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Abstract

Generative models for multimodal data permit the identification of latent factors that may
be associated with important determinants of observed data heterogeneity. Common or
shared factors could be important for explaining variation across modalities whereas other
factors may be private and important only for the explanation of a single modality. Mul-
timodal Variational Autoencoders, such as MVAE and MMVAE, are a natural choice for
inferring those underlying latent factors and separating shared variation from private. In this
work, we investigate their capability to reliably perform this disentanglement. In particular,
we highlight a challenging problem setting where modality-specific variation dominates the
shared signal. Taking a cross-modal prediction perspective, we demonstrate limitations of
existing models, and propose a modification how to make them more robust to modality-
specific variation. Our findings are supported by experiments on synthetic as well as various
real-world multi-omics data sets.

1 Introduction

Multimodal data integration is an important task for increasingly data rich applications. In biology, the
integration of data from different molecular assays enables greater understanding of biological processes and
disease mechanisms. These multi-omic profiling studies that probe different biological layers in parallel have
become increasingly common [1, 2, 3]. Multi-omic data analysis is typically concerned with identification
of latent factors from the combination of these high-dimensional data modalities (also referred to as views).
These latent factors are assumed to be associated with important physical drivers of biological heterogeneity.
However, this analysis is complicated by the complex dependencies across modalities that must be inferred
as well as the variable dimensionality due to the different number and types of features measured.

In complex systems, it can be expected that latent processes segregate into two groups, those that drive
variation across all modalities (shared factors), and those that only influence variation in a single modality
(private factors). Disentangling shared and private variation can therefore be important for interpretation but
may be difficult as different feature sets could be driven by different latent factors (Figure 1A). Historically,
finding shared signal across two data modalities has been performed with canonical correlation analysis
(CCA) [4]. Inter-battery factor analysis (IBFA) [5] can be seen as an extension of CCA that additionally
incorporates modality-specific latent factors. Bayesian formulations of CCA and IBFA have been developed
using generative modelling [6, 7, 8, 9]. These have also been extended to non-linear setups by, for example,
combining CCA with deep neural networks [10, 11], or using Gaussian Process Latent Variable Models for
multi-view learning [12].

Generative models are a natural choice for the task of learning those underlying latent factors. In particular,
Variational Autoencoders (VAEs) [13, 14] have been successfully used in various biological applications [15,
16, 17], and their multimodal adaptations have been used for multi-omics data integration [18, 19, 20, 21, 22].
However, while these works have showcased the capabilities of multimodal VAEs in representation learning,
few attempt to combine this with latent factor disentanglement to improve their interpretability.
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Figure 1: (A) Multimodal data with the underlying shared and private latent variables. We consider
multimodal data (illustrated for tabular omics data, such as gene expression and methylation), where we
distinguish between features that have been generated by shared latent factors and features that are driven by
private modality-specific sources of variation. (B) Cross-modal prediction performance when increasing
the number of private features. When gradually increasing the number of features that are driven by
private latent factors (based on the example from Section 4.1), we observe that: 1) MMVAE and MoPoE
consistently outperform MVAE, 2) the performance of all methods drops when increasing private features,
but 3) our proposed modification MMVAE++ is significantly more robust than existing methods to high
modality-specific variation.

In multimodal VAEs, the encoder projects observations onto distributions in the latent space. One of the main
challenges is the design choice of the encoder and the form of the associated approximate posterior. Specif-
ically, in order to allow for missing modalities at either training or test time, typical approaches introduce
modality-specific encoders and then combine them in different ways.

Two prominent and widely-used approaches to multimodal VAEs are the MVAE [23] and the MMVAE [24].
MVAE uses a product-of-experts (PoE) to combine the encoding distributions, whereas the MMVAE uses a
mixture-of-experts (MoE). Both approaches have been adopted in various multi-omics applications, including
[25, 20] (PoE) and [18] (MoE). More recently, a generalisation based on the mixture-of-product-of-experts
(MoPoE) has been proposed [26], but has not yet been used in computational biology applications. Recently
both MVAE and MMVAE frameworks have been adapted to explicitly include shared and private latent
variables [27, 28] to enable the separation of modality-specific variation from shared and therefore improved
interpretation as considered in various biomedical applications, e.g. as considered in [29, 11, 30]. However,
PoE and MoE are distinct choices for the form of the variational posterior. One is not a special case of
the other, so it is unclear if both approaches offer the same capability to disentangle variation nor have
their resilience to variable dimensionality been demonstrated. The latter drives the relative proportions of
modality-specific and shared variation, e.g. gene expression involves measuring O(103 − 104) of genes but
DNA methylation measures O(105 − 106) CpG sites.

