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Abstract

Improving the classification of multi-class imbalanced data is more difficult than its two-
class counterpart. In this paper, we use deep neural networks to train new representations of
tabular multi-class data. Unlike the typically developed re-sampling pre-processing meth-
ods, our proposal modifies the distribution of features, i.e. the positions of examples in
the learned embedded representation, and it does not modify the class sizes. To learn
such embedded representations we introduced various definitions of triplet loss functions:
the simplest one uses weights related to the degree of class imbalance, while the next pro-
posals are intended for more complex distributions of examples and aim to generate a safe
neighborhood of minority examples. Similarly to the resampling approaches, after applying
such preprocessing, different classifiers can be trained on new representations. Experiments
with popular multi-class imbalanced benchmark data sets and three classifiers showed the
advantage of the proposed approach over popular pre-processing methods as well as basic
versions of neural networks with classical loss function formulations.

Keywords: multiple classes imbalanced data, deep learning, triplet loss

1. Introduction

Class imbalance is a common challenge in many domains, which severely degrades the
predictive ability of classifiers. It has been extensively studied in the last decades and as
a result, many methods have been proposed to improve classifiers, see e.g. (Branco et al.,
2016; Fernández et al., 2018; Krawczyk, 2016). However, most of the proposed methods
considered different modifications of the data or algorithms for fairly classic classifiers,
such as k-NN, decision trees, SVM, ensembles or similar ones. Despite their effectiveness,
especially for the processing of tabular data, the situation has begun to change with the
development of deep neural networks. As noted by Johnson and Khoshgoftaar (2019), one
of the reasons for the success of deep learning is the ability to map the original data to an
embedded new representation, where learning complex relationships can be much easier.

An increase in research interest in deep networks can also be observed in the class imbal-
ance community, see e.g. (Buda, et al., 2018; Wojciechowski and Lango, 2022). However,
the number of such works is still insufficient. Moreover, most of them are concerned with
the use of known preprocessing techniques in combination with selected neural network
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architectures, or with the modification of the error or loss functions to make them more
sensitive to minority class errors.

In our opinion, the impact of learning a new embedded representation in the last layers of
the network is still insufficiently exploited, especially for tabular data. It should be directed
to obtaining better separation of minority classes examples from majority classes ones and
linking this to learning further more efficient classifiers. In this paper, we follow inspirations
from the contrastive learning paradigm (Jaishwal et al., 2021). The deep neural network
is learned by comparing the feature representations of selected examples and directing the
learning process of the network to find the differences and similarities between examples
from different classes.

According to Schroff et al. (2015) one can use triples of examples and the corresponding
contrast loss function, so-called triplet loss, so that examples from the same class are brought
closer to each other and at the same time are moved away from an example from another
class in the embedded representation. Such an approach was mainly used to improve image
recognition. Despite interesting extensions, such as (Huang et al., 2016), it has not been
sufficiently explored so far for difficult imbalanced data. Therefore, in this paper, we will
study their usefulness for multi-class imbalanced data.

Recall that the multi-class imbalanced data are recognized as harder to learn than
two-class ones due to more complex relationships between many classes and local difficulty
characteristics for single examples from these classes (Lango and Stefanowski, 2022). Instead
of looking for yet another method of solving such difficult multi-class problems in the original
data representations, we will examine the possibility of learning new representations of these
problems using appropriately modified triplet loss functions and, then, building classifiers
in these embedded representations.

The contributions of our paper are the following: (1) to introduce modifications of the
triplet loss functions to deal with imbalanced classes and to propose new ones to handle local
difficulty of learning examples; (2) to present modifications of learning deep neural networks
with them for processing multiple imbalanced tabular data; (3) to carry out the experimental
analysis of proposed variants of these triplet loss functions and to compare the best of them
against using previously known methods for dealing with multi-class imbalanced data.

2. Related works

Due to the page limits, we refer the reader to comprehensive works on imbalanced data
characteristics and reviews of proposed methods, such as (Branco et al., 2016; Fernández
et al., 2018). Most of the current research concerns binary imbalanced data, i.e. a sin-
gle minority class versus the majority one. Multi-class imbalanced classification is more
difficult and less frequently studied than its binary counterpart. The specialized classifica-
tion methods for this problem are usually divided into two groups: decomposition-based
approaches (the transformation of the multi-class problem into a set of binary ones) and
dedicated multi-class approaches (mainly various pre-processing methods). It is often pos-
tulated that such approaches should take into account both global class inter-relationships
and local data difficulty factors (Sáez et al., 2016; Lango and Stefanowski, 2022).

