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Abstract

Cyclic Immunofluorescence (CyCIF) has emerged as a powerful technique that
can measure multiple biomarkers in a single tissue sample but it is limited in panel
size due to technical issues and tissue loss. We develop a computational model
that imputes a surrogate in silico high-plex CyCIF from only a few experimentally
measured biomarkers by learning co-expression and morphological patterns at the
single-cell level. The reduced panel is optimally designed to enable full reconstruc-
tion of an expanded marker panel that retains the information from the original
panel necessary for downstream analysis. Using a masked image modeling ap-
proach based on the self-supervised training objective of reconstructing full images
at the single-cell level, we demonstrate significant performance improvement over
previous attempts on the breast cancer tissue microarray dataset. Our approach
offers users access to a more extensive set of biomarkers beyond what has been
experimentally measured. It also allows for allocating resources toward exploring
novel biomarkers and facilitates greater cell type differentiation and disease charac-
terization. Additionally, it can handle assay failures such as low-quality markers,
technical noise, and/or tissue loss in later rounds as well as artificially upsample to
include additional panel markers.

1 Introduction

Emerging Multiplexed Tissue Imaging (MTI) platforms such as CO-Detection by indEXing (CODEX)
[1], Multiplexed Ion Beam Imaging (MIBI) [2], multiplex immunohistochemistry (mIHC) [3],
and cyclic immunofluorescence (CyCIF) [4] produce rich, spatially resolved protein expression
information that enables analysis of tissue samples at subcellular resolution. While multiplexed tissue
imaging could provide clinically valuable information [5], current MTI approaches are limited by
cost, and adoption of these technologies has been limited by prohibitively high material costs and
specialized equipment and human expertise required to conduct such assays. Because of these factors,
many barriers exist to the wider adoption of MTI workflows into the cancer research community and
routine diagnostic tools. Furthermore, the number of markers that can be included in MTI panels is
constrained by time both in terms of image acquisition and individual marker selection and validation,
and gradual tissue degradation that occurs due to repeated cycles of marker staining and removal [4].
Consequently, the choice of which markers to include in the panel is of utmost importance, in which
the goal is to select a set of biomarkers that can be used to identify the widest range of cell states and
phenotypes possible.

To assist in this panel selection process, we propose a computational approach to identify markers
that can be easily imputed by other co-expressed markers, and impute a surrogate in silico high-plex
CyCIF from only a few experimentally measured biomarkers. The ability to do so reliably would
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enable substituting easy-to-predict markers with experimental markers that can potentially identify
rarer cell types. We propose a deep learning model that can be used to explore the effectiveness of
various panel sets of different sizes to reconstruct the full panel in inference, as opposed to retraining
a different model for each input panel set. This improvement allows us to search the combinatorial
space of marker candidates more efficiently. We show a significant improvement in performance over
our prior work [6] on a Breast Cancer Tissue Microarray (TMA) dataset.

1.1 Prior Work

Inspired by the success of masked language modeling models [7] in the natural language processing
domain, masked image modeling [8]–[10], has become a popular model pre-training paradigm in
computer vision. Masked image modeling can be considered a form of denoising autoencoder [11],
which has been used for data restoration and model pre-training. Despite the similarity between
masked autoencoding and denoising autoencoding, surprisingly little work has been done to apply
masked image modeling to missing data imputation tasks. Herein, we show that the model architecture
and masked patch prediction task outlined in [8] can effectively impute CyCIF image channels cropped
to the single-cell level, enabling marker stain imputation by way of ‘channel in-painting’.

Prior work has been done to identify an optimally reduced panel set in MTI [6], [12], [13]. Our
previous work [6] was the first to demonstrate CyCIF panel selection and imputation. We employed a
two-step approach by exploring multiple strategies for selecting the reduced panel, then using the
reduced panel as input to train a multi-encoder variational autoencoder (ME-VAE) [14] to reconstruct
the full panel of 25-plex CyCIF images cropped to the single cell level. Wu et al. [12] proposed a
three-step method of first using a concrete autoencoder [15] to find a reduced panel of 7 CODEX
markers from a full set of 40, then using a convolutional neural network [16] to learn morphological
features from the reduced marker set using a multi-scale, single-cell resolution image as input. They
then feed those features to a regression model to get predicted mean intensity values for the withheld
markers. Sun et al. [13] implemented an iterative marker selection procedure, where a U-Net is
repeatedly trained to reconstruct patch-level images, which are used to identify the next best marker
to add to the reduced panel.

Our approach differs from previous studies[12], [13] including our previous work[6], which utilize a
panel selection strategy that is done separately from and prior to the full panel reconstruction process.
Additionally, each strategy results in just one reduced panel of a specific size, limiting out-of-the-box
use cases for pre-trained models. Here, we employ a similar approach of iterative marker selection,
however, we train our model just once and select optimal markers in inference. This means that
a single trained model can be used to generate marker expressions from any subset of markers in
the training set. Thus, the proposed approach is a more efficient and reliable method for training a
versatile model that can be practically useful.