Contributions: We investigate the ability of multimodal VAEs to successfully disentangle private and shared
sources of variation in multi-omics data. We highlight a challenging real-world scenario where dominant
modality-specific variation can make it harder to identify the more subtle shared latent structure. We will
demonstrate that the existing approaches (MVAE, MoPoE-VAE and MMVAE) exhibit systematic differences
in their ability to identify the underlying shared latent factors, stemming from the inductive biases associated
with the use of MoE/PoE posterior approximations. We explain this through the lens of cross-modal pre-
diction. Our experiments highlight how all models behave desirably when there is relatively little modality-
specific variation, but they start to break down when private variation starts to dominate. To address this
shortcoming, we further propose a modification called MMVAE++ that is significantly more robust in its
ability to infer shared latent factors.

2 Background

2.1 Variational Autoencoders

VAEs are a class of deep generative models that couple a Bayesian latent variable model with an inference
network. Given observed data x ∈ X , the goal of latent variable modelling is to associate data x with a
latent representation z ∈ Z , where typically dim(z) ≪ dim(x). VAEs specify a joint distribution p(x, z) =
pθ(x|z)p(z), where the likelihood pθ(x|z) is parameterised by a decoder neural network with parameters
θ, and the prior is typically chosen to be p(z) = N (0, I). Posterior inference in VAEs is carried out via
amortised variational inference, i.e. using a parametric inference model qϕ(z|x). This is implemented via an
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encoder neural network with parameters ϕ, a typical choice being qϕ(z|x) = N (µϕ(x), σ
2
ϕ(x)). Application

of standard variational inference methodology [31] leads to a lower bound on the log marginal likelihood,
i.e. the evidence lower bound (ELBO) of the form L = Eqϕ(z|x) log pθ(x|z)− KL(qϕ(z|x)||p(z)). VAEs are
trained by optimising L w.r.t. both the decoder parameters θ and variational parameters ϕ.

2.2 Multimodal VAEs

In principle, VAEs can be extended to multiple data modalities x1:M in a relatively straightforward way by
constructing the decoder p(x1, . . . ,xM |z) and encoder q(z|x1, . . . ,xM ), now involving all data modalities.
For example, this can be done via concatenation as in JMVAE [32]. However, this type of approach is limited
to complete data situations as there is no principled mechanism to support missing data modalities at train
and test time otherwise. To construct a multimodal VAE that can handle missing views, a natural approach is
to introduce modality-specific encoders qϕm

(z|xm) for m = 1, . . . ,M . These can then be combined for the
modalities that are available via either a product of experts (PoE), a mixture of experts (MoE), or a mixture
of PoEs (MoPoE) leading to three different implementation variants of multimodal VAEs.

MVAEs: The MVAE [23] uses a product of experts (PoE) [33] to combine the variational posterior approx-
imations qϕm

(z|xm). This choice is motivated by how the true posterior in the multimodal VAE factorises.
For a set of modalities xM, where M is an index set, MVAE uses the PoE including a “prior expert” p(z) as
follows

qPoE
ϕ (z|xM) := p(z)

∏
m∈M

qϕm
(z|xm)

where typically all experts are chosen to be Gaussian. While it would appear sufficient to optimise the
corresponding ELBO, which we denote LPoE

M , calculated across the set of all modalities, i.e. the objective
LPoE
1:M , there turns out to be a limitation. The product-of-Gaussians does not uniquely specify its components,

so individual inference networks would not be uniquely defined. This would be problematic when using them
at test time in the presence of missing data. To address this issue, the authors Wu and Goodman [23] propose
to optimise a sum of ELBOs, considering different index sets M. In case of M = 2 views, these index sets
would be {1, 2}, {1} and {2}, thus resulting in the following MVAE objective

LMVAE := LPoE
{1,2} + LPoE

{1} + LPoE
{2} . (1)

MMVAEs: In contrast to using the PoE, the MMVAE by Shi et al. [24] adopts a mixture of experts
(MoE) [34] variational posterior, where the modality-specific encoders qϕm(z|xm) are combined additively
qMoE
ϕ (z|xM) =

∑
m∈M αmqϕm

(z|xm). Here, Shi et al. [24] choose equal weights αm = 1/M .

MoPoE-VAEs: Sutter et al. [26] introduce a mixture-of-product-of-experts (MoPoE) posterior approxima-
tion, qMoPoE

ϕ (z|x1:M ) ∝
∑
M∈P(1:M) q

PoE
ϕ (z|xM) where the mixture is taken over all subsets of modalities.