Despite advances in deep learning, multi-class imbalanced classification problems in the
context of deep neural networks were mostly addressed for image classification or natu-
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ral language processing tasks only; for their survey see (Buda, et al., 2018; Johnson and
Khoshgoftaar, 2019). Early proposals used resampling techniques before training deep neu-
ral networks. More recent works modified the distribution of examples in mini-batches
during network training (see e.g. ReMix algorithm by Bellinger et al. (2021)) or oversam-
pled the embedded representation. Another group of proposals is aimed at modifying the
loss function in network training to make it sensitive to minority class errors, e.g. Wang
et al. (2016) modified the mean square error, Lin et al. (2017) introduced focal loss, Li
et al. (2020) proposed Dice loss, etc. Finally, there are also proposals of modifying the
optimization task to handle different costs of misclassifications, see e.g. Khan et al. (2018).

In contrastive learning, the information about similarity or dissimilarity of training
examples is used to learn corresponding feature representation. One of the most popular
approaches is to train a neural network with triplet loss, which has been introduced in
(Schroff et al., 2015). While using triplet loss, the neural network f, which maps a training
example x ∈ X from the original feature space to the embedding space f(x) ∈ Rd, is trained
to ensure that a selected reference example xai (called an anchor) is closer to all other
examples xpi (positive) from the same class than to any example xni (negative) from other
classes in the induced embedding space. More formally, the constraint can be described as:

∀(f(xa
i ),f(xp

i ),f(xn
i ))∈T ∥f (xai ) − f (xpi )∥

2
2 + α < ∥f (xai ) − f (xni )∥22 , (1)

where α is a margin that should be enforced between positive and negative pairs and T is set
of all possible triplets in the training set. In practice, this constraint leads to optimization
of the following training objective:

|T |∑
i

[
∥f (xai ) − f (xpi )∥

2
2 − ∥f (xai ) − f (xni )∥22 + α

]
+

(2)

Such triplet loss functions were successfully applied in image recognition, object tracking,
and visual search. Recently this idea has been modified to the quintuplet instance sampling
and triple-header hinge loss, which allows learning more complex relationships between
classes and their potential cluster in the embedded representations (Chen, et al., 2017;
Zhai, et al., 2020; Huang et al., 2016). To the best of our knowledge, the triplet loss and
its extensions have not been used in the context of tabular, multi-class imbalanced data.

3. Modifying triplet networks for learning representation of imbalanced
data

The above-defined triplet loss, despite improving the separability of examples from different
classes in the hidden embedded representation, does not directly take into account class
imbalance or other local data difficulty factors (e.g., class overlapping, presence of small,
rare groups of examples, decomposition of the minority class into rare sub-concepts, see
Napiera la and Stefanowski (2016)). Therefore, in this paper we will present its extensions
to address these issues.

The processing pipeline is as follows: the original tabular data is fed to a neural network
(trained with the new proposed loss function) which transforms it to a potentially easier em-
bedded representation, produced by the last layer of the network. Then, such preprocessed
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data (i.e. the constructed data representation) is used to train the final classifier. Note that
the method modifies only the feature representation, combating the decline of classification
performance on imbalanced data by addressing local data difficulty factors (i.e. producing
safer representation) and not by modifying the number of examples in particular classes.

We will use simple, feedforward neural networks – being sufficient for processing tabular
data, which are considered in this work. They consist of 3 layers with PReLU activations in
between (He et al., 2015). The numbers of units in each layer vary between datasets as we
tune these individually per dataset. We use triplet loss (defined in Eq. 2) as the baseline
loss function. To optimize the objective, we use Adam optimizer.

Selecting triplets for the optimization of the loss function is challenging since choosing all
possible triplets is computationally infeasible. Schroff et al. (2015) used an online sampling
of triplets during the construction of mini-batches and considering only such combinations
of training examples that violate the constraint from Eq. 1. Following inspirations from the
experiments of Schroff et al. (2015), we will experimentally study three selection strategies:
(1) selecting the hardest negative instance for each positive pair – select a negative example
that is closest from the anchor in the mini-batch; (2) random hard negative for each positive
pair – select one of the negatives that gives positive triplet loss value (i.e. violates the
constraint in Eq. (1)); (3) semi-hard negative for each positive pair – allow to select one
of the negatives that are further away from the anchor than the positive, but still localized
within the margin α.

3.1. Weighted triplet loss with global imbalances

First, we propose a triplet weighting modification of Eq. 2 to better handle the minority
classes. For each anchor example, xai we multiply the loss by inverse class cardinality
normalized to 1 as shown in Eq. 3. As a result, the examples from minority classes provide
bigger gradients for the neural network, than examples from the majority classes:

|T |∑
i

[[
∥f (xai ) − f (xpi )∥

2
2 − ∥f (xai ) − f (xni )∥22 + α

]
× wxa

i

]
+
, (3)

where T is a set of all triplets, wxa
i

=
|x∈X:yx=yxa

i
|−1∑C

ci
[|x∈X:yx=ci|−1]

, X denotes a set of all training

examples, yx is a class of example x, and C is a set of all the classes.

