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Abstract 

The T-cell receptor (TCR) allows T-cells to recognize and respond to antigens presented by infected and 
diseased cells. However, due to TCRs’ staggering diversity and the complex binding dynamics underlying 
TCR antigen recognition, it is challenging to predict which antigens a given TCR may bind to. Here, we 
present TCR-BERT, a deep learning model that applies self-supervised transfer learning to this problem. 
TCR-BERT leverages unlabeled TCR sequences to learn a general, versatile representation of TCR 
sequences, enabling numerous downstream applications. TCR-BERT can be used to build state-of-the-art 
TCR-antigen binding predictors with improved generalizability compared to prior methods. 
Simultaneously, TCR-BERT’s embeddings yield clusters of TCRs likely to share antigen specificities. It also 
enables computational approaches to challenging, unsolved problems such as designing novel TCR 
sequences with engineered binding affinities. Importantly, TCR-BERT enables all these advances by 
focusing on residues with known biological significance.  

Introduction 

T cells are a central component of the adaptive immune system1. Mature T cells continuously monitor 
their surroundings for signs of foreign invaders or diseased cells and help activate immune defenses upon 
recognition. These invaders are signified by antigens – short protein fragments presented outside each 
cell by the major histocompatibility complex (MHC) – that give a “snapshot” of the inner workings of a 
cell. In the event of a viral infection such as with HIV or SARS-CoV-2, infected cells present viral antigens, 
which are then recognized by T cells2. In cancer, fragments of mutated intracellular proteins are similarly 
presented by cancerous cells and detected as neoantigens. Healthy cells present antigens identifying 
themselves as non-threatening, but aberrant recognition of these self-antigens as invaders – a 
phenomenon known as autoreactivity – can cause autoimmune disorders like multiple sclerosis3,4 and 
type 1 diabetes5,6. T-cell mediated anti-tumor immunity can be therapeutically harnessed in several ways7, 
including immune checkpoint blockade therapies targeting cancers8. In each of these settings, antigen(s) 
recognized by T cells are key to developing effective treatments9–14.  

Despite the importance and therapeutic potential of T cells, it is challenging to predict their antigen 
recognition behavior, which is mediated by the T-cell receptor (TCR). The TCR is a dimeric protein with 
two hypervariable chains – typically ⍺ and β chains, encoded by the TRA and TRB genes – that jointly bind 
and recognize the pMHC-antigen complex15. These TRA and TRB sequences are specified through 
recombination of the variable (V), diversity (D), and junction (J) gene segments, as well as through random 
insertions and deletions. This stochastic process generates (hundreds of) millions for a healthy human16–

18. This diversity crucially lends the immune system its ability to recognize a vast array of antigens, but also 
makes understanding and predicting TCR-antigen specificity difficult. This challenge is compounded by 
cross-reactivity, where a single TCR often recognizes multiple antigens19–21, and conversely, an antigen 
may be recognized by many TCRs with varying affinities22.  

Recently, the growing popularity of sequencing technologies has enabled high-throughput profiling of TCR 
sequences23,24, which has in turn empowered computational methods studying TCR-antigen binding. 
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Conventional methods like GLIPH25,26, TCRMatch27, and TCRdist28,29 rely on sequence motif comparisons 
and manually tuned heuristics to predict which TCRs likely share antigen binding partners. More recently, 
researchers have applied various machine learning methods to predicting TCR-antigen binding30–32. While 
specific methodologies differ, these share the same supervised learning strategy training a classifier on 
TCR sequences with known antigen binding specificities. However, many TCRs do not have such antigen 
labels, which greatly limits the amount of data that supervised learning can leverage. Furthermore, it is 
likely that existing labels are incomplete owing to cross-reactivity. Thus, there is a unique opportunity to 
develop new approaches that leverage unlabeled data in concert with labelled examples to improve these 
models’ robustness and generalizability.  

This challenge of using unlabeled data to build models is a burgeoning field of study within the broader 
machine learning community. A notable advance in this domain is the Bidirectional Encoder 
Representations from Transformers (BERT) architecture, originally developed for natural language 
processing tasks33. BERT is a highly expressive model trained to understand the grammatical structure of 
languages using large collections of unlabeled sequences – a process more formally known as pre-training. 
This general understanding then serves as a robust starting point for targeting more specific tasks. While 
BERT was originally designed to model human language, BERT and its related architectures have been 
successfully repurposed for modelling biological sequences like DNA34 and proteins35–37. 

Inspired by the challenges of TCR analysis and the success of these machine learning approaches, we 
present TCR-BERT, a modified BERT model trained specifically on TCR CDR3 amino acid sequences. TCR-
BERT explicitly leverages unlabeled TCR sequences to achieve state-of-the-art performance on a variety 
of downstream tasks in TCR analysis, including antigen specificity prediction and exploratory clustering 
analyses, and even enabling in silico design of TCR sequences with specific binding characteristics.  

Results 

TCR-BERT leverages large, unannotated datasets to learn representations of TCRs 

TCR-BERT is built upon a modified BERT architecture (see Methods for details) that takes TCR CDR3 amino 
acid sequences as input (e.g., CASRPDGRETQYF). We pre-train TCR-BERT to capture the language of TCR 
CDR3 sequences by optimizing two objectives sequentially. First, we use unlabeled TCR sequences to learn 
the grammar of the naturally occurring TCR sequence space. We randomly hide 15% of the residues in 
each sequence and train TCR-BERT to impute these based on surrounding residues. This masked amino 
acid (MAA) pre-training does not require knowledge of the antigen specificity of each TCR sequence. MAA 
pre-training is performed using 88,403 predominantly human TRA and TRB sequences drawn from the 
VDJdb38 and PIRD39 datasets (Figure 1).  

After MAA pre-training, we leverage the fact that some TCRs are “labelled” with known antigen binding 
to train TCR-BERT to predict antigen specificity given TCR sequence in the form of a multi-class prediction 
problem. This classification pre-training task takes the TCR grammar previously learned via MAA and tunes 
it towards semantics of antigen specificity and is unique to TCR-BERT – existing protein language models 
are pre-trained only on the MAA task. We consider 4,365 human TRB sequences, each binding to one of 
45 antigen labels derived from the PIRD dataset (Figure 1, see Supplementary Methods). Although this 
antigen classification pre-training step uses relatively few examples, it provides substantial benefits to 
TCR-BERT (see Supplementary Methods). As a sanity check, we apply TCR-BERT to a set of murine TCR 
sequences and find evidence of generalization (see Supplementary Methods).  

TCR-BERT enables state-of-the-art antigen specificity classifiers 

After pre-training, we use TCR-BERT as a basis for building classifiers to predict whether a given TCR 
sequence can bind to a specific antigen. We use TCR-BERT to generate embedding vectors describing TCR 
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sequences, which are then used as input features to train a support vector machine (SVM) predicting 
binding towards a specific antigen (see Supplementary Methods). To evaluate the efficacy of this 
approach, we perform antigen cross validation. For a subset (n=26) of the antigens used in antigen 
classification pre-training with at least 20 known binding TCRs, we repeat the antigen classification pre-
training step excluding that antigen and associated TRBs. We use the resulting model to embed and 
classify the held-out TRBs against a negative set of human TRBs of undetermined affinity. This negative 
set is sampled from the TCRdb database40, which is not seen in pre-training, at a ratio of 5 negatives for 
each binding sequence. Under random 70/30 train/test splits, we observe a test set area under the 
precision-recall curve (AUPRC) of 0.91 averaged across 26 antigens. TCR-BERT outperforms a baseline 
supervised (without pre-training) convolutional neural network (ConvNet) predicting antigen 
binding/non-binding given a TRB sequence (Figure 2A, see Supplementary Methods), as well as various 
models built on k-mer featurization schemes (Supplementary Figures 2A, 2B).  

We compared TCR-BERT to other pre-trained protein language models by applying the same SVM 
classification approach to TCR embeddings generated by general-purpose protein language models ESM35 
and TAPE36. TCR-BERT’s embedding yields improved AUPRC compared to both ESM (Figure 2B) and TAPE 
(Supplementary Figure 2C). These results are consistent across different classifier heads (Supplementary 
Figures 2D, 2E) and demonstrate that TCR-specific pre-training data and methodology yields a robust TCR 
embedding representation even compared to larger, general-purpose models.  

As each individual’s immune system independently generates TCRs, cross-patient generalization better 
captures how such antigen classifiers might be applied in a clinical setting. To evaluate this, we study 
human TRB sequences binding the NP177 influenza A antigen25, which was not seen during pretraining. 
These TRBs are primarily derived from a single patient (n=176), whose data we use for training; the 
remaining (n=38) TRBs are derived from 4 other patients and are used for testing. As this dataset only 
provides positive examples, we sample non-binding human TRBs from TCRdb at a ratio of 5:1. Among all 
evaluated models, TCR-BERT provides the best AUPRC on test patients (Figure 2C). Notably, all three 
highest-performing models were pre-trained on large sets of unlabeled data.  

