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Abstract

Survival prediction, central to the analysis of clinical trials, has the potential to
be transformed by the availability of RNA-seq data as it reveals the underlying
molecular and genetic mechanisms for disease and outcomes. However, the amount
of RNA-seq samples available for understudied or rare diseases is often limited.
To address this, leveraging data across different cancer types can be a viable solu-
tion, necessitating the application of self-supervised learning techniques. Yet, this
wealth of data often comes in a tabular format without a known structure, hindering
the development of a generally effective augmentation method for survival predic-
tion.While traditional methods have been constrained by a one cancer-one model
philosophy or have relied solely on a single modality, our approach, Guided-STab,
on the contrary, offers a comprehensive approach through pretraining on all avail-
able RNA-seq data from various cancer types while guiding the representation by
incorporating sparse clinical features as auxiliary tasks. With a multitask-guided
self-supervised representation learning framework, we maximize the potential
of vast unlabeled datasets from various cancer types, leading to genomic-driven
survival predictions. These auxiliary clinical tasks then guide the learned repre-
sentations to enhance critical survival factors. Extensive experiments reinforce the
promise of our approach, as Guided-STab consistently outperforms established
benchmarks on TCGA dataset.

1 Introduction

Survival analysis is commonly used in clinical research to quantify the likelihood distribution of the
time-to-event of interest (e.g. death) and potential association with treatments [25]. Such analysis
can provide scientific insights into clinical trials, whereby the efficacy of new therapeutics are
evaluated. [4, 10, 32]. Recent technological advancements have resulted in the growing accessibility
of RNA-seq data, which introduces an avenue for patient-specific survival prediction [20, 27, 31].
However, one faces the challenge that obtaining ample RNA-seq samples with labeled information
for complex diseases is often constrained by biological, technical, and financial factors, especially for
under-studied diseases[8, 30, 16, 33, 23, 3, 12, 15]. Contrastingly, the availability of a vast amount of
unlabeled data presents an opportunity. Our goal is to develop a guided self-supervised representation
learning in a tabular setting that harnesses this extensive yet mostly unlabeled, data across various
cancer types, to enhance the precision of survival predictions in a way that is rooted in genetics.
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While cancers manifest themselves differently, many share underlying mechanisms, thereby we aim to
train a single model with a number of cancer types that gives us a better capacity to extract meaningful
mechanisms. Traditional methods have typically adhered to a one disease-one model paradigm, which
inadvertently missed opportunities to use shared information between cancers and often struggled
with data insufficiency for specific cancers [29, 7, 19]. Ideally, we seek to share information to tackle
the heterogeneity of different cancer types. Apart from combining multiple cancer types, we also
have other occasional data sources at our disposal. In the settings of our interests, clinical information,
recognized for its potent prognostic indicators, stands out as a valuable source of information [20].
While clinical records are not consistently available for every patient, leveraging multitask (MT)
learning across various clinical tasks can guide our use of RNA-seq data. This approach bridges the
gap between genetic activity (as captured by RNA expression) and observable clinical outcomes,
enabling more personalized treatment strategies.

Diving into the specifics of our methodology, we utilize RNA-seq data which inherently adopts
a tabular format. Unlike image and language counterparts, RNA-seq tabular data lacks a known
structure, making it difficult to design an effective augmentation method generically beneficial for
survival prediction [38, 34]. This challenge is further exacerbated by the high dimensionality seen
when features vastly outnumber samples for a specific target cancer [14]. Also, when trying to
combine different types of data, there are often mismatches: for instance, some patients might have
detailed clinical information but lack key survival data, or some subjects might have more clinical
features than others.

To navigate these complexities, we have harnessed a multitask (MT)-guided self-supervised represen-
tation learning framework for tabular data, incorporating the benefits of multitask and self-supervised
representation learning. Given the high dimensionality and sparsely labeled data, self-supervised
learning proves essential for utilizing vast unlabeled datasets. By exploiting a novel augmentation
technique tailored for tabular data [34], we divide RNA-seq input data into multiple subsets, to
efficiently learn a latent representation capable of capturing crucial factors for survival prediction.
Moreover, to accommodate the varying clinical information across patients, and to bridge the genetic
to clinical outcome gap, multi-task guidance becomes pivotal, which also ensures seamless assimila-
tion of labels from auxiliary tasks, further strengthening representation for primary tasks with data
constraints. This paper unpacks this comprehensive approach, elucidating its potential to enhance
survival prediction and hence advance personalized treatment.