This can be seen as a generalisation of both the MoE and the PoE.

2.3 Private and shared latent factors in multimodal VAEs

Recently, the MVAE and MMVAE frameworks have been adapted to explicitly include shared and private
latent variables by Lee and Pavlovic [27] and Palumbo et al. [28] respectively. Both of these papers essen-
tially introduce a partitioned latent space, in case of two modalities z = [zpr1 , zshared, zpr2 ] as illustrated in
Figure 1A1. This involves learning qψ1

m
(zpr1 |xm), qψ2

m
(zpr2 |xm) and qϕm

(zsh|xm) encoding distributions.

3 Methods

We proceed by reinterpreting the MVAE, MMVAE, and MoPoE-VAE models from the cross-modal gen-
eration perspective. In our setting, the effectiveness of the latent disentanglement into private and shared
components can be measured by the ability to predict one data modality from another. Since cross-modal
prediction can only be achieved through the shared latent space, accurate predictions can only be achieved if
the learnt shared components contain only truly shared information and avoids modality-specific information.

1While both papers come with their own additional minor modifications, for example Palumbo et al. [28] replace the
Gaussian prior with a Laplace one. For a consistent comparison, here we consider the “base” versions of both models, i.e
apart from the partitioned latent space, we leave other aspects of the model specification unchanged.
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3.1 Inductive biases in existing multimodal VAEs: a cross-modal perspective

Cross-modal prediction refers to predicting one set of modalities xM from a different set of modalities xI .
In multimodal VAEs, this is achieved as follows

p(xM|xI) ≈
∫

p(xM|z)q(z|xI)dz (2)

where we first encode xI and then decode to obtain predictions for xM. Next, we will discuss how the
MVAE, MMVAE, and MoPoE-VAE training objectives relate to cross-modal prediction.

PoE vs MoE on fixed inputs: Usually, the PoE and the MoE are interpreted as simply two different choices
for the variational posterior q(z|x1:M ). To an extent, the differences between PoE and MoE are well under-
stood. For example, PoE will have high posterior density only as long as all experts have high posterior
density, whereas in MoE it is sufficient that there exists at least one expert that has assigned high posterior
density to this event. While these differences between MVAE and MMVAE are well-understood, the above
reasoning assumes that we compare the two on the same set of inputs, but this is not necessarily the case
when performing inference for latent variables.

MVAE vs MMVAE: The MVAE objective does not involve any cross-modal reconstruction terms. In
contrast, the MMVAE lower bound, given by Ez∼qMoE(z|xM) log p(xM|z)− KL(qMoE

ϕ (z|xM) || p(z)), where
the first term can be expanded

1

M

∑
m∈M

∑
m′∈M

Ez∼qϕm (z|xm) log p(xm′ |z) , (3)

involves a sum over all pairs (m,m′) of modalities (1 ≤ m,m′ ≤ M ), thus explicitly involving cross-modal
reconstruction. We hypothesise that this is an important distinction which may lead to MMVAE learning
latent representations that are more amenable to cross-modal prediction, i.e. being potentially biased towards
learning shared latent factors, more so than MVAE. This inductive bias may be particularly important in the
abundance of modality-specific variation. In this scenario (e.g. as in Figure 1A), the MVAE may absorb this
dominant, private source of variation in the shared latent space zshared, whereas the MMVAE objective may
correctly capture the non-dominant, but shared variation in zshared.

MVAE vs MoPoE-VAE: Finally, we aim to connect and contrast MVAE and MoPoE-VAE. In the original
MVAE objective LPoE

M , data xM is first encoded into the latent space z and then decoded to reconstruct xM.
While it seems natural that both encoding and decoding are performed on the same set of modalities xM,
this does not necessarily have to be the case. Inspired by the above (2), we introduce a more general notation,
now explicitly indicating the encoding index set I

LM←I := Ez∼qPoE(z|xI) log p(xM|z)− KL(qPoE(z|xI) || p(z))
which is a valid lower bound (this can be seen as choosing an approximate posterior qPoE(z|xI) which is
amortised w.r.t. inputs xI). Using this notation, in case of M = 2 modalities, the MVAE lower bound can
be written as L{1,2}←{1,2} + L{1}←{1} + L{2}←{2}, letting us directly compare it with the MoPoE-VAE
objective

L{1,2}←{1,2} + L{1}←{1} + L{2}←{2} + L{1}←{2} + L{2}←{1} . (4)
The fact that the last two cross-modal terms exist in MoPoE-VAE but not in MVAE, helps to shed light into
the expected behaviours of MVAE and MoPoE-VAE, specifically on why we would expect MoPoE-VAE to
be better suited for cross-modal reconstruction than MVAE. We also note that, in principle, one could have
constructed a different version of MVAE, considering all possible configurations of encoding and decoding
modalities I and M. This would have lead to inclusion of cross-modal terms L{1}←{2} and L{2}←{1}.