Finally, we evaluate classification performance on a murine LCMV GP33 dataset. This dataset uniquely 
provides antigen binding annotations for many (n=17,702) TRA/TRB pairs, which we split into 70/15/15 
train/validation/test partitions. Given these pairs, we embed the TRA and TRB sequences separately, 
concatenate the embeddings, and train an SVM (see Supplementary Methods). We evaluate TCR-BERT 
along with three baseline embeddings: ESM, TAPE, and DeepTCR30. Of these, TCR-BERT achieves the best 
test AUPRC of 0.47, compared to 0.43, 0.38 and 0.40 for TAPE, ESM, and DeepTCR, respectively (Figure 
2D). The large number of examples available in this LCMV dataset additionally allows us to evaluate the 
effectiveness of fine-tuning TCR-BERT. We create two copies of TCR-BERT, both initialized using weights 
from MAA pretraining, to embed TRA and TRB sequences, respectively. These two embeddings are 
concatenated and passed through a classifier, and the entire “two-armed” network is trained (see 
Supplementary Methods). We compare this to a ConvNet with two convolutional “arms” corresponding 
to TRA and TRB, and various models applied to k-mer featurization of TRA and TRB sequences. Fine-tuning 
TCR-BERT achieves best performance with an AUPRC of 0.61 (Figure 2D, Supplementary Figure 4). This 
strong performance is largely a consequence of TCR-BERT’s pre-training: an architecturally identical 
network trained without pre-training yields a substantially lower test AUPRC of 0.46. 

We repeated all antigen binding prediction experiments additionally requiring that no training sequence 
can be within 1 Levenshtein edit of any test sequence (2 edits for paired TRA/TRBs). Despite this reduced 
sequence similarity, TCR-BERT nonetheless exhibits similar performance improvements (Supplementary 
Figure 5), suggesting that it provides a strong foundation for building antigen classifiers for TCR sequences. 
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TCR-BERT facilitates unsupervised, explorative analyses of TCRs 

In many cases, researchers may not know a priori which specific antigen(s) to predict TCR affinity for, 
necessitating more exploratory analyses of TCR sequence data. TCR-BERT facilitates such analyses via 
visualization and clustering of its TCR sequence embeddings. To illustrate this, we embed (n=2,067) human 
TRB sequences25 using TCR-BERT (pre-trained on MAA and classification) and visualize each TRB using 
UMAP (Figure 3A). While this does not perfectly separate all antigen binding groups (potentially due to 
cross-reactivity), it nonetheless highlights distinct specificity groups. For example, the group of TRBs 
corresponding to the BMLF1 Epstein Barr virus (EBV) antigen (GLCTLVAML) in the upper region of the plot 
corresponds to the illustrated motif (Figure 3A, top). This motif matches one of the most conserved public 
(i.e., shared between multiple individuals) EBV TRBs41, which may contribute to its strong separation from 
other TRBs.  

In addition to examining these embeddings visually, these TCRs can be algorithmically clustered using an 
algorithm like Leiden42. We evaluate this approach with NP177-binding TRB sequences mixed with 
randomly sampled endogenous human TRBs. Ideally, every cluster should consist of only antigen-binding 
or background sequences; this is measured by percent correctly clustered25. Additionally, each TRB should 
be clustered with at least a few other TRBs, as assigning each sequence its own group would trivially 
achieve perfect accuracy; this is captured by percent clustered25. We examine several clustering 
resolutions for TCR-BERT’s NP177/background embedding (Figure 3B, blue), and use GLIPH25 to similarly 
generate TCR groups of varying granularities for these same sequences (Figure 3B, orange). TCR-BERT’s 
embedding yields clusters that are more correct and stable (Supplementary Figures 6A, 6B), while being 
faster to compute (Supplementary Figure 7). We repeated TCR clustering comparison using a subset 
(n=2,443) of the murine LCMV GP33 TRBs. This dataset also provides V/J annotations, which allows us to 
evaluate TCRDist329. Compared to both these methods, clustering TCR-BERT’s TRB embeddings again 
provides a consistently improved tradeoff between percentage clustered and correctness (Figure 3C, 
Supplementary Figures 6C-F).  

TCR-BERT focuses on biologically relevant residues 

To better understand how TCR-BERT achieves these advances, we study the amino acid residues 
highlighted via TCR-BERT’s transformer attention mechanism. At a high level, attentions43 capture how 
much a given token’s representation (i.e., our classification embedding) is influenced by representations 
of other tokens (i.e., each amino acid in the TCR CDR3). We examine the two-armed TCR-BERT model fine-
tuned to predict LCMV GP33 binding from TRA/TRB pairs. We average each TRA/TRB submodule’s per-
residue attentions across TRA/TRB pairs of equal length (12 and 14 residues for TRA and TRB, spanning 36 
binding and 121 non-binding examples, Figure 4A). TCR-BERT’s attentions tend to be concentrated 
towards the central region of both the TRA and TRB. This aligns with prior works describing a functional 
hot spot around central residues enabling fine discrimination of antigens44. These attentions can also be 
interpreted in the context of the structural interface between TCR and pMHC. Examining three structures 
profiling a similar LCMV GP33 system (PDB structures 5m00, 5m01, and 5m02, see Supplemental 
Methods), we find that TCR-BERT’s attention is anti-correlated with distance to the antigen (Figures 4B, 
4C). Antigens in the lowest quartile of distances relative to the antigen in each chain correspond to 
significantly higher attentions (𝑝 = 7.14 × 10!"#  for TRA, 𝑝 = 1.06 × 10!$  for TRB, two-sided Mann-
Whitney test), indicating that TCR-BERT pays the most attention to TCR residues physically proximal to 
the antigen (Figure 4D, Supplementary Figure 8).  

TCR-BERT can facilitate computational TCR design 

TCR-BERT enables novel computational approaches to important experimental and clinical challenges 
involving TCRs. Among these, one exciting domain is TCR engineering, which seeks to redirect T cell 
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specificity by introducing synthetic TCR sequences into T cells. In principle, this strategy can boost T cells’ 
ability to recognize a given antigen, thus strengthening immune defense against specific pathogenic or 
malignant cells45. We present a proof-of-concept computational approach to engineering new TCR CDR3 
sequences by using TCR-BERT to drive an in silico directed evolution process. We start with a set of TCR 
sequences with no observed binding to an antigen of interest and use TCR-BERT to rank these according 
to their predicted likelihood of binding. We use the sequences with the highest predicted binding 
likelihood to generate additional, similar sequences via masked amino acid prediction, leveraging TCR-
BERT’s learned language model to traverse the complex grammar of TCRs. We repeat the ranking and 
sampling steps using these newly generated sequences, iterating until we arrive at a set of sequences with 
desirable predicted binding (Figure 5A, see Supplementary Methods).  We apply this procedure to 
generate TRA-TRB pairs targeting GP33 using the version of TCR-BERT fine-tuned to predict LCMV GP33 
binding from TRA-TRB pairs. We start with 100 non-binding TRA-TRB pairs apply the directed evolution 
process described above. The predicted GP33 affinity grows with successive iterations, reaching a 
minimum 95% predicted probability of binding after 7 iterations (Supplementary Figure 9A). The top 50 
generated TCRs share no clear sequence similarity to training examples with observed GP33 binding 
(Supplementary Figures 9B, 9C). 

To show that we are generating reasonable candidates binding GP33, we use BLAST46 to match both our 
initial non-binding TRB set and final engineered TRB set against all known murine TRB sequences (we 
could not find adequate data to similar evaluate TRAs, see Supplementary Methods). TRBs in the final set 
not only produce more hits to TRBs independently found to bind GP33 in an experiment never seen by 
TCR-BERT, but these hits are also more specific (Figure 5B). Additionally, our engineered TRBs produce 
matches to 11 known GP33 binders that were not matched by our starting set (Figure 5C, Supplementary 
Figure 10), further illustrating that our TCR engineering process generates novel sequences. Rerunning 
this TCR engineering procedure using a different set of starting sequences shows that we can consistently 
generate different GP33 binders (Supplementary Figure 11).  

Discussion 

TCR-BERT is a large language model trained to model and embed T-cell receptor sequences. Compared to 
prior works using machine learning to predict TCR behavior, TCR-BERT is uniquely designed to leverage 
unlabeled data with biologically motivated pre-training tasks to learn a general representation of TCRs, 
before being applied to or fine-tuned on specific downstream tasks. Leveraging transfer learning, TCR-
BERT thus enables state-of-the-art prediction of TCR-antigen binding and grouping of TCRs likely to share 
antigen specificities. TCR-BERT enables these advances by focusing on structurally relevant residues with 
known biological importance for binding. Finally, we show how TCR-BERT can enable novel applications 
such as computationally generating new TCR sequences with desirable binding characteristics.  

There are several directions for improving and extending TCR-BERT. Most directly, our proof-of-concept 
TCR engineering work requires follow-up experimental validations. More broadly, TCR-BERT considers 
only a subset of information regarding the TCR and does not leverage VDJ gene usage information or 
CDR1/2 sequences in its design. Previous works have found that these additional annotations can improve 
antigen binding prediction performance compared to using TCR sequences alone30, particularly the V 
gene, but the optimal approach for integrating these into a large language model is an open question. It 
can be difficult to understand exactly how TCR-BERT embeds or classifies a TCR sequence, especially when 
compared to traditional methods built around more transparent metrics like sequence similarity. Future 
work in model interpretability could alleviate this. Finally, TCR-BERT would greatly benefit from additional 
training data, especially as new technologies emerge improving scalability of profiling TCR sequences and 
their antigen specificities47. Such additional data could help alleviate possible biases in HLA representation 
in TCR-BERT’s current pre-training data. 	
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Code and model availability 
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Figures 

 
Figure 1: TCR-BERT leverages self-supervised pretraining to model TCRs.  