2 Related Works

Survival predictions. Ching et al. [7] and Huang et al. [19] have evaluated multiple cancer types
using the TCGA dataset. However, these methods train separate models for each disease, poten-
tially overlooking shared patterns across cancer types. Furthermore, well-regarded techniques like
Katzman et al. [22] and Ishwaran et al. [21], despite their promise, have mostly been tested on
lower-dimensional datasets, constraining their predictive richness.

Self-supervised learning for tabular data. Representation learning on tabular data often grapples
with challenges unique to its nature. A typical strategy has been to introduce noise, aiming for models
to identify robust features amidst the corruption. For instance, [35] applied an autoencoder to map
perturbed data instances to a latent space and then reconstructed them to their original form. However,
it oversimplified the data by treating diverse context-specific features uniformly, thus potentially
missing intricate relationships. A subsequent innovation was presented by Yoon et al. [38], which
blended the denoising autoencoder paradigm with a classifier, which aimed to improve representations
but encountered difficulties when using imbalanced binary masks on high-dimensional datasets. To
address the aforementioned challenges, Ucar et al. [34] developed a novel strategy, presenting a
multi-view representation concept where input features were divided into multiple subsets. More
recent work [14, 2] also achieved impressive results on various scenarios. Yet, their effectiveness in
survival analysis, particularly when handling the complexities of heterogeneous genomic data, is still
undetermined.
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3 Preliminary

Survival analysis, or time-to-event analysis, is a statistical method to examine the time until events of
interest (like death or equipment failure) which is commonly used in biomedicine.

Central to survival data is the concept of censoring, which transpires when the event of interest for a
subject remains unobserved— either because it has not yet been materialized (at the data cut) or due
to reasons like study dropout.

Key concepts of survival analysis include survival function S(t), which represents the probability
that the time-to-event exceeds some value t; and hazard function h(t) , that denotes the instantaneous
occurrence rate of events, given no preceding event.

3.1 Cox Proportional Hazards Model

The Cox Proportional Hazards (CoxPH) model stands as one of the most extensively employed
statistical methods for survival data analysis [9, 25, 11]. It adopts a semi-parametric approach,
implying it imposes certain assumptions on the data but refrains from specifying a complete parametric
form. The model can be delineated as:

h(t,X) = h0(t) exp(β
T X), (1)

where h(t,X) denotes the hazard function at time t for a subject with covariates X; h0(t) represents
the baseline hazard, which corresponds to the hazard when all covariates equal zero; β is a coefficient
vector that quantifies the covariates’ impact on the hazard; X is a covariate or feature vector. The
cornerstone of the CoxPH model is the proportional hazards postulate, which dictates that the hazard
of an event for an individual remains proportional relative to another individual, in a constant manner
irrespective of time.

3.2 CoxPH Loss Function

To discern the coefficients β of the CoxPH model, one needs to maximize the partial likelihood:

L(β) =
∏

i:δi=1

exp(βT xi)∑
j:tj≥ti

exp(βT xj)
, (2)

where δi is the event indicator (i.e., equating to 1 if the event transpired and 0 otherwise); xi and
xj are the covariate vectors for the i-th and j-th subjects, respectively; ti and tj are the observed
event times for the i-th and j-th subjects, respectively. It is crucial to note that in the risk set of the
denominator, that is the summation over j with tj ≥ ti, both uncensored and censored subjects are
included. Because even if a subject is censored at tj , they were still "at risk" up to that time, therefore
contributing to the risk set for all earlier times ti.

Often, the negative log-partial likelihood is utilized as the loss function:

L(β) = −
∑

i:δi=1

βT xi − log

 ∑
j:tj≥ti

exp(βT xj)

 (3)

By optimizing this loss, one can uncover the values of β that best elucidate the relationship between
the covariates and the event’s hazard.

