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Abstract

Over the past decades, network biology has been a major driver of computational
methods developed to better understand the functional roles of each gene in the
human genome in their cellular context. Following the application of traditional
semi-supervised and supervised machine learning (ML) techniques, the next wave
of advances in network biology will come from leveraging graph neural networks
(GNN). However, to test new GNN-based approaches, a systematic and comprehen-
sive benchmarking resource that spans a diverse selection of biomedical networks
and gene classification tasks is lacking. Here, we present the Open Biomedical
Network Benchmark (OBNB), a collection of node-classification benchmarking
datasets derived using networks from 15 sources and tasks that include predict-
ing genes associated with a wide range of functions, traits, and diseases. The
accompanying Python package, obnb, contains reusable modules that enable re-
searchers to download source data from public databases or archived versions and
set up ML-ready datasets that are compatible with popular GNN frameworks such
as PyG and DGL. Our work lays the foundation for novel GNN applications in
network biology. obob will also help network biologists easily set-up custom
benchmarking datasets for answering new questions of interest and collaboratively
engage with graph ML practitioners to enhance our understanding of the human
genome. OBNB is released under the MIT license and is freely available on GitHub:
https://github.com/krishnanlab/obnb

1 Introduction

Life is orchestrated by remarkably complex interactions between biomolecules, such as genes and
their products. Network biology [6, 7, 43, 93] has demonstrated remarkable success over the past
two decades in systematically uncovering genes’ functions and their relations to human traits and
diseases. Accurately identifying genes associated with a particular disease, for example, is a vital step
towards understanding the biological mechanisms underlying the condition, which in turn could lead
to novel and effective diagnostic and treatment strategies [96, 51]. Early work in network biology
focused on network diffusion-type methods based on the guilt-by-association principle [69], which
states that genes interacting with each other likely participate in the same biological functions or
pathways. The performance of these methods has subsequently been improved by the application
of supervised learning [67]. In this trajectory, the next wave of improvements in network biology is
likely to emanate from the surge of powerful graph machine learning (ML) techniques such as graph
embeddings [27, 14] and graph neural networks [100, 106]. These methods have shown promising
results in many graph-structured tasks, such as social networks [34], and have started to attract
researchers to apply them to biological tasks [5, 104, 68]. To this end, accelerating the development
and application of graph ML methods in network biology is of great importance.

However, there is a critical need for standardized benchmarks that allow reliable and reproducible
assessment of the novel graph ML methods [81, 34]. Recent efforts such as MoleculeNet [99] and

Preprint. Under review.

https://github.com/krishnanlab/obnb


Therapeutics Data Commons [37] for molecular and therapeutics property predictions, and Bench-
marking GNN [23] and Open Graph Benchmark [34, 35] for more general graph benchmarks, have
proven valuable in advancing the field of graph ML by providing carefully-constructed benchmarking
datasets for applying specialized methods. Meanwhile, such comprehensive benchmarking datasets
and systems are currently lacking for network biology. Furthermore, setting up ML-ready datasets for
network biology is incredibly tedious. Some necessary steps include converting gene identifiers (IDs),
setting up labeled data from annotated biomedical ontologies, filtering labeled data based on network
gene coverage, and constructing realistic data splits mimicking real-world biologically meaningful
scenarios. As a result, despite the remarkable amount of publicly available data for biomedical
networks [36, 44] and annotations [82], the only widely available ML-ready datasets for network
biology are PPI dataset from OhmNet [108] and PPA from the Open Graph Benchmark [34].

Contributions In this work, we address this critical need. Our main contributions are as follows:

1. We present a Python package obnb that provides reusable modules for data downloading,
processing, and split generation to set up node classification benchmarking datasets using
publicly available biomedical networks and gene annotation data. The first release version
contains interfaces to networks from 15 sources and annotations from three sources.

2. We present a comprehensive benchmarking study on the OBNB node classification datasets with
a wide range of graph ML approaches and tricks to set up the baseline for future comparisons.

3. We analyze the benchmarking results and point out several exciting directions and the potential
need for a special class of graph neural network to tackle the OBNB tasks.

1.1 Related work

Several existing Python packages share similar goals with obnb, primarily focusing on establishing
biomedical network datasets and facilitating their analyses. In these networks, nodes typically
represent genes or their products, such as proteins, while edges represent the functional relationships
between them [36], such as physical interactions. PyGNA [24] offers a suite of tools for analyzing
and visualizing single or multiple gene sets using biological networks. PyGenePlexus [63] and
drug2ways [79] specialize in network-based predictions of genes and drugs. The OGB [34] platform
houses a variety of graph benchmarking datasets, which includes a PPI dataset akin to the STRING-
GOBP dataset in OBNB (Table S11). Nonetheless, all the aforementioned packages have a limited
number of, if any, biomedical network and label data. obnb, on the other hand, provides an extensive
number of biomedical networks and diverse gene set collections to facilitate the systematic evaluation
of graph machine learning methods on diverse datasets. In a related domain, PyKEEN [3] provides a
vast array of biomedical knowledge graph (KG) datasets and KG embedding methods. There, the
main task of interest is link prediction, through which the missing knowledge link can be completed.
Other notable works for constructing large-scale biomedical KG and setting up link-prediction
benchmarks from them include BioCypher [57] and OpenBioLink [11]. While the tasks associated
with KG [95] are orthogonal to the node classification settings, it is possible to reformulate gene
classification problems as KG completion and vice versa [5, 104]. Nevertheless, the advantages and
drawbacks of these two approaches are yet to be comprehensively evaluated.

2 Systems description

Making the process of setting up ML-ready network biology benchmarking datasets from pub-
licly available data as effortlessly as possible is the core mission of obnb. We implement
and package a suite of graph (obnb.graph) and label (obnb.label) processing functionalities
and couple them with the high-level data object obnb.data to provide a simple interface for
users to download and process biological networks and label information. For example, calling
obnb.data.BioGRID("datasets") and obnb.data.DisGeNET("datasets") will download,
process, and save the BioGRID network and DisGeNET label data under the datasets/ directory,
which can then be loaded directly next time the functions are called. Users can compose a dataset
object using the network and the label objects, along with the split (Section 2.3), which can then be
used by a model trainer to train and evaluate a particular graph learning method. Alternatively, the
composed dataset object can be transformed into data objects for standard GNN framework, including
PyTorch Geometric (PyG) [25] and Deep Graph Library (DGL) [94].
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(a) obnb downloads network and label data from public data sources, then process and combine them into
ML-ready benchmarking graph datasets.
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(b) Generating label data from annotated ontology through annotation propagation and non-redundant gene set
extraction.

Figure 1: Overview of obnb data processing and benchmarking dataset generation

In the following subsections, we go into details about the processing steps for the biomedical networks
(Section 2.1), creation of node labels from annotated ontologies (Section 2.2), and preparation of data
splits (Section 2.3). Finally, as we are dedicated to creating a valuable resource for the community,
we closely follow several open-source community standards, as elaborated in Appendix A.7.

2.1 Network

Downloading Currently, tens of genome-scale human gene interaction network databases are
publicly available, each constructed and calibrated with different strategies and sources of interaction
evidence [36]. Unlike in many other domains, such as chemoinformatics, where there are only a few
ways to construct the graph (e.g., molecules), gene interaction networks can be defined and created in
a wide range of manners, all of which capture different aspects of the functional relationships between
genes. Some broad gene interaction mining strategies include experimentally captured physical
protein interactions [85], gene co-expression [45], genetic interactions [19], and text-mined gene
interactions [86]. We leverage the Network Data Exchange (NDEx) [78] to download the biological
network data when possible (Figure 1a). The obtained CX stream format is then converted into a
obnb.graph object for further processing.

Gene ID conversion In gene interaction networks, each node represents a gene or its gene product,
such as a protein. There have been several standards in mapping gene identifiers, and different gene
interaction networks might not use the same gene ID. For example, the STRING database [86] uses
Ensembl protein ID [40], PCNet [36] uses HGNC [28], and BioGRID [85] uses Entrez gene ID [40].
Here, we use the NCBI Entrez gene ID for its advantages, such as supporting more species other than
Human and being less ambiguous [33]. To convert other types of gene IDs into the Entrez gene, we
use the MyGene query service [98], which provides the most up-to-date gene ID mapping across
tens of gene ID types. Following, we remove any gene where more than one gene ID is mapped to
the same Entrez gene, which indicates ambiguity in annotating the gene identifier currently. The
gene interaction network after gene ID conversion will contain equal or less genes, all of which are
one-to-one mapped from the original gene IDs to the corresponding Entrez genes.

Connected component In practice, a small fraction (typically within 1%) of genes may be discon-
nected from the largest connected components. The disconnectedness of the network is typically
due to missing information about gene interactions from the measurement; the more information a
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network uses to define the interactions, the denser and less likely there will be disconnected genes.
Thus, we extract the largest connected component of the gene interaction network by default as it is
more natural to have a single component for the transductive node classification tasks we consider.
However, a user can also choose to take the full network without extracting the largest connected
component by specifying the largest_comp option to False when initializing the data object.

2.2 Label

Many biological annotations are organized into hierarchies of abstract concepts, known as ontolo-
gies [8]. Each ontology term (a node in the ontology graph) is associated with a set of genes provided
by current curated knowledge. By the hierarchical nature of the ontologies, if a gene is associated with
an ontology term, then it must also be associated with any more general ontology terms. Thus, we first
propagate gene annotations over the ontology, resulting in highly redundant gene set collection. Then,
we pick a non-redundant subset of the gene sets with other filtering criteria to set up the final labeled
data in the form of Y ∈ {0, 1}N×p with N number of genes and p number of labels (Table 1b).

2.2.1 Annotated ontology

An ontology is a directed acyclic graph H = (VH , EH), where v ∈ VH is an ontology term. The
directed edge (u, v) ∈ EH indicates v is a parent of u, that is, v is more abstract or general concept
containing u. Consider B as the set of all genes we are interested in, and P(B) be the power set
of B. Given a gene annotation data, represented as a set of pairs A = {(b, v)i}, where b ∈ B
and v ∈ VH are gene and ontology term, we represent the raw annotation J0 : VH → P(B)
as a map from an ontology term to a set of genes, so that J0(v) = {b : (b, v) ∈ A}. We then
propagate the raw annotation J0(·) over the ontology H into a propagated annotation J(·), where
J(v) = ∪v′:∃path fromv′ to vJ0(v

′), as depicted in Figure 1b.

Downloading All the ontology data is downloaded from the OBO Foundry [82] (Figure 1a), which
actively maintains tens of large-scale biological ontologies. In the first release, we focus on three
different annotations, Gene Ontology (GO) [4], DisGeNET [77], and DISEASES [30]. We naturally
split GO into three different sub-collections, namely biological process (GOBP), cellular component
(GOCC), and molecular function (GOMF), resulting in a total number of five label collections.

2.2.2 Filtering

The propagated annotations contain highly redundant gene sets, which may bias the benchmarking
evaluations toward genes sets that commonly appear. To address this, we adapt the non-redundant
gene set selection scheme used in Liu et al. [54]. In brief, we construct a graph of gene sets based
on the redundancy between two gene sets, and recursively extract the most representative gene set
in each connected component (Figure 1b). In addition, we provide several other filtering methods,
such as filtering gene sets based on their sizes, number of occurrences, and their existence in the gene
interaction network, to help further clean up the gene set collection to be used for final evaluation.
Advanced users can alter these filtering functionalities to flexibly set up a custom gene set collection
to better suit their biological interests besides using the default filtering steps provided by obnb.

2.3 Data splitting

A rigorous data splitting should closely mimic real-world scenarios to provide accurate and unbiased
estimations of the models’ performance. One stringent solution is temporal holdout, where the
training input and label data are obtained before a specific time point, and the testing data is only
available afterwards [18, 54]. In practice, this temporal setting is often too restrictive and leads to
insufficient tasks for evaluation [54]. Thus, by default, we consider a closely related but less strict
strategy called study-bias holdout.

6/2/2 study-bias holdout We use top 60% of the most studied genes with at least one associated
label for training. The extend to which a gene is studied is based on its number of associated PubMed
publications retrieved from NCBI. The 20% least studied genes are used for testing, and the rest of
the 20% genes are used for validation. Notice that by splitting up genes this way, some of the tasks
may get very few positive examples in one of the splits. Hence, we remove any task whose minimum
number of positive examples across splits falls below a threshold value (set to 10 by default). For
completeness, we also provide functionalities in obnb to generate random splits.
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2.4 Dataset construction

The network (Section 2.1) and label (Section 2.2) modules provide flexible solutions for processing
and setting up datasets. Meanwhile, we provide a default dataset constructor that utilizes the above
modules with reasonable settings to set up a dataset given particular selections of network and label.
The default dataset construction workflow is as follows.

1. Select the network and label (task collection) of interest.
2. Remove genes in the task collection that are not present in the gene interaction network.
3. Remove tasks whose number of positive examples falls below 50 after the gene filtering above.
4. Setup 6/2/2 study-bias holdout (Section 2.3).

