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Abstract

Synergy models are useful tools for exploring drug combinatorial search space and
identifying promising sub-spaces for in vitro/vivo experiments. Here, we report
that distributional biases in the training-validation-test sets used for predictive
modeling of drug synergy can explain much of the variability observed in model
performances (up to 0.22 ∆AUPRC). We built 145 classification models spanning
4,577 unique drugs and 75,276 pair-wise drug combinations extracted from Drug-
Comb, and examined spurious correlations in both the input feature and output
label spaces. We posit that some synergy datasets are easier to model than others
due to factors such as synergy spread, class separation, chemical structural diversity,
physicochemical diversity, combinatorial tests per drug, and combinatorial label
entropy. We simulate distribution shifts for these dataset attributes and report that
the drug-wise homogeneity of combinatorial labels most influences modelabil-
ity (0.16± 0.06 ∆AUPRC). Our findings imply that seemingly high-performing
drug synergy models may not generalize well to broader medicinal space. We
caution that the synergy modeling community’s efforts may be better expended in
examining data-specific artefacts and biases rigorously prior to model building.

1 Introduction

For complex, multifactorial diseases such as cancer, combination therapies offer the possibility of
enhanced efficacies [19], with reduced effective doses and associated host toxicities [9], as well
as a strategy for slowing the evolved drug resistance commonly observed in monotherapies [32].
It is, however, more challenging to perform clinical trials for combination therapies [22] and the
large number of possible drug combinations renders exhaustive testing by brute-force heuristics
infeasible. Machine learning is a useful tool for exploring the vast drug combinatorial search space
and identifying promising sub-spaces for in vitro/vivo experiments.

Currently, research in the field of predictive modeling for drug synergy is largely focused on model
generation and the optimization of performance metrics, such as Area under the Receiver Operating
Characteristic curve (AUROC or simply AUC), which overestimates model performance on im-
blanaced datasets [30, 15], rather than the context in which models are built and deployed. There is, at
present, no consensus definition for drug synergy [17, 29] and drug combination screens are generally
discordant across independent studies [18], yet model improvements are rarely reported in tandem
with descriptive statistics characterizing the quality and modelability of datasets. The experimental
endpoints are often proxies of drug response that can be easily measured in a high-throughput fashion,
but lack clinical relevance or even reproducibility [20].



Biases have been reported in datasets used for model generation in adjacent research fields, such as
PDBBind and CASF for the prediction of ligand-protein binding affinities [27]. In a systematic review
of 41 genomic machine learning studies, Barnett et al. [2] investigated which components of a study
contributed to improvements in model performance and whether reported improvements represent a
true improvement or an unaddressed bias inflating performance. They found that data leakage due
to feature selection and the number of hyperparameter optimizations were significantly associated
with an increase in reported model performance. In a review of 62 machine learning studies on the
detection and prognostication of COVID-19 using chest radiographs and chest computed tomography
images, Roberts et al. [26] found that none of the models identified were of potential clinical use due
to biases in either the methodology or underlying data.

Previous studies on drug synergy prediction have not examined artefacts and biases in dataset
composition. To the best of our knowledge, no attempt has been made to quantify the sensitivity of
synergy models to underlying distributions in either input feature or output label spaces. Alsherbiny
et al. [1] note that the source of drug combination screening data, i.e. NCI-ALMANAC [8] versus
ONEIL [21], has a more significant impact on model performance than feature engineering. Similarly,
Rani et al. [25] note that synergy models built using NCI-ALMANAC tend to outperform those built
using ONEIL. Here, we report that distributional biases in the datasets used for predictive modeling of
drug synergy explain much of the variability observed in model performances (up to 0.22 ∆AUPRC).
We built 145 binary classification models using drug combination screens extracted from DrugComb
[35] spanning 4,577 unique drugs and 75,276 pair-wise drug combinations. We characterize the
central tendencies and dispersions of various dataset attributes, and subsequently simulate distribution
shifts to demonstrate that model performance can improve or deteriorate depending on the direction
of attribute shift.