4 Methods

4.1 Problem formulating

Consider C as the set of various cancer types. Each ci ∈ C is associated with a tabular input dataset
X(ci) ∈ RV×Jci , representing the RNA-seq data. Here, V denotes the total number of genes, Jci
is the number of samples specific to cancer type ci, and V ≫ Jci . Alongside RNA-seq input x(ci)j ,
we also have access to sparse auxiliary task labels, i.e. a sparse set of clinical features, denoted by
{y(ci)j,t }t∈Taux

. Specifically, Taux refers to set of available tasks that input x(ci)j might have access.
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Figure 1: Guided-STab framework: Given the gene expression profile X where rows represent patient
samples and columns denote genes, we divide the genes into K subsets, producing xk. These subsets
are processed by encoder E to yield latent representations hk. A decoder D then reconstructs X
from these subsets. For contrastive and distance loss, each hk is projected to zk using a projection
network G. Auxiliary task predictions are made using multiple heads Fauxt

which utilize the pooled
representation h as input.

We would like to learn informative latent representations from available RNA-seq datasets encom-
passing various cancer types. To enhance the predictive power for survival outcomes in rare target
cancers, we intend to incorporate clinical features as guidance within a self-supervised Tabular
learning framework (Guided-STab).

4.2 Guided self-supervised tabular learning

In self-supervised representation learning across the image and language domains, cropping stands
out as the most effective among the commonly employed augmentation techniques [6]. Inspired by
this, and exploiting a novel augmentation technique tailored for tabular data [34], we divide RNA-seq
input data into multiple subsets. In the following, we describe the construction of the proposed
framework, shown in 1, in which we have an encoder E, a decoder D, a projection G, and multiple
auxiliary prediction heads Faux. Let’s denote hk and zk as the latent representation and projection
output of kth RNA-seq subset, respectively.

In the Guided-STab framework, every gene subset 3 is processed by the shared encoder to obtain its
corresponding latent representation. A common decoder is used to reconstruct the entire RNA-seq
data, effectively recovering all genes from the given subset of genes. The presence of multiple
latent representations for each sample, stemming from the latent representations of each gene subset,
empowers the framework to compute contrastive loss for every possible combination of pairs of
projections. Pairs originating from the same samples are labeled as positive, while all others are
negative. Furthermore, in order to minimize the gap between pairs of projections from the gene
subsets, we incorporate a distance loss function, e.g. mean squared error (MSE). In addition to the
previously mentioned self-supervised loss functions, the latent representations are further guided by
predicting different auxiliary tasks, our hypothesis is that these embeddings, upon refinement, would
align more closely with the primary objective of survival prediction.

The objective function of Guided-STab is:

Ltot = Lr + Lc + Ld +

T∑
t=1

Lauxt
, (4)

3The degree of overlap between neighboring gene subsets, if any, can be customized by adjusting a hyperpa-
rameter.
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where Ltot is the total loss, and Lr, Lc, Ld, Lauxt are reconstruction, contrastive, distance, and
task-specific losses, and T is total number of clinical tasks. The training schema can be found in
Algorithm 1.

Reconstruction loss. Given a batch of RNA-seqs for a specific gene subset, denoted as X̃k, the
shared decoder performs the reconstruction of the entire RNA-seq, represented as X̂k. Subsequently,
we can formulate the average reconstruction loss across all gene subsets as follows:

Lr =
1

K

K∑
k=1

 1

J

J∑
j=1

(xj − x̂j,k)2
 (5)

where K represents the total number of subsets, J denotes the total number of samples within the
batch, and x̂j,k denotes jth sample from X̂k.

Contrastive loss. By combining RNA-seq data from various cancer types, we ensure the availability
of a sufficient number of classes, allowing for the generation of negative samples essential for
computing the contrastive loss. Specifically, we project hj,k to zj,k using a projection network
denoted as (G). Subsequently, we consider the projections of distinct subsets of the same samples,
denoted as {zj,k}Kk=1, to serve as positive pairs (zj,k, zj,k′), while the projections of the remaining
samples within the batch can be regarded as negative pairs, i.e (zj,k, zj′,k′), where j ̸= j′ and k ̸= k′.
The overall contrastive loss is:

Lc =
1(
K
2

) K∑
k,k′=1
k ̸=k′

 1

2J

J∑
j=1

[l(zj,k, zj,k′) + l(zj,k′ , zj,k)]

 , (6)

where l is the normalized temperature-scaled cross entropy (NT-Xent) loss [6], and it can be computed
for a pair of projections as follows:

l(zj,k, zj,k′) = − log

 exp(sim(zj,k, zj,k′)/τ)∑J
j′=1
j′ ̸=j

exp(sim(zj,k, zj′,k′)/τ)

 .