3.2. Dealing with the safe local neighborhood in loss functions

This modification takes into account global imbalance ratios present in the data and, simi-
larly to the original triplet loss, attempts to join examples from the given class into a single
cluster in the embedded representation. Now we will also consider its variants oriented
toward learning more complicated data structures.

Firstly we want to clean the local neighborhood of examples. If the example x ∈ X is
described in d-dimensional space Rd, D is a distance measure (e.q. Euclidean) and KNN(x)
denotes k nearest neighbors of x, then the new loss function is defined as:
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min
∑
x

 ∑
x′∈KNN(x):yx=yx′

D(x, x′) −
∑

x′∈KNN(x):yx ̸=yx′

min
{
D(x, x′) − α, 0

} , (4)

α =

 max
x′∈KNN(x):yx=yx′

D(x, x′) + 1, if |KNN(x) : yx = yx′ | > 0

1, otherwise,
(5)

Intuitively, our objective (Eq. 4) is to minimize the sum of distances to examples
from the same class in the nearest neighborhood of x and maximize the sum of distances to
examples from other classes in the nearest neighborhood of x. Note that the maximization of
distances to examples from other classes does not go further than α, which is dynamically set
to be greater than the distance to the farthest instance of the same class in the neighborhood.
Moreover, using KNN(x) requires changing the algorithm of constructing mini-batches: we
select randomly B examples from the training set and for each of those we find their k nearest
neighbors, which ultimately forms the mini-batch. The preliminary experiments indicated
the value of k to be equal to 20. Batch size B was equal to 16 or 32.

The next extensions are designed to exploit more information on the class distribution
inside k-neighborhood, similarly to earlier studies on local safeness of the minority class
examples (Lango et al., 2017; Napiera la and Stefanowski, 2016). In the first extension of
the above objective, the loss value is additionally multiplied by a weight wx dependent on
the ratio of examples from the same class in the neighborhood of the example x (the less,
the bigger is the weight). This is to make the model less biased towards majority classes
and, in particular, focus its operation towards separating difficult (i.e. unsafe) examples:

wx = (1 − |KNN(x) : yx = yx′ |
|KNN(x)|

) (6)

In order to make the above loss more robust to outliers and reduce the chance of overfit-
ting, another proposed variant of the loss function uses the above weight but with a cut-off
below a certain threshold. Intuitively, after reaching a certain small ratio of examples from
the same class (e.g. 0.3) in the neighborhood, we do not further increase the weight. The
cutoff weight is denoted as cx instead of wx - see definition below.

cx = min {wx, 0.7} (7)

Finally, instead of minimizing the sum of distances to examples in the neighborhood in
the loss function Eq. 4, we try minimizing (or maximizing) the mean distance to examples
from the same class (or accordingly other classes) in the nearest neighborhood:

min
∑
x

[∑
x′∈KNN(x):yx=yx′

D(x, x′)

|KNN(x) : yx = yx′ |
−

∑
x′∈KNN(x):yx ̸=yx′

min {D(x, x′) − α, 0}
|KNN(x) : yx ̸= yx′ |

]
× wx

(8)
As starting from a random representation and optimizing it according to any loss func-

tion that uses KNN in the induced embedding space gives very poor results, we decided
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to learn the initial representation with the autoencoder and simple MSE loss. Then, we
take the pre-trained encoder and further train it using one of the four variants of the loss
function specified above

4. Experiments

4.1. An experimental setup

The aims of our experiments are the following: (1) to compare the newly proposed weighted
loss function vs. the original triplet loss; (2) to compare the performance of classifiers trained
on a new, triplet-based representation versus the standard pre-processing methods for mul-
tiple imbalanced classes: Global-CS (Zhou and Liu, 2006), Static-SMOTE (Fernández-
Navarro et al., 2011), MDO (Abdi and Hashemi, 2016); (3) to visualize the embedding
space of imbalanced data learned by triplet networks; (4) to evaluate usefulness of different
variants of the proposed triplet loss functions.

In all these experiments we use KNN, Decision Tree, and LDA as final classifiers – im-
plementations were taken from the scikit-learn library. LDA (Linear Discriminant Analysis)
is run with default parameters and KNN classifier with k equal to 1. Decision Trees are pa-
rameterized with min samples split=4, min samples leaf=2, and class weight=’balanced’.
For Global-CS, Static-SMOTE or MDO, we used implementations provided by the multi –
imbalance library (Grycza et al., 2020). Before applying any preprocessing, classification, or
representation learning we performed one-hot encoding of the categorical attributes (typical
for processing in scikit learn) as well as z-score standardization for numerical attributes.