TCR-BERT takes a TCR amino acid sequence (bottom input) and generates an embedding useful for downstream 
tasks. In pre-training, TCR-BERT learns to predict a masked amino acid (“.”) based on surrounding residues, thus 
learning the grammar of natural TCRs. This is done over a large corpus of TRA and TRB sequences with no MHC or 
HLA restrictions and does not require knowledge of antigen binding (left panel). We subsequently further train TCR-
BERT to predict, across a set of 45 antigen labels, the antigen that a given TRB sequence binds to (center panel). We 
apply TCR-BERT to a variety of TCR analyses, including predicting antigen binding and clustering TCRs (right panel). 
 

https://github.com/wukevin/tcr-bert
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Figure 2: TCR-BERT can be used to build state-of-the-art classifiers predicting antigen binding. 

(A) Antigen cross validation comparing an SVM on TCR-BERT embeddings (y-axis) to a supervised ConvNet (x-axis). 
Each point (n=26) indicates test AUPRC for a single antigen using each of the two methods. Larger points correspond 
to antigens with more training examples (ranging from 21-231 binding TCRs, with an outlier of 4115). TCR-BERT 
delivers significantly improved performance (i.e., above orange line indicating equal performance). P-value is 
computed using a two-sided Wilcoxon test. (B) Antigen cross-validation also shows that TCR-BERT outperforms ESM, 
a larger, general protein language model. Indicated p-value is computed using a two-sided Wilcoxon test. (C) 
Evaluates model performance on NP177 antigen where training and test data is split by patient identity. Pre-trained 
models are shown in solid lines whereas supervised models are shown in dotted lines. TCR-BERT provides the best 
performance; pre-trained models generally outperform supervised models. (D) Using a murine dataset profiling 
GP33 binding for TRA/TRB pairs, we evaluate various models’ antigen binding predictions on a random test set. Prior 
to fine-tuning, TCR-BERT’s embedding achieves test AUPRC (0.466, curve not shown for clarity). After fine-tuning, 
TCR-BERT achieves class-leading performance (dot-dash line, see Supplementary Figure 4) compared to both 
supervised (dotted lines) and embedding methods (solid lines).   

 
Figure 3: TCR-BERT’s embedding enables clustering analyses of patient TCR sequences.  

(A) We use TCR-BERT to embed and visualize 2,067 human TRB sequences binding various antigens. Each point 
represents a TRB sequence, colored by its known antigen binding partner. An unsupervised clustering algorithm like 
Leiden can be used to identify clusters of TCRs; two examples of identified clusters are circled, along with motifs 
summarizing constituent TRBs. (B) To systematically quantify the utility of TCR-BERT’s embedding for clustering, we 
study (n=217) TRB sequences binding the NP177 antigen mixed in a negative background of randomly sampled 
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human TRBs (n=1070). We evaluate several clustering resolutions for TCR-BERT (blue) and a GLIPH (orange), plotting 
each method’s trade-off between percent clustered (x-axis) and percent correctly clustered (y-axis). We define 3 
ranges of percent clustered (delineated by vertical lines); within each, TCR-BERT significantly improves clustering 
accuracy (indicated p-values, two-sided Mann-Whitney test, Supplementary Figures 6A, 6B). Random accuracy 
indicates the trivial solution with all sequences in a single cluster. This improvement is consistent when evaluating a 
different LCMV GP33 murine dataset, subsampled to 2,443 TCRs (C). TCR-BERT (blue) provides more improved 
clustering performance compared to GLIPH (orange) and TCRDist3 (green/olive); see Supplementary Figures 6C-F.  

 
Figure 4: TCR-BERT’s attentions reveal biologically meaningful learned patterns. 

(A) Heatmaps visualizing the attentions that TCR-BERT has learned for predicting LCMV GP33 binding, averaged 
across test set TRA and TRB sequences of fixed length. The vertical axis indicates positions in the TRA (top) and TRB 
(bottom) sequence, and the horizontal axis illustrates each of the 12 attention heads within TCR-BERT. Attentions 
tend to be concentrated to the center of the TCRs. (B) We relate these averaged attentions to biophysical structures 
of TCR-antigen binding using three empirical PDB structures (5m00, 5m01, 5m02). Blue lines indicate, for each 
residue in the TRA, the minimum distance to the antigen in each experimental structure. Orange line indicates TCR-
BERT attention for those residues. TCR-BERT pays the most attention to residues closest to the antigen, and the 
same is true for the TRB sequence (C). (D) We illustrate this with a 3D structure showing the MHC (green), modified 
GP33 antigen (salmon), and TRA (pink) and TRB (yellow). Side chains are shown and highlighted for the antigen and 
the TCR residues receiving the top 33rd percentile of attentions. See Supplementary Figure 8 for additional views. 

 
Figure 5: TCR-BERT enables in-silico engineering of novel TCR sequences 

(A) To engineer sequences with affinity for GP33, we take endogenous TRA and TRB pairs with no measured binding 
to GP33, use TCR-BERT to select sequences most likely to bind, and use TCR-BERT’s masked amino acid predictions 
to sample variants of these TCRs. This directed evolution process is repeated to iteratively enrich for desirable 
binding properties (Supplementary Figure 9). (B) We use BLAST to match starting (orange) and final (blue) engineered 
TRB sequences against previously characterized murine TRBs. Engineered sequences produce more hits to previously 
characterized GP33-binding TRBs than the starting set. These hits are also more specific with significantly elevated 
bit scores, which correspond to the log-size of the database needed to produce a hit by random chance (displayed 
p-value, two-sided Mann-Whitney test). (C) Our in silico engineered sequences match several known GP33-binding 
sequences not matched by starting sequences, one such match is illustrated here. (see Supplementary Figure 10). 
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Supplementary Materials & Methods 

Datasets & preprocessing 

From the pan immune repertoire database (PIRD) 39, we use the TCR-AB database containing 47,040 TRB 
sequences and 4,607 TRA sequences. Among these, 605 examples are explicitly paired TRA and TRB, and 
8,429 examples have annotated antigen specificities. These annotated antigen specificities span 73 unique 
antigens. We use the PIRD dataset for masked amino acid modelling pre-training, and its labels for antigen 
classification pre-training and antigen cross-validation. For antigen cross-validation, we include only 
antigens with 20 or more identified binding sequences.  

VDJdb is a curated dataset of T-cell receptor sequences with known antigen specificities 38. This dataset 
consists of 58,795 human TCRs and 3,353 mouse TCRs. More than half of the examples are TRBs (n= 
36,462) with the remainder being TRAs (n= 25,686). Although these sequences are all labelled with a 
known antigen binding partner, we only used this dataset during the masked amino acid pre-training step. 
We empirically found that including this dataset’s labels in classification pre-training did not improve the 
usefulness of TCR-BERT’s embedding for downstream classification or embedding tasks (data not shown). 

The TCRdb dataset 40 consists of 139,00,913 TRB sequences of unknown antigen binding affinity. While 
we attempted to leverage TCRdb in our first MAA pre-training step, we empirically found that doing so 
greatly increased training runtime without yielding improved downstream results (e.g., MAA prediction 
performance on a held-out set of sequences and antigen classifier accuracy, data not shown). Rather, we 
use TCRdb as a pool of unseen, naturally occurring human sequences of unknown antigen binding affinity. 
We sample from these sequences to create a “negative” set of TCR sequences. This is useful for building 
classifiers from datasets that only describe TCR sequences with known binding affinity (i.e., a positive 
label), but does not describe TCR sequences with no known binding affinity (i.e., a negative label). These 
negative sets are sampled at a ratio of 5 TCRdb negatives to each known positive example. This ratio is a 
round value that approximates the proportion of positive examples in the relatively exhaustive LCMV 
dataset, discussed below. 

The murine LCMV GP33 dataset consists of T cells from the lung, liver, and spleens of mice infected with 
either LCMV Armstrong or LCMV Clone 13. Following tissue dissociation, single cell suspensions were 
stained with class I tetramer H-2Db LCMV GP33-41 (KAVYNFATC) (PE) and then sorted via flow cytometry 
as tetramer high, mid, or negative. TCR sequencing was performed using the 10X 5’ Single Cell Immune 
Profiling Solution Kit (v1.1 Chemistry) using the 10x Chromium Single Cell V(D)J Enrichment Kit for mouse 
T cells, according to the manufacturer’s instructions. Single-cell TCR-seq libraries were sequenced on an 
Illumina NovaSeq S4 sequencer using the following read configuration 26bp Read1, 8bp i7 Index, 91bp 
Read2. TCR reads were aligned to the mm10 reference genome and consensus TCR annotation was 
performed using cellranger vdj (10x Genomics, version 3.1.0). We keep only unique TRA/TRB clones where 
80% of annotated cells assigned the same label, in which the clone is assigned the majority label. Overall, 
this results in (n=17,702) unique TRA/TRB pairs with consistent labels that we use for model training and 
evaluation. Among these, 13% (n=2306) are observed to have mid or high binding – we consider these 
“positive” examples of TRA/TRBs binding GP33. For training and evaluation purposes, this dataset 
randomly divided into a 70/15/15 train/validation/test split. This dataset is also being used for a separate, 
unrelated manuscript under preparation for submission; this manuscript contains more details 
surrounding exact experimental conditions for gathering this data as well as details on data access. 

