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Abstract

Alternative splicing (AS) contributes significantly to RNA and protein variability
yet its role in defining cellular diversity is not fully understood. While Smart-
seq2 offers enhanced coverage across transcripts compared to 10X single cell
RNA-sequencing (scRNA-seq), current computational methods often miss the
full complexity of AS. Most approaches for single cell based differential splicing
analysis focus on simple AS events such as exon skipping, and rely on predefined
cell type labels or low-dimensional gene expression representations. This limits
their ability to detect more complex AS events and makes them dependent on
prior knowledge of cell classifications. Here, we present Leaflet, a splice junction
centric approach inspired by Leafcutter, our tool for quantifying RNA splicing
variation with bulk RNA-seq. Leaflet is a probabilistic mixture model designed
to infer AS-driven cell states without the need for cell type labels. We detail
Leaflet’s generative model, inference methodology, and its efficiency in detecting
differentially spliced junctions. By applying Leaflet to the Tabula Muris brain cell
dataset, we highlight cell-state specific splicing patterns, offering a deeper insight
into cellular diversity beyond that captured by gene expression alone.

1 Introduction

Alternative splicing (AS) is a crucial cellular process that generates multiple RNA isoforms, leading
to the protein and regulatory RNA diversity necessary for the proper function of complex organisms
[1, 2]. The mammalian nervous system is a prime example where AS is prevalent and responsible
for increased proteomic and functional complexity [3, 4, 5] . However, the extent to which AS
contributes to cell-type level specific variation remains incompletely understood. Addressing this
requires an unbiased analysis of AS in relation to cellular states yet quantifying it using common
single-cell RNA sequencing techniques such as 10X is challenging due to its pronounced 3’ bias in
coverage. Smart-seq2 however, while less high-throughput than droplet based approaches, offers
superior transcript coverage, making it a promising experimental approach [6]. Importantly, several
single-cell atlases encompassing both 10X and Smart-seq2 data across various cell types and tissues
in mouse and human have been published [7, 8]. These offer potential insights into the AS profiles of
individual cells and cell types.

Despite the challenges posed by current single-cell technologies, a number of methods have been
developed to capture differential splicing in single cells. BRIE2 [9] uses Bayesian regression to model
the association of specific AS events with cell-level phenotypes. However, it is mainly tailored for
exon-skipping events and requires predefined binary cell type labels such as treatment status. Another
approach, scQuint [10], integrates a method where introns sharing 3’ splice sites converge to form
alternative intron groups. It then maps the genome-wide intron usage onto a low-dimensional latent
space with a Dirichlet-Multinomial VAE, followed by a differential splicing test across predefined cell
types or clusters, which emerge from the splicing latent space. However, the obtained splicing latent



space with this approach did not reveal any novel cell sub population in Tabula Muris. Meanwhile,
Psix[11] employs a probabilistic model to detect splicing variation across a spectrum of single cells.
Inspired by autocorrelation, Psix seeks patterns of AS that correspond to continuous cell states, such
as developmental stages, without the need for explicit cell clustering, labeling, or trajectory inference.
However, Psix’s approach relies heavily on a gene expression-based low-dimensional representation.
Thus, it is inherently limited to identifying splicing events that are directly associated with gene
expression changes. Furthermore, a significant limitation of Psix is its reliance on K-nearest neighbors
(KNN) for determining cell similarity, which makes the method time-consuming, especially with
large single cell datasets. Overall, the focus of recent approaches has largely remained on identifying
variable cassette exons, likely resulting in the oversight of more complex splicing events.

To address this gap in our understanding of splicing events in single cells, we developed Leaflet,
building on the splicing quantification representation employed in Leafcutter [12] for bulk RNA-seq.
Our binomial mixture model uses junction counts from split reads (described in Section 2) to model
latent cell states and the splicing patterns that define them (Figure 1).
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Figure 1: Overview of single cell AS quantification. Junction coordinates and reads are first obtained
for each cell, followed by intron clustering of overlapping junctions with common splice sites. Three
exemplary junctions are shown for one intron cluster event, exon skipping. Read counts for junctions
and intron clusters are used as input for Leaflet’s binomial mixture model.

