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Abstract

Visualization tools can help synthetic biologists and molecular programmers understand
the complex reactive pathways of nucleic acid reactions, which can be designed for many
potential applications and can be modelled using a continuous-time Markov chain (CTMC).
Here we present ViDa, a new visualization approach for DNA reaction trajectories that uses
a 2D embedding of the secondary structure state space underlying the CTMC model. To this
end, we integrate a scattering transform of the secondary structure adjacency, a variational
autoencoder, and a nonlinear dimensionality reduction method. We augment the training
loss with domain-specific supervised terms that capture both thermodynamic and kinetic
features. We assess ViDa on two well-studied DNA hybridization reactions. Our results
demonstrate that the domain-specific features lead to significant quality improvements over
the state-of-the-art in DNA state space visualization, successfully separating different folding
pathways and thus providing useful insights into dominant reaction mechanisms.

1 Introduction

Nucleic acid nanotechnologies, including beacons [1]], riboswitches [2], Boolean circuits [3] and neural
networks [4]], are implemented using a series of reactions between multiple DNA or RNA strands. Molecular
programmers would benefit from accurate estimates of the rates of such reactions, as they vary dramatically
across sequences. Yet, the mechanisms that determine nucleic acid reaction kinetics are elusive, since
they involve complex high dimensional trajectories over combinatorial spaces, i.e., sequences of secondary
structure from the reactants to the products of a DNA reaction, along with the stochastic time spans taken to
transition from one secondary structure to the next. These secondary structures describe the set of base pairs
formed via hydrogen bonding between Watson-Crick complementary bases, and each secondary structure has
an associated free energy determined by latent thermodynamic parameters. In this context, geometric deep
learning methods [SH8]] provide a new potential strategy to represent energy landscapes of DNA and RNA
secondary structure “states”, as they have demonstrated success in analyzing graph-based data.

In this paper, which significantly expands our original workshop paper [9]], we introduce a new workflow,
called ViDa, for visualization of DNA reaction kinetics. Our approach uses deep graph embedding methods,
augmented with biophysically informed features of the DNA reaction domain. Upon evaluating ViDa on two
well-studied DNA reactions with different mechanisms, we demonstrate that ViDa’s embeddings preserve
both local structure, by clustering together states featuring similar motifs such as hairpins or stacks with
common base pairs, as well as global structure, by keeping kinetically dissimilar regions of the state space far
apart. Incorporating domain-specific features into the training of the neural embeddings appears to be critical
to ViDa’s success. Furthermore, the trajectories laid out smoothly on the 2D embedding reveal meaningful
alternative folding pathways. Overall, these results suggest that ViDa can provide new mechanistic insights
from sampled reaction trajectories.



2 Related work

Elementary step simulators such as Multistrand [10] (see Appendix use CTMC models of reaction
trajectories, and can stochastically generate trajectory samples. Multistrand’s output uses “dot-parenthesis”
(dp) notation to represent a secondary structure (see Appendix [B]and examples in Table[I)), and a sequence of
such strings to represent structures along a trajectory. To situate trajectories in an energy landscape, Machinek
et al. [L1] used a coarse-grained map. However, the coarse-grained grid cells may include secondary structure
states with very different free energies, making interpretation of different reaction trajectories difficult.

Castro et al. [[7] developed a deep graph embedding framework, called the geometric scattering autoencoder
(GSAE), to study energy landscapes of RNA secondary structures. GSAE has three major parts: an untrained
geometric scattering transform [12H14], a trained variational autoencoder (VAE) [15] and a trained auxiliary
regression network, where the latter two networks together form a semi-supervised VAE. The geometric
scattering transform first extracts continuous high-dimensional features, called scattering coefficients, from
the discrete input graph, and these are then embedded into low-dimensional representations through the
semi-supervised VAE. This embedding approximately retains important biophysical information, such as
free energy, that can be used for further study. However, this approach is currently limited to single-stranded
secondary structures, whereas many nucleic acid reactions of interest are typically multi-stranded, and it does
not address the visualization of trajectories through such energy landscapes.