For all TCR sequence records, we exclude any sequences that include residues outside the set of 20 
standard amino acids, e.g., wildcard residues that indicate variability. All data splits are created such that 
there are no sequences that appear in both training, validation, and/or test. For some evaluations, we 
further constrain the training set to not include any sequences that are within 1 edit distance to any test 
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sequence. Edit distance is calculated using the Levenshtein metric, and training sequences that are not at 
least 2 edits away from all test sequences are excluded from training. When considering TRA/TRB 
sequence pairs instead of singular sequences, we required a total edit distance between each training 
TRA/TRB pair and all test pairs of at least 3 edits (summed across TRA and TRB). This procedure reduces 
the size of the training set but preserves examples in the test set, which makes results more comparable 
to models where this constraint is not active.  

Modelling, pre-training, and layer selection 

TCR-BERT is implemented in Python primarily using the PyTorch 48 and Transformers libraries 49. TCR-BERT 
uses a lightly modified version of the BERT language modelling architecture. We provide a brief description 
of BERT and general transformer models here; for full details, please refer to the original BERT manuscript 
33. Transformer models 50 use a series of blocks that apply attention and feed-forward layers. Attention 
attempts to model pairwise interactions in an input sequence by learning how strongly the embedding 
representation of each token should be influenced by the embedding of other tokens (including itself). 
Applying several layers of such blocks allows models like BERT to learn increasingly complex interactions 
between tokens that ultimately capture higher-order concepts like grammatical structure. These 
transformer networks have been shown to outperform more conventional recurrent and convolutional 
models in various natural language problem settings. 

TCR-BERT’s input is TCR sequence of length M, formatted as a series of M tokens spanning the set of 20 
amino acids. These input tokens are then padded with special tokens: a classification token C as a prefix, 
and a separator token S as a suffix. The padded input tokens are then passed through a trained embedding 
layer that maps each token (amino acid) to a continuous representation of 768 dimensions. As this token 
embedding does not capture positional information, our TCR-BERT model follows the BERT model in 
adding a positional encoding to the amino acid embedding. This summed sequence embedding is then 
fed through a series of 12 transformer blocks to arrive at the overall sequence embedding. This sequence 
embedding represents each input amino acid chain as a (𝑀 + 2) × 768 matrix. The sequence embedding 
can then be fed into various “heads” that perform pretraining and downstream tasks such as masked 
amino acid prediction or sequence classification. 

We pre-train TCR-BERT using two objectives optimized sequentially. First, we pretrain using a masked 
amino acid (MAA) modelling objective, where we randomly hide, or “mask” 15% of the amino acids in 
each TCR amino acid sequence in the training set, and train TCR-BERT to predict these masked amino 
acids. Architecturally, this is done by appending a MAA “head” network to the previously described 
transformer network. This MAA head is a simple, fully connected layer that maps TCR-BERT’s per-residue 
hidden representation to logits (20 dimensions, corresponding to each amino acid), followed by a softmax 
activation. MAA pretraining is done using both TRA and TRB sequences from the VDJdb and PIRD datasets 
and aims to leverage the large amount of TCR sequences with (potentially) unknown antigen specificity 
to learn the “grammar” of a valid TCR sequence. TRA and TRB sequences are given to the model without 
features or flags distinguishing the two. We use a random 85/15 train/test split for MAA pre-training and 
tune hyperparameters based on test set loss (a validation set is not used as we do not directly benchmark 
MAA predictions). We perform grid search across the following hyperparameters with final chosen values 
in bold. Several of these hyperparameters describe architectural configurations (e.g., dimension of the 
hidden representation) whose values apply to downstream training/tasks as well. Default values for the 
BERT architecture are indicated. Hyperparameters and architectural configurations not indicated are left 
at their default values. 

• Hidden representation dimensionality: [144, 384, 768] (BERT default: 768) 
• Intermediate representation dimensionality: [1536, 3072] (BERT default: 3072) 
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• Number of attention heads: [6, 8, 12] (BERT default: 12) 
• Number of transformer layers: [8, 12] (BERT default: 12) 
• Batch size: [128, 256] 
• Learning rate warmup (number of training steps to linearly “ramp up” learning rate to specified 

value): [0, 0.1] 
• Training epochs: [10, 15, 25, 50, 100] 
• Learning rate: [2e-5, 5e-5] 

We also reduce the maximum positional embedding length to be 64 (as opposed to BERT’s default 
maximum of 512) to reflect the relatively short TCR sequence lengths compared to sentence lengths in 
natural language. We use linear learning rate decay to 0 over training epochs, coupled with the AdamW 
51 optimizer and negative log likelihood loss. 

The second pre-training objective is a multi-class classification task where we train TCR-BERT to classify 
each input TRB sequence as binding to a one of a set of profiled known antigens. We focus on TRB 
sequences exclusively, as very few TRA sequences have annotated antigen specificities (and even fewer 
paired TRA-TRB examples have such annotations). Consequently, TCR-BERT is only suitable for analyzing 
TRB when using this pre-training step. To train this objective, we subset the antigens represented in the 
PIRD dataset to include only antigen sequences with at least 6 positive examples; antigens with fewer 
positive examples are aggregated into a single “other” label. This results in 44 antigen labels and 1 “other” 
antigen label for a total of 45 labels, distributed among with 6,235 TRB sequences. These are randomly 
split into training, validation, and test sets using a 70/15/15 split. The antigen classification “head” consists 
of a (somewhat misleadingly named) “pooling” layer (a feedforward network projecting the 768-
dimensional classification token embedding into 768 dimensions with Tanh activation) and a “classifier” 
layer (a feedforward network projecting the 768-dimensional output of the pooling layer into the number 
of labels). As this pre-training objective predicts a single antigen for each TRB, we use a softmax activation 
coupled with a negative log likelihood loss. For this pre-training objective, we perform grid search over 
the following hyperparameters optimizing for validation set AUPRC, with selected values in bold: 

• Learning rate: [2e-5, 5e-5] 
• Batch size: [128, 256] 
• Learning rate warmup: [0, 0.1] 
• Training epochs: [10, 15, 25, 50] 

We additionally perform early stopping after no improvement in validation set AUPRC after 5 epochs. 

Pre-training ablations 

Antigen cross-validation also allows us to investigate the impact of each of our two pre-training steps on 
the quality of TCR-BERT’s embeddings. We evaluated the performance of an SVM on TCR-BERT’s 
embedding, compared to an embedding trained using only antigen classification (holding out antigens as 
necessary) and an embedding trained using only MAA. For both pre-training ablations, AUPRC classifying 
unseen antigens is significantly reduced compared to the full TCR-BERT model (Supplementary Figures 3A, 
3B), demonstrating the importance of both of TCR-BERT’s pre-training steps in learning an embedding 
that generalizes to unseen antigens and their associated TRBs. We also compared TCR-BERT’s pre-training 
ablations against ESM and TAPE embeddings and found that TCR-BERT trained using only MAA exhibits a 
small performance improvement, whereas using only classification pre-training exhibits a larger 
performance advantage (Supplementary Figures 3C-F). This suggests that while training on specifically TCR 
sequences (as opposed to all protein sequences) is helpful, TCR-BERT’s performance improvements stem 
primarily from its unique antigen classification pre-training task. More generally, our observation that 
TCR-BERT outperforms ESM and TAPE, which are both pre-trained on much larger datasets, suggests that 
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leveraging datasets and objectives that are biologically related to downstream applications can have a 
larger impact than sheer dataset size.  

Cross-species validation of pre-trained TCR-BERT model 

We performed several evaluations to check the quality and generalizability of TCR-BERT’s two-stage pre-
training using a new dataset of (n=17,702) TRA/TRB sequence pairs from mice infected with lymphocytic 
choriomeningitis virus (LCMV) clone 13 antigen GP33, a model of chronic viral infection (see Methods for 
additional details) 52. This dataset is not used in training and is murine whereas 97% of TCR-BERT’s pre-
training data comes from humans. Nonetheless, TCR-BERT accurately predicts masked amino acids for 
both TRA and TRB sequences (Supplementary Figure 1A), suggesting that the model has learned a 
generalizable TCR grammar. After the second antigen classification pre-training step, we visualize TCR-
BERT’s amino acid embedding vectors and observe some separation by biochemical properties 
(Supplementary Figure 1B). We additionally use TCR-BERT to generate an embedding for each TRB 
sequence in this GP33 dataset, and visualize the embeddings using UMAP 53 (Supplementary Figure 1C). 
We observe that TCR-BERT’s sequence embedding reflects sequence similarity (Supplementary Figure 1C, 
1D), which in turn correlates with shared antigen binding affinities 25,54. This suggests that TCR-BERT’s 
sequence embeddings capture meaningful structures and relationships within the TCR sequence space. 

