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Abstract

Efficient management of imbalanced time series data is of paramount importance when
data located in the tails, particularly extreme values, have a substantial influence on predic-
tive outcomes. This paper introduces FSDA (Feature Selection and Data Augmentation),
a combined approach of feature selection and data augmentation, to address this issue.
FSDA aims to identify the most predictive features for tail data, which may exhibit differ-
ent sensitivities compared to the rest of the dataset. Data augmentation, a conventional
technique for handling imbalanced data, is employed to enhance the accuracy of machine
learning regression methods. Augmented information is strategically incorporated using
time-warping and drift methods to maintain the temporal integrity of the data. Empirical
evidence based on a use case in financial data reveals that FSDA consistently outperforms
feature selection (FS) and data augmentation (DA) methods across all percentiles ranging
from 85 to 99, demonstrating its efficacy in managing imbalanced time series data and
improving predictive accuracy.
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1. Introduction

1.1. Motivations

Data imbalance is a prevalent and inherent phenomenon in real-world contexts. Imbalance
is characterized by data that does not adhere to an ideally uniform distribution among
categories but rather showcases skewed distributions characterized by a long tail. This
leads to notably fewer instances for specific target values Buda et al. (2018); Liu et al.
(2019).

Such a phenomenon precipitates substantial challenges, particularly within disciplines
where tail distributions have considerable ramifications. Deep recognition models serve as
a prime example of this, being notably influenced by data imbalance. This, in turn, has
prompted the creation of a myriad of techniques aimed at remedying this concern Huang
et al. (2019); Cao et al. (2019); Liu et al. (2019); Cui et al. (2019); Tang et al. (2020).
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Notwithstanding, current approaches to learning from imbalanced data predominantly
concentrate on targets with categorical indices, wherein the targets correspond to distinctive
classes. The term ”imbalanced data” is frequently employed in relation to classification,
less so with regression. It alludes to a situation where classes in a classification dataset
are not evenly represented. An illustrative example would be a dataset comprised of 1000
samples, of which 950 are class A, leaving only 50 as class B. This presents a problem as
machine learning models might exhibit bias towards the majority class, resulting in subpar
classification performance on the minority class.

In the field of regression analysis, the term ”imbalanced data” is not commonly used
in a comparable manner. However, it can refer to situations where the distribution of the
target variable (y) is skewed or uneven. For example, let’s consider a dataset of housing
prices where the majority of houses fall within the range of $100,000 to $200,000, while
only a small number of houses are valued above $1,000,000. In such cases, the dataset can
be considered imbalanced, posing a greater challenge for the model to accurately predict
prices for the more expensive houses. This challenge arises due to the limited number of
data points available to train the model on these high-value properties.

Similarly, in the context of financial markets, we can also encounter imbalanced regres-
sion scenarios when predicting stock returns or developing a refined version of the Sharpe
ratio for equity markets. In the case of stock return prediction, the imbalanced nature is
evident in the distribution of returns, where the majority of stocks demonstrate relatively
modest returns, while a few stocks exhibit significant positive or negative returns. This
imbalance in the return distribution poses a difficulty for regression models in accurately
predicting extreme returns. In both housing price prediction and stock return prediction,
the presence of imbalanced data poses challenges for regression models to effectively capture
and predict the outcomes that deviate significantly from the majority distribution.

Indeed, many real-world tasks necessitate dealing with continuous and potentially infi-
nite target values. This is particularly conspicuous in fields such as finance, where objectives
may include evading crash events or identifying highly profitable situations, or in computer
vision, where the estimation of an individual’s age based on visual appearances relies on a
continuous target which can demonstrate notable imbalance. Analogous challenges surface
in medical applications, where health metrics like heart rate, blood pressure, and oxygen
saturation are continuous and often exhibit skewed distributions across patient populations.

In this research, we are interesting in not only playing with traditional data augmenta-
tion but also selecting appropriate variables or features through features selection to tackle
the issue of imbalanced data for regression. We empirically observe that combining con-
ventional data augmentation with features selection improves the treatment of imbalanced
data.

1.2. Problem Definition

Let’s denote our dataset as D, which contains n instances. Each instance can be represented
as a pair (xi, yi), where xi is the feature vector and yi is the corresponding target value.
For simplicity, let’s consider a regression task where the target variable y is continuous. We
can define the empirical distribution of the dataset as pdata(y).
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The imbalance in the dataset can be characterized by the skewness of this empirical

distribution. Skewness, measured by the traditional recentered third moment: E
[(y−µ

σ

)3]
,

where µ and σ are the mean and standard deviation of the target values y in D, and E
denotes the expectation is a measure of the asymmetry of the probability distribution of
a real-valued random variable about its mean. The skewness value can be positive, zero,
negative, or undefined.