3.2 MMVAE++

We now turn to MMVAE. In Section 3.1 we saw why MMVAE is better suited for cross-view prediction than
MVAE. However, as we see in Figure 1B, it is still prone to the presence of relatively high levels of modality-
specific variation. As this is a common occurrence in real-world data due to the variable dimensionality of
different modalities, it would be highly desirable to improve the robustness of MMVAE in these situations.

Modality-specific latent structure can interfere with learning shared latent factors. This can happen because
being able to accurately reconstruct a large number of private features can lead to a higher ELBO, in com-
parison to reconstructing a relatively smaller number of shared features. Even when explicitly separating
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out shared and private latent variables, i.e. when assuming a latent space z := [zpr1 , zshared, zpr2 ], it is not
guaranteed that zshared will contain latent variables that are truly shared. In order to enforce this, we pro-
pose a modification to the MMVAE objective, where the gradient updates via zshared are restricted to only
cross-modal terms. That is, we redefine

Ez∼q(z|xm) log p(xm′ |z) =

E zpr∼q(zpr| xm)
zsh∼sg[q(zsh| xm)]

log p(xm′ |zsh, zpr), if m = m′,

Ezsh∼q(zsh| xm) log p(xm′ |zsh), if m ̸= m′,

where “sg” refers to the stop-gradient operator. Note that as a result, zshared can still be used for same-view
predictions, only its updates are restricted to cross-modal information. We refer to this modified objective as
MMVAE++.

3.3 Supervised multimodal VAEs

Here, we now focus on the (arguably rare) scenarios where we have access to labelled information y that
should reflect the shared structure across modalities. For example, in biomedical data, these labels could
indicate healthy/disease group, the presence of a particular mutation, or disease subtype. Note that our goal
here is not learning a classifier. Instead, our research question is whether having access to relevant label
information can improve the model’s ability to identify shared latent structure in the challenging scenarios
where standard (fully unsupervised) representation learning fails.

In order to incorporate label information in the model so that it would encourage zshared to reflect the truly
shared information, we propose to augment the ELBO as follows

L̃ := L+ β Ezsh∼q(zsh| xm)p(y|z)
where p(y|z) is parameterised by a linear mapping, L denotes the objective function of any of the previously
discussed multimodal VAE, and β is a hyperparameter2. As a result, we can obtain supervised versions of all
models which we refer to as sup-MVAE, sup-MoPoE and sup-MMVAE(++).

4 Results

Goals: The goals of our experiments are two-fold. First, we want to systematically investigate the inductive
biases and capabilities of multimodal VAEs to learn shared latent factors in challenging realistic scenarios,
including imbalanced modalities as well as varying levels of modality-specific variation. Second, we aim
to characterise the failure modes of existing models, i.e. the circumstances when they start to break, and
whether MMVAE++ will exhibit more desirable behaviour. Our experiments focus on tabular data settings
and real-world illustrations will use ’omics data sets.

Shared and private feature sets: In order to distinguish truly shared signal from modality-specific variation,
we follow the setup introduced in Figure 1A, where features are categorised as either “shared” or “private”. In
synthetic data experiments where we have access to ground truth generative latent factors, it is straightforward
to generate such feature sets. But in real omics data where ground truth is unknown, we will rely on external
labels or biomarkers, which let us create feature sets that would be driven by the same underlying biological
phenomenon. As a result, we can partition a modality xm into two components xm = [xshared

m ,xother
m ]. In our

evaluations, we would like to control the respective dimensionalities. To create feature sets of given sizes
Pm ≤ dim(xshared

m ) and Qm ≤ dim(xother
m ), we subsample Pm and Qm features from the two respective

subsets.