For further dimensionality reduction (DR) on the vector-valued VAE embedding, we apply PHATE (potential
of heat diffusion for affinity-based transition embedding) [[16l], a nonlinear and unsupervised DR method
designed to capture both local and global structure among high-dimensional data points.

3 Methods

3.1 ViDa workflow

The ViDa framework pipeline is illustrated in Figure [I] Note that in this paper we only ultilize ViDa for
double-stranded complexes, but it is also suitable for single-stranded structures such as hairpins. An input set
of secondary structures, represented using dp notation, their corresponding energies, as well as transition
times between consecutively occupied states, were extracted from simulated Multistrand trajectories. Each
state was converted to a graph adjacency matrix, with a node per nucleotide and two types of edges: strand
backbones as determined by the primary structure, and complementary base pairs in the secondary structure.
The resulting set of graphs G = {g1, g2, ..., gn } Was then passed through a geometric scattering transform,

which converts graph signals g; € R into scattering coefficient vectors s; € R™, where L is the sum of
the lengths of the single-stranded sequences, n is the total number of simulated states, and usually m > L2,
Out of these coefficient vectors, 70% were randomly assigned to the training set for the supervised VAE
model, and the remaining 30% were assigned to the testing set. The encoder network was comprised of
two fully connected layers, followed by batch norm layers and RELU activations, and the decoder was
chosen to be mirror symmetric. In order to guide the training and to regularize the embedding space, the
latent samples produced by the encoder, z; € R? with d < m, were additionally processed by a regressor
network for predicting the free energy. Overall, the VAE loss was augmented with regression terms for
three domain-specific predictors: the free energy, evaluated at each sampled z;, as well as the “minimum
passage time” distance D; (see Appendix |C) and the graph edit distance D, for all pairs (2;, z;). Finally,
the dataset Z = {21, 22, ..., 2} served as input to the DR algorithm PHATE, producing the 2D embedding
Vi = {v1,v2, .., v, },v; € R? for visualization and/or clustering.

3.2 Domain-specific losses

The total training loss for the ViDa model is made up of five terms:
Liot = aLDKL + 5L'recon + ’YLpred + 5LD,5 + 6LDS .

The latent loss Lp,., and reconstruction 10ss L;cco, constitute the original VAE model, and we include three
domain-specific regression terms, namely the free energy loss L,,.q for the auxiliary regression network,
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Figure 1: The ViDa framework consists of six major parts: the Multistrand reaction simulator [10], a
converter from dp notation to adjacency matrices, an untrained geometric scattering transform [12H14], a
trained semi-supervised VAE [15]], the nonlinear DR technique PHATE [16], and post-processing components
for interactive plotting and/or clustering. DF; is a sampled secondary structure, g; its graph adjacency
representation and s; the corresponding vector of scattering coefficients, whereas p; and o; are the mean and
standard deviation of the multivariate latent distribution, z; is a latent sample, §; is the reconstructed scattering
transform, y; and ¢J; are the simulated and regressed free energy values, d; ; and e; ; are the minimum passage
time distance and graph edit distance between the secondary structures ¢, 7, and v; is a 2D embedding of z;.
The training loss is composed of five terms: Lp,., , Lyecon (unsupervised), Lyeq, Lp,, and Lp, (supervised).

the minimum passage time distance loss Lp,, and the graph edit distance loss Lp,. The free energy loss is
calculated by the mean square error between the ground truth values y; from the Multistrand simulator and
the predicted energy ¢;:

1.
Lpred = — 2; (i —vi)* (1)
=
and we define the graph edit distance loss as
2
Lp, = (Ilzi — 2l = ei)*, @)

2
where e; ; is the graph edit distance from state 7 to j. Since we have converted secondary structures to
adjacency matrices at an early stage before training, it is convenient to compute the graph edit distance

between two states by simply subtracting their corresponding adjacency matrices. Analogously, we define the
minimum passage time distance loss as