2 Methodology

2.1 Synergy Definition

We use the Bliss Independence model [3], one of several synergy reference models [17, 29], to
qualify and quantify the expected additive or null response of administering a drug combination.
Operating under assumptions of statistical independence between drugs (i.e., the modes of action of
constituent drugs in a combination differ), symmetry in drug interactions, no variability in responses,
and continuous dose-response relationships, Bliss excess is defined mathematically as:

EBliss = EAB − (EA + EB − EA × EB)

where EAB is the observed effect of the drug combination, and EA and EB are the observed
individual effects of drugs A and B, respectively. EBliss = 0 is the threshold for additivity, while
EBliss > 0 indicates synergy and EBliss < 0 indicates antagonism.

2.2 Data Collection and Pre-Processing

Drug pair synergy data targeting 142 cancer cell lines and 3 malarial parasites was extracted from
DrugComb v1.5 [35]. Thirty-three percent of drug-drug-cell line tuples were replicate experiments,
which we deduplicated by computing the geometric mean synergy score across replicate samples.
Thirty-nine percent (N = 306,282) of the combination-cell line tuples were sourced from NCI-
ALMANAC [8] and twenty-five percent (N = 198,722) were sourced from FRIEDMAN [12], with
the remainder sourced from twenty-two other combination screens including ONEIL [21] (twelve
percent; N = 92,208) and CLOUD [14] (five percent; N = 40,160). In total, 75,276 pair-wise drug
combinations comprising 4,577 unique drugs were obtained for 145 cell-line synergy endpoints
defined by the Bliss Independence model. We selected the top and bottom fifteen percent of each
cell-line dataset’s distribution of Bliss synergy scores to obtain balanced classes after filtering out
additive samples.
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2.3 Dataset Attributes and Metrics

Synergicity Synergicity measures the degree to which a given drug is associated with synergistic
combinatorial labels: it is defined in this work, as in previous work [34], as the fraction of combi-
nations for which individual drugs have been labelled synergistic as opposed to antagonistic. At
the cell-line dataset level, the interquartile range or H-spread was used to capture the bimodality
of synergicity distributions and test the hypothesis that cell-line datasets with drugs found pri-
marily in antagonistic-only combinations (synergicity = 0) and synergistic-only combinations
(synergicity = 1) are easier to model with higher AUPRC scores.

Combinatorial Label Entropy Combinatorial label entropy measures the level of disorder or
heterogeneity of combinatorial labels. It is defined mathematically as Shannon entropy:

H(X) = −
n∑

i=1

P (xi) log2(P (xi))

where H(X) is the Shannon entropy of a discrete random variable X and P (xi) is the probability of
outcome xi occurring in the system. The sum is taken over all n possible outcomes xi. In our case,
H(X) has range [0, 1] and measures how homogeneous the combinatorial labels associated with a
given drug are: if a drug occurs predominantly in drug combinations labelled synergistic-only or
antagonistic-only, then its combinatorial label entropy is low (close to 0); if a drug occurs in drug
combinations labelled synergistic approximately half of the time and antagonistic approximately half
of the time, then its combinatorial label entropy is high (close to 1).

Feature Similarity Feature similarity in chemical structural and physicochemical spaces was
defined in two steps: cosine similarity computed pair-wise amongst all drugs tested per cell line,
followed by the cell-line fraction of pair-wise similarities above 0.15. Mathematically, the cosine
similarity between two feature vectors A and B is defined as:

cosine_similarity(A,B) =
A ·B

∥A∥ · ∥B∥

Non-Additivity A drug’s tendency for non-additivity when combined was scored as the median
absolute distance from Bliss additivity across combinations. This measure was used to test the
hypothesis that a drug’s combinatorial label entropy decreases with its tendency for non-additivity
in combinations. In other words, non-additivity thus defined was used to test whether the degree of
synergism or antagonism achieved by a drug was associated with the consistency or homogeneity of
its combinatorial labels.

