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ABSTRACT 
 How can we stratify patients into subgroups based on their expected survival in a purely data-
driven manner? Identifying cancer patients at higher risk is crucial in planning personalized treatment to 
improve patient survival outcomes. The main challenge with existing approaches is the underlying 
complexity of handling censoring in the survival data and manually setting a precise threshold to stratify 
patients into risk groups. In this paper, a Transductive Survival Ranking (TSR) model for patient risk 
stratification is proposed. The model handles samples in pairs to make use of instances with censored 
survival information. It incorporates unlabeled test samples in the training process to maximize the margin 
between their predicted survival scores resulting in automatic patient stratification into subgroups without 
the need for any additional post-processing or manual threshold selection. The model was evaluated on 
several datasets with varying sets of covariates, and all stratification were significant (p <<0.05) with high 
concordance indices of up to 0.78 in Disease Specific Survival and 0.75 in Overall Survival. 

1. INTRODUCTION 
 

Cancer is a disease where normal cells transform into tumor cells due to changes in the patient’s 
genetic factors [1]. The underlying genetic makeup of cancer can determine patient trajectories which can 
be quite different even for the same cancer type across patients [2]. Handling such differences in genetic 
makeup across patients can be achieved by precision or personalized medicine which is the current practice 
of planning a patient’s treatment journey based on a number of factors such as tumor variability in genes 
and tumor environment [3]. Determining a patient’s risk group can play a major role in selecting an 
intervention or treatment as well as identifying the underlying determinants of such differences.  

Numerous methods exist to aid personalized treatment planning where risk stratification is the main 
step prior to making any treatment decisions. Many models rely on the classic Cox Proportional Hazard 
(CoxPH) model [4]. CoxPH assesses the effect of a set of covariates on patient survival. Cox-net and 
DeepSurv [5,6] adapted CoxPH and  trained a neural network model to minimize the partial log-likelihood 
loss function.  Support Vector Machines (SVMs) have also been adapted in [7] to handle censored data by 
training the SVM for both ranking and regression purposes with squared hinge loss function and optimized 
with the truncated Newton optimization algorithm. Similarly, Gradient Boosting Machines (GBMs) have 
also been repurposed as survival prediction models by nonparametric concordance index learning [8]. A 
variation of Random Forest (RF) assesses the relation between covariates changing over time (longitudinal 
data) and baseline data for dynamic survival prediction [9]. Yang et al. evaluated the performance of 
different survival prediction models such as GBM, SVM, RF and Logistic Regression for prognosis 
predictability of renal clear cell cancer and found that GBM’s predictions produces optimal cutpoint [10].  

All the survival prediction approaches discussed above generate a real-valued score for a test 
patient and do not inherently stratify a patient into high risk or low risk groups. Such stratification is 



achieved by manually selecting an optimal cutoff point so that patients below the selected threshold are 
stratified into one group and the remaining ones into the other group. Methods for estimating the optimal 
threshold varies in terms of complexity and can be as simple as using a fixed threshold such as the median 
[11] or based on the area under the receiver operating characteristic (ROC) curve to select the threshold 
that produces the highest sensitivity and specificity [12] or as complicated as evaluating multiple methods 
[13]. “cutpointr” is a package that evaluates several thresholding techniques and selects one based on the 
highest Youden’s index. Another package with the same purpose is OptimalCutpoints [14] which is 
designed specifically for diagnostic tests and takes into account the prevalence of the disease and cost of 
various diagnostic decision before selecting a cutpoint. 

In this work, we have developed a transductive approach for automatically selecting an optimal 
point as part of the fitting of the survival prediction model without any manual post-processing or threshold 
selection. Transductive learning was first introduced by Vapnik in [15] as a method for incorporating 
unlabeled data in the training process. It works by learning a large margin hyperplane using labeled data 
and forcing the decision boundary to pass through a low data density region for classification problems. 
This method has proven to improve generalization in the case of a small set of labeled samples compared 
to larger sets of available unlabeled samples [16].  In this work, we have incorporated transductive learning 
into a survival prediction model to allow automatic patient stratification. Figure 1 demonstrates the main 
steps of the proposed model. The major contributions of the proposed model are as follows: 

1. We propose an approach for automatic subgroup discovery based on transductive learning which 
automatically selects an optimal cutoff point for a given dataset. 

2. We show that the proposed approach can work for different datasets using gene expression 
signatures of cancer patients. 