3 Experimental settings

To provide solid baselines for future references, we benchmark a wide range of graph ML methods
on our OBNB datasets. Due to space limits, we only present a subset of benchmarking results in the
main paper and refer readers to Appendix C for all other results. Specifically, we only include datasets
generated using the BioGRID or HumanNet network, combined with the GOBP or DisGeNET labels,
resulting in four primary datasets. The two networks were chosen for their distinct characteristics:
BioGRID is an unweighted graph whose edges indicate protein interaction evidence from high
throughput experiments [85], whereas HumanNet is a weighted graph whose edges indicate much
more diverse types of interactions such as gene coexpression and associations derived via literature
text-mining [42]. Meanwhile, the two selected label collections cover two broad classes of gene
classification problems, namely, gene function prediction (GOBP) and disease gene association
prediction (DisGeNET). We report the performance as the average test precision over prior (APOP)
score across five seeds (see Appendix A.5 for the mathematical definition and the motivation of
choosing APOP as our main metric). The statistics about networks and task collections for the
primary datasets are shown in Table 1 (see Table S10 and Table S11 for all dataset statistics).

Table 1: Main dataset statistics. The network density is computed as the ratio of existing edges over
all possible undirected edges: 2(#edges)/(#nodes× (#nodes− 1)).

(a) Network statistics

# nodes # edges Density

BioGRID 18,951 1,103,298 0.0030
HumanNet 17,211 847,104 0.0029

(b) Label set collection statistics

# tasks # positives

DisGeNET 298 198.6 ± 135.0
GOBP 105 88.4 ± 35.3

3.1 Baselines

We consider three general types of methods: (1) label propagation [105] that directly propagates label
information over the graph, (2) graph embedding that first extracts the vectorial representations of
each node in the graph, which are then used to fit a simple classifier, such as logistic regression, and
(3) GNN that learns the mapping from each node to its label space end-to-end. All implementation
details, including technical descriptions of the featurization, the backbone graph neural network
architecture, and hyperparameter settings, can be found in the Appendix A.

Graph embeddings We include three distinct featurizations in the main result: using the rows of the
adjacency matrix as the node features (Adj) [54], using the node2vec embedding (N2V) [31], or using
the Laplacian EigenMap embedding (LapEigMap) [9]. Extended results using SVD, LINE [87], and
Walklets [75] are available in the Appendix (Table S6). Each of these features is coupled with an ℓ2
regularized logistic regression model (LogReg) for downstream prediction.

GNN We include multiple variations of two GNN, GCN [48] and GAT [90], in the main results.
Extended results for SAGE [32], GIN [102], and GatedGCN [12] can be found in the Appendix
(Table S6). One major challenge in applying GNN to OBNB datasets is the lack of canonical node
features. This is unlike networks in other domains, such as citation networks, where node features
are naturally defined using the paper content, such as bag of words [34]. To tackle this problem,
we experiment with a diverse selection of node featurization strategies, including using the one hot
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Table 2: Performance of different methods on the four primary OBNB datasets evaluated in APOP
↑ aggregated over five seeds. Bold indicates the best-performing method within the method class
(traditional ML or GNN). Green indicates best performing-method across both classes. See Table S7
for extended baseline performance references.

BioGRID HumanNet

Model Features C&S? DisGeNET GOBP DisGeNET GOBP

LabelProp – ✗ 0.931 ± 0.000 1.885 ± 0.000 3.059 ± 0.000 3.806 ± 0.000
LogReg Adj ✗ 0.743 ± 0.000 2.528 ± 0.000 3.053 ± 0.000 3.964 ± 0.006
LogReg N2V ✗ 0.836 ± 0.029 2.571 ± 0.015 2.433 ± 0.029 4.036 ± 0.019
LogReg LapEigMap ✗ 0.864 ± 0.002 2.149 ± 0.000 2.301 ± 0.000 3.778 ± 0.001

GCN LogDeg ✗ 0.773 ± 0.035 2.022 ± 0.100 2.452 ± 0.107 3.524 ± 0.061
GCN LogDeg ✓ 1.026 ± 0.013 2.201 ± 0.035 2.777 ± 0.031 3.743 ± 0.015
GCN† N2V+LogDeg+Label ✓ 1.014 ± 0.020 2.411 ± 0.044 3.053 ± 0.078 3.921 ± 0.045
GCN‡ N2V+LogDeg+Label ✓ 1.012 ± 0.040 2.572 ± 0.066 3.116 ± 0.017 3.812 ± 0.071
GAT LogDeg ✗ 0.552 ± 0.111 1.592 ± 0.408 2.547 ± 0.207 3.571 ± 0.159
GAT LogDeg ✓ 1.002 ± 0.018 2.227 ± 0.024 3.007 ± 0.037 3.876 ± 0.053
GAT† N2V+LogDeg+Label ✓ 1.037 ± 0.036 2.624 ± 0.070 3.100 ± 0.031 3.908 ± 0.086
GAT‡ N2V+LogDeg+Label ✓ 1.063 ± 0.023 2.562 ± 0.070 3.065 ± 0.021 3.963 ± 0.082
† recommended BoT, ‡ recommended BoT with fully tuned GNNs (see Appendix A.4.1 for tuning details)

encoded log degree of the node, using node2vec, and many others. We provide detailed descriptions
for the 15 different feature construction strategies in Appendix A.3.1, with extended results for GCN
and GAT in Table S5.

Bag of Tricks (BoT) In addition to optimizing the model architectures, many tricks in model training
and feature augmentations have also shown to be key factors for practically good performance in
existing benchmarks [34]. Here, we further investigate the usefulness of several popular tricks,
including reusing training labels as node features (LabelReuse) [97] and performing post-correction
to the predictions at test time via correct and smooth (C&S) [39].

4 Results and discussions

4.1 Traditional ML methods perform comparably to GNNs overall

Table 2 shows the overall performance for the selected model on the four primary benchmarking
datasets (full baseline results in Table S6). Surprisingly, even after a rather extensive hyperparameter
search and GNN architecture tuning (Appendix A.4), logistic regression using graph-derived features
still performs comparably to GNNs. For example, node2vec achieves the best performance for GOBP
prediction when using both BioGRID and HumanNet. Similar results are obtained when using the
other networks (Table S6) and using the more standard random splitting strategy (Table S8). The
superior performance of traditional ML methods over GNNs is in stark contrast with results reported
in recent benchmarking studies [81, 23, 34], highlighting the unique characteristics of biological
networks and the challenges in modeling them. In addition, we demonstrate that the proposed
study-bias holdout splitting provides more stringent evaluations than random splitting (Table S8).
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Figure 2: Correlations between methods
across tasks in BioGRID-DisGeNET.

Recommendation of BoT for GNNs While plain GNNs
without BoT yield relatively unsatisfactory performances,
carefully crafted BoT can bring significant enhancement
to GNNs in our benchmark. First, a systematic bench-
mark on GCN and GAT with 15 different feature con-
struction reveals that using node2vec as node features
consistently achieve top performance across datasets (Fig-
ure S2). Second, reusing training labels as features also
elevates overall performance, most notably for GAT (Fig-
ure S3). Third, C&S post-processing universally improves
performance for both GNN and logistic regression meth-
ods, with, on average, 0.27 improvement in test APOP
scores (Figure S3,S4). In light of these observations, we
recommend an optimized BoT as follows: (1) use a combi-
nation of LogDeg encodings, node2vec embeddings, and
training labels as input node features, (2) apply C&S post-
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processing to refine predictions further. Our results indicate that the recommended BoT helps improve
GNNs’ performances by 0.36 APOP test scores on average across datasets.

4.2 Different models have their own strength

Despite the overall rankings of different methods indicating the superiority of their gene classification
capabilities, no single method can achieve the best results across all tasks. We demonstrate this in
Figure 2, which shows that the performance of most methods does not correlate with each other across
different tasks on the BioGRID-DisGeNET dataset. For example, while LogReg+Adj performs better
than GAT+LogDeg overall on the BioGRID-DisGeNET dataset, GAT+LogDeg achieves significantly
better predictions (t-test p-value < 0.01) for a handful of tasks (Appendix S9), such as iris disorder
and ocular vascular disorder.

Focusing on the optimal model for one or a few tasks of interest is utterly essential. This is because,
in practice, experimental biologists often come with only one or a few gene sets and want to either
obtain new related genes or reprioritize them based on their relevance to the whole gene set [62].
Therefore, understanding the characteristics of the task that for which a particular model works well
over others is the key to making better architectural decisions for a new task of interest and, ultimately,
designing new specialized GNN for network biology.

4.3 Homophily is a driving factor for good predictions

Homophily describes the tendency of a node’s neighborhood to have similar labels to itself. Such
effects are prevalent in many real-world graphs, such as citation networks, and have been studied
extensively recently in the GNN communities as a way to understand what information can or
cannot be captured by GNN effectively [59, 61]. Intuitively, homophily aligns well with the guilt-by-
association principle in network biology, which similarly states that genes that interact with each
other are likely functionally related. Despite this clear connection, existing homophily measures, such
as the homophily ratio [61], do not straightforwardly apply to the OBNB datasets for two reasons.

1. Most established work on homophily consider multiclass classification task, where each node
has exactly one class label, contrasting with the multilabel classification tasks in OBNB.

2. Label information in OBNB datasets is incredibly sparse. On average, there are only hundreds
of positive genes per class out of the total number of 20K genes.

One attempt to resolve the first issue is to compute the average homophily ratio for each class
independently. However, due to the label scarcity, the resulting metric can not be readily interpreted.
In particular, the highest homophily ratio observed in our main benchmarking study is about 0.2
(Figure 3). Datasets with this value are typically categorized into heterophily (not homophily),
contradicting the guilt-by-association principle. To address this inconsistency, we propose a corrected
version of the homophily ratio that takes label scarcity into account (see Appendix A.6). The main
idea is to measure homophily as a relative measurement: how much more likely nodes labeled in class
i are connected with nodes also labeled in class i than those not in class i? This measure is directly
interpretable as it is the log fold change of the homophily between positive and negative examples.

Corrected homophily ratio characterizes prediction performance of graph ML methods As
shown in the right two panels of Figure 3, the corrected homophily ratio is well correlated with the
prediction performance across different networks and tasks. This positive correlation unveils the
fundamental principle that graph ML methods rely on: the underlying graph must provide sufficient
contrast between the neighborhoods of the positive and negative examples. Conversely, the left two
panels of Figure 3 indicate that the standard homophily ratio fails to adequately account for the
performance nuances in low homophily tasks As a result, OBNB opens up new research opportunities
in understanding the effects of homophily in GNN by introducing a new type of homophily that
differs significantly from those traditionally studied [61].

Graph based augmentation tricks offer most advantages on intermediate homophilic tasks
We next investigate the relationship between the corrected homophily ratio and the performance
difference between a pair of methods by asking: is one method systematically better than another
method on a particular range of homophily? The first and second rows of Figure S5 indicate that
GNN augmented with different grpah-based tricks, such as C&S and node2vec features, provide most
apparent advantage at intermediate homophily (corrected homophily ratio of ∼ 2.5). However, as
the homophily increases further, the performance differences diminish, suggesting that all methods
would perform equally perfectly as the graph provide more clear clues about the labels. Similar trends
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Figure 3: Relationship between the (corrected) homophily ratios of tasks and their performances.

are observed for the comparison between GAT+BoT and baseline label propagation and logistic
regression methods (Figure S5 third row), where GAT+BoT most significantly outperforms the
baselines at intermediate homophily.

4.4 Challenges for the OBNB benchmarks and potential future directions

Our systematic benchmarking study paves the way for numerous subsequent explorations. Below, we
outline the primary challenges associated with OBNB and suggest potential areas for future research.

Challenge 1. Lack of canonical node features Traditional network biology studies solely rely on
biological network structures to gain insights [7, 6, 49]. Meanwhile, the presence of rich node features
in many existing graph benchmarks is crucial for the success of GNNs [55], posing a challenge for
GNNs in learning without meaningful node features. An exciting and promising future direction for
obtaining meaningful node features is by leveraging the sequential or structural information of the
gene product (e.g., protein) using large-scale biological pre-trained language models like ESM-2 [53].

Challenge 2. Dense and weighted graphs Many gene interaction networks are dense and weighted
by construction, such as coexpression [45] or integrated functional interactions [86]. In more extreme
cases, the weighted networks can be fully connected [29]. The networks used in the OBNB benchmark
are orders of magnitude denser than citation networks [81] (Table 1a). Thus, scalably and effectively
learning from densely weighted gene interaction networks is an area of research to be further explored
in the future [56]. One potential solution would be first sparsifying the original dense network
before proceeding to train GNN models on them, either by straightforwardly applying an edge cutoff
threshold or by using more intricated methods such as spectral sparsification [84].