2.4 Model Generation and Evaluation

We formulate drug synergy prediction as a supervised classification task: we construct one binary
model per cell-line dataset, resulting in a total of 145 binary models, to predict synergistic versus
antagonistic class labels for drug-drug pairs using the CRAN "randomForest" [13, 24] implementation
of the traditional random forest learner by Breiman [4] under default hyperparameter optimizations.
Given that the focus of this work is the influence of dataset composition on model performance,
and not the influence of model architecture on model performance, we required a single learner
to serve as our baseline before and after shifting attribute distributions. We deliberately chose a
decision tree ensemble learner as our baseline due to its computational efficiency on high-dimensional
data, adequate interpretability and explainability, as well as state-of-the-art model performance on
balanced and minority classes [6]. We constructed two sets of drug features: structural 2048-bit
Morgan fingerprints (with radius 3) and 43-element long physicochemical profiles of all available
molecular descriptors on RDKit [11]. Feature vectors were concatenated for each drug-drug pair
in both permutations. Our 80%-20% train-test split strategy was drug-pair–stratified with five-fold
cross-validation. To evaluate model performance, we computed Area under the Precision-Recall
curve (AUPRC), which is less sensitive to class imbalance and thus more practically relevant and
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actionable than Area under the Receiver Operating Characteristic curve (AUROC) [30, 15]. The mean
AUPRC across all models (n = 145) was 0.76 ± 0.09. For our categorical analyses, we categorized
cell-line models with AUPRC greater than or equal to 0.8 as high-performing (n = 50), and cell-line
models with AUPRC less than 0.8 as low-performing (n = 95).

2.5 Simulating Distribution Shifts in Dataset Attributes

We simulated distribution shifts in dataset attributes by sub-sampling each cell-line dataset. For
originally high-performing models, we selected subsets of drugs with high combinatorial label
entropy (upper 15%), few combinatorial tests per drug (lower 15%), low physicochemical similarity
to other drugs (lower 15%), and low structural similarity to other drugs (lower 15%). Conversely, for
originally low-performing models, we selected subsets of drugs with low combinatorial label entropy
(lower 15%), many combinatorial tests per drug (upper 15%), high physicochemical similarity to
other drugs (upper 15%), and high structural similarity to other drugs (upper 15%). This simulated
shifts in attribute distributions such that high-performing models now resembled low-performing
models, and vice versa. Cell-line models with insufficient drugs remaining were discarded, yielding
103 models for structural similarity, 109 models for physicochemical similarity, 117 models for
combinatorial tests per drug, and 91 models for combinatorial label entropy per drug. The simulations
were run for each of the dataset attributes identified individually, as well as pair-wise, but the latter
yielded datasets too small for model generation. To distinguish change in model performance due to
shifting bias versus reduction in dataset size, models were trained, validated, and tested on shifted
and non-shifted subsets of comparable size for each cell line.

3 Results

3.1 Synergy Spread and Class Separation

We first analyzed the effect of dataset span, measured as standard deviation of Bliss synergy scores,
and class separation, measured as difference in mean Bliss synergy scores of antagonistic vs synergis-
tic classes, on cell-line model performance, measured as AUPRC. The results are shown in Figure 1.
It can be seen that high-performing cell-line models tended to exhibit broader synergy spread with
difference in means between high– and low–performing models of 15.4–24.1 (95% CI) Bliss synergy
units (Welch’s two-sample t = 9.13, df = 71.3, p = 1.26e-13). This is consistent with the relationship
between potency span and achievable model performance reported by Brown et al. [5] in the context
of predicting binding affinity of small-molecule ligands for protein targets. High-performing cell-line
models also tended to exhibit greater class separation in synergy space with difference in means
between high– and low–performing models of 12.9–17.6 (95% CI) Bliss synergy units (Welch’s
two-sample t = 13.1, df = 94.4, p < 2.20e-16). Easier class splits may inflate model performance,
particularly on AUROC [30, 15] but also AUPRC: DeepSynergy, for instance, defined the top 10%
of combinations as the synergistic or positive class and modeled the remainder as the negative class
[23]. Our findings show that both synergy spread and class separation influence modelability.

3.2 Synergicity and Entropy of Combinatorial Labels

We then analyzed the effect of combinatorial label homogeneity on model performance (Sub-Figures
2A-B). It can be seen that the cell-line H-spread of synergicity, defined as the fraction of combinations
for which individual drugs have been labelled synergistic as opposed to antagonistic, is positively
correlated with cell-line model performance, measured as AUPRC (Spearman’s ρ = 0.539, p =
1.77e-10). Conversely, the cell-line arithmetic mean heterogeneity of combinatorial labels, measured
as Shannon entropy for individual drugs, is negatively correlated with cell-line model performance,
measured as AUPRC (Pearson’s r = −0.691, p < 2.20e-16). The more bimodal a cell line’s drug
synergicity distribution, the more homogeneous its drug-wise combinatorial labels and the easier
to predict combinations unseen during training with at least one seen-before drug. Our findings
imply that cell lines comprising drugs with homogeneous combinatorial labels, i.e., drugs occurring

4



Figure 1: Panel A. Distribution of Bliss synergy scores for the best-performing cell-line model
(i) and the worst-performing cell-line model (ii). Panel B. Each barcode line in the
violin plots represents one cell-line model. Differences in synergy class means (i) and
standard deviations of overall synergy distributions (ii) plotted for all 145 cell-line models
investigated.