All experiments are carried out with 17 popular multi-class imbalanced benchmark
datasets characterized by different levels of difficulty (Lango and Stefanowski, 2022). Due
to space limits, we skip the table with their detailed characteristics, the reader can find
their details e.g. in (Janicka et al., 2019).

We decided to use F1-Score (macro-averaged) and G-Mean measures in their versions for
multiple classes due to their popularity in the literature (for their definitions see (Fernández
et al., 2018)) and estimate their values with the stratified 5-fold cross-validation technique.

4.2. Studying weighted vs. unweighted triplets

In the first experiment, we compare the usefulness of the triplet weighting, deined in Eq. 3
with the original, unweighted objective ( Eq. 2). For brevity, we present the exact results
only for the LDA classifier and G-mean measure in Table 1 - the best results are in bold.

An improvement of classification performance with the representation obtained with
triplet weighting (described in Eq. 3) is clearly visible. The representation obtained through
the original objective 2 provides better results on the G-Mean only for two datasets: yeast
and led7digit. Similar observations are done for the F1 measure. We also compared all
sampling strategies for choosing triplets into the mini-batch in training a neural network.
Results showed that the differences between them are rather small. Due to small computa-
tional costs, we stick to the random hard negative strategy in the rest of experiments.
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dataset unweighted weighted

cmc 0.504 0.518
dermatology 0.958 0.970
hayes-roth 0.858 0.864
vehicle 0.979 0.985
yeast 0.383 0.294
art1 0.973 0.986
art2 0.779 0.806
art3 0.557 0.589
art4 0.860 0.880
balance-scale 0.887 0.969
cleveland 0.136 0.152
cleveland v2 0.192 0.211
glass 0.646 0.693
ecoli 0.814 0.817
led7digit 0.758 0.757
winequality-red 0.445 0.472
thyroid 0.944 0.951

Table 1: LDA G-Mean results comparison for representations obtained with weighted and
unweighted triplets

4.3. Comparison of pre-processing methods vs. new learned representation

Then we compare the performance of all three classifiers learned on the new embedded rep-
resentation (obtained with the weighted triplets - Eq. 2) against using these classifiers with
specialized preprocessing methods Global-CS, Static-SMOTE and MDO (their description
see Janicka et al. (2019)). Additionally, we will learn these classifiers directly on the original,
unchanged data - which is denoted as Baseline. Again for brevity, we present the results
only for one selected classifier: KNN, see Tables 2 and 3, respectively.

Results for both measures (also for Decision Trees and LDA) show that using the new
embedded representation leads to better classifier performance than the compared pre-
processing methods. We also carried out the Friedman ranked test and rejected the null
hypothesis of similar performance of compared methods. The averaged ranks for all the
classifiers are given in Tables 4 and 5 for F1 and G-mean , respectively. One can notice
that our newly proposed triplet representations are always better than the preprocessing
methods, while MDO or GlobalCS are in the second position. The post-hoc Nemenyi
analysis shows clear dominance for K-NN while for other classifiers the rank differences
are within CD. However, according to the paired Wilcoxon test the new representation is
significantly better for all classifiers in the case of F1 score. Additionally, the performance
of the proposed approach is also statistically significantly better for KNN and DT with
respect to G-mean (for LDA p = 0.9).

4.4. Visualization of the learned embeddings

To examine the changes in the example’s distribution inside the embedded representation,
we visualized them with PCA methods for two dimensions and compared them to the
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dataset Baseline Global-CS Static-SMOTE MDO New Rep.