2 Splicing quantification with Smart-seq2 reads

Figure 2: A graphical model for Leaflet’s mixture
model. Variables described in Table 1.

To generate an input dataset for our model, we
processed reads mapping to splice junctions in
individual cells. We used Regtools [13] to obtain
a matrix of junction coordinates and read counts
while keeping track of cell barcodes. Leaflet
follows Leafcutter’s approach to defining local
splicing variation via "intron clusters" but pro-
vides additional functionality for single-cell ap-
plications. For example, in our analysis of Tab-
ula Muris, we required each junction to be ob-
served in at least five cells in each cell type with
at least one read each. These parameters are user
adjustable and the full list of them is described
in the package https://github.com/daklab/Leaflet.
Leaflet then combines junctions into intron clus-
ters based on overlapping introns and splice sites. An example of an intron cluster composed of three
overlapping junctions is shown in Figure 1. Intron clusters with a minimum of two junctions are
kept for downstream analysis. We define the junction usage ratio (or in a slight abuse of notation, the
percent spliced in or PSI) as the splice read count for the junction divided by the total count for the
cluster.
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3 Leaflet probabilistic model

3.1 Generative model

Table 1: Summary of Variables in Leaflet

Variable Description
C Total number of cells in the dataset.
J Total number of junctions considered.
K Total number of cell states or cell types.
ψk: Vector of junction usage ratios for each state k.
θ Proportion of each cell type or cell state.
zc Cell assignment for cell c.
ycj Observed junction counts for junction j in cell

c.
Tcj Observed intron cluster counts for junction j in

cell c.

The graphical model for Leaflet is
shown in (Figure 2) with C cells, J
junctions and K states. Leaflet posits
the existence of K cell states, each de-
fined by a vector of junction usage ra-
tios ψk:. In the context of a collection
of single cells, we model the prior pro-
portion of each cell type or cell state in
the sample as θ. Cell assignments zc
are sampled from a categorical distri-
bution parameterized by θ. zc along-
side ψkj model the observed junction
counts ycj . Tcj are the observed in-
tron cluster counts for a given junction
j in a given cell c.

Our likelihood model is
ycj |zc, ψ ∼ Binomial(Tcj , ψzc,j).

The proportion of counts attributed to each junction within an intron cluster is specified by ψkj , the
latent success rate of junction j in whichever state k the cell is in. The junction usage ratios are given
a Beta prior distribution with fixed hyperparameters a and b,

ψkj ∼ Beta(a, b).

The latent cell assignments zc, specifying the state of cell c, are modeled as a categorical given θ,

zc|θ ∼ Categorical(θ).

Of note, within a single cell c, the model assumes that the observations at different junctions are
conditionally independent, given the cluster assignment and the associated ψ. Meanwhile, θ, denotes
the prior on cell assignments and is modeled using a Dirichlet distribution with fixed prior η/k,

θ ∼ Dirichlet
( η
K
, · · · , η

K

)
.

The true number of cell states is typically unknown. Our approach is to set the parameter vector of
the Dirichlet to [η/K, · · · , η/K] which approximates a Dirichlet Process (DP) as K → ∞. When
used for clustering, the approximate DP with large K provides a way to infer the number of clusters
from the data, instead of having to pre-specify it. Thus, we recommend setting K to a larger number
of cell states than expected to infer the optimal value.

4 Variational inference

We approximate the posterior distribution using mean-field coordinate ascent variational inference
(CAVI) [14]. To learn the parameters, we optimize the Evidence Lower Bound (ELBO, 10.1). Our
variational posterior is

q(ψ, z, θ) = q(θ)
∏
c

q(zc)
∏
kj

q(ψkj). (1)

where

q (ψkj) = Beta (αjk, βjk) (2)
q (zc) = Cat (ϕc) (3)
q(θ) = Dir(γ) (4)

Here α ∈ RK×J , β ∈ RK×J , ϕ ∈ RK×N , and γ ∈ RK are the variational parameters to be
optimized. Given the variational parameters α and β, the expected log-likelihood under the variational
approximation of observing yck under component k is

lck = yck · E[log(ψk)] + (Tck − yck) · E[log(1− ψk)], (5)
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where E[log(ψk)] = digamma(αk) − digamma(αk + βk) and E[log(1 − ψk)] = digamma(βk) −
digamma(αk + βk).

