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Abstract

The structure of RNA can determine the function, and improvements in RNA
secondary structure prediction can help in understanding the functions of RNA.
Nucleotides in RNA sequences form base-pairing interactions in context-specific
preferential behavior to help determine the secondary structure. Structure prediction
algorithms have been developed to predict the secondary structure, including
dynamic programming, and machine learning approaches. One of the central
challenges in the prediction of secondary structure with deep learning is that
these architectures are not good at bracketed structure prediction. To overcome
this challenge, we present a deep learning approach for predicting secondary
structure that uses an input predicted structure to provide a scaffolding for the
structure prediction. We find that architectures using LSTM and self-attention-
based transformer layers predict a strong baseline in the prediction of base pairs
(F'1 = 53.73), but significantly improves (F'1 = 59.52) when predictions from
dynamic programming methods are provided as input. Model interpretation shows
that patterns of attention for different layers of the network are enriched for specific
paired regions or regions that should be paired. Analysis of neural network models
like this can shed light on possible missed interactions, and what other positions
contribute most to output fixed positions.

Introduction

Ribonucleic acids (RNA) are a ubiquitous and essential molecule for life, and the structures of
RNA molecules are widely understood to inform their function. Much research is devoted to the
fascinating aspect of their structure preserving properties, in that RNA sequences can vary widely in
a myriad of different examples but can still all fold into similar structures. The task of predicting the
secondary structure of RNA sequences were traditionally approached with thermodynamics-based
dynamic programming algorithms[8]] and machine learning-derived parameters[4} [10]. However,
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recent advances in the application of deep learning have demonstrated progress in RNA structure
prediction performances in accuracy while still maintaining tractability[|5, 18} [16]].

There has been interest in utilizing recent advanced deep learning models, such as using the attention-
based transformer model [19], which was original designed for translation between languages.
This network has been applied to a wide variety of tasks within biological domains including
protein structure [1]], drug-target interaction [9], DNA enhancer prediction [12]], and DNA sequence
classification [7]]. Transformers utilize self-attention, which describe relationships between elements
of the input, and can be integrated to compute the elements of an output. This combination of
information is not necessarily uniform in distribution, and is instead weighted differently for each
part of the input sequence depending its importance deemed by the neural network. Thus the term
“self-attention” comes from representing a element from the input sequence in relation to all elements
including itself and the neural network’s model weights.

While thermodynamic models of secondary structure prediction have readily interpretable parameters,
deep learning models generally require additional tools for interpretation [[17, |14} 21]]. Attention
weights when applied to RNA secondary structure suggest an attractive means of network interpre-
tation because one can visualize the relevant parts of the input nucleotide sequence that inform the
network’s decision on forming a base pair.

However, a notable theoretical limitation of self-attention based neural networks is the inability
to pair an arbitrary number of brackets[l6], an important property of the RNA secondary structure
prediction task. Indeed, common representations of RNA secondary structures include “dotbracket”
sequences, which represent base pairs as a pair of matched parentheses. To partially alleviate a
part of what transformers may find difficult about RNA folding, we use the output of the dynamic
programming methods as part of the input, which already have matching base pair brackets. Allowing
this additional input to form a “scaffolding”, we aid the network in providing an already well-formed
base pair bracketing such that during training its learning efforts would focus on other aspects in
the secondary structure prediction (RNA folding) task. We call this task base pair fixing, where a
previous model’s predictions (e.g. using the output of Linearfold or RNAfold) are input in addition to
the nucleotide sequence and the output dotbracket positions that differ from the input are considered
fixes to the input. We call our approach “bpRNA-fix” because it fixes base pairs in RNA, and was
trained on data from our meta-database, bpRNA-1m.

Base pair fixing offers an additional way towards neural network explanation and visualization, com-
pared to sequence-only prediction approaches. Self-attention weights have an inherent directionality
to them, and one can specifically focus on and visualize the attention to positions that are corrected in
the output, and even categorized across different types of fixes to be analyzed. We explore whether
our model’s attention weights are directly interpretable in this way. An advantage of this approach
is that the usage of another structure prediction program indirectly makes use of their previously
designed thermodynamic models, standing on their proverbial shoulders in order to simplify our task
and expedite training of machine learning models.