Challenge 3. Scarce labeled data Curated biological annotations are scarce, posing the challenge
of effectively training powerful and expressive models with limited labeled examples. Furthermore, a
particular gene can be labeled with more than one biological annotation (multi-label setting), which
is much more complex than the multi-class settings in popular benchmarking graph datasets such as
Cora and CiteSeer [81]. The data scarcity issue naturally invites the usage of self-supervised [101]
graph learning techniques, such as DGI [91], and knowledge transfer via pre-training, such as
TxGNN [38]. However, these methods still face the challenge of missing node features (challenge 1).

Challenge 4. Low corrected homophily ratio tasks Our results in Figure 3 show that tasks
with low corrected homophily ratios tend to be more challenging to predict, indicating that current
tested methods are limited to local information of the underlying graph. This naturally opens up
opportunities for designing models that (1) better capture long-range dependencies [22] and (2)
exploit higher-order structural information [65].

5 Conclusion

We have developed obnb, an open-source Python package for rapidly setting up ML-ready bench-
marking graph datasets using diverse biomedical networks and gene annotations from publicly
available sources. obnb takes care of tedious data (pre-)processing steps so that network biologists
can easily set up particular datasets with their desired settings, and graph ML researchers can directly
use the ML-ready datasets for model development. We have established a comprehensive set of
baseline performances on OBNB using a wide range of graph ML methods for future reference
and pointed out potential improvements that could further enhance performances. Together, OBNB
will help accelerate the development of advanced graph ML methods in network biology toward
furthering our understanding of the complex genetic basis of human traits and diseases.
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A Additional information

A.1 Example code for obnb

The obnb library provides high-level APIs for users to set up benchmarking datasets from diverse
selections of gene interaction networks and gene annotations to study the performance of various
graph learning methods. Below, we provide a simple code snippet demonstrating how to set up
a full dataset in a single function call. Further, we demonstrate how the constructed dataset can
be directly used to evaluate the performance of a simple GNN model. We also invite readers to
check out the README file of the obnb library for more comprehensive example usages: https:
//github.com/krishnanlab/obnb/blob/main/README.md.

1 from obnb.dataset import OpenBiomedNetBench
2
3 # Download the current processed archive (set version to "latest" to
4 # download data from source directly and process them from scratch)
5 dataset = OpenBiomedNetBench(root="datasets", version="current", graph_name="BioGRID",
6 label_name="DisGeNET", auto_generate_feature="OneHotLogDeg")
7
8 # User built-in GNN trainer to train and evaluat the performance of a simple GCN
9 gcn_model = GCN(in_channels=1, hidden_channels=64,

10 num_layers=5, out_channels=dataset.num_tasks)
11 gcn_trainer = SimpleGNNTrainer(device="cuda", metric_best="apop")
12 gcn_results = gcn_trainer.train(gcn_model, dataset)
13
14 # Alternatively, convert the dataset into your favorite GNN framework, i.e., PyG or DGL
15 # Or use OpenBiomedNetBenchPyG or OpenBiomedNetBenchDGL to directly instantiate the dataset
16 pyg_data = dataset.to_pyg_data()
17 dgl_data = dataset.to_dgl_data()

Listing 1: Example code for using obnb to set up the BioGRID-DisGeNET benchmarking dataset.

A.2 Benchmarking experiments implementation information

The obnbench benchmarking codebase utilizes PyTorch [70] and PyTorch Geometric (PyG) [25]
for building deep (graph) neural network models. In addition, we leverage Weights & Bias [10] for
tracking training results and Hydra [103] for managing experiment configurations. All benchmarking
experiments are run using computational nodes with five CPUs, 45GB memory, and a Tesla V100
GPU (32GB).

A.3 GNN backbone design
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Figure S1: Model architecture overview

The basic GNN architecture we used contains the following components:

Feature encoder Since the genes do not come with canonical features, we need to derive initial node
features for the GNN model. The default option we used is OneHotLogDeg with 32 bins (A.3.1).
The raw features are first processed by a custom batch norm layer that is activated during testing in
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addition to training. Then, the processed features are projected into the hidden dimension (d = 128
by default) of the model via a linear layer, followed by batch norm and ReLU activation.

Message passing layers We use five message passing layers in the GNN model by default. Each
message passing layer contains a convolution block (A.3.2), followed by normalization, non-linear
activation, and dropouts. We apply residual connection by summing up the input and the output of
the graph convolution block.

Prediction head and post-processing Finally, we apply a linear layer to project the hidden dimension
to the dimension matching the number of tasks and apply a sigmoid activation to turn the prediction
into binary prediction probabilities. Optionally, we apply correct and smooth (C&S) [39] at test time
to correct the predicted probabilities via a two-step label propagation (A.3.3).

A.3.1 Node feature design

In this section, we provide an overview of a diverse selection of node feature constructions we used in
our benchmark. All node features are constructed using the whole network as input in a transductive
setting, except for a few cases where the node features do not depend on the network structure, such
as constant features. By default, any initial node feature will be 128-dimensional unless otherwise
specified. We start by designing a collection of simple statistics that can be easily derived.

Constant uses a one-dimensional trivial feature for every node in the graph.

RandomNormal samples 32-dimensional features for each node independently via a standard normal
distribution.

OneHotLogDeg (short for LogDeg) first computes the log degree of each node in the graph and
then uniformly bins the nodes into one of 32 bins based on their log degree. The one-hot encoded
node degrees approach has recently been shown to be a great structure encoder, whose utilization
can sometimes result in performance superior to using the original node features associated with the
graph [17, 55]. Meanwhile, the design choice of using log-uniform grids stems from the scale-free
nature of biological networks [2].

RandomWalkDiag is the landing probability of a node back to itself after k hops, which is also
commonly referred to as the random walk structural encodings (RWSE) [21]. It has been used widely
in many graph transformer models due to its expressiveness in capturing graph structure [52]. Next,
we consider several node feature options derived directly from the adjacency matrix.

Adj uses the rows of the adjacency matrix as the node feature. It has been shown previously [54]
that logistic regression using the adjacency matrix produced better prediction performance than the
commonly used label propagation algorithm for diverse gene classification problems.

RandProjGaussian and RandProjSparse are random projections of the adjacency matrix
using two different but related approaches. We use the scikit-learn [71] implementations
(GaussianRandomProjection and SparseRandomProjection) to compute these features.

SVD uses the left singular vectors of the adjacency matrix as the node features.

LapEigMap [9] uses the (ℓ2 normalized) eigenvectors of the symmetric normalized graph Laplacian
as the node features.

Node embeddings [68] are powerful approaches to extracting vectorial representations of each node
in a graph and have shown promising results in many biomedical application [54, 104, 5]. Thus, we
include a few popular and good-performing node embedding options in our benchmark.

LINE1 and LINE2 [87] extracts first- and second-order proximity information from the graph to
train the underlying embeddings. We use the GraPE [15] implementation to compute the LINE
embeddings.

Node2vec [31] extracts node representation using word2vec [64] on node sequences sampled from
the graph via biased random walks. The biased random walks, in contrast to an earlier work,
DeepWalk [74], which uses an unbiased search, allow the searching strategy to be more flexible,
mimicking either breadth-first search or depth-first search in the random walk phase.

Walklets [75] is similar to botch Node2vec and DeepWalk in that it runs word2vec using random
walks sampled from the graph. However, wallets sample node pairs from the random walk with a
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specific number of hops, allowing a more explicit control of the multiscale relationships between
nodes.

Finally, we experiment with options that let the model learn the node features freely.

Embedding lets the model learn the node features freely.

AdjEmbBag is similar to Embedding but with an additional aggregation step that sums up the raw
embedding of each node from the central node’s neighborhood.

A.3.2 Graph neural network summary

In this section, summarize the five tested GNN models under the message-passing framework [26].
Let hl

i be the raw representation of vertex i at layer j, and h̃l
i be the corresponding processed

representation, e.g., after non-linear activation and normalization. The message-passing framework is
written as

hl+1
i = f l

( ⊕
j∈Ni

ϕl
n

(
h̃l
j

)
, ϕl

s

(
h̃l
i

))
(1)

where
⊕

is the aggregation operator, f is the update function, ϕn and ϕs are message functions for
neighbors and self. Different GNNs differ in the choices of

⊕
, f , ϕn and ϕs they use.

GCN [48] uses a scaled linear transformation as the message function. The scaling factor is computed
as the normalized edge weights with added self-loop. The aggregation is done by summing up the
transformed message functions.

hl+1
i =

∑
j∈Ni

( ei,j√
d̃id̃j

Θlh̃l
j

)
+

ei,i

d̃i
Θlh̃l

i (2)

where d̃i = di + 1 =
∑

j∈Ni
ei,j is the degree of vertex i with self-loop added.

SAGE [32] uses two separate linear transformations as the message functions for neighbors and self.
The aggregation is done by taking the sum1 of the neighbors’ messages and then adding it to the
self-message. We additionally use an affine update function to transform the aggregated messages.

hl+1
i = Θl

u

(
Θl

n

( ∑
j∈Ni

h̃l
j

)
+Θl

sh̃
l
i

)
+ blu (3)

GIN [102] uses a multi-layer perceptron (MLP) to update the aggregated messages, which is done by
summing up neighbors’ representations and self-representation from the last layer.

hl+1
i = MLPl

( ∑
j∈Ni

h̃l
j + (1 + ϵ)h̃l

i

)
(4)

GAT [90, 13] uses an attention mechanism to distribute the weights from which the linear transformed
messages are aggregated.

hl+1
i =

∑
j∈Ni

(
αi,jΘ

l
vh̃

l
j

)
+ αi,iΘ

l
vh̃

l
i (5)

In particular, the original GAT paper [90] formulated the attention scores as follows

αi,j =
exp

(
LeakyReLU

(
(al)⊤Θl

a[h̃
l
i||h̃l

j ]
))

∑
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(
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a[h̃
l
i||h̃l

k]
)) (6)

However, it was pointed out in a more recent work, GATv2 [13], that the above formulation was
fundamentally limited in the types of attention the model can learn and proposed a correction that

1The original paper uses mean aggregation, but we found that sum aggregation works better in our benchmark.
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showed stronger performances follow.

αi,j =
exp

(
(al)⊤LeakyReLU

(
Θl

a[h̃
l
i||h̃l

j ]
))

∑
k∈Ni

exp
(
(al)⊤LeakyReLU

(
Θl

a[h̃
l
i||h̃l

k]
)) (7)

We also observe a slight but significant improvement when using GATv2 attention as opposed to the
original GAT. Thus, all reported GAT results are based on v2 attention.

GatedGCN [12] uses gating mechanisms to process neighbors’ messages, with linear transformations
as the message functions. The aggregation is done by summing up the gated messages from neighbors
and adding them to the self-message.

hl+1
i =

∑
j∈Ni

(
ηi,j ⊙Θl

vh̃
l
j

)
+Θl

sh̃
l
i (8)

where ⊙ is the elementwise multiplication operator, and the gating coefficients ηi,j are computed as

ηi,j = sigmoid
(
Θl

qh̃
l
i +Θl

kh̃
l
j

)
(9)

A.3.3 Label propagation and C&S

Label propagation iteratively propagates the label information from the source nodes outwards
through the network neighborhoods [49, 16, 66]. Let Y ∈ {0, 1}n×d be the (training) label matrix,
and M ∈ Rn×n be the diffusion operator. The propagated information at step t, denoted Ft ∈ Rn×d,
is defined as

Ft = αFt−1 + (1− α)F0 (10)

where F0 = F is the features to be propagated, which is the label matrix Y in the case of la-
bel propagation. The propagated feature is computed by repeating the propagation above until
convergence:

PROPAGATE(F) = lim
t→∞

Ft (11)

In practice, equation 11 is approximated by applying the propagation until the changes are small
enough.

The original label propagation paper [105] uses the symmetric normalized adjacency matrix
D−1/2AD−1/2 as the diffusion operator, where A and D are the adjacency matrix and the cor-
responding diagonal degree matrix. Here, we use the column stochastic matrix D−1A as the
diffusion operator to resemble the random walk with restart (RWR) implementation that is more
commonly used in the network biology literature [16]. We use a propagation parameter α of 0.1
(equivalent to a restart parameter of 0.9) for label propagation.

C&S implements the idea of using label propagation2 to (1) correct for the error made by the model
and (2) smooth out the corrected predictions. Specifically, let E = Ytrain − Z be the prediction error
matrix, where Z is the predicted probabilities resulting from the model. C&S can be summarized as
follows.

1. Propagate the error matrix: Ẽ = PROPAGATE(E).

2. Correct the original prediction with a fixed scale s: Z̃ = Z+ sẼ.

3. Smooth out the corrected predictions: ZC&S = PROPAGATE(Z̃)

We use α = 1.0 for the correction step, α = 0.8 for the smoothing step, and a scaling factor of
s = 1.5.

2Uses the symmetric normalized adjacency matrix for propagation.
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A.4 Training and hyperparameter details

All hyperparameters are listed in the configuration files for each model in the benchmarking reposi-
tory3. We summarize the primary default hyperparameters for GNN in Table S1.

For logistic regression baselines, we use the SGD optimizer with a constant learning rate of 200,
weight decay of 1e-5, and momentum of 0.9.