Figure 2: Cell-line model performance plotted against cell-line synergicity (Panel A), combinatorial
label entropy (Panel B), cosine similarity in structural space (Panel C), cosine similarity in
physicochemical space (Panel D), and number of combinatorial samples per drug (Panel
E). Each dot in the density plots (upper panels) and each barcode line in the violin plots
(lower panels) represents one cell-line model.

primarily in antagonistic-only combinatorial labels and synergistic-only combinatorial labels, tend to
be easier to model with higher AUPRC scores.

3.3 Structural Diversity, Physicochemical Diversity, Combinatorial Tests Per Drug

We then analyzed the effects of drug diversity in structural Morgan fingerprint and physicochemical
spaces, both measured as fraction of drugs in a cell-line dataset with pair-wise cosine similarity
above a defined threshold, on cell-line model performance, measured as AUPRC. Panel C of Figure 2
shows that the dataset attribute, compound structural similarity, is positively correlated with model
performance (Spearman’s ρ = 0.359, p = 1.012e-05): high-performing cell-line models exhibited
3.91%–13.8% (95% CI) higher pair-wise cosine similarity between drugs in Morgan fingerprint
space than low-performing cell-line models (Welch’s two-sample t = 3.54, df = 132.64, p = 0.0005).
Similarly, Panel D of Figure 2 shows that the dataset attribute, compound physicochemical similarity,
is positively correlated with model performance (Spearman’s ρ = 0.327, p = 6.282e-05): high-
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performing cell-line models exhibited 2.28%–12.9% (95% CI) higher pair-wise cosine similarity
between drugs in physicochemical space than low-performing cell-line models (Welch’s two-sample t
= 2.83, df = 131.33, p = 0.005). Summarily, the breadth of compound structural and physicochemical
spaces both appear to influence modelability, which one might expect as it is easier to model a smaller
space with greater overlap between train and validation/test sets. We subsequently investigated the
relationship between cell-line model performance, measured as AUPRC, and number of combinatorial
tests per drug. It can be seen in Panel E of Figure 2 that this dataset attribute is positively correlated
with model performance (Pearson’s r = 0.504, p = 1.24e-10). High-performing cell-line models
comprised 17.1-31.0 (95% CI) more combinations tested per drug than low-performing cell-line
models (Welch’s two-sample t = 6.86, df = 141.19, p = 1.99e-10), which one might expect as it
is easier to model a smaller space with fewer distinct drugs tested in more combinations. These
findings imply that seemingly high-performing drug synergy models do not generalize well to broader
medicinal space.

3.4 Simulating Distribution Shifts in Dataset Attributes

To test whether the differences in model performance observed across cell lines was due to underlying
data modelability versus biological variability, we simulated shifts in dataset attribute distributions
and compared resulting changes in model performance (∆AUPRC). We selected subsets of drug-drug
samples to shift distributions for low-performing cell-line models to resemble high-performing cell-
line models, and vice versa. The simulations were run for each of the dataset attributes identified
individually, as well as pair-wise, but the latter yielded datasets too small for model generation. The
results are summarized in Figure 3.

Figure 3: Change in model performance, ∆AUPRC, after simulating distribution shifts for each
dataset attribute individually. Performance improved for previously low-performing mod-
els (blue) under all simulations, albeit to varying degrees (+0.06 ± 0.04 ∆AUPRC for
physicochemical diversity versus +0.18± 0.05 ∆AUPRC for combinatorial label entropy).
Performance deteriorated most noticeably for previously high-performing models (red)
following shifts in distributions for combinatorial label entropy (−0.10± 0.04 ∆AUPRC).