Lp, = Zwm (2 = 2l = dig)?, 3)
Z7j

where d; ; is an estimate of the normalized minimum passage time from i to j or from j to 4, computed from
the simulated trajectories as explained in Appendix [C| Here,

w;j = pip; - I[d;; < d] “4)

is an importance weight, based on the empirical probability p; of state 7 as well as the indicator function
I[...], which limits the loss to state pairs with minimum passage time bounded by a given threshold d.

3.3 Implementation

The VAE is intended to be trained separately for each DNA reaction. For our experiments, the bottleneck
dimension of the VAE was set to d = 25 and training was performed using PyTorch’s Adam optimizer. The
maximum epoch size was set to 150 to avoid overfitting with a batch size of 64, where the initial learning
rate was set to 0.0001 and then dynamically adjusted by the ReduceLROnPlateau scheduler with default



parameters, except for patience = 5. The hyperparameters for the VAE loss were set to o = 1, 5 = 0.0001,
v = 0.3, § = 0.0001, and € = 0.0001 in all cases. For PHATE, the number of landmarks was set to 2000,
the decay rate to 40 and the number of nearest neighbours to 5. The interactive plotting tool used the Plotly
library. The clustering method used DBSCAN (density-based spatial clustering of applications with noise)
[17] with parameters eps = 0.005 and min_samples = 4 (see Appendix [E).

4 Results

In this section, we present and assess ViDa’s visualizations of two DNA hybridization reactions, wherein
two unbound complementary strands bind and fold into a double-stranded helix. The first reaction, which
we denote by Gao-P4T4, is from Gao et al.’s experimental study [18]], and the second, which we denote by
Hata-39, is from Hata et al.’s experimental study [[19]]. The sequences for the two reactions are shown in
Table[I] along with some key possible secondary structure motifs for each. For visualizations of Gao-P4T4
obtained using other DR approaches, including PCA, PHATE, GSAE+PCA, GSAE+PHATE, and MDS
(multidimensional scaling), see Appendix

Table 1: Sequences of reactions Gao-P4T4 [[18] and Hata-39 [19], and examples of key sequence-dependent
secondary structure motifs that affect their reactive pathways and reaction rate.

Dp notation for the reactants and products of any standard hybridization reaction (e.g. 25 bases per strand)

unbound structure: Lo L P -5
hybridized structure: 3= CCCCCCCCCCCCCCCCCCCCCCC-5"+3333333333333333322000)))-5
Gao-P4T4 (25 bases per strand)

sequences: 3’-ACACGATCATGTCTGCGTGACTAGA-5" + 3’-TCTAGTCACGCAGACATGATCGTGT-5’
possible hairpins (size 3): 3 CC..... M) S 3 DD I -5
possible hairpins (size 4): 3 (e DDDD S +3- (CCCaeanan ) .5
Hata-39 (23 bases per strand)

sequences: 3’_-CCATCAGGAATGACACACACAAA-5' + 3'-TTTGTGTGTGTCATTCCTGATGG-5'
possible hairpin (size 3): - . )DD I e -5
possible mis-stack (size 7): 3'-.............. O D DD DD DD -5

4.1 Case study 1: Gao-P4T4

The strands in Gao-P4T4, which involve 25 bases each, were designed such that 4-stem hairpins could form
[L8]]. The experimental hybridization measurements from this study are currently best understood with the
follow-up analyses by Schreck et al. [20]. They argue that the 4-stem hairpins slow hybridization primarily
by destabilizing partially formed duplexes, rather than by occluding potential binding sites or impeding the
“zippering” of strands.