A.4.1 Fully tuned GNN models

In addition to the baseline GNN experiments where we used the default settings elaborated above,
we also tuned GCN and GAT specifically for the four primary benchmarks presented in the main
paper with a bag of tricks (BoT). Specifically, we construct node features by concatenating Node2vec
embeddings (d = 128), OneHotLogDeg encodings (d = 32), and LabelReuse. Finally, we apply
correct and smooth (C&S) to the GNN predictions as a post-processing step.

We use the Bayesian search hyperparameter optimization strategy provided by Weights&Biases [10]
and optimize for the validation APOP scores to tune the dataset-specific hyperparameters for GCN
and GAT on primary results presented in Table 2. The search space is listed in Table S2 and the final
hyperparameter settings are summarized in Table S3,S4.

Table S1: Default hyperparameter settings
Parameter Value

General architecture Hidden dimensions 128
Number of layers 5
Activation ReLU
Dropout 0.2
Normalization DiffGroupNorm [107]

GAT specific Heads 1
Attention dropout 0.05

GIN specific MLP layers 2
MLP dimensions 256
ϵ 0.0

Optimizer
(AdamW [58])

Learning rate 0.01
Weight decay 1e-6
Max epochs 50,000
Early stopping patience 500

Learning rate scheduler
(ReduceLROnPlateau)

Scheduler patience 100
Scheduler reduce factor 0.5
Minimum learning rate 1e-5

Table S2: Hyperparameter search space for GCN and GAT on the primary datasets
Parameter Search space

Number of layers {1, 2, 3, 4, 5, 6, 7, 8}
Hidden dimensions {64, 128, 192, 256}
Number of heads (GAT) {1, 2, 3, 4}
Attention dropout (GAT) {0.0, 0.05, 0.1}
Dropout {0.1, 0.2, 0.3}
Normalization {none, BatchNorm, LayerNorm, PairNorm, DiffGroupNorm}
Activation {ReLU, PReLU, GELU, SELU, ELU}

A.5 The log2 fold change of average precision over the prior metric (APOP)

APOP is computed by taking log2 of the ratio between the average precision and the prior. The prior
is computed as the ratio between the number of positives and the total number of samples, which

3https://github.com/krishnanlab/obnbench/tree/main/conf
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Table S3: Tuned GCN model on the four primary benchmarks.
BioGRID HumanNet

GOBP DisGeNET GOBP DisGeNET

Hidden dimension 192 256 192 64
Number of layers 3 1 4 4
Activation SELU PReLU GELU ReLU
Dropout 0.3 0.3 0.3 0.3
Normalization DiffGroupNorm DiffGroupNorm – DiffGroupNorm

Table S4: Tuned GAT (v2) model on the four primary benchmarks.
BioGRID HumanNet

GOBP DisGeNET GOBP DisGeNET

Hidden dimension 128 64 128 64
Number of layers 4 2 4 8
Number of heads 1 4 1 1
Attention dropout 0.05 0.1 0.1 0.1
Activation SELU PReLU PReLU GELU
Dropout 0.2 0.3 0.2 0.1
Normalization BatchNorm DiffGroupNorm DiffGroupNorm DiffGroupNorm

corresponds to the probability that a randomly drawn sample is positive. Thus, APOP indicates how
much better (> 0), or worse (< 0), a prediction is than a random guess, in two-fold change. More
precisely,

APOP = log2

(
Average Precision

prior

)
= log2

( ∑
n(Rn −Rn−1)Pn

(# positives)/(# positives + # negatives)

)
(12)

where Rn and Pn are the recall and precision and precision at the nth prediction score threshold.

The average precision is also related to the AUPRC4, which has been shown to be more suitable than
the AUROC5 in the case of class imbalance [80, 83]. In our dataset, class imbalance is prevalent,
where each class has only one or two hundred of positive examples but thousands of negative examples
(Table 1b,S11). Moreover, AUROC is more tolerant of errors made on top predictions and generally
only requires that the global distribution of the predictions made is consistent with the true labels.
AUPRC and AP, on the other hand, penalize the top predictions’ errors more.

Practical relevance The OBNB benchmarks cover diverse gene prioritization tasks, such as pinpoint-
ing relevant genes for a particular disease. This formulation can also be straightforwardly extend
to drug recommendation or drug repurposing tasks, by considering known drug targets (genes) as
positive examples. For such biomedicine applications, in practice, only a few top predictions made by
a predictive method can be experimentally verified by experimentalists due to the high experimental
costs. Thus, APOP’s emphasis on top predictions is well-aligned with this practical constraint and
encourages methods to make highly accurate top predictions.

A.6 Corrected Homophily Ratio

Let G = (V,E,w) be a weighted graph (unweighted graphs can be treated as weighted graphs with
identical edge weights), with node set V , edge set E, and the edge weight function w : V × V → R.
Let yi : V → {0, 1}p be the label function for the ith class (or label), for i ∈ {1, . . . , p}.

We define the set of labeled nodes Vlabeled as the ones that are part of at least one label, i.e., Vlabeled =
{v ∈ V |maxi∈1,...,p yi(v) = 1}. Furthermore, we define the positively and negatively labeled nodes
for the ith class as V (i+)

labeled = {v ∈ V |yi(v) = 1} and V
(i−)

labeled = {v ∈ V |yi(v) = 0}, respectively

4The area under the precision and recall curve.
5The area under the receiver operator characteristic curve.
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Definition 1 (Node homophily ratio). The node homophily ratio of the ith class for node v is defined
as the ratio of its neighborhood that is positively labeled in the ith class.

hi(v) =
|{u ∈ N (v)|yi(u) = 1}|

|N (v)|
Definition 2 (Positive and negative homophily ratio). The positive and negative homophily ratios of
the ith class (or label) are defined as the ratio of a node’s neighborhood that are positively labeled
for the ith class averaged over the positively and negatively labeled nodes, respectively

hi+ =
1

|V (i+)
labeled|

∑
v∈V

(i+)
labeled

hi(v), hi− =
1

|V (i−)
labeled|

∑
v∈V

(i−)
labeled

hi(v)

We refer to the positive homophily ratio as the homophily ratio for short. Note that definition 1
is slightly different from the typical definition of node homophily that is used in previous works
targeting multiclass classification settings [72]. Specifically, (1) we only count positive nodes from
the neighborhood instead of nodes having the same class as the central node since we are dealing
with (multilabel) binary classification, which will also come in handy later for defining the corrected
homophily ratio; (2) we only average the node homophily ratios over the positive node sets since
our datasets have a notable class imbalance, where most nodes are negatively labeled. This way, the
homophily ratio is less skewed towards the majority of negatively labeled nodes.
Definition 3 (Corrected homophily ratio). The corrected homophily ratio of the ith class is defined
as the expected fold change of node homophily between positively and negatively labeled nodes for
class i

h̃i = log2

(
hi+

hi−

)
This corrected homophily ratio provides an answer to the following question: How much more likely
are nodes labeled in class i to be connected with other nodes labeled in class i compared to nodes not
labeled in class i? A positive value of the corrected homophily ratio indicates that positive nodes in
class i have a higher likelihood of interacting with other positive nodes of class i than with negative
nodes.

A.7 Community standards and maintenance plans

We follow several community standards to ensure sustainable and maintainable community-wide
contributions, which is the key to the continuing improvement of a code base. First, we release the
code on GitHub https://github.com/krishnanlab/obnb under the permissive MIT license.
Second, we use Sphinx to build the documentation of the code base and host it on ReadTheDocs.org.
Several quick-start examples using the package are also provided on the GitHub README page.
Third, code quality is ensured via various testing and code-linting automation using tox, pytest,
pre-commit hooks, and GitHub actions. Fourth, we provide contribution guidelines and a code of
conduct on the GitHub page. Finally, as a part of our commitment to the community, we also put
in place a maintenance plan to address GitHub issues, merge pull requests, and release updates
periodically to ensure the benchmarks remain adaptive to the evolving needs of the community.

B Data descriptions

B.1 Networks

BioGRID [85] (MIT License) is a protein interaction network curated from primary experimental
evidence from the biomedical literature, as well as evidence inferred from low- and high-throughput
experiments.

BioPlex [41] (Creative Commons Attribution-ShareAlike 4.0 International License) is a protein
interaction network whose interactions are measured by affinity purification-mass spectrometry (AP-
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MS) analysis shared across two cell lines (HEK293T and HCT116). This shared interaction network
encodes core complexes involving many essential proteins that are vital for the cell’s survival.

ComPPIHumanInt [92] (CC BY-NC 4.0 License) is a context-naive version of the cellular
compartment-specific ComPPI [92] networks for humans, which are constructed by combining
protein interactions from nine different PPI databases (including BioGRID).

ConsensusPathDB [46] (Free for academic use, see http://cpdb.molgen.mpg.de/ for more
Licensing info) integrates protein interaction evidence (binary protein interaction, protein complex
interaction, genetic interaction, metabolic, signaling, etc.) from 31 public databases, in addition to
interactions curated from the literature.

FunCoup [76] (CC BY-SA 4.0 License) version 5 is a functional gene interaction network con-
structed by integrating a wide range of interaction evidence using a redundancy-weighted naive Bayes
approach.

HIPPIE [1] (CC BY-NC 4.0 License) integrates experimentally detected protein interactions from
several public databases such as BioGRID.

HumanBaseTopGlobal [29] (CC BY 4.0 License) is the tissue-naive version of the HumanBase
tissue-specific gene interaction network collections, which are constructed by integrating hundreds of
thousands of publicly available gene expression studies, protein–protein interactions and protein–DNA
interactions via a Bayesian approach, calibrated against high-quality manually curated functional
gene interactions.

HuMAP [20] (CC0 1.0 License) is a protein interaction network derived from over seven thousand
protein complexes by integrating experimental evidence from public resources including AP-MS,
large-scale biochemical fraction data, proximity labeling, and RNA hairpin pulldown data.

HumanNet [42] (CC BY-SA 4.0 License) is a functional gene interaction network originally designed
for disease studies. It contains interaction evidence from gene co-citation from the literature, gene
co-expression, pathway, domain profile, genetic interaction, gene neighborhood, phylogenic profile,
and other protein interaction data. All these interaction evidence are integrated using a Bayesian
statistical framework, resulting in a single value for each pair of genes that indicate the odds ratio for
their functional interaction.

HuRI [60] (CC BY-4.0 License) is a binary protein interaction network constructed via the yeast
two-hybrid (Y2H), covering about 90% of the protein-coding genes in the human genome.

OmniPath [88] (See https://omnipathdb.org/info for Licenses collected for each database)
integrates protein interactions, signaling and regulatory relationships from over 100 resources.

PCNet [36] (CC BY-NC 4.0 License) is a protein interaction network constructed by requiring that
an edge be supported by at least two out of the 21 selected protein interaction networks, such as
BioGRID and ConsensusPathDB.

ProteomeHD [50] (CC BY-4.0 License) is the subnetwork of [50] containing top 0.5% strongest
co-regulation signal between pairs of proteins. The co-regulation is measured by proteins’ response
to a total of 294 biological perturbations via isotope-labeling mass spectrometry.

SIGNOR [73] (CC BY-4.0 License) contains manually curated causal signaling relationships
between proteins and other biochemical molecules, such as transcriptional activations and phosphory-
lation.

STRING [86] (CC BY-4.0 License) is a functional interaction network constructed by integrating
seven types of gene interaction evidence via a probabilistic approach that calibrates against the
KEGG [47] pathway database. The seven evidence types include conserved neighborhood, gene
co-occurrence across species, gene fusion events, gene co-expression, other databases, and text-mined
interactions.

B.2 Annotations and Ontologies

Gene Ontology [4] (CC BY-4.0 License) is a structured and standardized system that provides
a comprehensive vocabulary to describe the molecular functions (GOMF), biological processes
(GOBP), and cellular components (GOCC) associated with genes across different organisms. It aims
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to unify the representation of biological knowledge and enable effective analysis and interpretation of
genomic data.

Mondo Disease Ontology [89] (CC BY-4.0 License) is a unifying resource that integrates disease,
genotype, and phenotype knowledge across diverse resources, providing a standardized knowledge
graph with controlled vocabularies for diseases and phenotypes.

DisGeNET disease gene annotations [77] (CC BY-NC 4.0 License) is a disease gene annotation
database that contains a wide range of disease-gene association evidence, including curated anno-
tations, high-throughput experiments and other inferred annotations, animal models, and literature
text-mined annotation mostly from BEFREE. By default, we only use the curated and inferred
annotations.

DISEASES disease gene annotations [30](CC BY License) is another disease gene annotation
database that has a weekly update schedule for extracting disease gene annotations via text-mining
from the fast-growing literature. The text-mined approach uses full text instead of only using the
titles and abstracts. Other disease gene annotations from experimental data and other databases are
also available.