Sub-sampling that resulted in greater class separation, broader synergy spread, lower structural
diversity, lower physicochemical diversity, higher number of combinatorial tests per drug, and lower
combinatorial label entropy generally increased model performance. Conversely, sub-sampling that
resulted in smaller class separation, narrower synergy spread, lower number of combinatorial tests
per drug, and higher combinatorial label entropy generally decreased model performance. In other
words, simulating shifts in attribute distributions tended to boost model performance for originally
low-performing models, and tended to degrade model performance for originally high-performing
models. This suggests that the differences observed in model performance across cell lines was likely
due to differences in dataset composition and not due to inherent biological variation. Of the dataset
attributes identified and manipulated, combinatorial label entropy most influenced modelability,
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increasing the performance of originally low-performing models by +0.18± 0.05 ∆AUPRC, which
is comparable to the original difference in mean performance between high– versus low–performers
(0.15 ∆AUPRC). It is important to note that factors are not decoupled in these simulations as shifting
one attribute distribution in isolation was not feasible; shifting one distribution simultaneously shifted
other distributions to varying degrees since we must also consider how dataset attributes are correlated
with each other. To contextualize these findings, we refer to improvements over state-of-the-art models
reported in drug synergy literature, such as +0.04 ∆AUPRC by Preuer et al. [23] and Wang et al.
[31].

3.5 Drug Synergicity and Lipophilicity

We then analyzed whether mechanistic insights reported in drug synergy literature, particularly the
relationship between synergicity and lipophilicity [34], influence modelability. Figure 4A shows
that, for the well-characterized cell line MCF7, a drug’s lipophilicity (CrippenClogP) is positively
correlated (Pearson’s r = 0.452, p = 0.0000143) with its synergicity, particularly in the region most
relevant for drug discovery, i.e., CrippenClogP interval (1,6]. Figure 4B shows the negative correlation
between model performances and synergicity-lipophilicity correlation coefficients for all cell-line
datasets (Pearson’s r = −0.263, p = 0.00144): 46.6% of cell-line datasets exhibited synergicity-
lipophilicity correlation coefficients ≥ 0.2, but only 13.2% of these had model performances AUPRC
≥ 0.8. High-performing models evidently do not rely on the positive correlation between synergicity
and lipophilicity reported here and in literature [34] for predictions: high-performing cell-line datasets
exhibited a near-zero mean synergicity-lipophilicity correlation coefficient of 0.026 PCC, 95% CI
[-0.290,-0.164] lower than the mean correlation of 0.253 PCC for low-performing cell-line datasets
(Welch’s two-sample t = -7.14, df = 121, p < 0.000001).

Figure 4: Panel A. Each dot in the density plot and each barcode line in the violin plot represents
one drug. A drug’s lipophilicity is postively correlated with its synergicity in the MCF7
cell-line dataset, particularly for drug-like molecules in CrippenClogP interval (1,6]. Panel
B. Each dot in the density plot and each barcode line in the violin plot represents one
cell-line model. Synergicity-lipophilicity correlation coefficients are negatively correlated
with model performance across cell-line datasets.

3.6 Non-Additivity, Combinatorial Label Homogeneity, Drug Similarity

We considered the dependence of combinatorial label homogeneity, an output dataset attribute, on
various input dataset attributes, such as drug similarity. It can be seen in Appendix Figure 7 that
cell-line drug similarity in physicochemical (Pearson’s r = 0.480) and structural (Pearson’s r =
0.514) spaces correlate with combinatorial label homogeneity. A drug is more likely to behave
generally synergistically or generally antagonistically, or rather elicit mostly synergistic-only or
antagonistic-only labels, when combined with similar drugs, since similar drugs hit similar pathways
exhibiting homogeneous synergistic or antagonistic effect. Different drugs hit different pathways
exhibiting heterogeneous synergistic and antagonistic effect: synergy with some drugs and antagonism
with other drugs depending on pathway hit [16]. We then considered the relationship between a
drug’s combinatorial label homogeneity and its tendency for non-additivity, defined in this work
as median absolute distance from Bliss additivity across combinations. The correlation between
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these attributes varied across cell-line models and tended to increase with dataset modelability or
increasing model performance in AUPRC (Pearson’s r = 0.378, Figure 5A). High-performing cell-line
models comprised drugs exhibiting a stronger correlation between combinatorial label homogeneity
and non-additivity with a 95% CI [0.091,0.241] higher Pearson correlation coefficient (PCC) than
low-performing cell-line models (Welch’s two-sample t = 4.39, df = 115, p < 0.00002). 19.4%
of cell-line datasets exhibited PCCs between combinatorial label homogeneity and non-additivity
≥ 0.5. Of these, 75% had model performances AUPRC ≥ 0.8. Figure 5B shows one such cell-line
dataset, namely the skin epithelial-like cell line IST-MEL1, with AUPRC ≥ 0.9 and PCC between
combinatorial label homogeneity and non-additivity r = 0.643. In other words, drugs that elicited
close-to-additive effects when combined tended to have low combinatorial label homogeneity, while
drugs that elicited highly synergistic or highly antagonistic effects when combined tended to have
high combinatorial label homogeneity. These findings imply that combinatorial label homogeneity
could function as a crude proxy for non-additivity in some contexts, yielding greater modelability.