2. METHODS AND MATERIALS 

2.1  Datasets 

In this work we have utilized gene expression data from the Cancer Genome Atlas (TCGA) [17]. 
It provides clinicopathologic, molecular profiles, and survival outcomes for 33 cancer types. In this study, 
five types of cancer from TCGA were selected to train and evaluate the proposed model. We restricted the 
survival prediction analysis to the set of genes known to be associated in a favorable or unfavorable patient 
prognosis as indicated by The Human Protein Atlas [18]. Table 1 presents details about the selected datasets. 
The m-RNA gene expressions were log-transformed and z-score normalized across all samples of the same 
dataset. For survival duration, 10 years censoring was applied as it is more likely that a sample with high 
survival duration is lost to follow up [19]. 

Figure 1: Concept diagram of the proposed work. The input to the model is a set of mRNA gene expressions which 
are selected based on their prognostic value. Transductive learning is applied to produce a risk score used for 

automatic risk stratification. Significance is measured and KM curves are plotted. 
 



 
Table 1 : Datasets selected from TCGA to evaluate the method, with the number of samples in each set, the number 

of selected genes (covariates), and the percentage of events taken place in Overall survival and Disease Specific 
Survival endpoints. 

2.2    Transductive Survival Ranking (TSR)  

For survival prediction, we consider a training set 𝑅 = {(𝒙𝒊, 𝑡" , 𝛿"), 𝑖 = 1…𝑁} consisting of 𝑁 
patients each with a vector 𝒙𝒊 ∈ 𝑹𝒅	of 𝑑-dimensional covariates, survival time 𝑡" and an event indicator 
variable 𝛿" which is set to 1 to indicate if the event for that individual has taken place at time 𝑡" or not (𝛿" =
0). We want to develop a predictor that produces survival prediction scores 𝑓(𝒙;𝒘) which can be used to 
rank test patients based on their expected survival time as well as automatically stratify them into low or 
high risk groups. Here, 𝒘 represent the learnable parameters or weights of the model. The ranking of 
patients can be implemented using a ranking loss function during model training [20]. To achieve automatic 
stratification of test patients, we would like to enforce a constraint that the prediction scores 𝑓(𝒙;𝒘)  from 
the model for one subgroup of test patients to be greater than zero and less than zero for the other. However, 
the subgroups need to be selected in an automatic manner such that 𝑓(𝒙;𝒘) = 0 acts as the stratification 
boundary. For this purpose, we use transductive learning which implies incorporating samples from the test 
set 𝑅$ = {𝒙𝒌, 𝑘 = 1…𝑀} in the model training process. It is important to note that these test samples have 
information about the covariates only without any knowledge of their true survival times or event indicator 
variable status. The aim here is to force the curve 𝑓(𝒙;𝒘) = 0 to pass through a region of low data density 
while minimizing ranking errors over the training dataset. It can be achieved by formulating an optimization 
problem for penalizing predictions that contradict the ranking dictated by the actual survival times in the 
training dataset in addition to penalizing scores close to zero for samples in the test data. We use a ranking 
based formulation in which we first select pairs of samples in the training set 𝑃(𝑅) = {(𝑖, 𝑗)|𝑡" > 𝑡& , 𝛿& =
1, 𝑖, 𝑗 = 1…𝑁} whose survival times can be compared with each other and then use a ranking loss function 
to minimize the expected number of mis-ranking errors, i.e., when the prediction from the model for two 
samples does not align with the expected order of their known survival times (for further details, the 
interested reader is referred to our previous work [20]). For risk stratification based on transductive learning, 
we add an additional loss function 𝑙>𝑓(𝒙𝒌; 𝒘)? = 𝑒𝑥𝑝(−3	𝑓(𝒙𝒌; 𝒘)2) which penalizes prediction scores 
close to zero to force the stratification boundary to pass through an area of low data density [16]. We use a 
simple linear model with a bipolar sigmoid (hyperbolic tangent) activation 𝑓(𝒙;𝒘) = 	𝑡𝑎𝑛ℎ(𝒘'𝒙) which 
constrains the model output to the range 𝑓(𝒙;𝒘) ∈ [−1,+1].	The model is trained, and its weights are 
obtained by solving the following optimization formula:  
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Cancer Type Samples Covariates Events (OS) Events (DSS) 