The CAVI updates are

ϕck ∝ exp(E[log θk] + lck) (6)

γk =
η

K
+
∑
c

ϕkc (7)

αkj = a+
∑
c

ϕkcycj (8)

βkj = b+
∑
c

ϕkcỹcj , (9)

where ỹm = Tm − ym and E[log θk] = digamma(γk)− digamma(
∑

k′ γk′). The total cluster count
Tcj is 0 for most (cell-junction) pairs across any (current) single cell sequencing platform. It is thus
highly beneficial to represent y and ỹ as sparse matrices. The updates for α and β are then given in
matrix notation as,

α = a+ ϕy (10)
β = b+ ϕỹ. (11)

Our implementation uses pytorch allowing the CAVI updates to be easily run on a GPU for highly
efficient model fitting.

5 Leaflet differential splicing analysis

We test whether junction j is differentially spliced across cell states by calculating an approximate
log Bayes factor (ALBF) between hypothesis H0 that ψjk = ψj for all k and H1 that the ψjk are
different across states. Given that the variational posterior on ψ is a Beta distribution, we can compute
an approximate marginal likelihood under H0 as

Pj(H0) =

∫ ∏
k

Beta(ψj |αkj , βkj)dψj =
B(
∑

k αkj ,
∑

k βkj)∏
k B(αkj , βkj)

(12)

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b). The approximate marginal likelihood for H1 is

Pj(H1) =
∏
k

∫
Beta(ψkj |αkj , βkj)dψkj = 1.

Thus, the ALBF for junction j is

ALBFj = log
Pj(H1)

Pj(H0)
=
∑
k

logB(αkj , βkj)− logB

(∑
k

αkj ,
∑
k

βkj

)
(13)

6 Evaluation of performance on simulated data

We compared Leaflet, Psix and Kruskal-Wallis in their abilities to detect simulated differentially
spliced events. Here we show results simulating discrete cell-types, but we also compare the methods
on a continuous trajectory dataset simulated by Psix in Appendix 10.2, Table 3.

6.1 Splicing differences between discrete cell-types

Our simulation approach adheres closely to Leaflet’s generative model (Figure 2), but uses the
observed cluster counts matrix (detailed in Section 2) and predefined brain cell types from Tabula
Muris to ensure the overall sparsity of read coverage is maintained. To allow for a fair comparison
with the type of splicing events captured by Psix (exon skipping), we filtered the Leaflet intron
clusters to exclusively encompass exon inclusion/exclusion events, corresponding to three junctions
per intron cluster.
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Method AUROC AUPR
Leaflet-junction 0.9696 0.9782
Leaflet-cluster 0.9832 0.9875

Psix 0.7937 0.8557
KW-junction 0.9499 0.9649
KW-cluster 0.4717 0.4753

Table 2: Comparison of methods
on discrete counts generated from
Leaflet generative model simula-
tion. Data corresponds to 5,968
cells and 5,676 junctions from
1,892 intron clusters.

In our simulation, every intron cluster is randomly assigned a
positive (has differential splicing across cell states) or negative
label (no differential splicing). Junctions are sorted into the two
corresponding to exon inclusion (J1 and J2) and the one corre-
sponding to exon exclusion (J3). For negative intron clusters we
sample one shared ψJ3 from Beta(0.5, 0.5) (hyperparameters
chosen to emulate the known bimodality of splicing patterns
[15]) for all cell states. For positive intron clusters, we sample
a different ψJ3

k ∼ Beta(0.5, 0.5) for each cell state k. We then
set ψJ1

k = ψJ2
k = (1− ψJ3

k )/2 for each k. Junction counts are
then sampled from binomial distributions with these ψ values
and total count from the observed (“real”) Tabula Muris data.