For our visualization study, we generated 100 trajectory samples using Multistrand’s trajectory mode (see
Appendix [A). The initial state for our simulations was the unbound structure with no base pairs, and the
final state was the fully hybridized structure in which all bases are paired to their intended complement (see
Table[T). All 46606 unique states found during simulation are included in the embedding. In the plots of this
subsection, states are coloured according to their free energy, and some of the arguments about the quality of
our embedding rely on the energy trends observed in the plots.

ViDa preserves global and local structure in energy landscapes. The secondary structure embedding for
Gao-P4T4 is shown in Figure The free energy, which is superimposed on the embedding plot, follows
a high-to-low trend from the unbound (initial) state to the hybridized (final) state, suggesting that ViDa
preserves global structure. Furthermore, by manually hovering over the points in the interactive plot, we find
that neighbouring structures often only differ by a few base pairs, suggesting that ViDa also preserves local
structure.
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Figure 2: ViDa embedding results for Gao-P4T4. Each point represents a secondary structure state. The
green circle marked I (F') denotes the initial (final) state. (a) 2D embedding of secondary structure states.
The colour of each state refers to its free energy. The diameter of each state is proportional to its average
sampled holding time. The red and cyan traces represent two different trajectory samples. (b) Results of
DBSCAN on the 2D embedded states. DBSCAN identifies three clusters (cyan, red, and dark grey). The
stars indicate the minimum free energy state within each cluster. States that are not clustered are shown in
light grey.

ViDa provides a more nuanced understanding of reaction mechanisms. The embedding (Figure [2a)
separates states into two main branches. The lower branch corresponds to the reactive pathway in which the
helix begins forming at the 5’ end of the first strand. In other words, this branch contains most structures
of the form 3'-[...](((-5'+3-)))[. . .]-5, where the [. . .]s together comprise a legal dp sub-structure. These
structures often coincide with the formation of the stable 4-stem hairpins with large loops (see Table [I]and
Figure[AIc), and is therefore a slow reactive pathway. On the other hand, the top branch corresponds to the
reactive pathway in which inter-strand base pairs form at the 3’ end of the first strand (structures of the form
3'-((([. . .]-5'+3"-[. . .1)))-5"), and small 3-stem hairpin often form in both strands (see Table[l). Laying out
trajectories on the embedding, we find two dense regions (see Figure [2a). We hypothesized the presence
of kinetic traps within these regions. To delve deeper into these regions of interest, we first excluded less
significant states with exceedingly low empirical state probabilities and then employed DBSCAN to cluster
the post-filtered states (see Figure [2b). We obtained three clusters, that also each locate around states with
minimum free energy (MFE). Upon investigating these traps, we first found that for the kinetic trap in the cyan
cluster, its corresponding secondary structure is 3'-.((((.......... MYN((C-5"+3- ). (((C.......... N)).-5'. The 4-stem
hairpins that are extremely stable and hard to break have the same structures as the design of Gao-P4T4 (see
Table[I), causing a deceleration in the overall reaction that is consistent with the computational analysis by
Schreck et al. [20]. The second kinetic trap we investigated (in the grey area) has a secondary structure of
3 (S +3- ) (((....))).-5 . The presence of a solitary 3-stem hairpin in one strand
could be viewed as a minor trap due to its relatively poor stability. Finally, the kinetic trap in the third cluster
(red) has a secondary structure of 3'-.(((((((..(((.....)))...-5"+3"-...(((....))).))))))).-5’, with two 3-stem hairpins
at both strands (see Figure[ATd). These two 3-stem hairpins are more stable than the solo one, thus slowing
down the overall reaction. In summary, our visualization highlights the kinetic trap created by the designed
4-stem hairpins in Gao-P4T4 reaction, which is stable enough to significantly slow down hybridization.
Additionally, we identified a second major kinetic trap in Gao-P4T4, with 3-stem hairpins on both strands,
which exacerbates the slowness of the reaction process.