cmc 0.423 ± 0.015 0.409 ± 0.008 0.415 ± 0.004 0.415 ± 0.008 0.454 ± 0.008
dermatology 0.937 ± 0.018 0.891 ± 0.021 0.910 ± 0.040 0.891 ± 0.020 0.970 ± 0.029
hayes-roth 0.672 ± 0.113 0.817 ± 0.053 0.823 ± 0.059 0.834 ± 0.060 0.886 ± 0.042
vehicle 0.912 ± 0.023 0.912 ± 0.023 0.909 ± 0.036 0.912 ± 0.023 0.989 ± 0.021
yeast 0.487 ± 0.039 0.487 ± 0.039 0.458 ± 0.026 0.467 ± 0.036 0.497 ± 0.045
art1 0.946 ± 0.012 0.946 ± 0.012 0.950 ± 0.013 0.946 ± 0.017 0.974 ± 0.015
art2 0.700 ± 0.035 0.700 ± 0.035 0.702 ± 0.023 0.712 ± 0.012 0.751 ± 0.032
art3 0.509 ± 0.041 0.509 ± 0.041 0.479 ± 0.033 0.528 ± 0.049 0.572 ± 0.073
art4 0.768 ± 0.014 0.768 ± 0.014 0.769 ± 0.020 0.781 ± 0.034 0.817 ± 0.017
balance-scale 0.561 ± 0.009 0.345 ± 0.044 0.304 ± 0.047 0.345 ± 0.041 0.954 ± 0.040
cleveland 0.297 ± 0.042 0.317 ± 0.073 0.300 ± 0.043 0.328 ± 0.078 0.315 ± 0.105
cleveland v2 0.327 ± 0.064 0.322 ± 0.037 0.332 ± 0.058 0.328 ± 0.025 0.306 ± 0.062
glass 0.659 ± 0.065 0.659 ± 0.065 0.673 ± 0.071 0.666 ± 0.064 0.690 ± 0.080
ecoli 0.793 ± 0.054 0.793 ± 0.054 0.776 ± 0.075 0.800 ± 0.062 0.814 ± 0.049
led7digit 0.734 ± 0.035 0.706 ± 0.040 0.681 ± 0.044 0.706 ± 0.035 0.748 ± 0.048
winequality-red 0.535 ± 0.029 0.535 ± 0.029 0.516 ± 0.038 0.537 ± 0.035 0.553 ± 0.055
thyroid 0.930 ± 0.042 0.930 ± 0.042 0.937 ± 0.042 0.930 ± 0.042 0.957 ± 0.034

Table 2: Comparison of F1-Score for KNN learned on the original data (Baseline), after
using pre-processing methods and for a new weighted triplet representation

dataset Baseline Global-CS Static-SMOTE MDO New Rep.

cmc 0.413 ± 0.017 0.404 ± 0.008 0.408 ± 0.007 0.412 ± 0.009 0.448 ± 0.012
dermatology 0.932 ± 0.024 0.892 ± 0.022 0.916 ± 0.035 0.892 ± 0.022 0.968 ± 0.031
hayes-roth 0.636 ± 0.114 0.803 ± 0.059 0.812 ± 0.066 0.824 ± 0.065 0.881 ± 0.045
vehicle 0.912 ± 0.018 0.912 ± 0.018 0.914 ± 0.032 0.912 ± 0.018 0.990 ± 0.021
yeast 0.408 ± 0.088 0.408 ± 0.088 0.415 ± 0.080 0.364 ± 0.099 0.405 ± 0.099
art1 0.944 ± 0.012 0.944 ± 0.012 0.952 ± 0.019 0.966 ± 0.017 0.964 ± 0.029
art2 0.678 ± 0.052 0.678 ± 0.052 0.706 ± 0.027 0.728 ± 0.015 0.735 ± 0.033
art3 0.458 ± 0.049 0.458 ± 0.049 0.470 ± 0.046 0.526 ± 0.061 0.541 ± 0.104
art4 0.761 ± 0.020 0.761 ± 0.020 0.784 ± 0.024 0.802 ± 0.046 0.811 ± 0.029
balance-scale 0.089 ± 0.001 0.064 ± 0.005 0.056 ± 0.006 0.065 ± 0.005 0.936 ± 0.065
cleveland 0.078 ± 0.041 0.165 ± 0.158 0.121 ± 0.043 0.174 ± 0.166 0.180 ± 0.156
cleveland v2 0.065 ± 0.042 0.048 ± 0.034 0.116 ± 0.044 0.049 ± 0.033 0.056 ± 0.035
glass 0.554 ± 0.183 0.554 ± 0.183 0.589 ± 0.196 0.563 ± 0.186 0.573 ± 0.207
ecoli 0.773 ± 0.058 0.773 ± 0.058 0.769 ± 0.075 0.799 ± 0.067 0.786 ± 0.067
led7digit 0.648 ± 0.207 0.655 ± 0.051 0.647 ± 0.060 0.571 ± 0.182 0.699 ± 0.089
winequality-red 0.475 ± 0.043 0.475 ± 0.043 0.488 ± 0.045 0.495 ± 0.048 0.453 ± 0.094
thyroid 0.917 ± 0.080 0.917 ± 0.080 0.926 ± 0.080 0.917 ± 0.080 0.937 ± 0.061

Table 3: Comparison of G-mean for KNN learned on the original data (Baseline), after
using pre-processing methods and for a new weighted triplet representation

analogous visualization of the distribution in the original data. Below two representative
datasets (easier and more difficult ones) are presented in Figures 1 – 4.