6.2 Identifying cell-state associated splicing events

For our first test, we focused on the two most prevalent cell
types in Tabula Muris brain tissue: microglia and oligodendrocytes (5,499 cells total). From 1,892
intron clusters, we sampled split read counts for 5,676 junctions based on these specified cell types.
The ability of Leaflet, Psix, and the Kruskal-Wallis test to detect the simulated differentially spliced
events was then assessed.

Leaflet’s mixture model was fit on the simulated counts with 100 CAVI iterations across 50 inde-
pendent trials with K set to two. These trials represent random initializations of the variational
parameters. The trial resulting in the highest ELBO was used for downstream analysis. For each
junction cell-type pair, the posterior mean was ψ̂kj =

αkj

αkj+βkj
. The Spearman correlation between

the inferred and simulated ∆ψ between the two cell states was 0.92.

For comparison, Psix (version 0.11.0) was executed using its default parameters, and the first two
principal components were determined based on the simulated intron cluster counts. In this setting, an
intron cluster corresponded to a "gene". Psix requires several input files including a gene expression-
based low-dimensional representation, a junction counts matrix and cassette exon annotations to
compute Psix scores. Empirical p-value estimation with its kNN-based method extends its run time
(21.34 seconds for Leaflet vs 5 minutes for Psix for the same dataset).

The Kruskal-Wallis (KW) test was run using the two vectors of simulated junction usage ratios
(KW-junction) or intron cluster based PSI corresponding to J3 (KW-cluster) only for the two cell
types. The results are shown in Table 2 where Leaflet consistently outperforms other methods.
Specifically, Leaflet-cluster, which evaluates the overall intron cluster Leaflet score (by summing
scores across the three junctions in a given cluster), achieves the highest Area Under the Receiver
Operating Characteristic (AUROC) and Area Under the Precision-Recall (AUPR) scores.

6.3 Inference of cell state identity

Leaflet simultaneously infers junctions that are differentially spliced across cell states as well as zc,
the cell assignments. We evaluated Leaflet on a larger simulated dataset using eight brain cell types
from Tabula Muris, fixing cell intron cluster counts and true cell-type assignments while simulating
junction ψ.

This data consists of 7,816 cells and 3,613 intron clusters corresponding to cassette exon events.
We applied Leaflet’s mixture model to the simulated counts, running 100 CAVI iterations from
50 random initializations with K set at 50. The variational parameter ϕc determined the cell state
assignments for each individual cell. To evaluate reproducibility, we analyzed the consistency of
cell-cell co-assignments across random initializations Figure 3. This revealed a robust structure: cells
originating from the same cell types were largely co-assigned across trials (Adjusted Rand Score =
1.0). Further, even with K set at 50, Leaflet identified the correct number of predefined cell types as
eight, specifically where θ ≥ 0.05. This analysis reflects Leaflet’s ability to detect inherent cell types
by leveraging AS patterns.
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A B

Figure 3: (A) Hierarchical clustering of cell-cell co-assignments across 50 independent trials on
simulated data. Color bars indicate pre-assigned cell types. (B) Learned values for θ across 50 cell
states. Dashed grey line indicates 0.05%.

7 Application to Tabula Muris Brain data

7.1 Model consistency in cell assignments and association with known cell types

Figure 4: Hierarchical clustering of cell pair co-assignments across ten independent trials (n=5,200
randomly sampled cells are shown).
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Smart-seq2 data for individual cells across eight brain cell types in Tabula Muris was processed
as described in Section 2. Inton clusters were then annotated with M10-PLUS genes. In this
reference-aware mode, we detected 16,191 junctions across 5,433 intron clusters and 4,135 genes.