B.3 Archived data

In addition to downloading and processing the data directly from the original sources, we also
provide archived versions of the data preprocessed by use by running the default OBNB processing
pipelines. The archived data is versioned with DOI’s and can be found on Zenodo under the record
https://zenodo.org/record/8045270
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C Additional results

Table S5: Ablation study on different initial node feature constructions for GCN and GAT. Reported
values are average test APOP scores aggregated over five random seeds. The best score within a
group (network x label x model) is bolded.

Network Model Feature DISEASES DisGeNET GOBP

BioGRID GCN Constant 0.373 ± 0.018 0.451 ± 0.210 0.557 ± 0.144
RandomNormal 1.329 ± 0.043 0.867 ± 0.017 2.121 ± 0.114
OneHotLogDeg 1.077 ± 0.057 0.827 ± 0.050 2.011 ± 0.148
RandomWalkDiag 0.844 ± 0.103 0.702 ± 0.064 1.358 ± 0.044
Adj 1.442 ± 0.120 0.899 ± 0.108 2.148 ± 0.045
RandProjGaussian 1.288 ± 0.041 0.828 ± 0.034 2.278 ± 0.084
RandProjSparse 1.264 ± 0.047 0.749 ± 0.057 2.306 ± 0.088
SVD 1.259 ± 0.076 0.808 ± 0.030 2.318 ± 0.080
LapEigMap 1.415 ± 0.030 0.963 ± 0.045 2.378 ± 0.098
LINE1 1.258 ± 0.041 0.798 ± 0.023 2.376 ± 0.081
LINE2 1.312 ± 0.027 0.857 ± 0.083 2.416 ± 0.048
Node2vec 1.392 ± 0.051 0.965 ± 0.055 2.487 ± 0.112
Walklets 1.366 ± 0.044 0.886 ± 0.079 2.438 ± 0.052
Embedding 1.348 ± 0.073 0.788 ± 0.060 2.147 ± 0.113
AdjEmbBag 1.338 ± 0.071 0.798 ± 0.080 2.031 ± 0.089

GAT Constant 0.399 ± 0.039 0.362 ± 0.071 0.398 ± 0.071
RandomNormal 1.290 ± 0.126 0.755 ± 0.140 2.268 ± 0.047
OneHotLogDeg 0.946 ± 0.289 0.803 ± 0.066 2.181 ± 0.080
RandomWalkDiag 0.873 ± 0.115 0.554 ± 0.160 1.702 ± 0.068
Adj 1.290 ± 0.320 0.594 ± 0.154 1.972 ± 0.230
RandProjGaussian 1.357 ± 0.073 0.897 ± 0.070 2.402 ± 0.081
RandProjSparse 1.351 ± 0.091 0.842 ± 0.063 2.461 ± 0.062
SVD 1.019 ± 0.199 0.700 ± 0.081 2.384 ± 0.058
LapEigMap 1.423 ± 0.072 0.914 ± 0.103 2.541 ± 0.042
LINE1 1.480 ± 0.073 0.874 ± 0.071 2.486 ± 0.040
LINE2 1.454 ± 0.043 0.888 ± 0.057 2.463 ± 0.138
Node2vec 1.416 ± 0.126 0.877 ± 0.032 2.585 ± 0.052
Walklets 1.464 ± 0.072 0.852 ± 0.073 2.392 ± 0.170
Embedding 1.375 ± 0.092 0.834 ± 0.056 2.279 ± 0.197
AdjEmbBag 0.645 ± 0.049 0.525 ± 0.041 1.242 ± 0.062

HumanNet GCN Constant 0.385 ± 0.018 0.898 ± 0.873 0.610 ± 0.037
RandomNormal 3.006 ± 0.112 2.511 ± 0.031 3.302 ± 0.104
OneHotLogDeg 2.873 ± 0.134 2.552 ± 0.059 3.574 ± 0.116
RandomWalkDiag 2.056 ± 0.102 1.672 ± 0.171 3.001 ± 0.149
Adj 3.562 ± 0.049 2.788 ± 0.096 3.715 ± 0.077
RandProjGaussian 3.346 ± 0.096 2.768 ± 0.036 3.654 ± 0.054
RandProjSparse 3.341 ± 0.085 2.784 ± 0.021 3.759 ± 0.039
SVD 3.211 ± 0.062 2.723 ± 0.064 3.780 ± 0.075
LapEigMap 3.219 ± 0.077 2.676 ± 0.072 3.735 ± 0.068
LINE1 2.883 ± 0.097 2.560 ± 0.049 3.700 ± 0.078
LINE2 2.918 ± 0.070 2.563 ± 0.082 3.656 ± 0.038
Node2vec 3.359 ± 0.070 2.798 ± 0.024 3.816 ± 0.039
Walklets 3.464 ± 0.066 2.762 ± 0.053 3.842 ± 0.052
Embedding 3.389 ± 0.051 2.637 ± 0.032 3.538 ± 0.040
AdjEmbBag 3.499 ± 0.032 2.700 ± 0.066 3.482 ± 0.048

GAT Constant 0.280 ± 0.043 0.449 ± 0.047 0.333 ± 0.035
RandomNormal 3.442 ± 0.331 2.758 ± 0.204 3.535 ± 0.126
OneHotLogDeg 3.052 ± 0.312 2.605 ± 0.074 3.661 ± 0.088
RandomWalkDiag 2.623 ± 0.862 2.340 ± 0.285 3.409 ± 0.059
Adj 3.791 ± 0.071 2.943 ± 0.053 3.770 ± 0.029
RandProjGaussian 3.390 ± 0.105 2.749 ± 0.134 3.803 ± 0.103
RandProjSparse 3.477 ± 0.135 2.811 ± 0.126 3.773 ± 0.085
SVD 3.691 ± 0.080 2.653 ± 0.101 3.792 ± 0.076
LapEigMap 3.438 ± 0.269 2.837 ± 0.180 3.907 ± 0.034
LINE1 3.630 ± 0.058 2.794 ± 0.163 3.857 ± 0.085
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LINE2 3.430 ± 0.133 2.867 ± 0.051 3.779 ± 0.123
Node2vec 3.662 ± 0.036 2.975 ± 0.027 3.947 ± 0.090
Walklets 3.483 ± 0.103 2.887 ± 0.092 3.885 ± 0.112
Embedding 3.539 ± 0.227 2.797 ± 0.087 3.738 ± 0.090
AdjEmbBag 3.592 ± 0.086 2.802 ± 0.065 3.692 ± 0.075

ComPPIHumanInt GCN Constant 0.263 ± 0.026 0.307 ± 0.014 0.440 ± 0.039
RandomNormal 1.544 ± 0.024 1.075 ± 0.058 2.411 ± 0.064
OneHotLogDeg 1.394 ± 0.077 0.964 ± 0.043 2.244 ± 0.072
RandomWalkDiag 0.946 ± 0.109 0.759 ± 0.053 1.652 ± 0.081
Adj 1.471 ± 0.024 1.037 ± 0.074 2.320 ± 0.049
RandProjGaussian 1.527 ± 0.067 1.069 ± 0.071 2.649 ± 0.030
RandProjSparse 1.558 ± 0.069 1.030 ± 0.046 2.593 ± 0.058
SVD 1.459 ± 0.026 1.112 ± 0.056 2.622 ± 0.091
LapEigMap 1.626 ± 0.037 1.110 ± 0.061 2.484 ± 0.058
LINE1 1.536 ± 0.103 1.057 ± 0.049 2.540 ± 0.049
LINE2 1.606 ± 0.062 1.060 ± 0.041 2.588 ± 0.016
Node2vec 1.546 ± 0.080 1.072 ± 0.047 2.744 ± 0.067
Walklets 1.564 ± 0.053 1.086 ± 0.054 2.593 ± 0.034
Embedding 1.356 ± 0.040 0.863 ± 0.068 2.190 ± 0.065
AdjEmbBag 1.390 ± 0.042 0.929 ± 0.071 2.366 ± 0.080

GAT Constant 0.323 ± 0.052 0.327 ± 0.056 0.366 ± 0.047
RandomNormal 1.386 ± 0.072 1.171 ± 0.107 2.584 ± 0.079
OneHotLogDeg 1.287 ± 0.148 0.756 ± 0.272 2.197 ± 0.222
RandomWalkDiag 1.197 ± 0.097 0.811 ± 0.044 1.933 ± 0.211
Adj 1.348 ± 0.198 0.791 ± 0.095 2.087 ± 0.035
RandProjGaussian 1.565 ± 0.027 1.074 ± 0.065 2.706 ± 0.107
RandProjSparse 1.562 ± 0.067 1.107 ± 0.029 2.728 ± 0.068
SVD 1.382 ± 0.076 1.050 ± 0.054 2.730 ± 0.058
LapEigMap 1.622 ± 0.044 1.192 ± 0.043 2.742 ± 0.072
LINE1 1.633 ± 0.055 1.134 ± 0.071 2.625 ± 0.085
LINE2 1.569 ± 0.034 1.112 ± 0.067 2.656 ± 0.071
Node2vec 1.572 ± 0.064 1.169 ± 0.079 2.766 ± 0.064
Walklets 1.623 ± 0.028 1.188 ± 0.070 2.789 ± 0.043
Embedding 1.544 ± 0.036 1.011 ± 0.082 2.487 ± 0.072
AdjEmbBag 0.887 ± 0.078 0.611 ± 0.061 1.724 ± 0.066

BioPlex GCN Constant 0.342 ± 0.032 0.356 ± 0.052 0.488 ± 0.083
RandomNormal 1.304 ± 0.016 0.868 ± 0.030 2.445 ± 0.064
OneHotLogDeg 1.225 ± 0.065 0.909 ± 0.050 2.500 ± 0.044
RandomWalkDiag 1.242 ± 0.043 0.835 ± 0.038 2.461 ± 0.138
Adj 1.182 ± 0.067 0.817 ± 0.023 2.613 ± 0.078
RandProjGaussian 1.218 ± 0.030 0.855 ± 0.066 2.583 ± 0.061
RandProjSparse 1.256 ± 0.085 0.869 ± 0.017 2.563 ± 0.053
SVD 1.273 ± 0.055 0.707 ± 0.046 2.513 ± 0.036
LapEigMap 1.206 ± 0.038 0.785 ± 0.057 2.382 ± 0.026
LINE1 1.234 ± 0.028 0.790 ± 0.033 2.604 ± 0.073
LINE2 1.242 ± 0.059 0.789 ± 0.053 2.544 ± 0.060
Node2vec 1.206 ± 0.042 0.784 ± 0.060 2.549 ± 0.074
Walklets 1.215 ± 0.060 0.817 ± 0.045 2.558 ± 0.065
Embedding 1.157 ± 0.024 0.772 ± 0.066 2.582 ± 0.034
AdjEmbBag 1.240 ± 0.038 0.770 ± 0.021 2.582 ± 0.100

GAT Constant 0.275 ± 0.063 0.275 ± 0.146 0.569 ± 0.143
RandomNormal 1.256 ± 0.070 0.884 ± 0.047 2.489 ± 0.063
OneHotLogDeg 1.089 ± 0.100 0.793 ± 0.044 2.479 ± 0.098
RandomWalkDiag 1.041 ± 0.082 0.788 ± 0.090 2.430 ± 0.085
Adj 1.157 ± 0.029 0.811 ± 0.042 2.582 ± 0.069
RandProjGaussian 1.222 ± 0.064 0.924 ± 0.041 2.588 ± 0.094
RandProjSparse 1.213 ± 0.041 0.882 ± 0.063 2.632 ± 0.009
SVD 1.139 ± 0.089 0.721 ± 0.073 2.539 ± 0.045
LapEigMap 1.204 ± 0.062 0.832 ± 0.058 2.371 ± 0.064
LINE1 1.201 ± 0.060 0.802 ± 0.035 2.453 ± 0.074
LINE2 1.242 ± 0.034 0.850 ± 0.035 2.478 ± 0.057
Node2vec 1.229 ± 0.039 0.768 ± 0.042 2.369 ± 0.061
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Walklets 1.196 ± 0.027 0.855 ± 0.073 2.531 ± 0.059
Embedding 1.159 ± 0.044 0.746 ± 0.088 2.493 ± 0.071
AdjEmbBag 1.183 ± 0.043 0.784 ± 0.050 2.522 ± 0.056

HuRI GCN Constant 0.346 ± 0.015 0.529 ± 0.033 0.384 ± 0.055
RandomNormal 0.504 ± 0.108 0.676 ± 0.080 0.956 ± 0.125
OneHotLogDeg 0.552 ± 0.080 0.579 ± 0.076 1.047 ± 0.102
RandomWalkDiag 0.549 ± 0.107 0.484 ± 0.045 1.027 ± 0.129
Adj 0.587 ± 0.023 0.631 ± 0.032 0.942 ± 0.075
RandProjGaussian 0.676 ± 0.070 0.673 ± 0.046 1.016 ± 0.186
RandProjSparse 0.686 ± 0.087 0.689 ± 0.055 1.076 ± 0.101
SVD 0.628 ± 0.056 0.667 ± 0.010 1.005 ± 0.049
LapEigMap 0.581 ± 0.014 0.526 ± 0.045 0.997 ± 0.085
LINE1 0.658 ± 0.069 0.690 ± 0.054 1.053 ± 0.089
LINE2 0.632 ± 0.125 0.741 ± 0.074 1.106 ± 0.084
Node2vec 0.566 ± 0.061 0.738 ± 0.053 1.126 ± 0.114
Walklets 0.596 ± 0.078 0.681 ± 0.032 1.179 ± 0.056
Embedding 0.572 ± 0.070 0.606 ± 0.034 0.888 ± 0.109
AdjEmbBag 0.652 ± 0.039 0.660 ± 0.030 1.059 ± 0.076