Figure 5: Panel A. Each dot in the density plot and each barcode line in the violin plot represents
one drug. A drug’s combinatorial label homogeneity is positively correlated with its non-
additivity for the IST-MEL1 cell-line dataset. Panel B. Each dot in the density plot and
each barcode line in the violin plot represents one cell-line model. Model performance
tended to increase with increasing strength of Pearson’s correlation between combinatorial
label homogeneity and non-additivity.

4 Conclusions

In this work, we qualify and quantify various synergy dataset attributes influencing modelability:
synergy spread, class separation, chemical structural diversity, physicochemical diversity, combina-
torial tests per drug, and combinatorial label entropy. We simulate shifts in distributions of these
attributes and report that combinatorial label entropy improved and degraded model performance
most, depending on the direction of attribute shift. It is important to note that the attributes were
not decoupled in our simulations as shifting one attribute distribution in isolation was not feasible;
shifting one distribution simultaneously shifted other distributions to varying degrees. Overall, our
findings imply that model performance is highly sensitive to distributional biases in available data.
We find that distributional biases in the training-validation-test sets used for predictive modeling of
drug synergy can explain up to 0.22 ∆AUPRC of the difference observed in model performances.
For comparison, we refer to performance improvements over state-of-the-art models reported in drug
synergy literature, such as 0.04 ∆AUPRC by Preuer et al. [23] and Wang et al. [31]. We caution
that the synergy modeling community’s efforts may be better expended in examining data-specific
artefacts and biases rigorously prior to model building. We recommend that synergy modelers
characterize the applicability domain wherein models can be expected to work reliably and report
explicitly the statistical biases underlying datasets used for model generation.

8



References
[1] Alsherbiny, M. A., Radwan, I., Moustafa, N., Bhuyan, D. J., El-Waisi, M., Chang, D. and Li, C. G. [2023],

‘Trustworthy Deep Neural Network for Inferring Anticancer Synergistic Combinations’, IEEE Journal of
Biomedical and Health Informatics 27(4), 1691–1700.

[2] Barnett, E., Onete, D., Salekin, A. and Faraone, S. V. [2022], ‘Genomic Machine Learning Meta-regression:
Insights on Associations of Study Features with Reported Model Performance’, medRxiv pp. 2022–01.

[3] Bliss, C. I. [1939], ‘The Toxicity of Poisons Applied Jointly’, Annals of applied biology 26(3), 585–615.

[4] Breiman, L. [2001], ‘Random forests’, Machine learning 45, 5–32.

[5] Brown, S. P., Muchmore, S. W. and Hajduk, P. J. [2009], ‘Healthy skepticism: assessing realistic model
performance’, Drug discovery today 14(7-8), 420–427.

[6] Chen, J., Wu, L., Liu, K., Xu, Y., He, S. and Bo, X. [2023], ‘EDST: a decision stump based ensemble
algorithm for synergistic drug combination prediction’, BMC bioinformatics 24(1), 1–21.

[7] Cortés-Ciriano, I. and Bender, A. [2016], ‘How consistent are publicly reported cytotoxicity data? Large-
scale statistical analysis of the concordance of public independent cytotoxicity measurements’, ChemMed-
Chem 11(1), 57–71.