We initially assessed Leaflet’s clustering consistency across ten random initializations by calculating
how often each pair of cells were assigned to the same cell state (to account for label switching
between runs). We set K to 10 for this assessment. The results revealed a strong tendency for the
same cell type pairs to be co-assigned, highlighting clear cluster structure in the data (Adjusted
Rand Score = 0.80, Figure 4). We then selected the trial with the highest ELBO from the ten runs.
Inspecting the posterior mean ˆtheta = γ/

∑
k γk, we found that all K (10) cell states appeared in

at least 5% of cells (Figure 8A,B). Notably, most cell states predominantly corresponded to one or
two closely related cell types (Figure 5A,B). For example, Cell States 1 and 5 were predominantly
enriched in macrophages and microglia (Figure 5D). These results suggest that Leaflet is able to
recover biologically meaningful distinct cell-types using only splicing patterns.
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Figure 5: (A) UMAP based on PCA analysis of gene expression overlaid with known cell types.
(B) Percentages of cell types belonging to each Leaflet cell state.(C) Leaflet cell state assignments
overlaid on UMAP from (A). (D) Subset of UMAP plot is shown for predefined microglial cells
(same coour legend as C). Cells are coloured by Leaflet cells states where the first and fifth state
make up the majority of this population. (E) Same cells as in panel D but coloured by Leiden clusters
defined by total gene expression.

7.2 Cell state specific splicing events shape cellular diversity

Cellular heterogeneity may be shaped by both gene expression and AS patterns, the latter of which is
less well understood. We first evaluated the learned J ×K matrix of Leaflet ψs as described above
(Section 6.2). We compared these learned ψ values to empirical (observed) junction usage ratios (per
cell), both of which exhibited peaks at 0 and 1 (Figure 6A,B).

We then obtained Leaflet ALBF scores for each junction, where higher scores indicate a junction is
more variable across allK cell states (Figure 6C). We found that of the top 10% scoring junctions, less
than 7% mapped to any marker genes, suggesting this strong splicing variation is mostly independent
of expression. The top two scoring junctions were in the same intron cluster (corresponding to an alt 3’
splice site) in the Psap gene. One splice site is used predominately in pericytes and oligodendrocytes,
while the other is used in neurons and astrocytes (and interestingly oligodendrocyte precursors show
a mix of both, Figure6D,E).
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We next calculated Leaflet ALBF scores across only two cell states of interest (cell states 1 and 5),
corresponding to microglial cells. One of the top scoring junctions mapped to the gene App and was
highly used in cell state 5 compared to cell state 1 (Figure 6F). This highlights that there may be
a significant level of AS heterogeneity even within a well defined cell type such as microglia. We
note that these cells are not directly linked to total gene expression based subpopulation of cells
as determined by Leiden clustering (Figure5E) and may correspond to complementary levels of
information.

Cell state 5

B CA

E FIntron cluster in Psap
chr16 : 84965770-84978063

Total Psap expression
D

chr10 : 60296002-60296304 chr10 : 60296002-60299097

Cell state 1

Figure 6: (A) PSI values for observed junction-cell pairs (ycj/Tcj). (B) Distribution of Leaflet ψ̂s
for junction-cell state pairs. (C) Junction ALBF scores across all cell states. PSIjk are shown only for
those junctions and cell states in which αjk + βjk ≥ 10 to exclude those with very high uncertainty
(B,C).(D) Psap normalized gene expression values across cell types suggests it is not a marker gene.
(E) An example of an intron cluster in the gene Psap, consisting of two junctions with high ALBF
scores, showing variable AS across cell types. (F) Posterior distributions Beta(αkj , βkj) are shown
for a junction mapping to the gene App in cell states 1 and 5.

8 Discussion

In this work, we introduce Leaflet, a novel, flexible approach to identify AS-driven cell states, a
dimension of cellular diversity that is often unexplored. By focusing on local splicing variation at
the single-cell level and comparing the differential splicing observed across learned cell states with
those observed in pre-defined cell types, Leaflet reveals AS heterogeneity even within established
cell types such as microglia. Our preliminary findings suggest that the landscape of cell-type specific
differential splicing is not only a proxy for differential gene expression, but an additional, orthogonal
layer of regulatory information.