Breast Carcinoma (BRCA) 1082 554 14% 8% 

Colorectal Adenocarcinoma (COAD) 592 594 20% 12% 

Lung Adenocarcinoma (LUAD) 566 644 33% 20% 

Liver Hepatocelluar Carcinoma (LHIC) 372 2856 35% 21% 

Kidney Renal Clear Cell Carcinoma (KIRC) 512 5926 33% 21% 



Here, 𝜆( is a hyperparameter that controls the strength of the 𝐿) regularization and the average ranking loss 
for all comparable pairs in 𝑃(𝑅) and 𝜆*	controls the loss over the prediction scores of the samples in the 
test set. The proposed model has three major components: Survival ranking loss term, Regularization term 
and a Transductive loss term. Average survival ranking loss for all comparable pairs 𝑃(𝑅) is calculated 
using a hinge loss and averaged across all such pairs in the training data. 𝐿) (Ridge) regularization is 
performed to ensure that small changes in the input covariates do not have large effects on the prediction 
score so that the resulting predictor can generalize to test samples. This is a crucial step as typically the 
number of genes in the datasets is considerably large and minor changes can occur. Transductive learning 
was applied using symmetric sigmoid loss [16]. This term is calculated by taking the exponent of the square 
of the predicted scores of all test examples. The expected effect is that the model would produce little to no 
prediction scores equal to zero which is equivalent to the survival function passing through a region of low 
data density in the test data. Patient stratification into subgroups with the value of zero as a threshold is 
applied automatically with this approach without additional post-processing. The model was implemented 
in Python using PyTorch [21] library to construct the neural network. 

2.3  Performance Evaluation 

 To ensure fair evaluation for the method, out of sample bootstrap analysis was conducted for each 
dataset where sampling with replacement is done in each bootstrap iteration to select the training set and 
all examples not included in the training set are used for as the test set. A maximum of 1000 iterations was 
used. For each bootstrap iteration, we calculate the concordance index (c-index) of the model as well as the 
p-value of the log-rank test over the prediction scores examples stratified into the two subgroups by the 
model. Concordance index (c-index) is a measure of how well a model is in producing survival prediction 
scores [22] by comparing a pair of samples’ actual survival against the predicted score, the pair is 
concordant if the sample with lower survival score has a lower prediction. A c-index of 1 is perfect 
concordance, while 0.5 corresponds to a random model. The scores of the test samples in each bootstrap 
run are automatically split around zero as a constant threshold into low versus high risk groups. To establish 
statistical significance of the difference between the two groups identified by the model in terms of their 
survival, a p-value is determined using the log-rank test [23]. A combined p-value is calculated by taking 
the median of the p-values across all bootstrap runs and multiplying it by 2 [24]. 

3. RESULTS AND DISCUSSION 

3.1   Concordance and Automatic Subgroup Discovery 
Table 2 shows the average c-index, and the combined p-value for each of the five datasets for 

Overall Survival (OS) and Disease Specific Survival (DSS) endpoints. BRCA and KIRC shown highest mean 
c-index of 0.75 and 0.72 respectively for OS and 0.78 and 0.76 for DSS. Note that these two types have the 
smallest and largest set of covariates which proves the effectiveness of the regularization in maintaining 
the performance. The reported combined p-value shows significant difference (p <<0.05) in risk groups for 
all cancer types indicating that the proposed model is able to automatically discover subgroups in a 
completely data driven manner. 

The distribution of test prediction scores for a single run of the proposed model is shown in figure 
2 (a), and it can be clearly noted that the TSR is pushing the scores away from zero creating a separation 
margin to facilitate stratification. This effect can be seen on all datasets regardless of the number of 
covariates in each one. The survival curves for each of the subgroups identified by the model were generated 
using a Kaplan Meier estimator [25]. The estimation supports the stratification as it can be seen in figure 2 
(b) that the survival of the low risk group is significantly higher. In contrast, figure 2 (c) shows that there 
is no clear point of separation when no transduction was used in the training.  

 
 



Cancer Type 
OS DSS 

Mean  
c-index 

Combined  
p-value 

Mean  
c-index 

Combined  
p-value 

Breast Carcinoma (BRCA) 0.75 (0.03) 6´10-8 0.78 (0.03) 1´10-5 
Kidney Renal Clear Cell Carcinoma 
(KIRC) 0.72 (0.02) 6´10-8 0.76 (0.03) 4´10-9 

Colorectal Adenocarcinoma 
(COAD) 0.69 (0.02) 2´10-4 0.70 (0.04) 1´10-3 

Liver Hepatocelluar Carcinoma 
(LHIC) 0.67 (0.03) 3´10-3 0.70 (0.04) 1´10-2 

Lung Adenocarcinoma (LUAD) 0.65 (0.02) 1´10-3 0.65 (0.03) 2´10-2 
 

Table 2: Average Concordance index for all bootstrap runs, Standard Deviation, and the combined p-value for 
Overall Survival and Disease Specific Survival endpoints. 

 

3.4  Robustness Analysis 

For all bootstrap runs, the box plot in figure 3 shows the distribution of c-indices and the distribution 
of p-values are shown in figure 4. The low values of the standard deviation of the c-indices and the low p-
values across bootstrap runs for datasets show robustness and consistency of the model in automatically 
discovering subgroup of patients with different survival patterns. It is notable that the model produces 
higher c-indices for DSS as these events are more specific, i.e., death due to the target disease which is 
directly linked to the changes in prognostic genes, whereas OS events can be death due to any cause which 
may not be directly associated with the covariates.  