The task of a regression model, in this case, can be defined as to learn a function f from
the feature space to the target space, f : x→ y, such that it minimizes some loss function
L(y, f(x)). For instance, in the case of linear regression, L(y, f(x)) could be Mean Squared
Error (MSE), defined as:

L(y, f(x)) =
1

n

n∑
i=1

(yi − f(xi))
2

However, an important caveat in this modeling process arises when dealing with imbal-
anced data. In such scenarios, the model’s performance may degrade, particularly on the
tail of the distribution. This is an issue of significant concern within the domain of financial
markets, where the tail-end of the distribution can dramatically influence the efficacy of the
resultant strategy. Utilizing the traditional Mean Squared Error (MSE) in these circum-
stances may not adequately account for the tail distribution, a component of the data that
carries critical weight in financial market analyses.

In some cases, the data is not only imbalanced but also scarce, especially for certain
target values. Under such circumstances, we may need to not only be able to correctly learn
the mapping from the feature space to the target space but also require some subsampling
techniques to further increase the number of targets such as to improve the performance of
our regression model.

Moreoer, feature selection may play an important role when dealing with imbalanced
data in regression, a topic that often receives inadequate attention in traditional machine
learning literature.

The features used for regression analysis significantly impact the model’s ability to ac-
curately capture relationships, especially when data is imbalanced. In such cases, irrelevant
or redundant features can obscure the information provided by under-represented target
values, leading to sub-optimal model performance.

To incorporate feature selection into our framework, let’s denote the original feature
space as X , and a subset of selected features as Xs ⊆ X .

The task of feature selection can be viewed as finding the optimal feature subset Xs that
minimizes the loss function when using these features for training our regression model. We
can denote this as follows:

Xs = arg min
X ′⊆X

1

|Ds|
∑
i∈Ds

wi(yi − f(xi,X ′))2

where f(xi,X ′) denotes the model’s output when trained on the features X ′.
The challenge will therefore be to incorporate these two techniques: data augmentation

and features selection to be able to improve the accuracy of our regression exercise on large
values.
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1.3. Related Works

Traditionally, the imbalance problem has been predominantly addressed in the context of
classification tasks, with limited focus on imbalanced regression, which is less explored in
the literature. However, it is equally important to address imbalanced data in regression
scenarios, as the presence of imbalanced data can significantly impact the performance and
generalization capabilities of regression models.

Several works have started to delve into the challenges of imbalanced regression. For
instance, Yang et al. (2021) propose an approach called ”Delving into Deep Imbalanced
Regression,” which focuses on effectively handling imbalanced regression through a deep
learning framework. They propose novel loss functions and training strategies to improve
the performance of regression models in the presence of imbalanced data.

In addition to deep learning approaches, non-linear gradient boosting methods have
also been explored for imbalanced regression. Frery et al. (2018) present a technique called
”Non-Linear Gradient Boosting for Class-Imbalance Learning,” which adapts the boosting
algorithm to effectively handle imbalanced regression problems. Their approach combines
a gradient boosting framework with non-linear transformations to better capture the un-
derlying patterns in imbalanced regression data.

Furthermore, addressing imbalanced regression requires specific methods that can effec-
tively tackle the problem of imbalance in the data. Branco et al. (2017) propose ”SMOGN,”
a pre-processing approach specifically designed for imbalanced regression tasks. Instead of
incorporating feature selection, SMOGN blends over-sampling of rare cases with under-
sampling of common cases, focusing on the distribution of the target variable rather than
the features. This approach improves the performance of regression models on imbalanced
datasets by providing a better representation of the less frequent, but often more important,
cases.

Overall, while the research community has primarily focused on managing imbalanced
data in classification tasks through techniques like under-sampling and over-sampling, it
is crucial to extend these techniques to imbalanced regression scenarios. Additionally, in-
corporating feature selection methods alongside imbalance handling techniques can further
enhance the performance and interpretability of regression models on imbalanced datasets.

2. Contribution

To effectively mitigate the challenge posed by an imbalanced time series, we propose a
combined approach that incorporates both feature selection and data augmentation. By
strategically varying the order in which these techniques are applied, we can discern the
predominant factor contributing to improved performance. Let us present these two tech-
niques in details.