GAT Constant 0.305 ± 0.078 0.393 ± 0.077 0.345 ± 0.060
RandomNormal 0.524 ± 0.159 0.541 ± 0.131 0.968 ± 0.114
OneHotLogDeg 0.465 ± 0.060 0.510 ± 0.053 0.872 ± 0.189
RandomWalkDiag 0.473 ± 0.057 0.445 ± 0.129 0.972 ± 0.057
Adj 0.683 ± 0.109 0.528 ± 0.053 0.956 ± 0.157
RandProjGaussian 0.592 ± 0.086 0.530 ± 0.071 1.028 ± 0.139
RandProjSparse 0.603 ± 0.115 0.456 ± 0.085 1.017 ± 0.064
SVD 0.522 ± 0.099 0.412 ± 0.029 1.021 ± 0.099
LapEigMap 0.599 ± 0.082 0.557 ± 0.048 1.071 ± 0.080
LINE1 0.585 ± 0.068 0.652 ± 0.043 1.101 ± 0.033
LINE2 0.634 ± 0.067 0.743 ± 0.053 1.095 ± 0.054
Node2vec 0.577 ± 0.017 0.657 ± 0.067 1.116 ± 0.129
Walklets 0.630 ± 0.065 0.602 ± 0.032 1.085 ± 0.085
Embedding 0.647 ± 0.087 0.601 ± 0.020 0.941 ± 0.081
AdjEmbBag 0.603 ± 0.056 0.581 ± 0.040 0.902 ± 0.059

OmniPath GCN Constant 0.415 ± 0.083 0.416 ± 0.044 0.451 ± 0.046
RandomNormal 1.417 ± 0.042 0.910 ± 0.126 1.798 ± 0.073
OneHotLogDeg 1.195 ± 0.041 0.930 ± 0.046 1.753 ± 0.090
RandomWalkDiag 0.847 ± 0.038 0.762 ± 0.045 1.427 ± 0.056
Adj 1.444 ± 0.019 1.118 ± 0.062 2.050 ± 0.049
RandProjGaussian 1.381 ± 0.089 1.014 ± 0.053 1.935 ± 0.075
RandProjSparse 1.338 ± 0.073 1.066 ± 0.060 1.935 ± 0.020
SVD 1.281 ± 0.052 0.849 ± 0.024 1.884 ± 0.048
LapEigMap 1.408 ± 0.030 1.108 ± 0.092 2.120 ± 0.040
LINE1 1.366 ± 0.075 0.946 ± 0.049 2.027 ± 0.042
LINE2 1.338 ± 0.065 0.963 ± 0.054 1.938 ± 0.096
Node2vec 1.384 ± 0.046 1.024 ± 0.020 1.982 ± 0.054
Walklets 1.433 ± 0.050 1.036 ± 0.041 2.101 ± 0.033
Embedding 1.329 ± 0.062 0.831 ± 0.069 1.504 ± 0.048
AdjEmbBag 1.373 ± 0.042 1.085 ± 0.024 1.917 ± 0.054

GAT Constant 0.353 ± 0.044 0.343 ± 0.077 0.381 ± 0.053
RandomNormal 1.374 ± 0.041 1.034 ± 0.091 1.945 ± 0.104
OneHotLogDeg 0.775 ± 0.142 0.773 ± 0.135 1.685 ± 0.110
RandomWalkDiag 0.754 ± 0.171 0.657 ± 0.159 1.580 ± 0.181
Adj 1.257 ± 0.179 1.184 ± 0.068 1.865 ± 0.095
RandProjGaussian 1.146 ± 0.117 1.032 ± 0.041 2.079 ± 0.126
RandProjSparse 1.216 ± 0.075 0.916 ± 0.121 2.023 ± 0.272
SVD 1.032 ± 0.125 0.889 ± 0.061 1.916 ± 0.159
LapEigMap 1.344 ± 0.052 1.103 ± 0.087 2.105 ± 0.061
LINE1 1.263 ± 0.082 0.936 ± 0.035 2.077 ± 0.108
LINE2 1.376 ± 0.041 1.031 ± 0.104 2.026 ± 0.081
Node2vec 1.317 ± 0.040 1.014 ± 0.090 2.096 ± 0.063
Walklets 1.248 ± 0.099 1.022 ± 0.059 2.190 ± 0.052
Embedding 1.371 ± 0.032 0.917 ± 0.103 1.738 ± 0.023
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AdjEmbBag 0.752 ± 0.076 0.724 ± 0.140 1.399 ± 0.171

ProteomeHD GCN Constant 0.289 ± 0.112 0.489 ± 0.021 0.729 ± 0.481
RandomNormal 0.695 ± 0.128 0.583 ± 0.060 1.267 ± 0.074
OneHotLogDeg 0.698 ± 0.060 0.692 ± 0.018 1.413 ± 0.078
RandomWalkDiag 0.645 ± 0.072 0.665 ± 0.053 1.247 ± 0.049
Adj 0.656 ± 0.060 0.588 ± 0.067 1.386 ± 0.054
RandProjGaussian 0.617 ± 0.096 0.714 ± 0.070 1.412 ± 0.089
RandProjSparse 0.685 ± 0.074 0.669 ± 0.084 1.461 ± 0.112
SVD 0.809 ± 0.073 0.575 ± 0.081 1.474 ± 0.073
LapEigMap 0.715 ± 0.017 0.535 ± 0.090 1.272 ± 0.035
LINE1 0.588 ± 0.061 0.594 ± 0.042 1.316 ± 0.082
LINE2 0.646 ± 0.071 0.630 ± 0.034 1.323 ± 0.073
Node2vec 0.682 ± 0.049 0.621 ± 0.071 1.379 ± 0.102
Walklets 0.635 ± 0.093 0.649 ± 0.082 1.400 ± 0.141
Embedding 0.687 ± 0.074 0.539 ± 0.024 1.293 ± 0.158
AdjEmbBag 0.600 ± 0.096 0.621 ± 0.123 1.480 ± 0.083

GAT Constant 0.375 ± 0.158 0.473 ± 0.082 0.675 ± 0.233
RandomNormal 0.655 ± 0.115 0.657 ± 0.129 1.458 ± 0.049
OneHotLogDeg 0.705 ± 0.115 0.687 ± 0.063 1.339 ± 0.199
RandomWalkDiag 0.700 ± 0.065 0.691 ± 0.077 1.196 ± 0.277
Adj 0.731 ± 0.149 0.625 ± 0.068 1.487 ± 0.080
RandProjGaussian 0.808 ± 0.118 0.701 ± 0.036 1.491 ± 0.102
RandProjSparse 0.725 ± 0.130 0.710 ± 0.061 1.502 ± 0.080
SVD 0.792 ± 0.137 0.828 ± 0.039 1.556 ± 0.057
LapEigMap 0.678 ± 0.041 0.534 ± 0.135 1.394 ± 0.079
LINE1 0.638 ± 0.159 0.627 ± 0.094 1.338 ± 0.120
LINE2 0.579 ± 0.079 0.599 ± 0.115 1.433 ± 0.076
Node2vec 0.839 ± 0.100 0.702 ± 0.075 1.446 ± 0.089
Walklets 0.644 ± 0.106 0.653 ± 0.098 1.544 ± 0.064
Embedding 0.650 ± 0.141 0.659 ± 0.100 1.460 ± 0.041
AdjEmbBag 0.685 ± 0.064 0.666 ± 0.079 1.408 ± 0.052

SIGNOR GCN Constant 0.388 ± 0.066 0.425 ± 0.157 0.500 ± 0.148
RandomNormal 1.478 ± 0.050 1.349 ± 0.080 1.571 ± 0.056
OneHotLogDeg 1.427 ± 0.032 1.183 ± 0.087 1.754 ± 0.066
RandomWalkDiag 1.268 ± 0.011 1.022 ± 0.043 1.601 ± 0.127
Adj 1.461 ± 0.042 1.306 ± 0.058 1.575 ± 0.087
RandProjGaussian 1.488 ± 0.046 1.253 ± 0.083 1.764 ± 0.062
RandProjSparse 1.535 ± 0.067 1.369 ± 0.107 1.780 ± 0.071
SVD 1.396 ± 0.093 1.279 ± 0.071 1.788 ± 0.066
LapEigMap 1.597 ± 0.035 1.345 ± 0.042 1.746 ± 0.057
LINE1 1.546 ± 0.068 1.354 ± 0.049 1.813 ± 0.101
LINE2 1.506 ± 0.084 1.390 ± 0.103 1.708 ± 0.076
Node2vec 1.566 ± 0.071 1.345 ± 0.068 1.887 ± 0.115
Walklets 1.562 ± 0.076 1.333 ± 0.088 1.732 ± 0.049
Embedding 1.396 ± 0.035 1.200 ± 0.076 1.498 ± 0.064
AdjEmbBag 1.496 ± 0.071 1.229 ± 0.130 1.665 ± 0.100

GAT Constant 0.279 ± 0.038 0.242 ± 0.051 0.488 ± 0.176
RandomNormal 1.603 ± 0.049 1.281 ± 0.060 1.707 ± 0.050
OneHotLogDeg 1.180 ± 0.069 1.009 ± 0.087 1.576 ± 0.047
RandomWalkDiag 1.185 ± 0.115 0.935 ± 0.151 1.759 ± 0.115
Adj 1.538 ± 0.104 1.251 ± 0.023 1.529 ± 0.053
RandProjGaussian 1.531 ± 0.085 1.382 ± 0.107 1.751 ± 0.037
RandProjSparse 1.508 ± 0.033 1.290 ± 0.073 1.715 ± 0.090
SVD 1.529 ± 0.048 1.178 ± 0.102 1.718 ± 0.017
LapEigMap 1.578 ± 0.053 1.326 ± 0.059 1.749 ± 0.081
LINE1 1.583 ± 0.036 1.282 ± 0.052 1.844 ± 0.071
LINE2 1.630 ± 0.038 1.325 ± 0.083 1.863 ± 0.048
Node2vec 1.519 ± 0.066 1.287 ± 0.047 1.807 ± 0.033
Walklets 1.579 ± 0.045 1.411 ± 0.025 1.762 ± 0.052
Embedding 1.474 ± 0.095 1.254 ± 0.051 1.695 ± 0.053
AdjEmbBag 1.457 ± 0.198 1.154 ± 0.096 1.405 ± 0.156
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(b) GAT

Figure S2: Boxplots representing the rankings of different feature construction when used by
GNNs (lower the better). Each point in a box is a ranking of a particular node feature construction
on a specific dataset. A lower rank indicates that the particular node feature achieved higher test
performance than others. For both GCN and GAT, node2vec appears to be the top-ranked node
feature overall.
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Table S6: Baseline performance reference. Reported values are average test APOP scores aggre-
gated over five random seeds. The best performance achieved by (1) GNNs or (2) logistic regression
and label propagation are bolded for each dataset (network × label). The best performance across
the two methods groups is additionally colored by green.