2 A Masked Image Modeling Approach

We observe that the pre-training objective, originally proposed in [8], can be effectively extended to
incorporate channel-wise masking without requiring modifications to the original Masked Autoen-
coder (MAE) architecture. The MAE architecture is composed of two Vision Transformers (ViT)
[17], which function as an encoder and decoder respectively as shown in Figure 1. Concretely, if we
have a multi-channel image with dimension C ×H ×W and C = a× a for some integer a, then the
image can be resized to a ·H × a ·W , and with the patch size set to H ×W . As an example, if we
have 25 CyCIF markers (i.e., C = 25), we can generate 5× 5 image patches as shown in Figure 1
(bottom).

The original patch-wise masking strategy in [8] is now a channel-wise masking strategy in our setting,
with each patch corresponding to a single channel of the CyCIF image. With this minor modification,
the MAE training objective now becomes directly applicable to marker imputation in CyCIF and other
MTI platforms where the marker expression for each cell is obtained by measuring the mean intensity
within the cell boundary of the image channel corresponding to the marker. Therefore, training a
model to reconstruct masked image channels results in its capability to infer marker expressions from
a reduced subset of markers.
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Figure 1: Overview of a masked image modeling approach. (Top) the original Masked Autoencoders
(MAE) architecture [8]. (Bottom) we adopt MAE for CyCIF panel reduction and imputation by
considering a channel-wise masking strategy with Vision Transformers (ViT) architecture [17].

By implementing a random masking strategy [8], each multi-channel single-cell image in the training
set is masked with a different set of channels during each epoch. During inference, we fix the masked
channels and observe the effect of different channel selections on the resulting reconstruction. In
order to choose an optimal subset of CyCIF makers that results in the best reconstruction of the full
marker panel, we seek to utilize a strategy that leverages the power of our pre-trained model. Existing
previous works [12]–[14] all operate by applying a panel selection strategy prior to, and independent
of full panel reconstruction. This decoupling of reduced panel selection and full panel reconstruction
could impede the ability to find an optimal reduced panel as the panel selection strategy is not directly
tied to reconstruction. The main advantage of our approach is that it enables the selection of marker
panels to be performed during inference, thus avoiding the problem of conflicting objectives between
selecting reduced panels and reconstructing the full panel. In addition, this approach allows us to
directly address the combinatorial search space of marker sub-panel selection. This improvement is
enabled by the MAE training objective, allowing the model to learn general relationships between
different subsets of markers at once by random masking at a specific ratio.

Given the aforementioned benefit, our aim is to leverage the generalized model learned by repeat-
edly probing the model to iteratively identify the marker panels that contribute the most to better
reconstructions of the full marker panel.

3 Iterative Panel Selection Algorithm

Given the aforementioned benefit, our aim is to leverage the generalized model learned by repeatedly
probing the model to iteratively identify the marker panels that contribute the most to better recon-
structions of the full marker panel. Algorithm 1 demonstrates our iterative marker selection approach.
We first fix the first marker selected to be a nuclear counterstain (DAPI) due to its importance in
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pre-processing steps including nuclei segmentation and image registration of CyCIF:

Panel1 = {cDAPI}

We then test each candidate marker by including it in the candidate reduced panel and evaluating its
influence on full panel reconstruction by measuring the mean Spearman correlation of the predicted
marker intensities. The marker that produces the highest correlation between the real and predicted
withheld marker intensities is added to the optimal panel set and this process is repeated iteratively
until we find the easiest-to-predict marker as follows:

Paneln = Paneln−1 ∪ {argmax
c

(MAE(X,Paneln−1 ∪ {c}; θ))}

where X represents data, c is a marker not already included in the reduced panel of size n− 1 and
θ refers to the trained model parameters, implying that selection is made in inference. Note that
argmax refers to the inferred markers’ maximum average Spearman correlation.

Our proposed algorithm for iterative panel selection allows us to probe a pre-trained model to discover
the optimal order in which markers should be included.

Algorithm 1 Iterative Panel Selection
Input: data X , panel size n, trained model f
Initialize bestPanel = {c1}
for s = 2 to n− 1 do

Initialize bestScore = −∞, bestMarker = ∅
for i = 1 to n do

if ci ∈ bestPanel then
continue

end if
candidatePanel = bestPanel ∪ {ci}
candidateScore = f(X, candidatePanel)
if candidateScore > bestScore then

bestScore = candidateScore
bestMarker = ci

end if
end for
bestPanel = bestPanel ∪ {bestMarker}

end for

4 Results

4.1 Performance evaluation

In our previous work [6], the optimally reduced panels were found by grouping the markers that
maximized the correlation to all the markers withheld from the panel. We show that MAE outperforms
our previous approach on the same intensity correlation-based panels as shown in Figure 2 where we
compare the previous result [6], the result from MAE approach using the same panel (correlation-
based approach in [6]) and the result from MAE approach using iterative panel selection. The full
imputations were evaluated by comparing them to the original CyCIF full panels. In [6], a reduced
panel can reconstruct relevant unseen information by achieving a mean Spearman correlation of
0.89 for all markers when 18 of 25 markers (28% reduction) are included in the reduced panel.
Our proposed approach achieved similar performance with a 64% panel marker reduction (9 of 25
markers).