2.1. Data Augmentation

Data augmentation is a technique used to artificially increase the size of the imbalanced time
series dataset. The main idea is for each minority class sample to generate synthetic samples
by applying interpolation to similar samples and extrapolation to nearby samples. This
approach helps in creating a more balanced dataset by increasing the number of samples
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in the minority class without introducing bias. The algorithm for data augmentation is
presented in Algorithm 1. Let us present two traditional data augmentations: TimeWarp
and Drift.

Algorithm 1: Data Augmentation Algorithm

1. Input: Imbalanced time series dataset D

2. Output: Augmented dataset D′

3. Initialize empty dataset D′

4. For each sample x in D, do:

(a) If x belongs to minority class, then:

i. Generate n synthetic samples using interpolation and extrapolation
ii. Add synthetic samples to D′

(b) Else:

i. Add x to D′

5. Return D′

2.2. TimeWarp

TimeWarp is a non-linear transformation of the time axis. It warps the time series by
rescaling the time axis with a randomly generated warping function. The transformation
can be formally described as follows:

Let X(t) be a given time series. The TimeWarp method transforms X(t) to X ′(t′) where
t′ = f(t). Here, f(t) is a continuous, strictly increasing function that defines the warping
of the time axis. An example of such a function could be f(t) = at, where a is a random
variable. The exact form of f(t) may vary depending on the specifics of the implementation,
and is usually designed to create realistic warping of time series data.

2.3. Drift

Drift is an another augmentation technique that adds a trend to the time series data. It
generates a new time series by adding a linear or non-linear trend to the original time series.
This method could be formulated as follows:

Let X(t) be a given time series. The Drift method transforms X(t) to X ′(t) = X(t) +
d(t), where d(t) is a drift term. In our case, we use a simple linear function as a drift term
such as d(t) = bt, where b is a random variable sampled from a uniform distribution between
0.1 and 0.5.
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3. Feature Selection Methods

In this section, we discuss two popular methods for feature selection: Recursive Feature
Elimination (RFE), and Lasso. These techniques aim to identify the most relevant fea-
tures for a given predictive task, effectively reducing dimensionality and improving model
performance.

3.1. Recursive Feature Elimination (RFE)

RFE is a feature selection method that recursively eliminates less important features from
the dataset. Usually done backward, it can also be done forward. RFE begins by training
a model on the full feature set. Features are then ranked by their importance scores and
the feature with the lowest score is removed. This iterative process continues until the
remaining features reach a predetermined number.

In mathematical terms, if the input feature matrix is denoted by X ∈ Rn×p with n
samples and p features, the objective of RFE is to select a subset of features Xselected ∈ Rn×k,
where k < p. The selected subset of features should maximize the model’s performance
metric, such as accuracy or mean squared error.

The RFE algorithm can be summarized by the Algorithm 2.

Algorithm 2: Recursive Feature Elimination (RFE)

1. Input: Feature matrix X, Target variable y, Number of features k

2. Output: Selected feature matrix Xselected

3. Initialize Xselected ← X

4. While num features(Xselected) > k:

(a) Train a model on Xselected and y

(b) Calculate feature importance scores

(c) Remove the feature with the lowest score from Xselected

5. Return Xselected

RFE, by fitting a model and successively removing the weakest feature(s), reduces the
feature set to a specified limit. The features are ranked based on the model’s feature impor-
tances attributes, and the method recursively eliminates features to eliminate collinearity
and dependencies within the model.

3.2. Lasso

Least Absolute Shrinkage and Selection Operator (LASSO) implements both variable selec-
tion and regularization, thereby enhancing the accuracy and interpretability of the model it
generates. A penalty term is incorporated into the least squares objective, thereby effectively
reducing less important features’ coefficients to zero. LASSO’s mathematical representation
is given by:
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β̂lasso = argmin
β


n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj |

 (1)

where β̂lasso denotes the estimated parameters, yi represents the response variables, β0
and βj represent the model’s parameters, xij signifies the predictor variables, and λ controls
the amount of regularization.

In the case of correlated variables, Lasso tends to select one variable from a group and
disregards the rest. The steps involved in Lasso feature selection are as follows:

1. Train a Lasso regression model on the full feature set.

2. Obtain the magnitude of the feature coefficients.

3. Set a threshold and select the features with coefficients above the threshold.

3.3. Comparison of RFE and Lasso

To compare the effectiveness of RFE and Lasso, we can analyze three theoretical situations:

1. Sparsity: Lasso has built-in sparsity-inducing properties, meaning it tends to produce
models with a small number of nonzero coefficients. This property makes Lasso partic-
ularly suitable for feature selection when the number of relevant features is expected
to be small.