One can notice that easier datasets such as vehicle – but also dermatology, hayes-roth
or thyroid, which we were unable to include due to page limits - are easily transformed
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New Rep. MDO Baseline Static-SMOTE Global-CS

KNN 1.35 2.71 3.47 3.65 3.82
DT 1.59 2.94 2.94 3.65 3.88
LDA 1.41 3.59 3.82 3.65 2.53

Table 4: Average ranks of compared algorithms (the lower, the better) from Friedman tests
on F1-Score for all classifiers.

New Rep. MDO Baseline Static-SMOTE Global-CS

KNN 1.71 2.85 3.59 2.88 3.97
DT 1.82 3.00 3.00 2.94 4.24
LDA 1.59 3.65 4.24 3.53 2.00

Table 5: Average ranks of compared algorithms (the lower, the better) from Friedman tests
on G-Mean for various classifiers.

into single clusters of examples for each class. As they become separable in the embedded
representation it somehow solved the overlapping in those datasets. Ecoli was a more
complex data (see also its analysis in (Lango et al., 2017)) and its separation in the embedded
representation is not so clear as before, but there is still an improvement in the differentiation
of examples from different classes. However, the situation is more difficult for few harder
datasets, such as glass or led7digit. For these datasets, the method has difficulties in
transforming the space into single clusters for each class. Those datasets form much more
complicated structures in the original feature space (see experimental studies such as (Lango
and Stefanowski, 2022)), which makes them very hard to transform by the triplet-based
network using only weights referring to the global imbalance. On the other hand the results
on the balance-scale – see Figures 5 and 6 – came as a surprise, because this dataset seemed
hard to classify with KNN, Decision Tree or LDA on original features, but it was easily
decomposed into single manifolds by the triplet-based network. This may suggest, that
non-linear feature transformations found by the network can reduce difficulty factors even
for some harder datasets.

Figure 1: Visualization of the original vehicle
dataset in 2 PCA dimensions

Figure 2: Visualization of the triplet learned
vehicle embeddings in 2 PCA dimensions
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Figure 3: Visualization of the original ecoli
dataset in 2 PCA dimensions

Figure 4: Visualization of the triplet learned
ecoli embeddings in 2 PCA dimensions

Figure 5: Visualization of the original
balance-scale dataset in 2 PCA dimensions

Figure 6: Visualization of the triplet balance-
scale embeddings in 2 PCA dimensions

4.5. Experiments with new versions of triplet loss functions

dataset Baseline Autoencoder Basic Safe Weights Cutoff Mean Dists

cmc 0.423 ± 0.015 0.403 ± 0.022 0.426 ± 0.014 0.430 ± 0.023 0.421 ± 0.011 0.436 ± 0.022
dermatology 0.937 ± 0.018 0.920 ± 0.017 0.946 ± 0.030 0.949 ± 0.017 0.946 ± 0.020 0.953 ± 0.023
hayes-roth 0.672 ± 0.113 0.807 ± 0.051 0.880 ± 0.054 0.896 ± 0.051 0.891 ± 0.045 0.891 ± 0.045
vehicle 0.912 ± 0.023 0.918 ± 0.035 0.937 ± 0.010 0.975 ± 0.017 0.967 ± 0.022 0.986 ± 0.012
yeast 0.487 ± 0.039 0.488 ± 0.040 0.488 ± 0.063 0.486 ± 0.050 0.487 ± 0.054 0.497 ± 0.052
art1 0.946 ± 0.012 0.945 ± 0.012 0.945 ± 0.017 0.949 ± 0.024 0.947 ± 0.016 0.955 ± 0.021
art2 0.700 ± 0.035 0.694 ± 0.024 0.714 ± 0.031 0.717 ± 0.026 0.711 ± 0.016 0.719 ± 0.038
art3 0.509 ± 0.041 0.521 ± 0.037 0.523 ± 0.033 0.523 ± 0.026 0.494 ± 0.061 0.524 ± 0.036
art4 0.768 ± 0.014 0.767 ± 0.016 0.778 ± 0.019 0.777 ± 0.028 0.765 ± 0.018 0.786 ± 0.018
balance-scale 0.561 ± 0.009 0.401 ± 0.059 0.508 ± 0.028 0.839 ± 0.058 0.862 ± 0.054 0.942 ± 0.043
cleveland 0.297 ± 0.042 0.321 ± 0.067 0.356 ± 0.083 0.319 ± 0.039 0.325 ± 0.034 0.335 ± 0.044
cleveland v2 0.327 ± 0.064 0.310 ± 0.045 0.315 ± 0.025 0.314 ± 0.037 0.309 ± 0.015 0.342 ± 0.024
glass 0.659 ± 0.065 0.642 ± 0.105 0.679 ± 0.035 0.690 ± 0.058 0.694 ± 0.056 0.699 ± 0.073
ecoli 0.793 ± 0.054 0.776 ± 0.053 0.809 ± 0.048 0.789 ± 0.037 0.810 ± 0.036 0.802 ± 0.045
led7digit 0.734 ± 0.035 0.708 ± 0.041 0.755 ± 0.076 0.748 ± 0.024 0.737 ± 0.079 0.744 ± 0.041
winequality-red 0.535 ± 0.029 0.530 ± 0.027 0.536 ± 0.055 0.543 ± 0.030 0.542 ± 0.033 0.537 ± 0.027
thyroid 0.930 ± 0.042 0.946 ± 0.052 0.952 ± 0.053 0.953 ± 0.038 0.953 ± 0.038 0.953 ± 0.038