Domain-specific features improve trajectory smoothness. Laying out the trajectories on the embedding,
all trajectories proceed nicely along the branches (Figure [2a). Additionally, for all trajectory plots, we
did not observe large jumps occurring along the traces, confirming that nearby secondary structures on
simulated trajectories tend to be placed nearby in the embeddings. In order to quantify this smoothness
property, we use a custom metric for distortion/stretch. We define the average distortion of an embedding



Table 2: Comparison of average distortion for different embedding methods for Gao-P4T4.

Metric \ViDa (ours) PCA PHATE MDS GSAE+PCA GSAE+PHATE
Avg. distortion\ 0.019 0.159  0.105 0.081 0.035 0.030

as the frequency-weighted mean Euclidean distance between the images of secondary structure pairs that
occur consecutively in the trajectory dataset, normalized by the embedding diameter of all states. In Table
we compare the average distortion achieved by ViDa and by general-purpose DR methods (GSAE, MDS,
PHATE, and PCA), and find that our model achieves a significantly lower distortion than all other considered
methods. On the one hand, PHATE and PCA do not take into account any domain knowledge beyond the
training data itself, and thereby their visualizations and smoothness are both relatively poor. The comparisons
suggest the importance of incorporating domain-specific knowledge when training neural networks to make
a biophysically-plausible visualization tool, such as our custom loss terms (Section [3.2) that penalize the
distortion of local structure. On the other hand, we also compared an MDS embedding which only leverages
the biophysics-based distance measure of minimum passage time (see Figure [A3e]). However, trajectories are
densely concentrated around the initial state in the embedding, making it infeasible to distinguish different
folding pathways. These results emphasize the significance of integrating deep graph embeddings and
distance loss metrics for achieving superior results. In combination with the visualizations, they demonstrate
that ViDa can embed the reaction trajectories while preserving some continuity in time.

Comparison with state-of-the-art coarse-grained visualizations for hybridization. In Figure 3] we
show a coarse-grained representation of Gao-P4T4, similar to visualizations in [11, 21]]. Each secondary
structure is mapped to a single macrostate based on (1) the number of base pairs that correspond exactly
to base pairs in the desired helix and (2) the number of base pairs that do not contribute to the desired
helix, for instance base pairs involved in hairpins or mis-stacks. Each macrostate is therefore an ensemble
of secondary structures. These sorts of coarse-grained visualizations are easily adjustable, do not require
training, and have the capacity to represent all possible secondary structure states and trajectories. However,
with this scheme, structurally dissimilar secondary structures may be mapped to the same macrostate, making
it difficult to interpret each macrostate and trajectories through them, and to distinguish between different
reaction mechanisms. In contrast, ViDa’s fine-grained embedding overcomes this limitation. ViDa’s plots
show distinct reaction trajectories, enabling users to interpret reaction mechanisms more straightforwardly
and accurately.

4.2 Case study 2: Hata-39

The strands in Hata-39, which involve 23 bases each, were designed with the intention of making mis-
nucleation and hairpin formation unlikely [19]]. Hata-39 is currently best understood with the follow-up
analyses by Lovrod et al. [22]. They show that the Hata-39 sequence gives rise to important secondary
structures that are not common among hybridization reactions, and not generally considered in hybridization
models. More specifically, it is possible for these strands to form stable stacks (3+ consecutive desired
inter-strand base pairs), stable mis-stacks (3+ consecutive undesired inter-strand base pairs), and hairpins (of
size 3+) simultaneously, leading to a diverse set of reactive pathways. The analysis involves a definition of
eight structural types of secondary structures, which we use in this subsection to colour the states in each plot
and argue about the quality of our embedding.

For our visualization study, we use 50 reactive pathway samples and 3095 non-reactive pathway samples
that were generated using Multistrand’s first step mode (see Appendix [A)). In each first step mode simulation,
an initial state is Boltzmann sampled from the set of all structures with exactly one inter-strand base pair,
and the simulation is stopped when the two strands unbind, or when all bases are paired to their intended
complement. All 56702 unique states found during simulation are included in our embedding.