Downstream classifiers and layer selection 

After pre-training, we can use TCR-BERT to obtain a sequence embedding by averaging across each input 
amino acid’s embedding. For this embedding, we select a representation layer from TCR-BERT that is most 
conducive to downstream tasks like clustering or building classifiers. This is necessary as empirical works 
have found that the last layer of large language models like BERT is sometimes too specialized towards 
pre-training tasks to be generally useful for embedding new inputs. To evaluate the quality of each layer, 
we measure the held-out performance of a simple classifier trained upon it – however, since it is also 
unclear which classifier is ideal, we jointly evaluate several classifiers. Specifically, we consider the last six 
layers of TCR-BERT, and for each layer’s embedding, we train four models: a logistic regression (LR) 
consuming the embedding, a support vector machine (SVM) classifier with Gaussian radial basis function 
kernel consuming the embedding, a logistic regression on the top N principal components spanning at 
least 90% of the variance (PCA-LR), and a SVM on the same principal component input (PCA-SVM). LR and 
SVM represent linear and nonlinear classifiers. Building a classifier on top of PCs rather than the raw 
features may help the classifier better focus on major sources of variation in the data. 

We perform this combinatorial evaluation using the LCMV GP33 dataset, measuring validation AUPRC 
given TRB sequences as input. For training, we randomly subset the LCMV training set to different sizes to 
mimic different sizes of datasets commonly encountered in real-world TCR analyses, sampling to 50% of 
the training examples (n=5304 unique sequences), 20%, 10%, 5%, and 2% (n=212 sequences). The size of 
the validation set does not change. Evaluating these varying levels of available training data, we find that 
SVM applied to the final layer embeddings (without PCA) most consistently provides the best validation 
set performance. Both forms of logistic regression perform comparably poorly. PCA-SVM provides similar 
performance, but its improvements lack the statistical significance and consistency to justify its additional 
complexity. Thus, all downstream tasks consuming TCR-BERT’s embedding (i.e., embedding without fine-
tuning and clustering) use the final embedding. All downstream classifiers that do not involve additional 
fine-tuning use this final embedding with an SVM. For applications embedding both TRA and TRB 
sequences, we use the version of TCR-BERT pre-trained only on MAA to embed the TRA and the version 
of TCR-BERT with full pre-training to embed the TRB. This is done due to the second pre-training step using 
only TRB sequences.  Note that this layer and classifier selection process is only performed once using a 
murine dataset and is not re-tuned for different datasets (including human sequences), for antigen cross-
validation, or for different pre-training schemes.  
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TCR-BERT can also be fine-tuned to perform classification. Rather than treating TCR-BERT as a fixed black 
box for generating continuous embeddings from discrete amino acid sequences, fine-tuning modifies TCR-
BERT using the pre-trained parameters as a starting point. In our work, we fine-tune TCR-BERT to perform 
antigen binding prediction given a TRA and TRB sequence pair. Architecturally, this paired prediction 
model is comprised of two separate TCR-BERT transformers individually responsible for embedding the 
TRA or TRB sequence, respectively. Both are initialized using weights from the MAA pretraining step, as 
MAA pre-training is agnostic of TRA/TRB identity. We extract the initial “classification” token embedding 
from both the TRA and TRB, concatenate the two embeddings, and apply a fully connected layer mapping 
to two outputs with softmax activation to generate binding predictions. Training this overall model tunes 
each encoder towards patterns specific to either the TRA or TRB. Hyperparameters for this model are 
selected maximizing validation set AUPRC using grid search over the following values (final values are in 
bold): 

• Learning rate: [5e-5, 3e-5, 2e-5] 
• Training epochs: [10, 25, 50, 100] 
• Dropout (in final fully connected layer, does not affect TCR-BERT itself): [0.1, 0.2] 

We train using a batch size of 128, linear learning rate decay over training epochs, and the AdamW 
optimizer. While we focus on fine-tuning targeting both TRA and TRB pairs, TCR-BERT could also be fine-
tuned to target only TRB sequences using a similar approach without concatenating multiple embeddings. 

In several of the experiments described in our work, we aim to build a classifier distinguishing human 
antigen binding TRB sequences from a random background, sampled at 5 background sequences per 
binding sequence. To create this random background, we randomly select TRB sequences from the TCRdb 
dataset 40, which contains human TRB sequences of undetermined antigen affinity (see above). This 
process attempts to mimic a natural sample of TCRs, where there are many “background” TCRs and a 
subset of TCRs with binding to a specific antigen. This ratio is similar to what is observed in tissues from 
severely diseased mice, though this ratio is likely lower in humans.  

To evaluate classifier performance, we primarily focus on area under the precision recall curve (AUPRC). 
AUPRC is a much more informative metric in cases of class imbalance towards negative cases (i.e., when 
there are very few positive labels). Such class imbalance is commonly observed in the context of TCR 
specificity, where most TCRs will not bind to a given antigen. We also present area under the receiver 
operating characteristic (AUROC) in some instances for completeness. The expected AUPRC for a random 
classifier is the proportion of positive examples the dataset contains, and the expected AUROC is 0.5. 

Clustering TCR embeddings 

Our method for using TCR-BERT to embed TCR sequences for clustering analysis shares parallels with our 
method for building a SVM on top of TCR-BERT’s embeddings as it uses the previously identified optimal 
transformer layer (i.e., the last layer). We visualize the resulting embedding using Uniform Manifold 
Approximation and Projection (UMAP) 53 and cluster sequences using the Leiden clustering algorithm 42. 
To control the number and granularity of output clusters, we vary the resolution parameter for Leiden.  

To evaluate clustering performance, we use two metrics originally developed to quantify the performance 
of the GLIPH algorithm 25: percent clustered and percent correctly clustered. Each group of TCR sequences 
with 3 or more TCR sequences is considered “clustered.” The number of such clustered TCRs divided by 
the total number of TCRs gives the percent clustered. To calculate percent correctly clustered, we iterate 
over each cluster and for each TCR in that cluster, we retrieve its associated label (i.e., the antigen that 
that TCR binds to). If there is a dominant (≥50% occurrence) label within the cluster, the entire cluster is 
assigned that dominant label. If there is no dominant label, the entire cluster is considered incorrectly 



 
 

 

18 

clustered. Percentage correctly clustered is the average accuracy of each clustered TCR evaluated against 
this majority label. As a toy example, consider a single cluster with sequences [𝑎, 𝑏, 𝑐, 𝑑, 𝑒]  and 
corresponding antigens labels [𝑥, 𝑥, 𝑥, 𝑥, 𝑦]. The percent correctly clustered is 80%, as this would be the 
accuracy if we had assigned the 𝑥  label to all points in the cluster. Assuming these are the only five 
sequences in our experiment, the percent clustered would be 100%. 

To evaluate clustering runtime, we use the UNIX “time” command with TCR-BERT and GLIPH methods. 
Timing includes the entire process from reading a new input of TRB sequences, calculating clusters, and 
writing relevant output files. Runtime benchmarking is done with different subsets of murine LCMV GP33 
TRBs. All benchmarks are run using the same machine with an Intel i9-9960X processor, 128GB of RAM, 
and an Nvidia GeForce RTX 2080Ti GPU. No other foreground processes were run during benchmarking.  

Evaluated external methods 

We use various tools to contextualize TCR-BERT’s ability to perform classification and clustering. GLIPH 
was downloaded from the authors’ GitHub repository: https://github.com/immunoengineer/gliph. To 
cluster our TRB sequences, we run GLIPH using the “group discovery” script using varying values for the 
global convergence cutoff. We attempted to evaluate the updated GLIPH2 algorithm 26, but this tool does 
not appear to provide a clear mapping of which input sequences constitute which output clusters, so 
cannot be easily evaluated according to our framework. 

We downloaded TCRDist329 version 0.2.2 via Python pip, according to the authors instructions at 
https://tcrdist3.readthedocs.io/en/latest/index.html#. We then use TCRDist3 to generate a matrix of 
pairwise similarities given a list of TRB sequences and corresponding V/J gene usage, or a list of TRA/TRB 
sequence pairs and corresponding V/J gene usage, using default parameters in both cases. The pairwise 
similarity matrix for TRA/TRB pairs is the sum of the TRA matrix and the TRB matrix, as the authors suggest. 
As the authors suggest using hierarchical clustering to identify neighborhoods, we apply agglomerative 
clustering (with average linkage) to this similarity matrix, varying the number of identified clusters to 
obtain clusters of various resolutions.  

To evaluate against the Evolutionary Scale Model (ESM), we downloaded the ESM-1b model from the 
PyTorch model hub. To embed TCR sequences, we use the default mode of extracting the final transformer 
layer’s embedding and average the embedding for each amino acid to obtain the embedding for the 
overall sequence. This follows the recommendations given in the original authors’ GitHub repository 
https://github.com/facebookresearch/esm. These embeddings are then used to train an SVM (ESM 
performs similarly when using logistic regression and SVM).  

The TAPE model 36 was downloaded from the authors’ GitHub: https://github.com/songlab-cal/tape. We 
use the UNIREP version of their model to generate averaged embeddings using the default configuration. 
These embeddings are then used to train an SVM (TAPE performs better with an SVM than logistic 
regression).  

The SETE model 31 does not provide a simple code interface to train and evaluate on a dataset; we instead 
used the authors’ manuscript and reference code from their GitHub repository: 
https://github.com/wonanut/SETE to re-implement their algorithm.  