2. Consistency: Under certain assumptions, Lasso has been shown to consistently select
the true relevant features as the sample size increases, even in high-dimensional set-
tings. This property provides theoretical support for the reliability of Lasso’s feature
selection capabilities.

3. Collinearity Handling: Lasso performs well in the presence of multicollinearity, as
it encourages shrinkage of correlated features towards zero. In contrast, RFE may
struggle to select the most important features in highly collinear datasets.

Based on these theoretical arguments, Lasso is often preferred over RFE when dealing
with high-dimensional datasets, especially when features are expected to be sparse or exhibit
collinearity.

3.4. Problem with RFE in Presence of Multicollinearity

The problem with RFE in the case of multicollinearity arises due to the fact that it does
not handle redundancy in features. If two features are highly correlated, RFE might keep
both of them even though one could be discarded without loss of information.

Now, let’s consider a hypothetical scenario where we have a dataset with p features that
are highly correlated. If we denote the correlation as ρ, the collinearity can be expressed
as:

ρ =
Cov(Xi, Xj)

σiσj
(2)
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where Cov(Xi, Xj) is the covariance between feature i and j, and σi and σj are the
standard deviations of feature i and j respectively.

In case of perfect collinearity, ρ approaches 1, and as a result, the covariance matrix
of the features (X ′X) approaches singularity. In such a case, RFE may fail to distinguish
between the importance of features, as the features would appear equally important due to
high correlation.

On the contrary, the L1 penalty in Lasso leads to sparsity, which means that it forces less
important features’ coefficients to zero, thereby effectively reducing the feature set. This
happens regardless of the correlation between the features, making Lasso more effective in
scenarios with high multicollinearity.

Hence, given the properties of Lasso, it is quite intuitive that LAsso tends to outperform
RFE in situations with high multicollinearity.

4. Experiment

4.1. Experiment Objectives and Data Description

The objective of our study is to predict the Sharpe ratio, calculated over 30 periods as
initially proposed in Sharpe (1975), for various assets. The Sharpe ratio (SR) is mathe-
matically defined as the ratio of the excess return (Rexcess) over the investment’s volatility
(σ): SR = Rexcess

σ . In this formulation, Rexcess stands for the discrepancy between the av-
erage return of the investment and the risk-free rate, while σ is indicative of the standard
deviation of the investment’s returns. The Sharpe ratio is praised for its simplicity and ver-
satility, and has been extended to better account for drawdowns (Challet, 2017) and target
diversified portfolios that perform well out of sample (Lopez de Prado, 2016). Because of
its tractability, the Sharpe ratio is also commonly used to evaluate hedge funds and mutual
funds Sharpe (1975) and Sharpe (1992). Moreover, one can compute the statistics of having
a specific Sharpe ratio at a given time horizon, which enables inferences about whether the
asset manager has real skill or is simply lucky with their reported Sharpe ratio (Benhamou
et al., 2019a). Last but not least one can prove that maximizing the Sharpe ratio is equiv-
alent to maximizing the Omega ratio for elliptic distributions (Benhamou et al., 2019b).
In our experiments, we used 11 assets. The exhaustive inventory of the 11 financial assets
evaluated in this study can be found in table 1.

The features utilised in our analysis are derived from various sources. Some originate
from the assets themselves and are subject to transformations as detailed in table Table 2.
Others are contextual variables, outlined in table Table 3, and undergo different feature
transformations as elaborated in table Table 4, where we distinguish variables according to
their sign.

Consequently, the dataset integrates daily financial metrics from April 2nd, 2008, to
April 14th, 2023, amounting to a total of 38,456 data entries. By applying a traditional
time series train split, the dataset bifurcates into a training set and a test set. The training
set, active from April 2nd, 2008, to December 31st, 2018, encompasses 27,709 rows, while
the test set, spanning from January 1st, 2019, to April 14th, 2023, includes 10,746 rows.
Consequently, the training set comprises 72 percent of the entire dataset.