Model specification: For all versions of multimodal VAEs, we use an identical setup and architecture,
and we adopt a structured latent space z = [zpr1 , zshared, zpr2 ] throughout. We compare MMVAE++ with
three baselines: MVAE, MoPoE-VAE, and MMVAE3 with varying latent dimensionalities. In the syn-
thetic examples, we consider both correctly specified and misspecified latent structure. Using notation
“dim(zpr1)+dim(zshared)+dim(zpr2)”, in our real data experiments, we consider dimensionalities “2+2+2”,

2We note that the choice β = 1 corresponds to the lower bound on the log-marginal p(x1:M ,y), but in practice, we
can use β ≫ 1 to upweight the relative importance of the labels, in contrast to other features. Thus, we recommend to
choose β so that its magnitude is aligned with the magnitude of maxm dim(xm). In our experiments, we use β = 103.

3To be precise, MVAE and MMVAE with a structured latent space correspond to [27] and [28] respectively as ex-
plained in Section 2.3. Throughout the experiments, we will refer to the terms MVAE, MoPoE-VAE and MMVAE as the
respective models with a structured latent space z = [zpr1 , zshared, zpr2 ].
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“3+ 3+3”, and “4+ 4+4”. Our implementation is available in https://github.com/kasparmartens/
shared-private-multimodalVAE.

Evaluation metrics: We will evaluate how successfully a method is able to learn shared latent structure
by quantifying its cross-view prediction performance. In all our examples, we use M = 2 modalities, all
of which contain continuous measurements. We quantify the predictive performance by using the point-
estimates of p(x1|x2) and p(x2|x1), as outlined in (2), and report the fraction of variance explained R2 for
every feature. Note that we would expect high R2 values only for the “shared” feature set. By definition, the
“other” set should not contain any shared signal, and therefore we would expect cross-modal prediction to
produce R2 ≈ 0. In experiments where external labels y are available, we additionally report the area under
the ROC curve (AUC) to quantify how linearly separable the classes are in the shared latent space.

4.1 Synthetic examples

To compare methods in scenarios where we know the ground truth, we consider data generated from a non-
linear latent variable model for two modalities x1 and x2. Every feature j in either modality x

(j)
m is generated

either from shared latent variables zshared or private ones zprm , with latent-to-feature mappings drawn from
the Gaussian Process prior f (j) ∼ GP(0, k(·)). For shared features, the kernel is defined on zshared, for private
features on zprm , essentially corresponding to generating data from a multi-view GPLVM [35, 12].

Figure 2: Synthetic GP example: Cross-view predic-
tion performance (R2), separately for “shared” (red)
and “private” (grey) feature sets.

In these synthetic examples, we fix the number of
“shared” features in both modalities P1 = P2 =
10, and then vary the number of other features
Q1 and Q2. We consider two scenarios, generat-
ing data from the correctly specified latent struc-
ture (“2 + 2 + 2”) and a misspecified scenario
(“4 + 2 + 4”). Figure 1B shows results for the
“shared” feature set in the former scenario, where
Q2 was fixed to 100 and then we gradually increase
Q1 ∈ {20, 50, 100, . . . , 1000}, and Figure 2 shows
a more detailed breakdown (this serves as a sanity
check as R2 ≈ 0 for “private” features is expected
behaviour). Despite correctly specified latent dimensionalities, the performance of all models except MM-
VAE++ drops quickly. We also observe that both MoPoE-VAE and MMVAE consistently outperform MVAE,
and beyond 50 “private” features MMVAE++ is the best performing method. In the misspecified case (see
Supplementary Figure S2), conclusions remain similar.

4.2 Chronic Lymphocytic Leukaemia (CLL) study

Figure 3: CLL example: Cross-view R2 for IGHV-
related features for varying number of “other” genes,
when predicting methylation from gene expression.

We now consider a study of chronic lymphocytic
leukaemia (CLL) [36, 29]. Here, we use gene ex-
pression and methylation data 4 for those N = 126
patients who have both modalities available. We ad-
ditionally extract a binary label y which indicates
the IGHV mutation status – a known biomarker for
CLL [37]. We then divide features in both modali-
ties into IGHV-related and the rest5. We then com-
pare the ability of various multimodal VAEs to find
shared latent structure across IGHV-related features
(i.e. across genes in gene expression data and CpG
sites in methylation data).

To consider a set of increasingly challenging sce-
narios, we include P1 = P2 = 10 IGHV-related
features in both modalities, we fix the number of
other features in methylation data to Q2 = 100 and
then we vary the number of other genes Q1 ∈ {50, 100, 250, 500, 750, 1000}. Figure 3 shows the cross-view

4We use pre-processed publicly available data from https://github.com/bioFAM/MOFA
5We do this by ordering all features by their Pearson correlation with IGHV mutation status. To create feature sets of

sizes P1 and Q1 respectively, we choose P1 features with the highest absolute correlation and Q1 lowest ones.
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Table 1: AUC for linear classification of IGHV mutation status on the CLL example. AUC (median ±
sd) for increasing number of “other” genes. Evaluated on held-out subjects.