We used the dot product as the similarity metric (sim), with τ serving as a temperature parameter that
scales the similarity scores. The summation in the denominator encompasses all negative samples,
thus establishing a contrast between the positive and negative pairs.

Distance loss. We also utilize the Mean Squared Error (MSE) as a distance loss between pairs
of projections, as the corresponding samples within the gene subsets are expected to be in close
proximity to each other. The distance loss can be formulated as:

Ld =
1(
K
2

) K∑
k,k′=1
k ̸=k′

 1

J

J∑
j=1

(zj,k − zj,k′)
2

 , (7)

Multitask-guidance loss. In our multitask guidance part, we initially compute the latent repre-
sentation of each sample by aggregating the corresponding representations from its various subsets,
denoted as hj = Aggregate({hj,k}Kk=1). We then utilize this aggregated representation with multiple
Multi-Layer Perceptron (MLP) heads to generate predictions for various auxiliary clinical tasks
associated with the given sample {y(ci)j,t }t∈Taux

.

For each clinical task t ∈ Taux, we calculate the task-specific loss, denoted as Lauxt , using the
cross-entropy loss for multi-class tasks defined as follows:

Lauxt
= −

Ct∑
c=1

yc,t log(pc,t), (8)

where Ct denotes the number of classes for task t. This approach enables simultaneous training on
multiple clinical tasks, leveraging the shared information within the aggregated latent representations
to enhance survival analysis.
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Figure 2: Survival prediction framework: A pooling layer aggregates the subsetted latent representa-
tions before passing to survival model, which essentially is an MLP layer that is specifically tailored
to learn the parameters of the log-risk hazard function.

4.3 Survival prediction

After pretraining our encoder E through Guided-STab, we proceed to a fine-tuning stage tailored
specifically for survival prediction. As illustrated in Figure 2, the RNA-seq data from the target cancer
serves as our input. This input underwent a transformation by our encoder to generate embeddings.
These embeddings, represented as h (an amalgamated latent representation), were then fed into an
MLP. For survival prediction, we use the CoxPH loss function:

L(β) = −
∑

i:δi=1

βT hi − log

 ∑
j:tj≥ti

exp(βT hj)

 (9)

5 Experiment and Results

Data. We sourced our data from the Cancer Genome Atlas (TCGA) [20]. This included nine
major cancer types with a total of 4, 888 samples. To process the RNA-seq data, we applied the
log(RSEM + 1) transformation. By focusing on the top 1, 000 varied genes, we ensured that our
analysis honed in on the most relevant genetic markers. For clinical task selection, we employed
SHAP [28]. This resulted in a total of six out of 58 tasks: age, disease stage, tumor stage, metastasis
stage, race, and radiation from the top-ranked importance score. It is worth noting that clinical features
have missing values. For age classification, we normalized the data into four scales, determined by
quartile cuts, which transformed all auxiliary clinical tasks into multi-class classification problems.

5.1 Experiment Setup

In the scope of this study, we rigorously benchmarked our proposed methodology against two main
multiple baselines. Within the supervised algorithms, we selected RSF [21] and DeepSurv [22] for our
comparisons. These models were primarily dependent on the RNA-seq data of the target cancer type
for survival prediction. On the unsupervised methods, we incorporated the Variational autoencoder
(VAE) [24] and AE. The encoder shown in Figure 1 was replaced by VAE and AE, ensuring all
other components remained consistent to maintain the integrity of the comparison. Throughout this
unsupervised learning phase, all the available RNA-seq data and auxiliary descriptors from other
cancer types were used. Furthermore, the model was integrated with auxiliary tasks in the supervised
models, resulting in configurations termed RSF + Guided-STab and Guided-STab. For clarity in
subsequent discussions, Guided-STab will be referred to as our primary methodology.