Network Model Feature DISEASES DisGeNET GOBP

BioGRID GCN OneHotLogDeg 1.111 ± 0.043 0.773 ± 0.035 2.022 ± 0.100
SAGE OneHotLogDeg 0.840 ± 0.105 0.665 ± 0.071 1.510 ± 0.114
GIN OneHotLogDeg 0.720 ± 0.061 0.700 ± 0.050 1.443 ± 0.120
GAT OneHotLogDeg 0.946 ± 0.289 0.552 ± 0.111 1.592 ± 0.408
GatedGCN OneHotLogDeg 1.014 ± 0.065 0.753 ± 0.047 1.924 ± 0.055

LabelProp – 1.210 ± 0.000 0.931 ± 0.000 1.885 ± 0.000
LogReg Adj 1.328 ± 0.001 0.743 ± 0.000 2.528 ± 0.000
LogReg LapEigMap 1.288 ± 0.001 0.864 ± 0.002 2.149 ± 0.000
LogReg SVD 0.881 ± 0.010 0.724 ± 0.003 2.088 ± 0.003
LogReg LINE1 1.117 ± 0.024 0.722 ± 0.004 2.264 ± 0.019
LogReg LINE2 1.132 ± 0.021 0.825 ± 0.007 2.351 ± 0.017
LogReg Node2vec 1.116 ± 0.054 0.836 ± 0.029 2.571 ± 0.015
LogReg Walklets 1.023 ± 0.052 0.786 ± 0.046 2.189 ± 0.020

HumanNet GCN OneHotLogDeg 2.902 ± 0.050 2.452 ± 0.107 3.524 ± 0.061
SAGE OneHotLogDeg 2.850 ± 0.107 2.356 ± 0.093 3.326 ± 0.067
GIN OneHotLogDeg 2.378 ± 0.126 2.019 ± 0.113 3.151 ± 0.017
GAT OneHotLogDeg 3.052 ± 0.312 2.547 ± 0.207 3.571 ± 0.159
GatedGCN OneHotLogDeg 3.004 ± 0.132 2.327 ± 0.026 3.486 ± 0.047

LabelProp – 3.728 ± 0.000 3.059 ± 0.000 3.806 ± 0.000
LogReg Adj 3.812 ± 0.000 3.053 ± 0.000 3.964 ± 0.006
LogReg LapEigMap 2.737 ± 0.003 2.301 ± 0.000 3.778 ± 0.001
LogReg SVD 2.785 ± 0.002 2.412 ± 0.004 3.618 ± 0.001
LogReg LINE1 2.178 ± 0.010 1.632 ± 0.005 3.348 ± 0.011
LogReg LINE2 2.270 ± 0.016 1.679 ± 0.005 3.485 ± 0.004
LogReg Node2vec 3.316 ± 0.020 2.433 ± 0.029 4.036 ± 0.019
LogReg Walklets 2.670 ± 0.069 2.050 ± 0.115 3.081 ± 0.054

ComPPIHumanInt GCN OneHotLogDeg 1.359 ± 0.094 0.993 ± 0.042 2.251 ± 0.064
SAGE OneHotLogDeg 1.101 ± 0.063 0.724 ± 0.076 1.865 ± 0.091
GIN OneHotLogDeg 0.963 ± 0.057 0.777 ± 0.057 1.621 ± 0.077
GAT OneHotLogDeg 1.287 ± 0.148 0.756 ± 0.272 2.197 ± 0.222
GatedGCN OneHotLogDeg 1.166 ± 0.045 0.861 ± 0.050 2.044 ± 0.094

LabelProp – 1.352 ± 0.000 1.106 ± 0.000 2.076 ± 0.000
LogReg Adj 1.431 ± 0.000 1.016 ± 0.000 2.707 ± 0.002
LogReg LapEigMap 1.257 ± 0.001 1.045 ± 0.005 2.177 ± 0.002
LogReg SVD 0.888 ± 0.003 0.702 ± 0.001 1.999 ± 0.002
LogReg LINE1 1.135 ± 0.023 0.905 ± 0.014 2.438 ± 0.019
LogReg LINE2 1.185 ± 0.021 0.895 ± 0.012 2.495 ± 0.024
LogReg Node2vec 1.341 ± 0.034 1.074 ± 0.005 2.806 ± 0.049
LogReg Walklets 1.073 ± 0.053 0.890 ± 0.032 2.109 ± 0.104

BioPlex GCN OneHotLogDeg 1.277 ± 0.034 0.895 ± 0.046 2.535 ± 0.065
SAGE OneHotLogDeg 1.118 ± 0.043 0.787 ± 0.049 2.215 ± 0.084
GIN OneHotLogDeg 1.182 ± 0.083 0.822 ± 0.086 2.360 ± 0.054
GAT OneHotLogDeg 1.089 ± 0.100 0.793 ± 0.044 2.479 ± 0.098
GatedGCN OneHotLogDeg 0.970 ± 0.049 0.723 ± 0.052 2.303 ± 0.114

LabelProp – 0.964 ± 0.000 0.556 ± 0.000 2.174 ± 0.000
LogReg Adj 1.087 ± 0.003 0.838 ± 0.011 2.467 ± 0.001
LogReg LapEigMap 1.147 ± 0.005 0.903 ± 0.019 2.298 ± 0.017
LogReg SVD 0.824 ± 0.006 0.588 ± 0.001 2.170 ± 0.022
LogReg LINE1 0.914 ± 0.062 0.653 ± 0.011 2.475 ± 0.042
LogReg LINE2 0.843 ± 0.050 0.627 ± 0.015 2.321 ± 0.015
LogReg Node2vec 0.816 ± 0.073 0.639 ± 0.053 2.194 ± 0.039
LogReg Walklets 0.742 ± 0.067 0.688 ± 0.053 1.822 ± 0.046

HuRI GCN OneHotLogDeg 0.529 ± 0.075 0.625 ± 0.089 1.040 ± 0.049
SAGE OneHotLogDeg 0.491 ± 0.083 0.541 ± 0.029 0.937 ± 0.048
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GIN OneHotLogDeg 0.591 ± 0.089 0.477 ± 0.052 1.008 ± 0.113
GAT OneHotLogDeg 0.465 ± 0.060 0.510 ± 0.053 0.872 ± 0.189
GatedGCN OneHotLogDeg 0.602 ± 0.090 0.591 ± 0.098 0.957 ± 0.074

LabelProp – 0.545 ± 0.000 0.598 ± 0.000 0.962 ± 0.000
LogReg Adj 0.494 ± 0.003 0.455 ± 0.000 1.002 ± 0.003
LogReg LapEigMap 0.538 ± 0.007 0.596 ± 0.001 0.985 ± 0.023
LogReg SVD 0.545 ± 0.027 0.433 ± 0.005 0.721 ± 0.063
LogReg LINE1 0.608 ± 0.030 0.596 ± 0.030 1.025 ± 0.040
LogReg LINE2 0.575 ± 0.062 0.557 ± 0.018 1.017 ± 0.093
LogReg Node2vec 0.633 ± 0.065 0.500 ± 0.043 0.904 ± 0.078
LogReg Walklets 0.485 ± 0.071 0.458 ± 0.088 0.707 ± 0.069

OmniPath GCN OneHotLogDeg 1.196 ± 0.054 0.983 ± 0.067 1.742 ± 0.107
SAGE OneHotLogDeg 0.913 ± 0.074 0.779 ± 0.051 1.539 ± 0.074
GIN OneHotLogDeg 0.795 ± 0.044 0.731 ± 0.030 1.521 ± 0.086
GAT OneHotLogDeg 0.775 ± 0.142 0.773 ± 0.135 1.685 ± 0.110
GatedGCN OneHotLogDeg 1.112 ± 0.039 0.898 ± 0.031 1.698 ± 0.059

LabelProp – 1.358 ± 0.000 0.897 ± 0.000 1.593 ± 0.000
LogReg Adj 1.051 ± 0.001 0.709 ± 0.000 1.862 ± 0.000
LogReg LapEigMap 1.319 ± 0.000 1.060 ± 0.004 1.943 ± 0.004
LogReg SVD 0.866 ± 0.001 0.635 ± 0.006 1.512 ± 0.012
LogReg LINE1 0.834 ± 0.026 0.787 ± 0.007 1.893 ± 0.032
LogReg LINE2 0.913 ± 0.033 0.692 ± 0.012 1.844 ± 0.032
LogReg Node2vec 1.178 ± 0.035 0.924 ± 0.035 2.125 ± 0.059
LogReg Walklets 0.915 ± 0.041 0.795 ± 0.045 1.704 ± 0.064

ProteomeHD GCN OneHotLogDeg 0.690 ± 0.064 0.637 ± 0.066 1.459 ± 0.138
SAGE OneHotLogDeg 0.556 ± 0.107 0.644 ± 0.030 1.304 ± 0.041
GIN OneHotLogDeg 0.608 ± 0.083 0.606 ± 0.107 1.350 ± 0.221
GAT OneHotLogDeg 0.705 ± 0.115 0.687 ± 0.063 1.339 ± 0.199
GatedGCN OneHotLogDeg 0.521 ± 0.101 0.712 ± 0.044 1.169 ± 0.052

LabelProp – 0.709 ± 0.000 0.669 ± 0.000 1.036 ± 0.000
LogReg Adj 0.849 ± 0.047 0.619 ± 0.005 1.329 ± 0.141
LogReg LapEigMap 0.955 ± 0.001 0.721 ± 0.016 1.219 ± 0.039
LogReg SVD 0.878 ± 0.002 0.736 ± 0.008 1.508 ± 0.079
LogReg LINE1 0.566 ± 0.089 0.667 ± 0.023 1.307 ± 0.060
LogReg LINE2 0.576 ± 0.099 0.663 ± 0.032 1.226 ± 0.085
LogReg Node2vec 0.643 ± 0.076 0.772 ± 0.068 1.357 ± 0.040
LogReg Walklets 0.432 ± 0.050 0.525 ± 0.111 1.048 ± 0.061

SIGNOR GCN OneHotLogDeg 1.387 ± 0.067 1.167 ± 0.079 1.732 ± 0.031
SAGE OneHotLogDeg 0.924 ± 0.106 0.838 ± 0.086 1.441 ± 0.094
GIN OneHotLogDeg 1.106 ± 0.058 0.870 ± 0.055 1.479 ± 0.090
GAT OneHotLogDeg 1.180 ± 0.069 1.009 ± 0.087 1.576 ± 0.047
GatedGCN OneHotLogDeg 1.067 ± 0.028 0.852 ± 0.060 1.430 ± 0.085

LabelProp – 1.288 ± 0.000 1.096 ± 0.000 1.695 ± 0.000
LogReg Adj 1.303 ± 0.003 1.052 ± 0.001 1.417 ± 0.004
LogReg LapEigMap 1.306 ± 0.004 1.056 ± 0.005 1.746 ± 0.010
LogReg SVD 0.864 ± 0.004 0.801 ± 0.002 1.183 ± 0.002
LogReg LINE1 1.412 ± 0.033 0.955 ± 0.022 1.781 ± 0.056
LogReg LINE2 1.257 ± 0.034 0.917 ± 0.016 1.572 ± 0.047
LogReg Node2vec 1.341 ± 0.021 1.172 ± 0.027 1.684 ± 0.099
LogReg Walklets 1.017 ± 0.101 0.985 ± 0.049 1.259 ± 0.065
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Figure S3: Boxplots representing the performance improvement of using different tricks with
GNNs across datasets. Each point in a box is the test APOP difference of GNN with added tricks vs.
plain GNN using OneHotLogDeg feature on a specific dataset. A positive value implies the added
trick improves GNN performance.
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Figure S4: Boxplots representing the performance improvement of using C&S with logistic
regression models across datasets. Each point in a box is the test APOP difference of logistic
regression augmented with C&S vs. plain logistic regression on a specific dataset. A positive value
implies C&S improves logistic regression performance.
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Figure S5: Relationships between the corrected homophily ratio and performance difference
between methods. Each panel summarizes tasks over three networks (BioGRID, HumanNet,
ComPPIHumanInt) and three gene set collections (DISEASES, DisGeNET, GOBP), with a total
of 1,672 tasks. In each panel, the x-axis represents the corrected homophily ratio and the y-axis
represents the test APOP performance difference between the two methods. The first (A, B, C) and
second rows (D, E, F) show the performance improvement to GCN and GAT when augmented with
individual tricks or combined BoT. The third row (G, H, I) shows the performance difference between
the best GNN method and the baseline methods, including label propagation and logistic regression.
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Table S7: Combined SOTA performance reference. LogReg* are the best test performances achieved
from any logistic regression models we have tested for each dataset. Colored texts indicate the first,
second, and third best performance achieved for a particular dataset (network × label).