Methods

Transformer Networks

Transformer networks are a deep learning architecture that utilize self-attention to model sequential
data [19} 3] or otherwise structured data, such as images or graphs [15, 20]. In biological sequence
data such as RNA, each nucleotide is represented by a multi-dimensional vector, and to apply a
“layer" of a transformer network would be to update each nucleotide vector representation using
a series of matrix multiplications involving all nucleotides in the sequence. The resulting output
amounts to updating every x; to an enriched version 7}, which incorporates information from every
position. These attention units are typically stacked in multiple “layers", and the final sequence
representation is utilized for a downstream task, for example such as site-wide classifications of
whether each nucleotide is paired or unpaired, or sequence-wide predictions such as for an existence
of a pseudoknot. Transformers additionally have encoder and decoder components, that both utilize
the self-attention mechanism detailed above.
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Figure 1: A: Architecture Diagram for the Basepair Fixing task. B: A simple example of an input
RNA sequence (bottom) becoming “fixed” by our model (top), with the fixed positions highlighted in
magenta. In this case the added base-pairs shift the pairings of the entire stem.

Architecture and Training

Reading in the input nucleotide and secondary structure sequences as a one-hot encoding, the input is
richly encoded with the use of a two-layer bidirectional LSTM (bi-LSTM), followed by four layers of
transformer self-attention encoders (Fig[TJA). We use these bi-LSTM layers instead of the positional
encoding that is commonly used for attention networks.

The final output is then predicted with a simple feed forward network, such that each position of the
sequence independently has three possible outputs (left-bracket/pair, right-bracket/pair, dot/unpaired).
This decoding scheme is unconstrained and it is entirely possible to output nonsensical, mismatching,
or unbalanced base pairs. From this simple decoding, we still demonstrate strong accuracy perfor-
mance seen in Figure JJA, and so we instead focus more on discussing the model’s explainability,
where each position of the output can be tied directly to the attention weights of the model uncom-
plicated from any additional post-processing, lending itself to be subsequently visualized. Notably,
bpRNA-fix shows fewer unpaired brackets than AttentionFold, and predictions from bpRNA-fix show
greater parity, such that brackets always come in pairs (Figure 2B-D).

Our deep learning model was coded using the Pytorch library, with a cross-entropy training loss and
the Adam optimizer [11]]. The Adam hyperparameter used were all default values from the Pytorch
library other than the learning rate (0.001), betas values (0.9, 0.98), and epsilon value (1e-09). Since
the network can predict every position of a sequence as well as every sequence in a minibatch in
parallel, the training loss can all be computed with vector notation within a GPU for efficiency.

Data set and Preparation

Starting with the RNA sequences and associated secondary structures in the bpRNA-1m dataset[2],
sequences with lengths between 20 and 200 were kept. The remaining sequences were further filtered
for diversity using CD-HIT-EST [13] to have less than 90% sequence similarity. This collection
of low-similarity data was split randomly using an 80-10-10 training, validation, and testing. This
consideration addresses over-fitting, for the potential issue of training examples to be very similar
to those found in the validation and test, and separates RNA sequence types and families within the
data inasmuch as they are less than 90% similar. To add more training data, sequences that were



part of the CD-HIT-EST clusters with training examples were also added back into the training
data, thereby there might be similar sequences in the training, but not to the test set. Using the
EMBOSS Needleman-Wunsch global alignment program (needle), we further required that the
selected sequences have less than 90% similarity with the validation and testing sequences. The
final process resulted in a split consisting of 42,859, 2,344, and 2,345 training, validation, and
testing sequence examples respectively. The data set includes both canonical and non-canonical
(non-Watson-Crick) base pair interactions, so the possibility exists for the model to learn to predict
non-canonical interactions from an canonical base pair scaffolding.

0.1 Attention Weight Information Content

For a sequence of length n, the self-attention can be described by an n x n weight matrix W such that
for i, j € [0, n] the weight TV;; indicates the weight of the attention from indices j to 7. The attention
weights to a given index are softmax-normalized from the transformer network, thus > jwij = 1.
To quantify how focused the attention was, we computed information content relative to a baseline
entropy Hy. We define information content of a given index ¢ as the reduction in Shannon entropy,
—AH, when going from a uniform distribution to the distribution defined by the self-attention to that
position.