The DeepTCR model 30 version 2.0.10 was installed via Python pip. To evaluate DeepTCR’s performance 
on our GP33 dataset, we first train DeepTCR on the example murine antigen data using TRA/TRB 
featurization (i.e., excluding VDJ annotations for comparability). We then freeze DeepTCR’s parameters 
and use it to embed our LCMV GP33 TRA/TRB sequence pairs. These embeddings are then used as input 
to an SVM. We also evaluated other classifiers such as logistic regression on top of DeepTCR’s embeddings, 
but SVM yielded the best performance.  

https://github.com/immunoengineer/gliph
https://tcrdist3.readthedocs.io/en/latest/index.html
https://github.com/facebookresearch/esm
https://github.com/songlab-cal/tape
https://github.com/wonanut/SETE


 
 

 

19 

We developed an in-house convolutional architecture (ConvNet) as an additional baseline for predicting 
binary antigen binding given TCR sequences. This architectural choice is motivated by the fact that many 
researchers have broadly demonstrated strong results using convolutional networks to perform 
classification and motif discovery within biological sequences 30 55 56. ConvNet maps amino acids to a 16-
dimensional embedding, followed by convolutional layers mapping to 32, 32, and 16 channels with kernel 
sizes of 5, 5, and 3 respectively. The output of the final convolutional layer is then passed through a fully 
connected layer to a 2-dimensional output with softmax activation to predict antigen binding probability. 
ConvNet is trained using the Adam optimizer 57 with cross entropy loss, a learning rate of 0.001, and a 
batch size of 512 along with early stopping after 25 epochs of no improvement to validation AUPRC. When 
training on paired TRA/TRB sequences, we modify ConvNet to learn a separate embedding and 
convolutional portion for each chain. The final convolution embeddings are then concatenated and input 
to a single fully connected layer with softmax activation for output probabilities.  

Interpreting and contextualizing model attentions 

To obtain TCR-BERT’s attention across TRA and TRB chains, we use the version of TCR-BERT fine-tuned to 
perform LCMV GP33 antigen prediction. Recall that this two-armed model contains two fine-tuned 
variants of the TCR-BERT model embedding TRA and TRB sequences, respectively. Thus, for each chain 
within the TCR, we examine the respective fine-tuned TCR-BERT arm and extract the model attentions 
from the first classifier token at the last transformer layer for each of the 12 attention heads. We then 
trim these attentions to the length of the input 𝐿 (excluding padding tokens). This results in a matrix of 
shape 12 × 𝐿 for each chain in each example. This approach is heavily inspired by the bertviz library 58.  

We average these attention matrices across test set examples to approximate typical TCR-BERT 
attentions. For simplicity, we restrict to test examples with the same length TRA and TRB (n=157, 12 and 
14 residues for TRA and TRB, respectively). Test set examples are used as they are not seen for training or 
hyperparameter tuning. When contextualizing TCR-BERT’s attentions, we average across the 12 attention 
heads to obtain a vector of length 𝐿.  

We contextualize TCR-BERT’s per-residue attentions using the antigen distance of each residue, computed 
from the 3D structure of the MHC-antigen-TCR complex. We define antigen distance as the minimum 
Euclidean distance between a given TCR residue and any residue in the antigen peptide. Each residue’s 
3D coordinates are summarized as an average of the atoms comprising the residue to alleviate 
computationally intensive pairwise atom calculations. We apply this to Protein Data Bank (PDB, 
https://pdb101.rcsb.org/) 59 structures 5m00, 5m01, and 5m02. These three structures exhibit minor 
differences from our dataset. They study a slightly modified LCMV GP33 antigen (KAVANFATM versus our 
antigen sequence KAVYNFATC) interacting with the TRA/TRB pair CAALYGNEKITF/CASSDAGGRNTLYF (also 
of lengths 12 and 14 residues, respectively). This specific TRA/TRB pair is not predicted to bind to our GP33 
antigen, but it is unclear whether this is driven by the differences in the specific antigen or by model error. 
We believe that our results should be robust despite these minor differences, as the overall structure of 
these interactions should be similar.  

TCR engineering 

Our in silico TCR engineering process begins with a set of starting sequences with no binding affinity for 
the antigen in consideration. In our case, this consists of 100 non-binding TRA/TRB pairs randomly selected 
from the LCMV GP33 test set. Selecting from the test set ensures that the model has not been trained or 
tuned on these specific sequences, as would be the case for real-world usage. We then give these TRA/TRB 
pairs to the version of TCR-BERT fine-tuned to predict LCMV GP33 binding form TRA/TRB pairs, ranking 
them by their predicted GP33 binding. We take the top half of these sequences (n=50) and use them as 
seeds to generate a set of new sequences (n=100). 

https://pdb101.rcsb.org/
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To sample a new TRA/TRB pair, we start by randomly selecting one of the given seed sequence pairs. We 
then use TCR-BERT to mutate both the TRA and TRB, introducing two amino acid mutations to each chain. 
Mutations are introduced incrementally by choosing a single random position within the chain, masking 
that position, and giving the masked input to TCR-BERT (pretrained on MAA only) to predict the masked 
amino acid. This yields a probability distribution describing the most likely amino acids given the rest of 
the sequence. We rely on this prediction to explore the “grammar” of valid TCRs, such that we do not 
generate sequences that are untenable (e.g., a sequence entirely consisting of a single repeated residue). 
We randomly sample from the top 5 amino acids in this distribution.  

The (n=100) newly generated TCR chains are given to TCR-BERT to re-rank, and the process of using the 
top sequences to re-generate new TCR chains with (hopefully further) enhanced binding is repeated. This 
cycle is iterated until the predicted binding converges to a satisfactorily high value (in our example, 
minimum of 95% predicted binding probability).  

We use BLAST 46 to check the resulting TRB sequences against known murine TRB sequences. We construct 
a custom BLAST database using all protein sequences from RefSeq protein matching the query string “t 
cell receptor beta chain[All Fields] AND “Mus musculus”[porgn]” (n=2467). We then use BLAST version 
2.5.0 to match sequences against this database using an E-value cutoff of 0.001. For a baseline 
comparison, we ran the top 50 predicted GP33 binding starting sequences through BLAST as well against 
this same database. We compared the number of resulting GP33-related hits versus other, non-related 
hits for the starting and final BLAST matches using Fisher’s exact test. We additionally compare the GP33-
related bit values (proportional to the log-size of the database required to produce such a hit by chance) 
corresponding to matches to the starting set, and matches to the engineered set, using a Mann-Whitney 
test. 

Miscellaneous external libraries 

Baseline neural networks and fine-tuned TCR-BERT models were developed using version 0.10.0 of the 
20corch library. 3D protein structures are visualized using PyMOL (The PyMOL Molecular Graphics System, 
Version 2.5 Schrödinger, LLC.). Motif logos are generated by using MUSCLE (version 3.8.1551) 60 to 
generate a multiple sequence alignment that is visualized using the Logomaker Python package 61. All 
other plots were generated using the matplotlib 62 and seaborn libraries. All metrics were computed using 
the scipy 63, scikit-learn 64, and numpy 65 libraries. We additionally use scanpy (version 1.7.1) and anndata 
(version 0.7.5) to simplify implementation of select clustering analyses 66. 

Data availability 

All data used for training TCR-BERT can be found from their respective public databases: PIRD at 
https://db.cngb.org/pird/, VDJdb at https://vdjdb.cdr3.net, and TCRdb at 
http://bioinfo.life.hust.edu.cn/TCRdb/#/. TCR sequences from Glanville et al. 25 are available from the 
original authors’ publication at https://doi.org/10.1038/nature22976. Data used for fine-tuning on LCMV 
GP33 is currently being used to prepare an unrelated, separate experimental manuscript; the LCMV data 
will be made publicly available when that work is completed and submitted for review. PDB structures for 
contextualizing TCR-BERT model attentions publicly available at the following accessions: 5m00, 5m01, 
and 5m02. The murine TCR database used to evaluate our synthetically generated TCRs is available under 
a subfolder within our GitHub repository: https://github.com/wukevin/tcr-
bert/tree/main/data/mus_musculus_trb_blastdb. Local copies of all datasets used in the work are also 
available under our GitHub repository https://github.com/wukevin/tcr-bert should any of the original 
sources become unavailable.  

  

https://db.cngb.org/pird/
https://vdjdb.cdr3.net/
http://bioinfo.life.hust.edu.cn/TCRdb/#/
https://doi.org/10.1038/nature22976
https://www.rcsb.org/structure/5M00
https://www.rcsb.org/structure/5M01
https://www.rcsb.org/structure/5M02
https://github.com/wukevin/tcr-bert/tree/main/data/mus_musculus_trb_blastdb
https://github.com/wukevin/tcr-bert/tree/main/data/mus_musculus_trb_blastdb
https://github.com/wukevin/tcr-bert
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Supplementary Figures 

 
Supplementary Figure 1: Validating TCR-BERT pretraining 

(A) TCR-BERT’s performance on masked amino acid prediction on an LCMV GP33 murine dataset, 
which is not used for pre-training. This evaluation is done after performing the first masked amino 
acid pre-training task, which exposes TCR-BERT to both TRA and TRB sequences (without indicator 
distinguishing the two). One amino acid at a random position is masked from each input sequence, 
and TCR-BERT’s top prediction is evaluated against the masked amino acid using accuracy (i.e., 
exact match, top table) or the BLOSUM62 67 scoring matrix (biochemically-motivated “fuzzy” 
matching, bottom table). In both cases, higher values indicate more correct predictions. We 
compare TCR-BERT’s performance to three baselines: predicting a random amino acid (random), 
predicting the most common amino acid in this LCMV dataset regardless of position in the 
sequence (common), and predicting the most common amino acids at each position after 
performing a multiple sequence alignment across all LCMV sequences of the given chain (MSA). 
TCR-BERT outperforms all baselines for predicting masked amino acids, which suggests that it 
captures complex, nontrivial patterns in the grammar of TCR sequences. Examining TCR-BERT’s 
errors, we see that for TRA sequences, TCR-BERT most commonly predicts a valine in place of a 
leucine, both of which have small hydrophobic side chains. For TRB sequences, TCR-BERT most 
commonly predicts a serine in place of a glycine.  