Figure 3 shows the real and predicted image pairs based on a reduced panel (9 markers). As can be
seen qualitatively, the morpho-spatial features of size, shape, marker localization and distribution,
and relative intensity are preserved. We also measure the structural similarity index measure (SSIM)
quantitatively, which is a widely used measure of image similarity as perceived by the human visual
system. The overall quantification shows a mean SSIM of 0.90 in our proposed approach based on a
reduced panel (9 markers).
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Figure 2: MAE outperforms the previous approach [6] (dashed line) on the same panels (i.e.,
correlation-based) and further improves performance with the proposed iterative panel selection.
Spearman correlation was measured for each stain independently across the multiple reduced panels.

Figure 3: Inferred marker channels retain structural information. (Top) optimally designed reduced
panel (9 markers) (Bottom) Predicted marker channel (selected 15 markers instance).
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4.2 Iterative marker selection

Iterative marker selection in inference reveals optimally reduced panel sets. Additionally, we find
that our iteratively constructed panels further boost performance. In contrast to [6], MAE achieves
these results without retraining the model for a specific panel.

Figure 4 shows the iterative panel selection procedure and result. Each pixel represents the Spearman
correlation between ground truth and predicted marker intensities. Each column represents the results
produced by a different reduced panel size, denoted on the x-axis by the next marker that was chosen
in the selection process, for example, the first column represents the prediction results of 24 withheld
markers, using a reduced panel of just one marker (DAPI). Rows track the improvement in the
prediction of each withheld marker as more markers are included in the reduced panel, for instance,
the prediction for PanCK improves significantly in column 2 when ECad is added to the panel. Figure
5 further demonstrates the prediction results for a set of 10,000 randomly selected cells. Each row of
plots depicts predictions for witheld markers from a reduced panel of 3, 6, 9, 12, and 15 markers,
respectively.

4.3 Masking ratio selection

Although the model was trained using a fixed ratio of masked channels, we find that the model
performs well on a range of different ratios in inference. To determine how the masking ratio affects
the overall prediction of CyCIF markers, we trained our model with different masking ratios (25%,
50%, and 75%) and assessed the performance of marker prediction for each ratio during inference
with varying panel sizes as shown in Figure 6.

Our study shows that a 50% masking ratio yields the best average performance across masking
ratios in inference. However, when the masking ratio is high, a 75% masking ratio results in better

Figure 4: Optimally reduced panels and their inferred marker Spearman correlations.
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Figure 5: Real versus predicted mean intensity values from a reduced panel of 3, 6, 9, 12, and 15
markers with associated Spearman correlations.

performance, but at the cost of worse performance at lower masking ratios. This aligns with the
assumption that the model has not been provided with enough information during training for the 75%
ratio. Interestingly, we observed that providing too much information to the encoder during training
results in worse model performance during inference, as demonstrated by the lower performance
when using a 25% ratio in training. Overall, our finding suggests that the optimal masking ratio
during training and inference depends on the specific task and the level of information required by
the model.

5 Discussion

Our study highlights the effectiveness of an MAE approach for generating high-plex CyCIF in silico
from only a few experimental measurements, significantly reducing required biomarkers. With just
9 markers needed instead of the original panel of 25 (64% reduction), our approach offers several
benefits. It provides prompt access to a wider range of biomarkers beyond those experimentally
measured, manages assay failures, and saves resources for measuring more biologically relevant
biomarkers for effective identification of cell types and disease characteristics[12]. Additionally, it
can handle situations where assays fail due to factors such as low-quality markers, technical noise, or
potential tissue loss in subsequent CyCIF rounds.

Our approach offers several benefits, including wider availability of insights from CyCIF, simplified
technical challenges, and improved clinical histopathology workflows. Virtual staining [18], [19] with
reduced panels could improve opportunities for transition to the clinic. Moreover, technologies such as
Orion from Rarecyte [20] can measure up to 16-18 markers in one cycle using spectral deconvolution,
which can be combined with our approach to enabling even greater cell type differentiation, increasing
the biomarker measurements from 20 to 32(≈ 20× 1.64) or more.

While the method empowers users to access a broader array of biomarkers beyond those experimen-
tally obtained, the success of in silico predictions relies on the ability of the model to generalize from
the limited experimental data. In our future work, we plan to explore a more diverse training dataset,
encompassing whole slide images from different batches, effectively addressing TMA sampling bias
and batch effects [21], [22].
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Figure 6: Influence of masking ratio on overall CyCIF marker prediction.

6 Code and Data Availability

All code necessary to reproduce these experiments, including model checkpoints, will be available
at https://github.com/zacsims/IF_panel_reduction. The Human Tumor Atlas (HTAN)
TNP-TMA dataset is available at https://www.synapse.org/#!Synapse:syn22041595/wiki/
603095.
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