Evaluation. Our main goal was to assess the performance of our method on target cancers, and
we chose the Concordance index (C-index) as the evaluation metric [17]. The evaluation relied
on a 5-fold cross-validation, which was also stratified based on events. To start, we divided the
target cancer task into five train/test folds. When it came to pretraining, we employed all RNA-seq
data, excluding a 20% sample set designated for testing. Similarly, we used all available clinical
information, excluding the 20% test target samples. For survival prediction, we applied the trained
encoder exclusively with the target cancer RNA-seq.
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Table 1: Comparative study of survival analysis performance using C-index.
Models BRCA (1079) HNSC (515) LUAD (502) LUSC (478) BLCA (406)

RSF 0.638 ± 0.038 0.589 ± 0.038 0.593 ± 0.028 0.525 ± 0.039 0.624 ± 0.030
DeepSurv 0.710 ± 0.041 0.607 ± 0.050 0.591 ± 0.049 0.556 ± 0.047 0.628 ± 0.019

AE 0.732 ± 0.052 0.610 ± 0.053 0.612 ± 0.014 0.579 ± 0.043 0.649 ± 0.024
VAE 0.717 ± 0.064 0.574 ± 0.045 0.609 ± 0.026 0.589 ± 0.061 0.622 ± 0.036

Guided-STab (Ours) 0.740 ± 0.028 0.645 ± 0.047 0.631 ± 0.024 0.606 ± 0.021 0.669 ± 0.028

5.2 Result

In our comprehensive evaluation across multiple cancer types, the superiority of our approach became
evident. As shown in Table 1, our method proved its robustness and efficacy from the performance on
notoriously challenging datasets. With the HNSC dataset, our strategy outperformed the second-best
method by about 6.26%. In the case of LUAD, a disease for which many studies often report C-indices
below 0.6, our method showcased an enhancement of roughly 3.10% over the competing method.
For the BLCA dataset, our method reflected a performance gain of around 3.08% over the second-
best approach. Equally impressive was our performance on the LUSC dataset, where our method
marked an improvement of nearly 2.89%, further emphasizing its potential in dealing with complex
diseases. Notably, with the BRCA dataset, which included 1079 data samples (nearly double that of
other datasets), our method’s improvement was a relatively conservative 1.09% over the subsequent
best approach. This more modest improvement for BRCA, despite its larger dataset, suggests the
challenges of extracting significant advancements in areas with abundant data and potentially higher
baseline performances. Collectively, these results underscore the advanced capabilities of our method
in survival prediction.

5.2.1 The Importance of Auxiliary Task Guidance

To investigate further the impact of incorporating an auxiliary task, we conducted an experiment
where these tasks were omitted from the latent space. We performed the ablation studies on both our
methods and RSF. The comparative outcomes are illustrated in Table 2 and Figure A1 in Appendix.

Table 2: Evaluating the effect of guidance in the
proposed Guided-STab.

Models BRCA HNSC LUAD LUSC BLCA

Ours w/o guidance4 0.732 0.628 0.625 0.599 0.646
Guided-Stab 0.740 0.645 0.631 0.606 0.669

The results highlight a consistent trend: the pres-
ence of auxiliary tasks (“w aux”) consistently
outperformed the absence of them (“w/o aux”)
in both scenarios. This observation underscores
the important role that auxiliary tasks play in en-
hancing the predictive power of the embeddings.
Their inclusion not only augments the information captured in the latent space but also bolsters the
robustness of survival predictions. Hence, the findings emphasize the critical advantage of incorpo-
rating auxiliary tasks when generating representations tailored for survival analysis. Interestingly,
the impact of auxiliary guidance was more pronounced in our method compared to RSF. While
our approach fine-tuned the encoder, optimizing embeddings for survival prediction, RSF used
fixed embeddings. This adaptability in our method, absent in RSF, likely accounts for the observed
performance differences when integrating auxiliary tasks as guidance.