ViDa embedding is compatible with structural types. The secondary structure embedding for Hata-39 is
shown in Figure [#a] To assess the quality of the embedding and establish compatibility with previous work,
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Figure 3: Coarse-grained visualization of Gao-P4T4. Each grid cell is an ensemble of secondary structures.
A structure is in cell (x, y) exactly x of its base pairs contribute to the desired helix, and exactly y of its base
pairs are not part of the desired helix. The initial state (denoted by the green circle marked I) corresponds
to the grid cell (0,0) and the final state (denoted by the green circle marked F) corresponds to the grid cell
(25,0), since the strands have 25 bases each. The red and cyan traces are the same two trajectory samples
shown in Figure [2a]

we colour each state according to its structural type, which is determined by whether there is at least one
correctly hybridized stack (S) or not (0), at least one mis-stack (M) or not (0), and at least one hairpin (H) or
not (0) [22]]. Schematic representations for stacks, mis-stacks, and hairpins are given in Figure[AT] Although
training ViDa does not receive these structural labels as input, states with the same, or similar, types tend to
be close together in the embedding, implying that ViDa captures local structure. For instance, states of type
OMO (pink) are nearby states of type OMH (purple), and indeed these structures are closely related because
they contain a similar mis-stack, which dominates the hairpins in this reaction (see Table[T). Moreover, states
with very different structures are far apart in the embedding. For instance, the states of type OOH (blue) are
generally far from states of type SMO (orange), which is reasonable since they don’t share any significant
structural motifs stacks, mis-stacks, or hairpins. This provides evidence that the embedding preserves global
structure.

Il 000 M O0H OMO B OMH M SMH ™ SMO  SOH M SO0 Structural type: Stack Mis-stack Hairpin

(a) ViDa embedding (b) Three trajectories over ViDa embedding

Figure 4: ViDa embedding results for Hata-39. Each point represents a secondary structure state. The green
circle marked F’ denotes the final (hybridized) state. (a) 2D embedding of secondary structure states. The
colour of each state refers to its structural type [22]]. For instance, SMO denotes the type of secondary structure
states with at least one stack, at least one mis-stack, and no hairpins. There are eight structural types in total.
(b) Three reactive trajectories laid over the embedding. States that do not lie on one of the three trajectories
are shown in light grey.



ViDa can distinguish between different reaction mechanisms. The structural labels can also highlight
the reaction mechanisms captured by the embedding. Figure [db]shows three trajectory samples, which are
representative of three distinct reaction mechanisms, laid over the embedded secondary structures. The
black trajectory is an example of a direct hybridization reaction mechanism, which is extremely fast, but
only accounts for ~10% of the sampled reactive trajectories. The orange and purple trajectories illustrate
slower, more complex reactive pathways that, in the case of this reaction, are much more common. Similar to
the dominant mechanism described for Gao-P4T4, the orange trajectory includes the formation of a 3-stem
hairpin, such as 3'-.(((.....).((((((((..-5"+3"-.)))))))..((.....))..-5, making this pathway slower than the direct
pathway. The purple trajectory, although it also involves the formation of a 3-stem hairpin, is qualitatively
distinct from the other two trajectories in its formation of a stable mis-stack, e.g. 3’-.(((.....)))..(((((((..-5'+3'-
1)) -5'. These three reaction mechanisms, originally found and illustrated by Lovrod et al. [22],
are also distinguished by ViDa, suggesting that our embeddings are biophysically meaningful.

5 Conclusion

In this work we present ViDa, a visualization tool for DNA reaction trajectories. It embeds DNA secondary
structures emitted by elementary-step reaction simulators in a 2D landscape, using semi-supervised VAE
embedding that leverages domain knowledge to determine custom training loss terms. With two well-
studied DNA hybridization reactions, we show how Vida can visually cluster trajectory ensembles into
reaction mechanisms, therefore making simulation results more interpretable. ViDa also supports interactive
exploration of the landscape and trajectories (details not included).