The data are primarily processed through two techniques: scaling and one-hot encoding.
Scaling is crucial to standardize the range of input features, enabling the model to converge
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Table 1: Asset Information

Number Asset Ticker Description

1 S&P 500 SGBVRES1 Index US Equities
2 Eurostoxx 50 SGBVRVG1 Index EU Equities
3 Nikkei 250 SGBVRNK1 Index Japan Equities
4 FTSE 100 SGBVRZ1 Index UK Equities
5 10 year US Tnote SGIXBTY Index US 10yr Bond
6 10Yr Bund SGIXBRX Index EU 10yr Bond
7 10Year Gild SGIXBGB Index UK 10yr Bond
8 10Year Japanese Government Bond SGIXBJB Index Japan 10yr Bond
9 Brent SGICCOSR Index Brent
10 Gold SGICGCSR Index Gold
11 Copper SGICHGSR Index Copper

faster. One-hot encoding was employed to transform categorical data into a format that
could be provided to the machine learning algorithm for more effective processing.

Furthermore, it is observed that the data are imbalanced, signifying a disproportionate
ratio of observations in each class. This is not a surprise as tail events are quite common
in finance (Sornette, 2003) or (Benhamou et al., 2021). Such a characteristic may result
in a biased model that may not effectively generalize. Therefore, techniques such as data
augmentation or feature selection are introduced to improve the model’s performance in
different cases.

The focus of our experiment lies in examining the mix of feature selection and data
augmentation. We aim to determine whether each technique on its own, or their combined
application, offers superior results for different portions of our upper tail data. This upper
tail data is defined as values exceeding the q-th quantile, with q ranging from 0.85 to 0.99.

Table 2: Asset Features Transformations and Parameters

Data Transformation Type Parameters

Asset pct change strictly positive 5, 10, 20, 60, 120, 250
Asset std deviation strictly positive 60, 125
Asset sharpe strictly positive 120, 250
Asset distance to MA strictly positive 250, 500
Asset technical analysis strictly positive rsi 14, 30, stochRSI 14, 20, macd diff, signal

The data augmentation method involves applying transformations to generate synthetic
data in order to increase the diversity and size of the dataset. In this specific case, the
augmentation technique includes two transformations: TimeWarp and Drift.
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Table 3: Common Features Transformations and Parameters

Data Type Frequency Category

US Rates 10yr vs 2 yr float daily Rates environment
EUR Rates 10yr vs 2 yr float daily Rates environment
US 10yr Rate float daily Rates environment
US Credit (CDS HY NA 5 year) strictly positive daily Credit environment
EUR Credit (CDS HY NA 5 year) strictly positive daily Credit environment
Correl Equity Bonds 20d float daily Asset interactions
Correl Equity Bonds 60d float daily Asset interactions
Correl Equity Bonds 120d float daily Asset interactions
Correl Equity Bonds 250d float daily Asset interactions
VIX Index strictly positive daily Market stress
Volatility of VIX strictly positive daily Market stress
Dollar Index strictly positive daily Currencies
GDP Forecast (FED survey) strictly positive quarterly Economist views
CPI Forecast (FED survey) strictly positive quarterly Economist views

The TimeWarp transformation modifies the temporal structure of the data by warping
it, introducing variations in the time series. This transformation allows for the generation
of new instances with different temporal patterns, enhancing the variability of the dataset.

Table 4: Transformations and Parameters for common features

Type Transformation Parameters

strictly positive percentage change 5, 10, 20, 60, 120, 250
strictly positive std 60, 125
strictly positive distance to standard Moving average 250, 500
float difference 5, 10, 20, 60, 120, 250
float standard deviations 60, 125
float distance to standard Moving average 250, 500

Additionally, the Drift transformation introduces a drift effect to the data by modifying
its baseline. The drift parameter is a random amount between 0.1 and 0.5. These two values
are taken to be consistent with the order of magnitude of Sharpe ratios. The magnitude of
the drift is randomly determined within a specified range (maximum drift), which controls
the extent of the shift in the data. By incorporating this drift effect, the method generates
additional instances with varying baseline levels, contributing to the augmentation of the
dataset.

By applying these transformations, the data augmentation method aims to create syn-
thetic data that captures different temporal patterns and baseline variations.
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4.2. Results

Figure 1 reveals the imbalance exhibited by the exceptionally positive values of the Sharpe
ratio. The distribution of the Sharpe ratio for the given dataset is delineated, highlighting
segments of negative Sharpe ratios and those surpassing the q-th quantile, where q extends
from 85 to 99. A notable observation from the figure is the ’fat tail’ characteristic manifested
by the values beyond the 99th quantile.

Figure 1: Distribution of Sharpe Ratios in Three Categories

Table 5 present the performance results of different methods, including Baseline, FS,
DA, and FSDA, across different quantiles ranging from 85 to 99 percent.