Network Model DISEASES DisGeNET GOBP

BioGRID LabelProp 1.210 ± 0.000 0.931 ± 0.000 1.885 ± 0.000
LogReg* 1.556 ± 0.002 1.026 ± 0.022 2.571 ± 0.015
GCN+BoT 1.511 ± 0.053 1.014 ± 0.020 2.411 ± 0.044
SAGE+BoT 1.486 ± 0.058 1.031 ± 0.049 2.402 ± 0.061
GIN+BoT 1.410 ± 0.024 1.007 ± 0.028 2.386 ± 0.022
GAT+BoT 1.609 ± 0.048 1.037 ± 0.036 2.624 ± 0.070
GatedGCN+BoT 1.547 ± 0.027 1.038 ± 0.006 2.517 ± 0.047

HumanNet LabelProp 3.728 ± 0.000 3.059 ± 0.000 3.806 ± 0.000
LogReg* 3.812 ± 0.000 3.158 ± 0.000 4.053 ± 0.021
GCN+BoT 3.552 ± 0.050 3.053 ± 0.078 3.921 ± 0.045
SAGE+BoT 3.401 ± 0.066 3.052 ± 0.041 3.816 ± 0.083
GIN+BoT 3.513 ± 0.029 3.054 ± 0.051 3.861 ± 0.063
GAT+BoT 3.761 ± 0.060 3.100 ± 0.031 3.908 ± 0.086
GatedGCN+BoT 3.677 ± 0.066 3.086 ± 0.020 3.889 ± 0.048

ComPPIHumanInt LabelProp 1.352 ± 0.000 1.106 ± 0.000 2.076 ± 0.000
LogReg* 1.644 ± 0.006 1.240 ± 0.009 2.806 ± 0.049
GCN+BoT 1.648 ± 0.012 1.211 ± 0.013 2.685 ± 0.047
SAGE+BoT 1.694 ± 0.055 1.210 ± 0.033 2.629 ± 0.082
GIN+BoT 1.608 ± 0.020 1.219 ± 0.006 2.611 ± 0.021
GAT+BoT 1.665 ± 0.035 1.230 ± 0.025 2.785 ± 0.041
GatedGCN+BoT 1.672 ± 0.053 1.218 ± 0.009 2.735 ± 0.048

BioPlex LabelProp 0.964 ± 0.000 0.556 ± 0.000 2.174 ± 0.000
LogReg* 1.358 ± 0.006 0.939 ± 0.002 2.587 ± 0.022
GCN+BoT 1.324 ± 0.027 0.911 ± 0.010 2.553 ± 0.069
SAGE+BoT 1.246 ± 0.022 0.865 ± 0.035 2.513 ± 0.038
GIN+BoT 1.349 ± 0.010 0.868 ± 0.009 2.504 ± 0.024
GAT+BoT 1.355 ± 0.040 0.873 ± 0.025 2.548 ± 0.075
GatedGCN+BoT 1.301 ± 0.035 0.859 ± 0.011 2.590 ± 0.029

HuRI LabelProp 0.545 ± 0.000 0.598 ± 0.000 0.962 ± 0.000
LogReg* 0.650 ± 0.000 0.656 ± 0.000 1.084 ± 0.020
GCN+BoT 0.634 ± 0.065 0.693 ± 0.019 1.229 ± 0.119
SAGE+BoT 0.593 ± 0.040 0.679 ± 0.031 1.190 ± 0.127
GIN+BoT 0.583 ± 0.042 0.702 ± 0.012 1.143 ± 0.047
GAT+BoT 0.667 ± 0.048 0.687 ± 0.045 1.174 ± 0.047
GatedGCN+BoT 0.596 ± 0.017 0.695 ± 0.018 1.195 ± 0.054

OmniPath LabelProp 1.358 ± 0.000 0.897 ± 0.000 1.593 ± 0.000
LogReg* 1.542 ± 0.017 1.093 ± 0.006 2.125 ± 0.059
GCN+BoT 1.577 ± 0.038 1.073 ± 0.024 2.052 ± 0.032
SAGE+BoT 1.465 ± 0.048 1.041 ± 0.065 1.974 ± 0.040
GIN+BoT 1.478 ± 0.032 1.104 ± 0.017 1.995 ± 0.046
GAT+BoT 1.520 ± 0.028 1.083 ± 0.025 2.067 ± 0.050
GatedGCN+BoT 1.544 ± 0.036 1.079 ± 0.020 2.122 ± 0.080

ProteomeHD LabelProp 0.709 ± 0.000 0.669 ± 0.000 1.036 ± 0.000
LogReg* 0.955 ± 0.001 0.776 ± 0.000 1.519 ± 0.071
GCN+BoT 0.764 ± 0.017 0.745 ± 0.026 1.387 ± 0.088
SAGE+BoT 0.747 ± 0.051 0.734 ± 0.023 1.425 ± 0.100
GIN+BoT 0.771 ± 0.034 0.718 ± 0.029 1.529 ± 0.161
GAT+BoT 0.830 ± 0.039 0.727 ± 0.042 1.463 ± 0.052
GatedGCN+BoT 0.829 ± 0.029 0.716 ± 0.022 1.389 ± 0.097

SIGNOR LabelProp 1.288 ± 0.000 1.096 ± 0.000 1.695 ± 0.000
LogReg* 1.582 ± 0.006 1.298 ± 0.007 1.894 ± 0.001
GCN+BoT 1.590 ± 0.037 1.273 ± 0.013 1.844 ± 0.031
SAGE+BoT 1.540 ± 0.017 1.243 ± 0.005 1.784 ± 0.041
GIN+BoT 1.593 ± 0.026 1.253 ± 0.010 1.850 ± 0.028
GAT+BoT 1.627 ± 0.042 1.260 ± 0.009 1.799 ± 0.034
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GatedGCN+BoT 1.525 ± 0.026 1.254 ± 0.006 1.849 ± 0.029

Table S8: Random splitting evaluation performance of different methods on the four primary OBNB
datasets evaluated in APOP ↑ aggregated over five seeds. Bold indicates the best-performing method
within the method class (traditional ML or GNN). Blue indicates the evaluated performance is higher
than the study-biased holdout evaluation counterpart.

BioGRID HumanNet

Model Features C&S? DisGeNET GOBP DisGeNET GOBP

LabelProp – ✗ 1.415 ± 0.000 2.654 ± 0.000 3.370 ± 0.000 4.138 ± 0.000
LogReg Adj ✗ 1.546 ± 0.001 3.479 ± 0.000 3.280 ± 0.000 4.300 ± 0.001
LogReg N2V ✗ 1.485 ± 0.037 3.269 ± 0.022 2.987 ± 0.014 4.107 ± 0.033
LogReg LapEigMap ✗ 1.421 ± 0.000 2.812 ± 0.004 2.516 ± 0.002 3.876 ± 0.004

GCN LogDeg ✗ 1.055 ± 0.116 2.076 ± 0.204 2.770 ± 0.045 3.898 ± 0.063
GCN LogDeg ✓ 1.664 ± 0.066 2.832 ± 0.082 3.213 ± 0.010 4.134 ± 0.044
GCN† N2V+LogDeg+Label ✓ 1.780 ± 0.043 3.330 ± 0.049 3.278 ± 0.023 4.205 ± 0.030
GCN‡ N2V+LogDeg+Label ✓ 1.769 ± 0.051 3.380 ± 0.047 3.274 ± 0.013 4.202 ± 0.023
GAT LogDeg ✗ 0.921 ± 0.290 2.722 ± 0.498 2.837 ± 0.197 3.838 ± 0.092
GAT LogDeg ✓ 1.791 ± 0.015 3.076 ± 0.037 3.252 ± 0.021 4.141 ± 0.016
GAT† N2V+LogDeg+Label ✓ 1.728 ± 0.063 3.357 ± 0.185 3.265 ± 0.018 4.226 ± 0.030
GAT‡ N2V+LogDeg+Label ✓ 1.818 ± 0.013 3.448 ± 0.010 3.266 ± 0.003 4.235 ± 0.020
† recommended BoT, ‡ recommended BoT with fully tuned GNNs (see Appendix A.4.1 for tuning details)

As shown in Table S8, random-split performance is higher than study-biased holdout in all cases. This
indicates that, besides being more realistic, the study-biased holdout split is a much harder evaluation
scheme and thus provides a more stringent evaluation of the tested gene classification method.

Table S9: Task-specific model prediction performance difference on the BioGRID-DisGeNET
between GAT and LogReg+Adj.

Task ID Task Name GAT LogReg+Adj Difference

MONDO:0002289 Iris disorder 2.160 0.149 2.011
MONDO:0001703 Color-vision disease 2.177 0.230 1.946
MONDO:0001926 Ureteral disorder 1.543 -0.336 1.879
MONDO:0005552 Ocular vascular disease 1.507 -0.175 1.682
MONDO:0018470 Renal agenesis 1.273 -0.347 1.620
. . .
MONDO:0020018 Cranial malformation 0.699 4.487 -3.788
MONDO:0019743 Nephropathy secondary to a storage or other metabolic disease 0.773 4.876 -4.103
MONDO:0024757 Cardiovascular neoplasm 0.316 4.443 -4.127
MONDO:0045011 Keratinization disease 0.264 4.619 -4.355
MONDO:0015160 Multiple congenital anomalies/dysmorphic syndrome-variable

intellectual disability syndrome
0.280 4.828 -4.549

Table S11: Statistics for all datasets in OBNB (obnbdata-0.1.0)

Label Network Num. tasks Num. pos. avg. Num. pos. std. Num. pos. med.

DISEASES BioGRID 145 178.1 137.4 127.0
BioPlex 72 123.8 64.4 101.5
ComPPIHumanInt 145 174.6 134.5 125.0
ConsensusPathDB 144 177.4 137.5 126.0
FunCoup 145 177.1 135.1 127.0
HIPPIE 143 178.1 137.6 127.0
HuMAP 123 168.0 119.2 120.0
HuRI 50 130.3 56.7 112.5
HumanBaseTopGlobal 149 178.5 137.7 129.0
HumanNet 142 179.0 136.9 127.0
OmniPath 135 180.2 131.1 131.0
PCNet 143 171.8 130.6 122.0
ProteomeHD 15 76.9 22.4 70.0
SIGNOR 89 144.6 89.4 117.0
STRING 146 175.4 135.6 126.0

DisGeNET BioGRID 305 208.3 143.1 159.0
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BioPlex 189 138.6 71.4 111.0
ComPPIHumanInt 301 204.1 138.7 159.0
ConsensusPathDB 298 207.4 140.8 161.5
FunCoup 299 204.7 139.4 158.0
HIPPIE 306 208.1 142.9 159.5
HuMAP 279 194.3 126.7 155.0
HuRI 152 122.9 54.7 108.0
HumanBaseTopGlobal 287 219.7 145.7 173.0
HumanNet 302 204.2 140.3 158.5
OmniPath 298 199.6 136.0 153.5
PCNet 292 202.1 135.5 159.0
ProteomeHD 56 78.0 24.8 71.0
SIGNOR 219 147.3 81.9 124.0
STRING 296 208.0 140.6 162.0

GOBP BioGRID 114 89.5 37.1 76.0
BioPlex 38 77.6 22.6 76.0
ComPPIHumanInt 104 91.8 37.0 77.5
ConsensusPathDB 112 90.1 37.0 76.5
FunCoup 114 87.8 36.7 74.0
HIPPIE 111 89.2 37.1 76.0
HuMAP 96 84.6 32.3 74.0
HuRI 27 69.9 16.0 65.0
HumanBaseTopGlobal 115 89.2 37.3 76.0
HumanNet 117 88.6 36.9 75.0
OmniPath 106 88.7 36.2 74.0
PCNet 105 89.0 36.0 77.0
ProteomeHD 5 80.4 22.6 70.0
SIGNOR 41 81.3 22.7 78.0
STRING 116 88.9 36.6 75.0

GOCC BioGRID 71 96.0 36.3 87.0
BioPlex 35 77.0 20.9 71.0
ComPPIHumanInt 68 96.1 35.5 88.0
ConsensusPathDB 71 95.5 35.8 87.0
FunCoup 71 95.9 36.4 87.0
HIPPIE 69 97.3 35.8 89.0
HuMAP 62 91.8 33.4 82.0
HuRI 21 69.0 12.4 67.0
HumanBaseTopGlobal 71 96.9 36.3 88.0
HumanNet 70 95.8 35.6 88.0
OmniPath 67 94.0 34.6 84.0
PCNet 70 93.5 35.0 85.0
ProteomeHD 2 59.5 4.5 59.5
SIGNOR 26 66.4 11.3 67.5
STRING 69 96.1 35.6 88.0

GOMF BioGRID 63 97.7 39.8 85.0
BioPlex 25 79.6 18.0 79.0
ComPPIHumanInt 62 98.1 39.7 86.0
ConsensusPathDB 63 98.2 39.5 85.0
FunCoup 64 97.5 39.1 83.5
HIPPIE 63 97.7 39.9 84.0
HuMAP 58 92.1 36.8 74.5
HuRI 22 74.8 12.8 73.5
HumanBaseTopGlobal 62 99.2 39.9 86.0
HumanNet 61 98.7 39.5 84.0
OmniPath 64 95.2 38.5 83.5
PCNet 58 97.4 38.6 86.0
ProteomeHD 2 59.5 4.5 59.5
SIGNOR 25 91.4 23.7 94.0
STRING 62 98.0 39.3 82.5
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Table S10: Statistics for all networks in OBNB (obnbdata-0.1.0)
Network Weighted Num. nodes Num. edges Density Category

HumanBaseTopGlobal [29] ✓ 25,689 77,807,094 0.117908 Large & Dense
HuMAP [20] ✓ 15,433 35,052,604 0.147180 Large & Dense
STRING [86] ✓ 18,480 11,019,492 0.032269 Large
ConsensusPathDB [46] ✓ 17,735 10,611,416 0.033739 Large
FunCoup [76] ✓ 17,892 10,037,478 0.031357 Large
PCNet [36] ✗ 18,544 5,365,116 0.015603 Large
BioGRID [85] ✗ 19,765 1,554,790 0.003980 Medium
HumanNet [42] ✓ 18,591 2,250,780 0.006513 Medium
HIPPIE [1] ✓ 19,338 1,542,044 0.004124 Medium
ComPPIHumanInt [92] ✓ 17,015 699,620 0.002417 Medium
OmniPath [88] ✗ 16,325 289,134 0.001085 Small
ProteomeHD [50] ✗ 2,471 125,172 0.020509 Small
HuRI [60] ✗ 8,100 103,188 0.001573 Small
BioPlex [41] ✗ 8,108 71,004 0.001080 Small
SIGNOR [73] ✗ 5,291 28,676 0.001025 Small
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