[8] Holbeck, S. L., Camalier, R., Crowell, J. A., Govindharajulu, J. P., Hollingshead, M., Anderson, L. W.,
Polley, E., Rubinstein, L., Srivastava, A., Wilsker, D. et al. [2017], ‘The National Cancer Institute
ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced
therapeutic activity’, Cancer research 77(13), 3564–3576.

[9] Jia, J., Zhu, F., Ma, X., Cao, Z. W., Li, Y. X. and Chen, Y. Z. [2009], ‘Mechanisms of drug combinations:
interaction and network perspectives’, Nature reviews Drug discovery 8(2), 111–128.

[10] Khetan, R., Curtis, R., Deane, C. M., Hadsund, J. T., Kar, U., Krawczyk, K., Kuroda, D., Robinson, S. A.,
Sormanni, P., Tsumoto, K. et al. [2022], Current advances in biopharmaceutical informatics: guidelines,
impact and challenges in the computational developability assessment of antibody therapeutics, in ‘MAbs’,
Vol. 14, Taylor & Francis, p. 2020082.

[11] Landrum, G., Tosco, P., Kelley, B., Sriniker, Gedeck, NadineSchneider, Vianello, R., Ric, Dalke, A., Cole,
B., AlexanderSavelyev, Swain, M., Turk, S., N, D., Vaucher, A., Kawashima, E., Wójcikowski, M., Probst,
D., Godin, G., Cosgrove, D., Pahl, A., JP, Francois Berenger, Strets123, JLVarjo, O’Boyle, N., Fuller, P.,
Jensen, J. H., Sforna, G. and DoliathGavid [2020], ‘rdkit/rdkit: 2020_03_1 (q1 2020) release’.
URL: https://zenodo.org/record/3732262

[12] Landscape of targeted anti-cancer drug synergies in melanoma identifies a novel BRAF-VEGFR/PDGFR
combination treatment, author=Friedman, Adam A and Amzallag, Arnaud and Pruteanu-Malinici, Iulian
and Baniya, Subash and Cooper, Zachary A and Piris, Adriano and Hargreaves, Leeza and Igras, Vivien
and Frederick, Dennie T and Lawrence, Donald P and others [2015], PloS one 10(10), e0140310.

[13] Liaw, A. and Wiener, M. [2002], ‘Classification and Regression by randomForest’, R News 2(3), 18–22.
URL: https://cran.r-project.org/package=randomForest

[14] Licciardello, M. P., Ringler, A., Markt, P., Klepsch, F., Lardeau, C.-H., Sdelci, S., Schirghuber, E., Müller,
A. C., Caldera, M., Wagner, A. et al. [2017], ‘A combinatorial screen of the CLOUD uncovers a synergy
targeting the androgen receptor’, Nature chemical biology 13(7), 771–778.

[15] Lobo, J. M., Jiménez-Valverde, A. and Real, R. [2008], ‘AUC: a misleading measure of the performance
of predictive distribution models’, Global ecology and Biogeography 17(2), 145–151.

[16] Martin, Y. C., Kofron, J. L. and Traphagen, L. M. [2002], ‘Do structurally similar molecules have similar
biological activity?’, Journal of medicinal chemistry 45(19), 4350–4358.

[17] Meyer, C. T., Wooten, D. J., Lopez, C. F. and Quaranta, V. [2020], ‘Charting the fragmented landscape of
drug synergy’, Trends in pharmacological sciences 41(4), 266–280.

[18] Nair, N. U., Greninger, P., Zhang, X., Friedman, A. A., Amzallag, A., Cortez, E., Sahu, A. D., Lee, J. S.,
Dastur, A., Egan, R. K. et al. [2023], ‘A landscape of response to drug combinations in non-small cell lung
cancer’, Nature Communications 14(1), 3830.

[19] Narayan, R. S., Molenaar, P., Teng, J., Cornelissen, F. M., Roelofs, I., Menezes, R., Dik, R., Lagerweij, T.,
Broersma, Y., Petersen, N. et al. [2020], ‘A cancer drug atlas enables synergistic targeting of independent
drug vulnerabilities’, Nature communications 11(1), 2935.