The Baseline model serves as our baseline where a standard RFE method is done on
an OLS model with 20 features but without any feature selection or data augmentation. It
should logically underperform.

The second model entitled the Feature Selection (FS) model is the Lasso regression.

The third model entitled the Data Augmentation (DA) model, focuses solely on aug-
menting the available data

Last but not lest, the FS DA model, where both feature selection and data augmentation
are combined is presented.

It is interesting to note that the FSDA method consistently achieves the lowest val-
ues among all methods, indicating its ability to produce more accurate results, across all
quantiles.
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Table 5: Model Comparison with Feature Selection and Data Augmentation

Quantile Baseline FS DA FSDA Best Method

85 0.381 0.369 0.36 0.358 FSDA
86 0.39 0.378 0.368 0.366 FSDA
87 0.4 0.388 0.378 0.376 FSDA
88 0.411 0.399 0.389 0.387 FSDA
89 0.421 0.41 0.399 0.397 FSDA
90 0.43 0.418 0.407 0.405 FSDA
91 0.443 0.431 0.419 0.416 FSDA
92 0.456 0.443 0.431 0.428 FSDA
93 0.47 0.456 0.444 0.44 FSDA
94 0.489 0.476 0.465 0.461 FSDA
95 0.511 0.497 0.484 0.481 FSDA
96 0.541 0.526 0.512 0.509 FSDA
97 0.573 0.555 0.542 0.539 FSDA
98 0.606 0.587 0.573 0.569 FSDA
99 0.683 0.667 0.652 0.648 FSDA

The evaluation criterion used in this research is the Root Mean Square Error (RMSE),
which is a widely adopted metric in regression tasks. RMSE measures the average magnitude
of the differences between predicted values ŷi and actual values yi, providing an intuitive
understanding of the model’s predictive performance. It is calculated using the following
formula:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

RMSE is particularly useful as it penalizes larger prediction errors more heavily, making
it sensitive to outliers and deviations from the actual values.

Having established that the chosen loss function is RMSE, the consistent superiority of
the FSDA method in achieving the lowest RMSE values reinforces its remarkable capability
to generate more accurate predictions. This suggests that FSDA can be a valuable alterna-
tive to traditional data augmentation techniques, showcasing its potential to provide better
predictions and enhance the overall model’s performance.

4.3. Intuition and future work

The text highlights the benefits of combining data augmentation and feature selection in
machine learning tasks:

1. Data Augmentation: Data augmentation techniques, such as Time Warping, can
enhance machine learning model performance by amplifying and diversifying training
data. This is particularly helpful with imbalanced datasets or extreme value instances.
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However, this alone might not be sufficient when the dataset is noisy or contains
irrelevant information, necessitating feature selection.

2. Feature Selection: Feature selection improves learning accuracy, reduces model
complexity, and mitigates the ’curse of dimensionality’ by eliminating less critical or
irrelevant features. This is especially important when dealing with high-dimensional
datasets.

Combining both techniques results in a machine-learning model that benefits from a
balanced and representative dataset (via data augmentation) and an enhanced learning
and generalization ability (through feature selection). While this combined approach is
beneficial, its efficiency largely depends on the specific dataset and problem. Moreover, it
might not fully resolve all challenges associated with imbalanced data or extreme values.

The combined approach could potentially bring significant advancements in the field
of data augmentation techniques. However, it is important to substantiate this intuitive
understanding with mathematical evidence. Future research should focus on providing
mathematical proofs and empirical evaluations to validate the effectiveness of this combined
approach in various machine-learning tasks.

5. Conclusion

In conclusion, the combined approach of feature selection and data augmentation presented
in this study, called FSDA, demonstrates its effectiveness in managing imbalanced time
series data and improving predictive accuracy. By identifying the most predictive features
for tail data and strategically incorporating augmented information, FSDA outperforms
traditional feature selection and data augmentation methods across various percentiles. This
highlights its potential for practical applications, particularly in domains where extreme
values in the tails play a crucial role in predictive outcomes.

For future work, further investigation could focus on exploring different combinations of
feature selection and data augmentation techniques to enhance the performance of FSDA.
Additionally, evaluating the generalizability of FSDA across diverse datasets and problem
domains would provide valuable insights into its robustness and applicability. Such efforts
will contribute to advancing the field of imbalanced time series analysis and facilitate more
accurate predictions in real-world scenarios.
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