# OTHER MVAE MOPOE-VAE MMVAE MMVAE++

50 0.96 (±0.01) 0.96 (±0.01) 0.97 (±0.01) 0.96 (±0.01)
250 0.72 (±0.11) 0.77 (±0.07) 0.76 (±0.12) 0.83 (±0.09)
500 0.45 (±0.08) 0.47 (±0.09) 0.63 (±0.16) 0.84 (±0.21)

1000 0.45 (±0.05) 0.51 (±0.05) 0.43 (±0.06) 0.62 (±0.12)

prediction performance comparison (R2 on held-out subjects) for IGHV-related features when we increase
the number of “other” genes. First, we note that all models exhibit a performance drop. Overall, MVAE is
the lowest performing model, confirming the previously discussed inductive biases, while MMVAE++ has
highest R2 from 250 “other” genes onwards.

Table 1 additionally shows AUC for linear classification of the IGHV mutation status. We observe that
there is a clear decline in classification performance and learning IGHV-related latent representations be-
comes increasingly challenging as the number of “other” genes increases. Among unsupervised methods,
MMVAE++ remains the best performing at even 500 and 1000 “other” genes. Supervised methods (see Sup-
plementary Table S2) also exhibit a decline, albeit more slow (e.g. for 1000 “other” genes, including labels
in MMVAE++ increases the AUC value from 0.62 to 0.76). Overall, this example has demonstrated how
increasing amounts of modality-specific variation will start to affect the behaviour of all multimodal VAE
models, potentially even those that have access to label information.

4.3 TCGA Breast Cancer study

We now consider the Breast Cancer (BRCA) cohort from The Cancer Genome Atlas [38]. Specifically, we
focus on two modalities, gene expression and methylation, restricting our analysis to those N = 479 patients
with both available. Breast cancer is a heterogeneous disease: there exist multiple disease subtypes which
affect the prognosis as well as response to treatment. In our analysis, we focus on two subtypes of breast
cancer: oestrogen receptor positive (ER-positive, ER+) and oestrogen receptor negative (ER-negative, ER-).
In addition to the two modalities, we also extract the label y ∈ {ER+, ER-}.

In this experiment, our goal is to test the models’ capabilities to extract features (genes and CpGs) that are
driven by ER-related biological processes. Here, we particularly want to focus on high-dimensional and
imbalanced modalities. For this, we include P1 = 1000 ER-related genes and P2 = 1000 ER-related
CpGs6. Additionally, we include Q1 = 500 other genes and Q2 = 25,000 other CpGs, resulting in total
dim(x1) = 1500 and dim(x2) = 26,000.

Figure 4: BRCA study: Cross-view prediction accuracy (R2) separately for ER-related (red) and other
(grey) feature sets, when predicting expression from methylation. Shown for (A) unsupervised models, and
(B) supervised models that have access to the ER-status label.

Boxplots in Figure 4 compare the performance of multimodal VAEs in this challenging scenario, with ER-
related features being shown in red (see Supp. Figure S5 for expanded results with higher dimensional latent
spaces). Among unsupervised approaches, only MMVAE++ has managed to successfully predict many ER-
related genes with a median R2 = 0.26 (the second best is MoPoE-VAE with R2 = 0.04). This effect is even
more clear from Supplementary Figure S3 where cross-prediction R2 values are shown for selected individual
genes. For example, for ESR1 – the gene that encodes the oestrogen receptor – MMVAE++ achieves a 63
percentage point increase over MMVAE. These findings are complemented by AUC values for ER+/ER- label
classification in Table 2, where MMVAE++ clearly outperforms other unsupervised approaches.

6Analogously to the CLL example, we order all features based on the Pearson correlation with ER-status, and then
choose P1 with the highest absolute correlation and Q1 lowest ones.
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Table 2: AUC for linear classification of ER+ and ER- on the BRCA example.
MVAE MOPOE-VAE MMVAE MMVAE++ SUP-MVAE SUP-MOPOE SUP-MMVAE SUP-MMVAE++

0.62 ±0.1 0.61 ±0.1 0.59 ±0.1 0.91 ±0.01 0.88±0.04 0.92±0.05 0.88 ±0.07 0.93 ±0.03

When considering supervised methods, we see that incorporating ER-status information has boosted the
performance of all models, with the differences between them being small. On the one hand, this suggests
that having access to an informative label could have been sufficient to capture ER-related signal in the latent
space. But more importantly, it is perhaps surprising that MMVAE++ was able to perform similarly, despite
having no access to the label. This can be very useful in scenarios where there are no a priori labels on the
latent structure that we would want to learn or discover.