IC; = —AH; = H, — H;

The expected entropy for a uniform baseline at w;; = 1/n is given by Ho = — Y7 (;; - logy 1) =
log, 1, and the observed entropy at position ¢ given by H; = — Z?:o w;; - logy (w;;). We therefore
have IC; =logyn + Z;’:O w;j - logy(w;; ). The information content for attention weights describes
attention going to each index ¢, and we also can calculate the information content for attention weights
coming from a given index. To compute the outgoing information content, we must normalize the
outgoing weights with a normalizing constant like Z; = >~ w;;, the sum of the attention weights
to the position j, which can be found plotted in Figure[3]A. Our observed outgoing entropy becomes

Hj = =371 7 - logy(F2). and thus ICj = logy n + 357 5 - logy(F2).

Results

Positional Encodings vs LSTM

A notable challenge in transformer network architectures is that attentions are computed without
natural notions of position. Thus all  output embeddings incorporate information from inputs z;
from all positions j without even considering whether 7 < j for example. This is typically addressed
with the addition of a “positional encoding”, usually with trigonometric functions of different periods,
to encode every position index. The positional encoding is then combined with the input embedding,
allowing the model to differentiate between nucleotides occurring at different positions. Instead of
using a positional encoding, we used another common neural network architecture in the Bidirectional
Long-Short Term Memory (bi-LSTM), designed to model sequential information, because we found
that a bi-LSTM encoding leads to an overall improvement in final evaluation performance compared
to positional encodings, shown in Figure 2JA. Using an LSTM as the first encoding layer of our
network, we forgo the usage of positional encodings, and instead allow the network to model relative
sequential information as a part of its learning.

F1-Score Evaluation of Secondary Structure

In order to compare the performances of RNAfold and Linearfold to our bpRNA-fix methods, the
first-pass approach for evaluation would be to calculate the site-wise confusion matrix and accuracy.
Indeed, Table[T]shows a robust overall accuracy greater than 91%. However, due to the unconstrained
nature of our dotbracket predictions, it is still possible to do well on this metric while still having
inconsistent on nonsensical base pairings, as seen in site accuracy of Table[2]

The more standard approach is to more directly take RNA secondary structure base pairings into
account with an evaluation metric based on the precision and recall of the (i, j) base pairs in the
labeled structure. This evaluation is much more strict in that a single missed or added base pair can



Symbol ) . Label
( 46521 | 461 5553 52535
) 385 46616 | 5534 52535
. 4371 4304 125706 || 134381
Predicted | 51277 | 51381 | 136793 || 239451
Precision | 90.7% | 90.7% | 91.9% 91.4%

Table 1: Confusion matrix summarizing the performative accuracy of our Linearfold+bpRNA-fix
model on our held-out test set, with our overall site-wise accuracy shown in the bottom right-hand
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Figure 2: A. Sequence-level F1 score performances with standard error bars for each of our models
evaluated on the test set. B Reverse-CDF of the number of unpaired brackets produced by bpRNA-fix
vs Attentionfold on the test set. Further quantifying the performance difference between the two
models, Attentionfold tends to produce more unpaired brackets in its output than bpRNA-fix. C.
Histogram binning the number of brackets predicted by our models compared to the labeled dataset.
bpRNA-fix tends to predict more even and less odd numbers of basepairs compared to Attentionfold.
D. Treating the Figure 2IC histogram as time-series data, we apply a fast-Fourier transform to measure
the parity of the model output predictions. The resulting peaks at frequency 0.5 (corresponding to an
even parity of base pair predictions) are compared in this plot, showing that bpRNA-fix predicts base
pairs with higher even parity than Attentionfold.



Model Site Accuracy | Test F1 Score (Seq Avg)
RNAfold 68.11 51.52
Linearfold 72.61 51.72
Attentionfold (+Pos Enc) 90.55 50.35
Attentionfold (+LSTM) 91.74 53.73
bpRNA-fix (+RNAfold) 91.26 59.34
bpRNA-fix (+Linearfold) 91.39 59.52

Table 2: Final F1 Score for our models, averaged across our test dataset sequences. Figure 2JA plots
these with standard error bars.

mismatch an entire set of index pairings, and thus potentially ruin the subsequent evaluated F1-score.
For our unconstrained model, we predict each position independently potentially making invalid or
unbalanced bracket outputs possible, and making this pair-centric F1 very stringent. For each test
sequence we calculate the resulting F1-score, computed as the harmonic mean of the precision and
recall, and we show the average and standard error of this evaluation in Figure ZA.