Table 6: Comparison of F1-Score for KNN learned on the original data (Baseline), and for
new versions of loss functions

Finally, we tested all proposed new formulations of loss functions proposed in Section 3
– see Eq. 4 – 8. Let us remind, that they are motivated by the observation that data can
form very complicated structures in the feature space, which are not necessarily possible to
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represent as single clusters of examples for each class by using the simpler modification of
the triplet loss function to the imbalance weighting - see also visualization results.

As mentioned before, we first train an autoencoder to minimize the MSE loss. This
is to avoid the collapse of training since the proposed loss functions depend on kNN in
the embedding space which is random at the beginning of training. Therefore, after the
autoencoder converges, we take the encoder network and continue training under one of the
loss functions specified in Section 3. They are denoted as:

• Basic – triplet loss guided to clean example’s neighborhood – Eq. 4.

• Safeness Weights – basic with examples’ weights depending on their safe levels as
defined in Eq. 6.

• Cutoff - another variant with safeness-based examples’ weights but with additional
cut-off at the threshold value of 0.7 as defined in Eq. 7.

• Mean Dists - the last variant analysing the mean distances to the examples from the
same class as it is defined in Eq. 8.

In our experiments, we also calculated the results of classification performed on the original
representation (this is our Baseline) and on the representation obtained from the hidden
layer of autoencoder to see, how much information is lost by such training initialization.

dataset Baseline Autoencoder Basic Safeness Weights Cutoff Mean Dists

cmc 0.413 ± 0.017 0.398 ± 0.027 0.419 ± 0.015 0.424 ± 0.025 0.417 ± 0.014 0.429 ± 0.025
dermatology 0.932 ± 0.024 0.927 ± 0.016 0.944 ± 0.027 0.950 ± 0.022 0.947 ± 0.023 0.953 ± 0.028
hayes-roth 0.636 ± 0.114 0.793 ± 0.058 0.875 ± 0.058 0.892 ± 0.054 0.886 ± 0.048 0.886 ± 0.048
vehicle 0.912 ± 0.018 0.918 ± 0.031 0.935 ± 0.012 0.976 ± 0.017 0.967 ± 0.023 0.986 ± 0.013
yeast 0.408 ± 0.088 0.407 ± 0.086 0.376 ± 0.121 0.375 ± 0.110 0.375 ± 0.111 0.385 ± 0.114
art1 0.944 ± 0.012 0.942 ± 0.011 0.946 ± 0.017 0.952 ± 0.029 0.949 ± 0.019 0.956 ± 0.017
art2 0.678 ± 0.052 0.676 ± 0.033 0.693 ± 0.032 0.710 ± 0.033 0.695 ± 0.016 0.712 ± 0.047
art3 0.458 ± 0.049 0.474 ± 0.048 0.478 ± 0.031 0.478 ± 0.035 0.431 ± 0.062 0.479 ± 0.034
art4 0.761 ± 0.020 0.764 ± 0.022 0.767 ± 0.030 0.774 ± 0.032 0.766 ± 0.029 0.781 ± 0.016
balance-scale 0.089 ± 0.001 0.071 ± 0.008 0.158 ± 0.166 0.827 ± 0.080 0.855 ± 0.076 0.958 ± 0.037
cleveland 0.078 ± 0.041 0.129 ± 0.134 0.161 ± 0.145 0.141 ± 0.089 0.146 ± 0.093 0.194 ± 0.127
cleveland v2 0.065 ± 0.042 0.049 ± 0.038 0.056 ± 0.030 0.069 ± 0.030 0.053 ± 0.028 0.071 ± 0.025
glass 0.554 ± 0.183 0.490 ± 0.262 0.561 ± 0.185 0.577 ± 0.196 0.642 ± 0.064 0.591 ± 0.214
ecoli 0.773 ± 0.058 0.739 ± 0.057 0.797 ± 0.060 0.772 ± 0.034 0.793 ± 0.037 0.774 ± 0.051
led7digit 0.648 ± 0.207 0.667 ± 0.078 0.743 ± 0.218 0.736 ± 0.028 0.647 ± 0.231 0.735 ± 0.052
winequality-red 0.475 ± 0.043 0.460 ± 0.028 0.468 ± 0.089 0.493 ± 0.036 0.492 ± 0.038 0.481 ± 0.041
thyroid 0.917 ± 0.080 0.936 ± 0.069 0.937 ± 0.089 0.937 ± 0.058 0.937 ± 0.058 0.937 ± 0.058