3.5  Analysis of Differences in Gene Expression Across Subgroups 
It is expected for significant prognostic genes to be expressed differently in the two risk groups 

identified by the model. To visualize such differences, prognostic genes were clustered using Hierarchical 
clustering which takes every single gene as its own cluster and begin merging clusters based on the average 
distance between pairs of genes within different clusters [26]. As a result, genes with the same expression 
level across all patients will be grouped in one cluster. Due to the space limitation, only BRCA is shown in 
the cluster map in figure 5. In the map we can see the clear vertical separation as an effect of significant 
differences in expression values between risk groups. GSTK1 is among the genes that were expressed 
differently in the two groups and it was previously proved to be predictive of survival in one of BRCA 
subtypes [27]. In addition, SBDS gene has a negative correlation with survival for breast cancer patients 
and was highly expressed in higher risk patients [28]. Similarly, SLC16A2 was proved to be linked to poor 
prognosis (which puts the patient at higher risk) for BRCA and multiple cancer types when highly expressed 
[29].  

3.6  Ablation and Comparison with Existing Methods 
To ensure that the proposed model is non-inferior in terms of its predictive quality based on the 

concordance index, the same set of data and experiments were carried out on different models. The 
performance of the model was compared to CoxPH and the Survival Ranking (SR) model which has the 
same baseline as TSR formulation but with no transduction. The comparison was performed in terms of 
mean c-index and combined p-value and is shown in Table 3. The stratification threshold for both CoxPH 
and SR was calculated as the median of prediction scores and the p-value was calculated accordingly. The 
performance of TSR is comparable to the other two models which means that the automation of the 
stratification by transductive learning works effectively and did not interfere with predictions’ quality. On 
the other hand, both CoxPH and SR required additional post-processing to achieve stratification where the 
significance of the p-value relies on the selected thresholding method. 
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Figure 2: (a) TSR prediction scores across the datasets (b) Kaplan Meier estimation curves for stratified patients 

for all datasets (c) prediction scores with no transduction across datasets. 
   



  
Figure 3: Box plot of the distribution of concordance indices across bootstrap runs for different datasets (left is 

for Overall Survival (OS), and right is Disease Specific Survival (DSS)) 
 

  
Figure 4: Histogram of p-values across all bootstrap runs for different datasets (left is for Overall Survival (OS), 

and right is Disease Specific Survival (DSS)) 
 

 
Figure 5: Clustered heatmap of gene expression values for all prognostic genes across BRCA patients 



 

Model 
BRCA KIRC COAD LHIC LUAD 

Mean  
c-index 

Combined 
p-value 

Mean  
c-index 

Combined 
p-value 

Mean  
c-index 

Combined 
p-value 

Mean  
c-index 

Combined 
p-value 

Mean  
c-index 

Combined 
p-value 

CoxPH 0.75 
(0.03) 8´10-7 0.69 

(0.02) 1´10-5 0.69 
(0.03) 0.0025 0.63 

(0.03) 7 ´10-2 0.63 
(0.03) 2´10-2 

SR 0.75 
(0.03) 2´10-6 0.71 

(0.02) 6´10-5 0.69 
(0.03) 0.0036 0.65 

(0.03) 9 ´10-2 0.64 
(0.03) 4´10-2 

TSR 0.75 
(0.02) 6´10-8 0.72 

(0.02) 6´10-8 0.69 
(0.02) 0.0002 0.67 

(0.03) 3 ´10-3 0.65 
(0.02) 1´10-3 

 
Table 3: Comparison between the performance of CoxPH, Survival Ranking model, and the proposed TSR in terms 

of average c-index, standard deviation, and the combined p-value for Overall Survival endpoint. 
 

3.7 Code Availability 

 The code is available in the following github repository: https://github.com/EtharZaid/TSR.git. The 
interested reader may use the code replicate the experiments and check other experiment results that are not 
included in this paper due to page limitations. 

4. CONCLUSIONS 

 
In this work, a Transductive learning approach to survival ranking was proposed to facilitate 

automatic stratification of cancer patients into risk groups without post-processing. It was evaluated on five 
cancer datasets with various sets of prognostic gene expressions. The model proved its ability to 
significantly stratify patients based on their predicted survival score using test set predictions and the 
proposed transductive loss. The impact of the added loss made the model produce little to no prediction 
scores that are equal to zero and creating the optimal cutpoint automatically. Personalized treatment 
decision support models can benefit from this reliable stratification method as identifying patients at risk is 
crucial in setting a direction for the treatment plan. In the future, the loss term may be incorporated with 
other survival prediction models to explore its stratification ability with other loss terms. 
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