To compute the base pairings, we used a simple program that reads a dotbracket from left to right
using a stack. Left brackets are pushed on to the stack and right brackets pop from the stack, forming
a series of (¢, j) pairs as a result. In the case of invalid or mismatched brackets, right brackets that
try to pop from an empty stack are ignored as well as remaining left brackets on the stack after the
entire dotbracket has been processed. In this way, we can extract the corresponding series of base
pairs from the predicted output even if the prediction is unbalanced, and use this to compare with the
labeled structure.

We compare bpRNA-fix to a version of our model relying only on the underlying neural network model
without additional input predictions, that we call “AttentionFold", as well as to the input programs
RNAfold and Linearfold. We observe a surprisingly strong performance in the trained Attentionfold
baseline model with LSTM+transformer network layers, and it outperforms the thermodynamic
models. However, there is an even greater improvement for bpRNA-fix, which incorporates the
thermodynamic model outputs (Table [2)).

Interpretation of Attention Weights

In addition to better folding performances, the task of secondary structure fixing has an added benefit
of having more focused model interpretation via inspection of attention weights at positions where the
thermodynamic inputs differ from the predicted outputs (fixed positions). The analysis of attention
weights are an opportunity to interpret the computation that results in the fixed base pairs, and what
other positions contribute the most to that output.

Attention weights in neural networks are typically normalized, allowing for a distributional interpreta-
tion across the input sequence. Thus, attention weights from all positions towards a particular position
sum to one. A first approach towards attention weight interpretation simply reversing this summation,
summing the attention weights emanating from each position, Z; = 3. W;;. An example of this can
be seen in Figure BJA where we see the summed attention weights become more organized around
paired regions in subsequent layers of the network. In this exapmle, the summed attention is greatest
over paired positions, suggesting that these positions have the greatest contribution to the attention
going to other positions in the sequence.

To focus on the strongest attention, we assessed statistical significance via a z-score can be computed
from the distribution of attentions from all other positions. Z-scores are computed by taking the
mean / and standard deviation o from all the attention weights w;; across all positions . Looking at
the attentions to a fixed position, we visualize arcs for attention weights with a significant z-score.
Figure 3B, shows arcs to fixed positions that have z-score greater than one. The arc plot shows that
significant attentions are coming from structured regions in this example, and that the significant
attentions behave differently from layer to layer. The higher layer, layer 4, shows more of the
significant attention is coming from paired positions.

The fixed positions also show an even parity, suggesting when they are added, then tend to be in
pairs. The histogram in Figure[3IC shows that many sequences tend to have an even number of fixes,
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be more uniform in nature, the weights become more organized by the fourth layer, concentrating

around regions with structure. B. Arc plot of the same structure as panel A, showing the statistically
significant attention values to “fixed” positions, of the first and last self-attention layers of the model.

C. Number of sequences of the test data set binned by the number of fixed base-pairs for all sequences
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puted, with the first and last layers shown. While the initial attention weights in layer one look to

sequences that our model get correct (100 F1) are considered.
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even though the model is not constrained to do so. For comparison, we also show the subset of test
sequences where our model perfectly predicted the dotbracket structure.

Focusing on fixed positions in the output, we show that attention weights are stronger coming from
paired regions of the input compared to a uniform baseline, as seen in Figure [3D. The summed
attention weights emanating from each position as well as strong individual attentions going towards
a fixed position are visualized, we see overall stronger attention weights coming from input paired
positions. We see that both paired and unpaired fixes, attention weights from paired positions across
the input are higher than a uniform expected baseline, especially in subsequent layers of the network.

In order to further quantify which positions attract strong attention weights from the network, we
examined non-uniformity in attention weights. We describe the non-uniformity of the distribution of
attention using information content compared to a uniform distribution of weights, and measured the
information content for different types of sequence positions across each layer of our transformer
model, summarized in Figure [dA. From this heatmap of fix cases we see the strongest information
content associated with fixed positions that flip the direction of a base pair in the lower layers. We see
in higher layers that there is a slight enrichment in fixes that go from paired to unpaired as well, but
with overall lower non-uniformity. Overall, non-uniformity such as more focused attention associated
with removing the left brackets compared to right brackets suggests some asymmetry in the focus
of the attention weights for particular types of fixes. Figure 4B highlights an example with lower
incoming attention information content for the fixed right brackets for lower layers, but higher layers
show much greater information for the added base pairs upon fixing as well as for other paired
positions. Similarly, Figure dC shows a much greater outgoing information content for removed base
pairs, consistent with the trends observed in Figure[d A.

bpRNA Structure Labels

bpRNA is a tool for automated annotation of RNA secondary structures into different loop types (e.g.
H=hairpin, M=multiloop etc) and stems, providing more context than the dotbracket notation [2]. To
further extend our own information content-based analysis, we incorporate the use of these structure
types, labeling both the Linearfold input and bpRNA-fix output predictions.