(B) TCR-BERT’s learned embeddings for each of the 20 amino acids, visualized using PCA. Points are 
colored by biochemical properties and labelled using standard one-letter abbreviations. We 
observe some limited separation according to biochemical properties of these amino acids, such 
as by hydrophobicity along the x-axis. Biochemically similar residues also appear to have similar 
embeddings, e.g., alanine (A), leucine (L), and valine (V). However, given that the top two PCs 
jointly describe less than 15% of the total variance, these interpretations are inherently limited. 
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(C) UMAP visualization of TCR-BERT’s embedding of (n=17,702) TRB sequences in the LCMV dataset. 
Each point represents one TRB sequence and is colored by Levenshtein edit distance to the 
randomly chosen “centroid” sequence (red). TCR-BERT embeds similar sequences in similar space; 
distant sequences are more dissimilar with larger edit distances. Since sequence similarity is a 
known heuristic for predicting TCR binding, this suggests that TCR-BERT’s embedding is conducive 
to downstream TCR sequence analyses. 

(D) Violin plot comparing Levenshtein edit distance between TRBs relative to the centroid TRB shown 
in (C, red) and their Euclidean distance in TCR-BERT’s embedding space. X-axis denotes the 
(discrete) edit distance to the centroid, and y-axis denotes the distribution of (continuous) 
Euclidean distances for all TRBs with that edit distance. Within each distribution, center black bar 
denotes the inter-quartile range, and the white dot indicates the median. We observe a strong 
correlation between edit and embedding distance, which lends additional support to the 
observation made in (C). 
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Supplementary Figure 2: Additional antigen cross-validation performance comparisons 

In each experiment, we take one of 26 antigens and its associated binding TRBs and spike in background 
human TRBs at a ratio of 5:1. We evaluate test AUPRC using a random 70/30 train/test split. In each panel, 
the grey line indicates performance of a random classifier, and the orange line indicates equal 
performance between the compared methods. Points above the orange line indicate antigens where the 
y-axis model performs better, and vice versa. Annotated p-values are computed using a two-sided 
Wilcoxon test evaluating whether TCR-BERT (y-axis) exceeds performance of the benchmarked method 
(x-axis). As with Figures 2A/B, the size of each point indicates the amount of data available for that TCR. 
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(A) Compares TCR-BERT’s performance against that of logistic regression applied to k-mer 
featurization of the TCR sequences. This represents one of the simplest modelling approaches for 
sequence classification. TCR-BERT exceeds the performance of this simple baseline in all cases. 

(B) Compares SETE, a supervised tree-based model on k-mers (x-axis) to SVM on TCR-BERT’s 
embedding (y-axis). For all antigens, TCR-BERT exhibits improved test set AUPRC. 

(C) Compares performance of SVM using TAPE’s embeddings (x-axis) versus TCR-BERT’s embeddings 
(y-axis). In every case, TCR-BERT provides superior performance. This test isolates the effect of 
using different protein language models to embed TCRs while keeping the classifier module 
constant. Along with Figure 2B, this indicates that TCR-BERT outperforms general purpose protein 
language models for TCR embedding and modelling. 

(D) Evaluates a SVM classifier on TCR-BERT’s representation against logistic regression on ESM’s 
representation. Overall, we see that ESM’s embedding performs similarly when consumed by an 
SVM or logistic regression. We see that TCR-BERT similarly outperforms ESM here as well, 
indicating that regardless of the classifier used for benchmark models, TCR-BERT provides 
superior performance. 

(E) Similarly evaluates SVM on TCR-BERT’s representation against logistic regression on TAPE’s 
representation. Again, TCR-BERT provides superior performance regardless of the model applied 
on top of benchmark models’ representation. In fact, TAPE’s embedding yields significantly better 
performance when coupled with an SVM compared to logistic regression (measured across 
antigen cross-validation, p=0.003, two-sided Wilcoxon test).  
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Supplementary Figure 3: Ablation of pre-training steps 

We apply antigen cross-validation to evaluate the importance of each of TCR-BERT’s two pre-training 
steps. We omit each pre-training step and evaluate the resulting model against the full TCR-BERT model 
with both pre-training steps, or against other protein language models like TAPE and ESM. As in 
Supplementary Figure 2, points are sized proportionally to the amount of training data available, and all 
p-values are computed using a two-sided Wilcoxon test.  

(A) We leave out the classification pre-training step (i.e., using MAA only, y-axis), comparing it to the 
TCR-BERT model with both pretraining steps (x-axis). Omitting classification pre-training results in 
a drop in performance across all cases. 
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(B) We similarly evaluate TCR-BERT’s full pre-training (x-axis) against using only classification pre-
training (i.e., no MAA, y-axis) and observe a significant overall decrease in performance.  

(C) In addition to comparing to itself, we also compare TCR-BERT’s training ablations to other protein 
language models. This panel compares TCR-BERT with only MAA pre-training against TAPE. While 
the performance difference between these is much less dramatic than in Supplementary Figure 
2C, TCR-BERT retains a significant performance improvement.  

(D) Comparing TCR-BERT with only classification pre-training against TAPE, we find that TCR-BERT 
retains a significant performance lead. This suggests that TCR-BERT’s second pre-training task is 
more powerful in learning an embedding for TCRs, despite using relatively few training examples. 

(E) We find that TCR-BERT with only MAA pre-training significantly outperforms ESM. However, the 
improvement is much less drastic compared to Figure 2B. TCR-BERT’s retained performance 
improvement here, along with panel C, suggests that its TCR-specific MAA pre-training vocabulary 
lends some performance advantages.  

(F) As with TAPE, TCR-BERT with only its second pre-training task active outperforms ESM. TCR-BERT’s 
performance gain with only classification pre-training (see also panel D) appears larger than its 
performance gain with only MAA pre-training (panels C, E). Altogether, these results suggest that 
while both of TCR-BERT’s pre-training tasks are important for its high performance, the second 
classification pre-training is more impactful.  
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Supplementary Figure 4: LCMV test set AUROC 

AUROC curves describing various classifiers’ test performance predicting GP33 binding given paired 
TRA/TRB sequences. TCR-BERT provides the best performance when evaluated on AUROC (shown here) 
as well on AUPRC, our primary evaluation metric (Figure 2D). Solid line indicates models leveraging pre-
training, dashed lines indicate models that use only supervised training, and TCR-BERT’s dot-dash line 
indicates that is fine-tuned from a pre-trained model. 

  



 
 

 

28 

Supplementary Figure 5: Antigen classification with reduced train/test similarity 

We repeat our range of antigen classification tasks with the additional constraint that no training 
sequence should be within 1 Levenshtein edit distance from any test sequence. These highly similar 
training sequences are excluded to reduce “bleed” of similar sequences between training and test (there 
were never exact sequences repeated between training and test). The test set in each case, on which we 
report metrics, is identical to prior tests. In panels A-D, TCR-BERT’s performance is shown on the y-axis, 
and annotated p-values are derived from a two-sided Wilcoxon test. 

(A) Compares TCR-BERT’s AUPRC to that of a supervised convolutional neural network (x-axis) across 
antigen cross-validation. As in Figure 2A, we see that TCR-BERT unanimously outperforms this 
baseline method.  
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(B) We also compare TCR-BERT to logistic regression trained on k-mer features (x-axis) across antigen 
cross-validation. As in Supplementary Figure 2A, TCR-BERT significantly outperforms this baseline. 

(C) In addition to the two supervised baselines, we also evaluate TCR-BERT against more general-
purpose protein transformers like ESM. As in Figure 2B, which shows this same test without the 
edit distance constraint, TCR-BERT exhibits significantly improved performance.  

(D) The same is the same for the TAPE general purpose protein transformer (compare to 
Supplementary Figure 2C).  

(E) In Figure 2C, we evaluate patient-based data splits for predicting NP177 binding. Here, we repeat 
this test, additionally removing any training patient TRB sequences that are within 1 edit of any 
of the test patients’ sequences. This is an artificially challenging test, as there is no reason to 
purposely restrict our training set based on new patients’ data. Nonetheless, TCR-BERT still 
provides the strongest performance. 