4.4 Single cell RNA-seq and ATAC-seq experiment

So far, we have considered studies involving patient-level (bulk multi-omics) data with moderate sample sizes.
In contrast, increasingly popular single-cell multi-omic technologies typically produce orders of magnitude
larger data sets. To demonstrate that our findings equally apply to large data regimes, we now consider a
dataset with chromatin accessibility (scATAC-seq) and gene expression (scRNA-seq) measurements across
N = 10032 peripheral blood mononuclear cells (PBMCs)7.

It is expected that both modalities capture cell type information. Here, we focus on a class of immune
cells, naive CD8 T cells, with the goal to compare how well different models are able to identify relevant
features (from gene expression as well as chromatin peaks) and encode this information in the shared latent
space. Analogously to previous experiments, we include P1 = P2 = 10 features that are most predictive of
this cell type, while including Q2 = 5000 other peaks and gradually increasing the number of other genes
Q1 ∈ {10, 100, 1000}. Table 3 shows that there is sufficient information in the data to near-perfectly identify
the cell type of interest: with 10 other genes, this is the case for all models except MVAE. However, when
increasing the number of other features, the capability of both MoPoE-VAE and MMVAE to classify naive
CD8 T cells starts to decrease, whereas MMVAE++ exhibits only a small decrease in performance. This
is comfirmed by shared latent space visualisations in Supplementary Figure S7. All supervised multimodal
VAEs achieve near-perfect separation (with AUC 0.99 (±0.001) in all cases), demonstrating how relevant
labels can help shape what is encoded in the shared latent space.

Table 3: AUC for linear classification of naive CD8 T cells. AUC (median ± standard deviation), when
increasing the number of “other” genes (in the first column) in the gene expression modality.

# OTHER GENES MVAE MOPOE-VAE MMVAE MMVAE++

10 0.68 (±0.05) 0.98 (±0.02) 0.97 (±0.02) 0.98 (±0.02)
100 0.61 (±0.13) 0.82 (±0.03) 0.87 (±0.05) 0.97 (±0.06)

1000 0.63 (±0.05) 0.79 (±0.10) 0.81 (±0.13) 0.91 (±0.02)

5 Conclusions

This work investigated optimal design choices for the implementation of multimodal VAEs with shared and
private latent factors. Using multi-omics applications, we have highlighted a problem setting that has turned
out to be challenging for existing multimodal VAEs, and discussed how inductive biases in those models
relate to their ability to reliably learn shared latent factors in scenarios where modality-specific variation
dominates. We have proposed a modification MMVAE++ and shown its enhanced ability to learn shared
latent structure.

Multimodal VAEs have been utilised widely for data integration tasks. We believe that our findings highlight
the need for careful consideration of the design of these models and their intended use. Our experiments
particularly illustrate that when data modalities are imbalanced and/or if the latent structure of interest is
not dominant, the inferred latent representations may not be reflective of the true private and shared latent
processes and might potentially lead to misleading interpretations. It also places a spotlight on the impact
of data filtering and pre-processing steps that commonly occur preceding the construction of analysis-ready
datasets. We hope this will inspire further work, spanning both theoretical properties as well as applications,
and provide an additional resource for practitioners to make a more informed choice when choosing what
type of multimodal VAE to use.

7Data and pre-processing from raw.githack.com/bioFAM/MOFA2_tutorials/master/R_tutorials/10x_scRNA_scATAC.html
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Supplementary Material

S1 Partitioned latent space and cross-modal prediction

Figure S1: Illustration of a partitioned latent space z = [zpr1 , zshared, zpr2 ] in a multimodal VAE. The use of
(a) shared and private latent variables allows for (b) cross-modal prediction via the shared component when
one modality maybe missing at train or test time.

S2 Synthetic GP data examples: additional results

Figure S2: Full set of results for the synthetic GP data experiment, covering (A-B) the correctly specified
and (C-D) misspecified latent dimensionalities. Cross-modal prediction performance (R2) shown for (A, C)
predicting the first modality from the second one, and (B, D) vice versa.
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S3 BRCA example: additional results

Figure S3: Cross-modal prediction (R2) for top ER-related genes. MoPoE-VAE consistently improves
upon MVAE, and our proposal MMVAE++ significantly outperforms MMVAE (blue and red lines highlight
the respective gaps). For example, for ESR1, a gene that is known to encode oestrogen receptor, MMVAE++
achieves a 63 percentage point increase over MMVAE.