While the current application to brain cells sequenced with Smart-seq2 has proven valuable, we plan
to expand our method to analyze high-throughput datasets from techniques such as SPLiT-seq [16]
and EasySci [17]. Although long-read scRNA-seq might ultimately be the definitive approach for
deciphering isoform variation, short-read protocols look likely to remain dominant in the short to
medium term.

While any biological insights made herein require additional validation in external datasets, we
present a new approach and highlight several examples for further study. Leaflet is fast to run and
requires minimal input from users.
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10 Appendix

10.1 Evidence Lower Bound (ELBO)

The ELBO can be decomposed as

ELBO = Eq[log p]− Eq[log q]

=

∫
q log p− entropy

where the former term for Leaflet’s mixture model is∫
q log p =

∑
jk

(α− 1) ⟨logψjk⟩+ (β − 1) ⟨log (1− ψjk)⟩+
∑
k

(
η

K
− 1) ⟨log θk⟩

+
∑
c

ϕck⟨log θk⟩︸ ︷︷ ︸∑
k⟨log θk⟩

∑
c ϕck

+
∑
ck

ϕck
∑
j

[ycj ⟨logψjk⟩+ ỹcj ⟨log (1− ψjk)⟩]︸ ︷︷ ︸
lck

where ϕck = ⟨zc = k⟩ and ỹcj = Tcj − ycj .

10.2 Splicing variation along a simulated continuous trajectory

Here we compare Leaflet and Psix, utilizing data that was simulated to align with continuous cell
state trajectories. The simulated dataset consists of 5,000 genes and 1,000 cells that follow a one-
dimensional trajectory where 40% of genes have variable splicing. Each gene was simulated to
have two isoforms, one with and without a cassette exon. For exons marked as "non-cell state
associated", their PSIs were simulated to be the same across all cells (Figure 7). This dataset
corresponds to the simulated data used in the Psix manuscript [11]. The Kruskal-Wallis test was used
as a baseline. Given the junction-centric approach of Leaflet, gene-level Leaflet ALBF scores were
derived by summing the ALBF scores for relevant junctions. Importantly, Leaflet was not designed
for continuous, trajectory-like cell states yet it obtained accurate estimates even on such data (Table
3). Additionally, Psix runtime was 22.2 minutes while Leaflet inference took only 35 seconds with
100 CAVI iterations (all methods tested on CPU).

Method AUROC AUPRC
Leaflet-cluster 0.8942 0.9058

Psix 0.9399 0.9438
KW 0.9496 0.9008

Table 3: Performance at detecting differentially spliced genes from data simulated by Psix with cells
along a continuous trajectory. KW: Kruskal–Wallis test.

10.3 Low dimensional representation of Tabula Muris brain cells using gene expression

We utilized total gene counts obtained with FeatureCounts [18] for these cells to obtain gene expres-
sion based low dimensional representations for downstream analysis. We used the Scanpy pipeline
with recommended settings for quality control of cells and genes [19] and total count based normal-
ization. Principal Component Analysis (PCA) was run on 7,560 cells and 3,837 genes. Uniform
Manifold Approximation and Projection (UMAP) was run on the first 40 principal components (PCs)
to obtain a low dimensional transcriptomic representation of the cells (Figure 5A). Marker genes
(n=30) were obtained for each of the nine cell types in the data using the built in T-test approach.
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10.4 Supplementary Figures
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Figure 7: Simulated PSIs from Psix (left) and Leaflet (right). Simulated differential splicing is shown
in the top panels for positively labelled events. Psix simulates cells along a trajectory. A cell state
associated exon is shown in A and a cell type associated intron cluster composed of three junctions
is shown in B. Bottom panels show instances of simulated PSI values for non-differentially spliced
exons (C) or intron clusters (D). JEI : Exon inclusion junction. JEE : Exon exclusion junction.
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BA

Figure 8: (A) Distribution of predefined cell types in the dataset. (B) Distribution of θ learned for
each cell state.
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