Computing the incoming information content at each position across the test data and binning them
according to Linearfold input and bpRNA-fix output structures, gives us the heatmap at Figure S|A.
Here we see what types of fixes cause the attention weights of our model to be the most non-uniform.
Some of the most significant averaged attention are associated with E—H fixes (from an end to a
hairpin loop). We visualize the structure of a Linearfold input in Figure[5B and the corresponding
model output in Figure [5IC. Arguably, modifying an “end” position to a hairpin loop like this would
be among the most extreme changes that could happen, so it is an interesting correlation with the
greatest information content. In addition, we color-coded the fixed position in magenta, with other
positions heatmap-weighted according to attention to the fixed position with red corresponding to the
highest attention. The attention weights to the fixed position in the last layer 4 of our model were
found to be enriched around the model output base-paired regions, the two stems seen in Figure[5|C.

Discussion

We have shown that the introduction of a well-formed secondary structure prediction from one
program helps improve the performance of our a transformer self-attention based network, adding
parity information that serves as a “’scaffolding™ for the transformer predictions. This results in
bpRNA-fix making predictions that are more balanced than a baseline transformer model without this
additional input (Attentionfold), and better overall performance than Linearfold and RNAfold, which
provided our secondary structure inputs. The RNA fixing task allows us to focus our analysis and
visualization efforts on fixed positions, where our model output differs from the input dotbracket,
rather than making sense of the structure in its entirety. Having a small number of fixed positions,
and examining weights to that fixed position, makes interpretation more tractable.

Analysis of attention weights from bpRNA-fix using information content shows differentiation of
roles between subsequent layers of the network, going from being more uniform to organizing around
paired regions. We further show that stronger attentions at fixed positions are paid towards paired
output regions. In this way, the distribution of attention weights shed light on greater focus on other
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positions that contribute to a particular fixed position. These can highlight regions that should be
paired, or other potential positions that could interaction with the fixed position. We also more
broadly demonstrate differentiation of roles across layers, as the level of information content for each
type of fix changes from layer to layer. Future work could more precisely define the contribution of
each layer in the computations that result in fixed positions.

While the input secondary structure prediction programs were designed for more general RNA folding
task use cases, a major limitation of our current approach is that it relies on a source database, which
will contain biases. Most available RNA secondary data sets have biases towards certain particular
types or families (e.g. tRNAs), and any systematic errors or biases in the training set would of course
be learned and affect the fixed base pairs. A limitation of our comparison to RNAfold and Linearfold
is that those programs only predict canonical base pairs, and our data set does include non-canonical
base pairs. Therefore, this gives bpRNA-fix an advantage when evaluated with bpRNA-1m over
these programs because it was trained on examples with non-canonical base pairs. On the other
hand, this provides more flexibility to bpRNA-fix’s output compared to the thermodynamic models.
Another limitation of our approach is the use of 90% similarity as the condition to split training,
testing and validation data, which does not rule out the possibility of examples from the same RNA
family occurring in both the training and testing data sets.

More generally, our approach of using one program’s output as input to a transformer model can
be readily applicable to other problem domains, especially those that utilize transformer models on
paired structure prediction tasks. Going forward, our approach could be used to impute non-canonical
interactions and pseudoknots using a scaffolding of canonical base pairs. Future data sets that are
not limited to well-studied RNA families may ultimately provide more generalized prediction of
RNA secondary structure when used as training data for similar approaches to bpRNA-fix. Finally,
we have demonstrated that attention information content can be an effective way of interpreting the
fixed positions of this kind of network, which could give new insight and help the development of
improved thermodynamic models for traditional dynamic programming approaches. Code for this
project is available at: https://github.com/junekihong/bpRNA-fix,
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