Figure S4: The improvements in cross-modal prediction do not compromise same-view prediction
quality. While most of our analysis focuses on the quality of shared latent factors, we would also want to be
sure that the improvements that MMVAE++ brings do not compromise private latent factor quality. In real-
life examples, this cannot be measured directly, but here we do it indirectly via same-view prediction. That
is, we obtain predictions for modality xm under the encoding distribution q(z|xm). If the models performed
similarly, we would expect the values to be symmetric w.r.t. the diagonal line. This is indeed the case for the
first modality (expression). But notably, for the second modality, our modifications have improved same-view
prediction on the ER-related feature set, while not exhibiting a decrease on the “other” feature set.

Table S1: AUC for linear classification (ER+ and ER-) on the BRCA example, now expanded across
varying latent dimensionalities, i.e. [dim(zpr1), dim(zshared), dim(zpr2)] values in [2, 2, 2], [3, 3, 3] and [4, 4, 4].
Evaluated on held-out data, showing median ± s.d.

MVAE MOPOE-VAE MMVAE MMVAE++ SUP-MVAE SUP-MOPOE SUP-MMVAE SUP-MMVAE++

“2+2+2” 0.62 ±0.11 0.61 ±0.13 0.59 ±0.08 0.91 ±0.01 0.88±0.04 0.92±0.05 0.88 ±0.07 0.93 ±0.03

“3+3+3” 0.61 ±0.08 0.88 ±0.07 0.85 ±0.02 0.94 ±0.03 0.89 ±0.04 0.91±0.03 0.94 ±0.03 0.91 ±0.03

“4+4+4” 0.87 ±0.03 0.90 ±0.08 0.92 ±0.03 0.94 ±0.03 0.91 ±0.08 0.91±0.03 0.94 ±0.03 0.93 ±0.03
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Figure S5: BRCA study expanded, now including results for both cross-modal prediction tasks across a
range of latent dimensionalities, varying [dim(zpr1), dim(zshared), dim(zpr2)] values in [2, 2, 2], [3, 3, 3] and
[4, 4, 4]. Results for predicting expression from methylation are shown in red, and predicting methylation
from expression are shown in blue.
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S4 CLL example: additional results

Table S2: AUC for linear classification of IGHV mutation status on the CLL example: full set of results.
AUC (median ± standard deviation), when increasing the number of “other” genes (in the first column) in
the gene expression modality. Evaluated on held-out subjects.

# OTHER MVAE MOPOE-VAE MMVAE MMVAE++

50 0.96 (±0.01) 0.96 (±0.01) 0.97 (±0.01) 0.96 (±0.01)
250 0.72 (±0.11) 0.77 (±0.07) 0.76 (±0.12) 0.83 (±0.09)
500 0.45 (±0.08) 0.47 (±0.09) 0.63 (±0.16) 0.84 (±0.21)

1000 0.45 (±0.05) 0.51 (±0.05) 0.43 (±0.06) 0.62 (±0.12)

SUP-MVAE SUP-MOPOE SUP-MMVAE SUP-MMVAE++

50 0.93 (±0.04) 0.93(±0.04) 0.93 (±0.04) 0.93 (±0.04)
250 0.84 (±0.11) 0.81(±0.10) 0.92 (±0.07) 0.92 (±0.07)
500 0.43 (±0.05) 0.46(±0.11) 0.82 (±0.13) 0.83 (±0.13)

1000 0.42 (±0.12) 0.51(±0.20) 0.61 (±0.12) 0.78 (±0.16)

Figure S6: CLL example expanded, now showing also results for higher dimensional latent spaces, i.e.
[dim(zpr1), dim(zshared), dim(zpr2)] values in [2, 2, 2], [3, 3, 3] and [4, 4, 4].
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S5 Single cell RNA + ATAC example: additional results

Figure S7: Shared latent space visualisations in the single cell multi-omics example: Highlighting the
cell type of interest – naive CD8 T cells – in red. Other cell types are shown in grey, but for the ease of
interpretation, we have additionally highlighted naive CD4 T cells in blue, as we would expect it to be the
closest among other cell types. Indeed, in the latent spaces inferred by MVAE, MoPoE-VAE and MMVAE,
the blue and red cluster are highly overlapping, whereas MMVAE++ has learnt a latent space where CD8 and
CD4 T cells are two distinct clusters. The separation is even more clear among supervised methods, but these
have access to the class labels whereas MMVAE++ is an unsupervised approach.
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