(F) In Figure 2D, we evaluate murine GP33 binding given TRA/TRB pairs. Here, we repeat this 
evaluation, removing training pairs with a total edit distance of 2 or fewer (summed across TRA 
and TRB) or less to any test sequence. In other words, all train sequence pairs are at least 3 total 
edits to any test pair. As in Figure 2D, dotted lines indicate supervised methods, solid lines indicate 
pre-trained models, and TCR-BERT’s dot-dash line indicates it is fine-tuned from a pre-trained 
model. As before, TCR-BERT with fine-tuning provides the best overall performance.   
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Supplementary Figure 6: Detailed comparison of GLIPH, TCRDist3, and TCR-BERT antigen specificity 
groupings 

Both GLIPH, TCRDist3, and TCR-BERT produce TRB groupings with configurable degrees of granularity. This 
is controlled using the resolution parameter to the Leiden clustering algorithm applied to TCR-BERT’s 
embedding (larger values are more granular), the global convergence distance cutoff for GLIPH (smaller 
values are more granular), and the number of clusters in agglomerative clustering applied to TCRDist3’s 
pairwise distances (larger values are more granular). We compare the performance of these methods for 
the human NP177 antigen (A, B) and murine LCMV GP33 antigen (C-F). TCRDist3 is only evaluated on the 
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latter LCMV dataset as it requires V/J gene annotations, which are not available for the NP177 dataset. 
Generally, we expect some variability in percent correctly clustered for all methods (B, D, F) at high 
granularity configurations, as these configurations tend to produce few clusters, which amplifies the 
impact of any mistakes.  

(A) Shows percent clustered for a mixture of human NP177 antigen for TCR-BERT (blue) and GLIPH 
(orange). TCR-BERT converges to having all sequences clustered as the clustering becomes less 
stringent, while GLIPH produces highly variable, unpredictable results. 

(B) Shows the percent correctly clustered for these two methods, again for the NP177 antigen. Both 
methods trend towards lower percent correctly clustered as clustering granularity decreases. 
However, TCR-BERT’s clustering stabilizes above the expected correctness of a random classifier, 
whereas GLIPH’s behavior is much less consistent, frequently dipping below random.  

(C) Shows percent clustered for GLIPH and TCR-BERT on the murine LCMV GP33 dataset. With TCR-
BERT, looser clustering configurations allow for clustering of the entire dataset (blue) as it does 
for the NP177 dataset (panel A). GLIPH on the other hand, produces no consistent relationship 
between its configuration and percentage clustered (orange). Indeed, GLIPH struggles to 
consistently cluster any meaningful proportion of the given TRBs. This reveals that GLIPH not only 
exhibits erratic behavior across granularity configurations, but also behaves inconsistently when 
evaluated on different datasets. 

(D) Shows percent correctly clustered for these GLIPH and TCR-BERT on the LCMV GP33 dataset. As 
before, TCR-BERT produces more predictable performance (blue). While it might appear that 
GLIPH (orange) achieves perfect accuracy towards higher cutoffs, this is at the cost of extremely 
few sequences being clustered (panel C), which vastly reduces the usefulness of the small handful 
of correctly clustered sequences. Increasing GLIPH’s global convergence distance cutoff seems to 
increase the percent correctly clustered in this case, which is contrary to the behavior observed 
for the NP177 human dataset (panel B). TCR-BERT’s behavior, on the other hand, is consistent 
across parameters for both these datasets. Overall, these results show that TCR-BERT exhibits 
consistent, predictable, and improved clustering behavior compared to GLIPH. 

(E) Compares percent clustered for TCR-BERT (blue) and TCRDist3 (orange). TCRDist3 is evaluated 
with the TRB chain only (* markers), and with full TRA/TRB pairs (◀ markers). Both methods are 
consistent in their behavior, where less granular configurations consistently produce higher 
percent clustered. 

(F) Similarly compares percent correctly clustered for TCR-BERT (blue) and TCRDist3 (orange, * and 
◀ markers). Compared to TCR-BERT, TCRDist3 produces lower correctness, particularly when run 
using TRA/TRB pairs (◀ markers). TCRDist3 also converges to an overall correctness that is worse 
than random, whereas TCR-BERT converges above random.  
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Supplementary Figure 7: Runtime comparison for methods generating groupings for antigen specificity 

Comparison of elapsed time, in seconds, required to cluster TRB sequences with predicted shared antigen 
specificity. All methods are benchmarked on the same LCMV GP33 murine TRB sequences, subsetted to 
various input sizes (x-axis), and are run on the same machine. TCR-BERT can be run with GPU acceleration 
or using only the CPU; both cases exhibit similar runtime complexity. GLIPH and TCRDist3 not support GPU 
acceleration. 

(A) Shows runtime performance as we scale from 500 to 10,000 input sequences. GLIPH’s runtime 
scales super-linearly, dwarfing both TCR-BERT and TCRDist3. For example, increasing the number 
of input sequences by 4x from 2500 to 10000 results in a ~21x increase in runtime from about 10 
minutes to over 3 hours. This makes running GLIPH prohibitively time-consuming on larger 
datasets, especially when evaluating multiple parameters/configurations. 

(B) Truncates the y-axis to lower values to clearly show runtime characteristics for TCR-BERT and 
TCRDist3. Even without GPU acceleration, TCR-BERT can process 10,000 inputs in less time than 
it takes GLIPH to process just 500. TCRDist3 runs extremely quickly, particularly on small inputs, 
but as it is designed to perform pairwise sequence comparisons, it necessarily exhibits super-
linear, quadratic runtime complexity. We can see this behavior as TCRDist3 becomes slower than 
TCR-BERT (GPU) on the largest benchmarked input of 10,000 sequences, despite being faster in 
all smaller inputs. Irrespective of CPU or GPU hardware, TCR-BERT exhibits linear runtime 
behavior, making it more scalable for analyzing larger and larger datasets.  
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Supplementary Figure 8: Additional views of 5m00 with high-attention TRA/TRB residues highlighted. 

3D structures showing the MHC (green), modified GP33 antigen (salmon), and TRA (pink) and TRB (yellow). 
GP33 antigen side chains are shown, as well as side chains for TRA and TRB residues with TCR-BERT 
attentions in the top 33rd percentile of attention values in each chain. Other residues are shown in faded 
cartoon-ribbon illustrations without side chains. Attention values are derived from average attentions 
across test set sequences with identical lengths as sequences profiled in PDB structure 5m00. In all views, 
the TRA/TRB residues with the greatest attention are frequently in direct contact with the antigen 
peptide’s side chains. 

(A) Flipped view of Figure 4D 
(B) View with the TRA in the foreground 
(C) View with the TRB in the foreground  
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Supplementary Figure 9: TCR engineering supplement 

(A) Our algorithm for engineering TCR sequences successfully increases the predicted binding of 
sequences (y-axis) with each iteration (x-axis). Violin plot indicates full range of values, with 
medians marked. The 0-th iteration represents the input sequences. We stop our engineering 
iterations (Figure 5A) when all sequences exceed 95% predicted binding probability, which occurs 
after 7 iterations. 

(B) Our algorithm for engineering TCR sequences for antigen binding works without simply 
regurgitating training sequences. We show this by computing the Levenshtein edit distance (larger 
values indicate greater dissimilarity, y-axis) between each generated TRA/TRB sequence pair and 
the most similar sequence pair in our training dataset of GP33-binding TCRs. This is expressed as 
a violin plot for each iteration of our procedure (x-axis) spanning the full range of values with 
medians marked. At no point during the TCR engineering process do we produce a sequence 
directly seen in training (i.e., no instances of 0 edit distance). This indicates that we are generating 
truly novel sequences that TCR-BERT has not seen before. 

(C) We can also visualize the progression from starting to engineered sequences in TCR-BERT’s 
embedding space. Here, we embed each TRB sequence (using the same variant of TCR-BERT pre-
trained on MAA and antigen classification as we use for other embedding visualizations) and 
visualize the embeddings using UMAP. Colors correspond to starting, engineered and similar 
binders (i.e., TRBs identified in a separate experiment to also bind GP33 that bear significant 
similarity to our final engineered set). Known GP33 binders (light blue) lie towards the “outskirts” 
of our starting set (orange), and our engineered set pull outwards toward these (dark blue). This 
shows that our TCR engineering process explores the landscape of TCR sequences without being 
confined to the area spanned by input sequences.  
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Supplementary Figure 10: Detailed sequence comparisons for 11 novel matches 

Each of these 11 matches was not present in the initial pool of matches corresponding to the starting set 
of sequences for TCR engineering. For each match (bottom panels), we show the generated TRB with the 
highest bit score/lowest E-value to that match (top panels). Each pairing is annotated with the E-value 
corresponding to that match.   
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Supplementary Figure 11: Additional TCR engineering results 

(A) We repeat TCR engineering with a different starting set of negative sequences, also drawn from 
the pool of LCMV test set negatives. As before, our TCR engineering procedure successfully 
creates sequences with increasingly greater predicted binding with each iteration. Violin plot 
indicates full range of values, with medians marked. 

(B) We match the final set of engineered TRBs to known murine TRBs using BLAST (E-value ≤ 0.001). 
Among the significant hits, 61/189 correspond to GP33-binding TRB sequences. The bottom motif 
corresponds to these hits, and the top motif corresponds to our corresponding generated 
sequences. For context, proportionally fewer (69/393) matches for the starting input set 
corresponded to GP33-binding TRBs. As before, TCR-BERT proportionally enriches for GP33 
binders (𝑝 = 1.17 × 10!%, Fisher’s exact test). 

 