5.2.2 Ablation Study

Our ablation study examined three core aspects: the impact of varying the number of subsets, the
consequences of removing specific loss functions, and the effects of excluding certain auxiliary tasks.
The observations are as follows with results presented in Table 3 and 4:

Number of gene subsets. When looking at the effect of the number of subsets (Table 3), Guided-
STab (4 subsets) consistently outperformed the 2-subset and 3-subset methods across all cancer
types, highlighting its ability to capture broader and more intricate patterns in the data. While the
performance for 2-subset and 3-subset methods varied across different cancers, indicating that some
cancers might benefit more from an intermediate number of subsets, the 4-subset approach suggests
its robustness in addressing the heterogeneity inherent in all the datasets for survival prediction.

4When we refer to ours w/o guidance in this paper, we are essentially utilizing SubTab[34] as the underlying
framework.
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Table 3: Effect of the number of gene subsets on Guided-STab framework measured in C-index.
Num. of Subsets BRCA HNSC LUAD LUSC BLCA

1-subset 0.732 ± 0.052 0.610 ± 0.053 0.612 ± 0.014 0.579 ± 0.043 0.649 ± 0.024
2-subset 0.699 ± 0.041 0.618 ± 0.039 0.609 ± 0.016 0.587 ± 0.039 0.640 ± 0.024
3-subset 0.721 ± 0.040 0.613 ± 0.044 0.610 ± 0.024 0.582 ± 0.034 0.629 ± 0.022

4-subset (ours) 0.740 ± 0.028 0.645 ± 0.047 0.631 ± 0.024 0.606 ± 0.021 0.669 ± 0.028

Table 4: Evaluating the effect of each individual loss on the performance of Guided-STab framework
measured in C-index.

Losses BRCA HNSC LUAD LUSC BLCA

w/o dist 0.729 ± 0.026 0.639 ± 0.052 0.631 ± 0.024 0.591 ± 0.006 0.664 ± 0.041
w/o contra 0.716 ± 0.024 0.634 ± 0.050 0.625 ± 0.033 0.601 ± 0.013 0.664 ± 0.032

w/o age 0.730 ± 0.034 0.640 ± 0.040 0.616 ± 0.028 0.597 ± 0.025 0.661 ± 0.029
w/o dis. stage 0.734 ± 0.041 0.644 ± 0.045 0.620 ± 0.023 0.599 ± 0.026 0.669 ± 0.028

w/o tumor stage 0.740 ± 0.028 0.638 ± 0.045 0.631 ± 0.024 0.603 ± 0.015 0.650 ± 0.036
w/o metastasis 0.734 ± 0.025 0.642 ± 0.041 0.617 ± 0.032 0.601 ± 0.018 0.667 ± 0.037

w/o race 0.725 ± 0.028 0.637 ± 0.046 0.623 ± 0.031 0.598 ± 0.020 0.663 ± 0.040
w/o radiation 0.722 ± 0.036 0.636 ± 0.046 0.618 ± 0.024 0.599 ± 0.025 0.653 ± 0.031

Guided-STab 0.740 ± 0.028 0.645 ± 0.047 0.631 ± 0.024 0.606 ± 0.021 0.669 ± 0.028

Effect of projection. Removing the contrastive loss consistently resulted in a performance drop
across all cancer types (Table 4). Contrastive learning is crucial for representation learning as it
encourages the model to learn embeddings where similar instances are pulled closer together and
dissimilar instances are pushed apart. This is important in heterogeneous datasets like those of
different cancer types, where distinguishing between survival outcomes based on subtle differences
in features is essential. Although the removal of distance loss was less impactful, it also led to a
performance drop in the majority of the cases.

Effect of individual auxiliary tasks. In our ablation study on the removal of different auxiliary tasks
shown in Table 4, the importance of the tumor stage was clear, especially for the BLCA dataset which
saw a 2.84 % decline in performance without it. However, other datasets like LUAD showed only a
minor drop, suggesting that universal tumor stage embeddings might not serve all cancers equally.
For instance, in LUAD, other factors might be more pivotal for survival prediction than the tumor
stage. Similarly, the LUSC disease, known for its more challenging nature and complexity, showed
little change when the disease stage was removed.