In the context of multi-stranded reactions, an important direction for improving our method is the partitioning
of secondary structure microstates into clusters corresponding to different strand-level complexes, i.e., into
macrostates defined by the subset of available strands which are actually bound into a complex. For our
simple example of DNA hybridization, states without inter-strand base pairs (dissociated states) should ideally
be separated from those with inter-strand base pairs (associated states). For reactions involving three strands,
such as three-way strand displacement, there should be 5 distinct groups (1 group without inter-strand base
pairs, 3 groups with a single dissociated strand each, and 1 group with the three-way complex). However,
ViDa’s embeddings currently do not provide such a separation of groups for our DNA hybridization reaction
samples (see Figure[A4]in Appendix [G]). Further work will be undertaken to address this limitation.

In future work, we plan to overlay our embedding for Gao-P4T4 with structural types to gain more specific
insight into its reaction mechanisms. We also plan to generalize ViDa to three-way strand displacement
reactions, as well as to RNA reactions, such as those studied by Castro et al. [7]], since there are some
discrepancies between their visualizations and the experimental results. Furthermore, it would be useful if
trajectory samples could be classified automatically according to their time (e.g. fast) and probability (e.g.
rare) to understand the contribution of individual energy basins to the overall kinetics.
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Appendices

A The Multistrand simulator

Multistrand is a coarse-grained CTMC model designed to simulate thermodynamic and Kinetic process for
various DNA or RNA-strand interactions ignoring formation of pseudoknotted structures. As the name
suggests, Multistrand is able to handle systems involving several distinct strands. Because the secondary
structure state space is known to scale exponentially in the length of the strands, the simulator uses a
Gillespie sampling approach, rather than representing the entire state space of secondary structures explicitly.
Transitions between neighbour states are based on elementary steps, i.e., a single base pair forming or
breaking. The rates between adjacent states are determined by a kinetic model, which is chosen in a way
that detailed-balance is satisfied, and that the equilibrium state distribution is in line with thermodynamic
predictions made by both NUPACK [23] or Vienna RNA [24] models. The outputs from Multistrand include
a sequence of secondary structures represented by the dp notation, the reaction simulation time (in terms of
sampled trajectory time, not wall-clock time) and the corresponding free energy of the secondary structure.

There are several simulation modes in Multistrand. The simplest one is “trajectory mode” which was used
for the reaction from Gao et al. In this mode, we collect reactive trajectory samples (form final double-helix
structure). The other one used for the reaction from Hata et al. is “first step mode”. With this mode, we
assume every Markov simulation begins with an initial “join” step, i.e. a pair of molecules A and B interact
and form a single base pair. Therefore, the initial structure is not deterministic. In this mode, we collect
both reactive and non-reactive (connected strands disassociate to separate ones during reaction proceeding)
trajectory samples.

B Dot-parenthesis notation

Dot-parenthesis (dp) notation is a simple way to represent a secondary structure of DNA or RNA. Each
character represents a base (except “&” and “+”, which are separators for different strands). Dots indicate
unpaired bases and matching parentheses indicate paired bases. The number of open and closed parentheses
is always equal. For example, in the dp notation 3'-...(((...-5'+3’-...)))...-5’ for the secondary structure of two
DNA strands A (3’-TGACGATCA-5") and A (3’ —TGATCGTCA—S/ ), the left part of the “+” sign corresponds
to strand A and the right part corresponds to strand A. Three open parentheses indicate that the bases “CGA”
in strand A are paired with the bases “TCG” in strand A which are represented by three closed parentheses.
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C Estimated minimum passage time

d; ; was obtained as the shortest path length between nodes 4, j, using Dijkstra’s algorithm [25], on a weighted
undirected graph which was constructed in a pre-processing stage from the simulated Multistrand trajectories.
In particular, two secondary structure nodes are connected in this graph if at least one of the two possible
directions was observed in the training dataset of elementary transitions. The edge weight was then chosen to
represent the minimum expected holding time between the two adjacent states, where the expected holding
time for each state was estimated as the empirical average of the sampled outgoing transition times.

