improves upon the base GPT
model on all tasks, demonstrating that LLMs augmented with a visual scratchpad of diagrammatic
abstractions can indeed reliably reason about text-based tasks more effectively.

However, in comparison to a finetuned GPT model on the same training dataset, Visual-Scratchpad
yields surprisingly worse performance. Contrary to our hypothesis that two interleaved foundation
models would improve performance, the single finetuned LLM achieves higher accuracy. Errors that
Visual-Scratchpad makes include incorrectly reading out node names, repeating node names multiple
times in readout answers, and misidentifying edges between nodes in the diagram. We further explore
this failure mode in the analyses below.

4.2 Ablations

We present ablation results showing that the visual readout foundation model in Visual-Scratchpad
underperforms in comparison to the LLM. To explore this, we conduct experiments on three settings:
Visual-Scratchpad with (1) a readout model that does not require a train set, with (2) a readout model
that does require a train set, and with (3) an oracle readout model, backed by human vision.
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Table 2: Ablations of Visual-Scratchpad on three main settings: (1) without access to a train set, (2)
with access, as well as (3) with an oracle readout model.

Method Train Diagrams Acquaintances Fruit basket
Visual-Scratchpad + AI2D ✗ 0.16 0.10 0.12
Visual-Scratchpad + GPT gen ✗ 0.28 0.10 0.10
Visual-Scratchpad + GPT task-specific ✗ 0.30 0.46 0.50

Visual-Scratchpad + pseudo-label ✓ 0.74 0.86 0.88
Visual-Scratchpad + expert iteration ✓ 0.78 0.88 0.92

Visual-Scratchpad + oracle readout - 0.98 0.94 1.00

For the first setting which requires an inference dataset only, we compare performance of three
Visual-Scratchpad variants. The first is Visual-Scratchpad with a base Pix2Struct readout model
pretrained on AI2D (Visual-Scratchpad + AI2D), the second is with the readout model finetuned
on GPT generated data (Visual-Scratchpad + GPT gen), and the third is with the readout model
finetuned on GPT generated data with one example of the task-specific downstream question (Visual-
Scratchpad + GPT task-specific). In Table 2, we see that the readout foundation model with AI2D
weights yields surprisingly poor results, despite pretraining across a wide range of visual language
understanding tasks, and finetuning on a diagrammatic domain. In comparison, finetuning with a
GPT generated task-specific dataset improves the performance significantly, while only requiring one
example question on the downstream task.

For the second setting which requires a train set, we ablate Visual-Scratchpad with a readout model
finetuned through expert iteration (only finetuning on scratchpad and readout pairs that yield correct
text responses), and with a readout model finetuned through pseudo-labelling on the full train set
(finetuning on all examples, relying on the draw commands to be accurate). We see that having
access to a train dataset to finetune the readout foundation model significantly improves accuracy. In
addition, we can rely on the LLM’s ability to accurately decompose the task into correct abstractions
in the visual scratchpad, to generate a dataset for the vision model while only having labelled question
and answer pairs in text.

Importantly, in Table 2, we show that in the third setting of Visual-Scratchpad with an oracle readout
model, we achieve significantly improved performance and higher accuracy across tasks compared
to a finetuned LLM in Table 1. Our results demonstrate that Visual-Scratchpad’s performance is
constrained by the abilities of the readout foundation model; with a visual readout model that matches
human performance, Visual-Scratchpad serves as a powerful framework for reasoning.

5 Discussion

Although Visual-Scratchpad outperforms an inference-only LLM model, it still surprisingly yields
worse performance than a simple finetuned LLM. Our experiments show that this is due to the visual
readout foundation model’s failure mode in interpreting diagrams. Though in many tasks, humans
leverage vision to do reasoning, abstraction, and knowledge organization, visual foundation models
have not been sufficiently developed to achieve the same level of performance. Indeed, even the
recently announced GPT-4 Vision OpenAI [2023] has noted limitations such as missing symbols
when processing complex images, for example, diagrams with text and detailed components. We
conjecture that vision models can be improved with the correct set of pretraining tasks, data, and
architecture that resemble human evolution and training; once they reach the level of language
foundation models, Visual-Scratchpad should prove to be a successful paradigm for reasoning.

6 Conclusion

Inspired by the human use of diagrams for reasoning, we introduce and explore the capabilities of
Visual-Scratchpad, a framework that reasons with language and visual readout foundation models, on
a scratchpad with diagrammatic abstractions. We demonstrate that our framework enables foundation
models to create and interpret visual abstractions as intermediate reasoning steps, and can improve
performance of inference-only LLMs in text-based domains. However, importantly we examine the
intriguing phenomenon of a single finetuned LLM outperforming Visual-Scratchpad, and provide
analyses of this failure mode with our current language and vision foundation models.
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