Interestingly, BRCA performed better without the tumor stage, and BLCA peaked when the disease
stage was excluded. Note that we updated the best score across all the studies. These findings
underscore the idea that a one-size-fits-all approach might not be optimal. Instead, a more context-
specific strategy, perhaps a hierarchical or adaptive one, should be considered. This approach would
deploy some auxiliary tasks universally while customizing others based on the specific needs of
individual datasets.

Upon evaluating the impact of various auxiliary tasks on our model’s performance, it shows that the
radiation task held significant importance. With an average performance decrease of 0.0126 upon
its removal, radiation prediction consistently proved to be the most influential. This suggests that
incorporating radiation information within Guided-STab universally offers a substantial enhancement
to its efficacy on survival analysis across the datasets.

6 Future Work

There are several directions for further exploration: 1) Integration of prior knowledge such as
tissue-specific gene-gene interactions, which can be modeled as graphs [26]. This will allow for
a more comprehensive understanding and harnessing of underlying biological processes [13, 18];
2) Incorporating relational multitask settings inspired by Cao et al. [5], Hajiramezanali et al. [15],
by creating knowledge graphs from auxiliary tasks, we hope to not only better address the issues
of data scarcity but also provide solution for disentangling genomic relationships; and 3) Adding
interpretability can aid the scientific understanding of intricate genomics interactions, as well as
informing clinical decisions in the future.
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A Algorithm

Algorithm 1 Training Schema

Require: Input matrix X(C) ∈ RV×
∑

ci∈C Jci , where C is the set of all data sources stacked together.

1: for epoch = 1 to nwarm_up do
2: for t = 1 to N∑

ci∈C Jci
do

3: Divide minibatch X(C) to K subsets {X̃1, X̃2, . . . , X̃k}
4: Update E with Lr + Lc + Ld

5: end for
6: end for
7: for epoch = nwarm_up to ntotal do
8: for t = 1 to N∑

ci∈C Jci
do

9: Divide minibatch X(C) to K subsets {X̃1, X̃2, . . . , X̃k}
10: Update E with Lr + Lc + Ld +

∑T
t=1 Lauxi

11: end for
12: end for

B Additional Related Works

Multitask learning. Multitask learning (MTL) has gained prominence as an effective strategy to
simultaneously learn multiple related tasks, capitalizing on the shared information between them.
Azarkhalili et al. [1] illustrated the enhanced accuracy and interpretability of drug prediction models
by leveraging multitask learning across multiple drugs. Furthermore, Wu et al. [36, 37] demonstrated
the utility of MTL in predicting multiple phenotypes from genomics data, underscoring its ability to
utilize shared patterns across related phenotypic tasks like drug response and perturbation prediction.
However, a noticeable gap remains, as neither study has explored the realm of survival prediction.
More recently, Cao et al. [5] advanced conventional multitask learning by constructing a knowledge
graph that linked data points and tasks, which maximized the label information from auxiliary tasks.
However, its application was limited to graph data, which could not be directly adapted to tabular
form.

C Experiment Setup

For our experiments, we utilized an NVIDIA DGX with CUDA version 11.4 for training the model.
The implementation was carried out in Pytorch. The task-specific hyperparameters are shown in
Table A1, and below is a compact representation of the hyperparameters and settings used globally:

Table A1: Task-specific hyperparameters in the proposed Guided-Stab.

Parameters BRCA HNSC LUAD LUSC BLCA

Hidden dim [256] [128] [256] [256] [256]
Warm-up/Train epochs 0/60 20/40 30/50 20/40 0/40
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Table A2: Global Hyperparameters and Settings Overview

Parameter/Setting Value
Platform NVIDIA DGX, CUDA 11.4
Pretraining lr 0.001
Dropout 0.2
Batch Size 128
Number of Subsets (Overlap) 4 (0.75)
Aggregation Concatenation
Noise (Masking, Level) Gaussian (0.3, 0.1)
Survival MLP (lr, Hidden) 0.00008, [512,64]
Activation ReLU

Table A3: Abbreviations

Abbreviation Description
BRCA Breast Invasive Carcinoma
HNSC Head and Neck Squamous Cell Carcinoma
LUAD Lung Adenocarcinoma
LUSC Lung Squamous Cell Carcinoma
BLCA Bladder Urothelial Carcinoma

Figure A1: Comparison of RSF and RSF + Guided-STab
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