D Stack, mis-stack, and hairpin schematic representations

5
3 3 5’
: RN '
3
(a) Stack (size 3) (b) Mis-stack (size 3)
3 5 3 5
(c) 4-stem hairpin (d) 3-stem hairpin

Figure Al: Schematic representations of stack, mis-stack, and hairpin structures.
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E DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a density-based clustering
algorithm widely used in unsupervised learning. It groups data points based on their proximity in a feature
space, making it particularly effective for discovering clusters of arbitrary shape. DBSCAN has two
hyperparameters: epsilon (eps) that defines the maximum distance between two points for one to be
considered as in the neighbourhood of the other, and minimum samples (min_samples) that presents the
number of neighbours needed to tell a region is dense. In our work, we chose min_samples = 4 as the
paper suggests [[17]. We used the “elbow” method to determine eps. Specifically, we computed the distance
of each point to its 4 nearest neighbours then sorted the points based on the resulting distances. The distances
are plotted against sorted points in Figure[A2] Finally, we selected the elbow point represented by a red dot
as a reference. Therefore, the value of eps is set from the reference distance, i.e. eps = 0.005 in this work.

0.06
0.05
0.04

0.03

4-dist

0.02

0.01 /elbow point

0 100 200 300 400 500

points

Figure A2: The elbow method plot to determine the epsilon of DBSCAN.

13



F Visualizations by PCA, PHATE, GSAE+PCA, GSAE+PHATE, and MDS

We assessed the visualizations for Gao-P4T4 by PCA, PHATE, GSAE+PCA, and GSAE+PHATE, as shown
in Figure[A3] It can be seen that PCA, PHATE, and MDS’s visualizations are significantly poor. Figure
and Figure [A3d] show that energy landscapes follow high-to-low trend from the initial to final states, which is
to be expected as GSAE takes the energy as a part of features. However, investigating a specified state and its
neighbours, we find a large variability of their secondary structures, revealing the failure of preserving local
structure. Moreover, their trajectories are not as smooth as ViDa’s either owing to the large number of long
segments.

Free energy (kcal/mol)

10

(a) PCA for Gao-P4T4 (b) PHATE for Gao-P4T4

Free energy (kcal/mol)

10

(c) GSAE+PCA for Gao-P4T4 (d) GSAE+PHATE for Gao-P4T4

Free energy (kcal/mol)

10

(e) MDS for Gao-P4T4

Figure A3: Trajectories laid out on the embedding for Gao-P4T4. Each point represents a secondary structure
state. The colour of each point represents the value of free energy. The black curve represents a trajectory.
The initial and final states are indicated by the green circles marked I and F’, respectively. The plot made by
(a) PCA, (b) PHATE, (c¢) GSAE+PCA, (d) GSAE+PHATE, and (e) MDS.
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G ViDa’s visualization for connected and unconnected secondary structures

In Figure [A4] connected secondary structures (i.e., those with at least one inter-strand base pair) are depicted
in yellow, while structures with two single-stranded components are depicted in dark blue. It can been seen
that some yellow and dark blue points are overlapped, which is not ideal. Domain experts would appreciate a
dimensionality reduction method that distinguishes between states with inter-strand base pairs from those
with no such pairs, keeping them separate from each other. Generalizing our methods when there are multiple
interacting strands, and thus many different possible connected components involving different subsets of the
strands, presents an interesting research challenge.

Figure A4: Visualization of the state space of connected and unconnected secondary structures for Hata-39.
The points represented in dark blue and yellow refer to unconnected and connected structures, respectively.
The final state is indicated by the green circle marked F'.
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