9



[20] Niepel, M., Hafner, M., Mills, C. E., Subramanian, K., Williams, E. H., Chung, M., Gaudio, B., Barrette,
A. M., Stern, A. D., Hu, B. et al. [2019], ‘A multi-center study on the reproducibility of drug-response
assays in mammalian cell lines’, Cell systems 9(1), 35–48.

[21] O’Neil, J., Benita, Y., Feldman, I., Chenard, M., Roberts, B., Liu, Y., Li, J., Kral, A., Lejnine, S., Loboda, A.
et al. [2016], ‘An unbiased oncology compound screen to identify novel combination strategies’, Molecular
cancer therapeutics 15(6), 1155–1162.

[22] Pemovska, T., Bigenzahn, J. W. and Superti-Furga, G. [2018], ‘Recent advances in combinatorial drug
screening and synergy scoring’, Current opinion in pharmacology 42, 102–110.

[23] Preuer, K., Lewis, R. P., Hochreiter, S., Bender, A., Bulusu, K. C. and Klambauer, G. [2018], ‘DeepSynergy:
predicting anti-cancer drug synergy with Deep Learning’, Bioinformatics 34(9), 1538–1546.

[24] R Core Team [2023], R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria.
URL: https://www.R-project.org/

[25] Rani, P., Dutta, K. and Kumar, V. [2023], ‘Performance evaluation of drug synergy datasets using computa-
tional intelligence approaches’, Multimedia Tools and Applications pp. 1–27.

[26] Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, M., Ursprung, S., Aviles-Rivero, A. I., Etmann,
C., McCague, C., Beer, L. et al. [2021], ‘Common pitfalls and recommendations for using machine
learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans’, Nature Machine
Intelligence 3(3), 199–217.

[27] Scantlebury, J., Vost, L., Carbery, A., Hadfield, T. E., Turnbull, O. M., Brown, N., Chenthamarakshan, V.,
Das, P., Grosjean, H., von Delft, F. et al. [2022], ‘A Step Towards Generalisability: Training a Machine
Learning Scoring Function for Structure-Based Virtual Screening’, bioRxiv pp. 2022–10.

[28] Shim, M., Lee, S.-H. and Hwang, H.-J. [2021], ‘Inflated prediction accuracy of neuropsychiatric biomarkers
caused by data leakage in feature selection’, Scientific Reports 11(1), 7980.

[29] Tang, J., Wennerberg, K. and Aittokallio, T. [2015], ‘What is synergy? The Saariselkä agreement revisited’,
Frontiers in pharmacology 6, 181.

[30] The relationship between Precision-Recall and ROC curves, author=Davis, Jesse and Goadrich, Mark
[2006], in ‘Proceedings of the 23rd International Conference on Machine Learning’, pp. 233–240.

[31] Wang, T., Wang, R. and Wei, L. [2023], ‘AttenSyn: An Attention-Based Deep Graph Neural Network for
Anticancer Synergistic Drug Combination Prediction’, Journal of Chemical Information and Modeling .

[32] Worthington, R. J. and Melander, C. [2013], ‘Combination approaches to combat multidrug-resistant
bacteria’, Trends in biotechnology 31(3), 177–184.

[33] Wu, L., Wen, Y., Leng, D., Zhang, Q., Dai, C., Wang, Z., Liu, Z., Yan, B., Zhang, Y., Wang, J. et al.
[2022], ‘Machine learning methods, databases and tools for drug combination prediction’, Briefings in
bioinformatics 23(1), bbab355.

[34] Yilancioglu, K., Weinstein, Z. B., Meydan, C., Akhmetov, A., Toprak, I., Durmaz, A., Iossifov, I., Kazan,
H., Roth, F. P. and Cokol, M. [2014], ‘Target-independent prediction of drug synergies using only drug
lipophilicity’, Journal of chemical information and modeling 54(8), 2286–2293.

[35] Zheng, S., Aldahdooh, J., Shadbahr, T., Wang, Y., Aldahdooh, D., Bao, J., Wang, W. and Tang, J. [2021],
‘DrugComb update: a more comprehensive drug sensitivity data repository and analysis portal’, Nucleic
acids research 49(W1), W174–W184.

10



5 Appendices

Figure 6: AUPRC performances for all cell-line models investigated in this study.
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Figure 7: Drug similarity in physicochemical (upper) and structural (lower) spaces correlate with
combinatorial label homogeneity.
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