Table 7: KNN G-Mean results comparison for different variants of the new loss function

The results for k-NN classifiers (with k = 1) are presented in Table 6. They show
that the proposed method with new loss functions outperforms Baseline classification on
original representation and also for the autoencoder network. The comparison of different
loss function variants clearly showed the advantage of the most advanced version, i.e. Mean
Dists (which wins in 12 datasets). Versions that use weighting (i.e. Safeness Weights and
Cutoff) are second in order of wins. A fairly similar dominance of the Mean Dists function
is also evident for the G-mean measure (see Table 7), although some advantages occur for
other datasets.

However, comparing this best version of the new loss function to the first proposed
function (weighted triplet as defined by Eq. 3) indicates a less significant advantage. Ac-
cording to the paired Wilcoxon signed test, the p values are equal to 0.029 for F1-Score
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and 0.589 for G-mean (i.e. here the difference is not statistically significant). Looking more
closely at the results, the better performance of more advanced versions of the loss function
occurs for some datasets such as hayes-roth, balance scale, cleveland, glass, ecoli, led7digit
lub wine-quality. Following previous analyses of their difficulties and complex distribution
many of these datasets are identified as more difficult to learn than dermatology, vehicles
or artificial datasets art (Lango and Stefanowski, 2022).

5. Final remarks

We presented a new way to create an embedded representation for multi-class imbalanced
data that uses neural network training with specialized triplet loss functions. It should be
emphasized that our proposal only modifies the distribution of features, i.e. the positions
of examples in the newly learned deep representation, and does not modify the class size or
does not create any synthetic examples (which is the most common for the currently most
popular under/oversampling processing methods).

In accordance with the inspirations of contrastive learning in deep networks, we want
to learn such a new representation of examples that their distribution of classes in the
new embedded space becomes more separated and safe in the sense of the neighborhood of
examples from a given class (Napiera la and Stefanowski, 2016) and we do not change the
degree of imbalance in the dataset.

For this purpose, we introduced various definitions of triplet loss functions used in
training selected deep neural networks for tabular data. The first and simplest proposal
modifies the original triplet loss function (Schroff et al., 2015) by introducing weights related
to the degree of class imbalance. As can be seen from the conducted experiments (see,
for example, visualizations in section 4.4), this can lead to learning disjoint clusters of
objects from different classes. Next, we put forward completely new proposals of triplet
loss functions which are intended for more complex distributions of examples, for which it
is necessary to take into account the local degrees of safeness of the examples against their
nearest neighbors.

Quite comprehensive experiments with popular benchmark multi-class imbalanced data
sets and three classifiers – K-NN, decision trees and linear discriminant analysis – clearly
showed the advantage of the proposed approach over the use of popular pre-processing
methods as well as basic versions of neural networks with classic loss function formulations.
However, it should be also noted that for many of the analyzed datasets, the differences
between the proposed loss function variants were not statistically significant. Nevertheless,
the most advanced version, i.e. triplet loss with mean distances (Mean Dist) was by far
the winner of most comparisons, but for some datasets the weighted triplet loss function
(as defined by Eq. 3) worked better. For additional results please refer to our external
repository: https://github.com/damian-horna/imbalanced_triplets.

Despite encouraging experimental results, we believe that in future research it is still
worth considering using and possibly extending the recent modifications of the triplet func-
tions. For instance, one can start by investigating the loss functions considering the posi-
tions of four (inspired by the work on other loss functions with four elements (Chen, et al.,
2017)) or even five raining instances instead of triples (Huang et al., 2016), since they could
potentially allow for the creation of even more complicated representations for particularly

12

https://github.com/damian-horna/imbalanced_triplets


Similarity learning for imbalanced data transformation

difficult imbalanced data distributions. Another line of research is to test the applicability of
the new triplet loss functions also for binary classification. Preliminary ongoing experiments
have already shown their effectiveness.
Acknowledgments This work was partially supported by 0311/SBAD/0740. M. Lango
was supported by 0311/SBAD/0743.
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