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Abstract
We propose a framework for surrogate modelling of spiking systems. These systems are often de-
scribed by stiff differential equations with high-amplitude oscillations and multi-timescale dynamics,
making surrogate models an attractive tool for system design and simulation. We parameterise the
flow function of a spiking system using a recurrent neural network architecture, allowing for a direct
continuous-time representation of the state trajectories. The spiking nature of the signals makes for
a data-heavy and computationally hard training process; thus, we describe two methods to mitigate
these difficulties. We demonstrate our framework on two conductance-based models of biological
neurons, showing that we are able to train surrogate models which accurately replicate the spiking
behaviour.
Keywords: Spiking systems, nonlinear systems, surrogate modelling, neural networks.

1. Introduction

We consider the problem of learning surrogate models of spiking systems from samples of state
trajectories. Spiking behaviours abound in dynamical system models of biological neurons, and there
is significant interest in reproducing such behaviour in electronic devices. We propose a data-driven
framework based on a recurrent neural network (RNN) architecture to approximate the flow function
of conductance-based state-space models of spiking systems in continuous time.

Spiking systems (Sepulchre, 2022) are dynamical systems whose stability behaviour is highly
input-dependent. Determined by the input excitation, the state typically either remains close to an
equilibrium or enters into a limit cycle with large-amplitude oscillations called spikes. Whether
the input excites the system into the oscillatory regime and how many spikes are emitted depends
on both the input amplitude and frequency (Sepulchre et al., 2018). These systems thus possess a
mixed continuous–discrete character, as the spikes can be seen as encoding digital information into
a continuous-time signal. Models of biological neurons provide prototypical examples of spiking
systems, where the input is a current and the spiking phenomenon is observed in the membrane
potential.

Significant effort in computational neuroscience has been devoted to modelling the spiking
behaviour of neurons. Hodgkin and Huxley (1952) proposed modelling the relationship between the
membrane voltage and the applied current as a parallel interconnection of nonlinear conductances,
which can be identified using a voltage-clamp experiment, which Burghi et al. (2021) relate to
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a general output-feedback system identification scheme. The parameter identification problem is
shown to be tractable thanks to stability properties of the inverse dynamics of the conductance-based
models.

Circuit-theoretic models of biological neurons suggest the possibility of building electronic
devices with spiking behaviour, conceivably combining the best features of analogue and digital
electronics in a single physical device (Mead, 1990; DeWeerth et al., 1991; Sepulchre, 2022).
Using these biologically-inspired components in circuit design requires the ability to efficiently
simulate their behaviour, possibly in interconnection with many other circuit elements. However,
the differential equations models of these systems are typically stiff, which suggests that surrogate
models may provide computational advantages over direct integration of the differential equations.
Furthermore, continuous-time representations are desirable, due to the possibly input-dependent
nature of the periodicity of the spike trains, the high-frequency nature of the spike signals, and the
multiple time scales involved in the dynamics.

Machine learning offers an attractive array of methods for constructing surrogate models of
dynamical systems. Focusing on continuous-time models, we can distinguish between two approaches
in the literature: those methods that attempt to learn a model of the system dynamics from data,
and those where the goal is to directly learn a solution operator associated to the system. In the
first class of methods, a neural network is typically used to parameterise the right-hand side of an
ordinary differential equation (ODE), resulting in a class of models known as neural ODEs. This
requires a way to automatically compute gradients of trajectory values with respect to network
parameters during training, which may be done by differentiating through an ODE solver or using an
adjoint method (Chen et al., 2018). In a surrogate modelling context, Yang et al. (2022) propose a
neural ODE method for learning models of complex circuit elements, and derive a parameterisation
of the network that guarantees input-to-state stability. Regarding the application of these models
in system identification, Forgione and Piga (2021) discuss model structures and fitting criteria,
and Beintema et al. (2023) propose an architecture and estimation method shown to compete with
state-of-the-art nonlinear identification methods. The second group of methods, broadly known
as operator learning, attempt instead to directly learn the solution map of a differential equation,
i.e. the mapping from initial conditions, parameters, and external inputs to the solution. Directly
parameterising the solution allows for fast evaluation for new inputs, and provided that standard deep
learning toolchains are used, gradients with respect to the inputs of the model also become easy to
compute. A great deal of research attention has focused on learning solution operators of partial
differential equations using integral kernel parameterisations composed with neural networks (Lu
et al., 2021; Li et al., 2021; Kissas et al., 2022). Lin et al. (2023) use one such parameterisation
in a recursive architecture to predict trajectories of dynamical systems with external inputs. In a
similar context, Qin et al. (2021) suggest a residual network-based architecture to approximate the
one-step-ahead map of a dynamical system. Biloš et al. (2021) suggest a number of architectures
inspired by flow functions of autonomous systems as a substitute for neural ODEs.

Our main contribution is an operator learning framework for constructing continuous-time
input–output surrogate models of spiking systems from samples of state trajectories. Starting from
the flow function description of the spiking system, we directly parameterise its state trajectories.
This is particularly suited for systems exhibiting spiking behaviour, as it allows for a continuous-
time description of the state trajectories, while not requiring sampling the derivatives of the states
(which due to the spikes can widely vary in amplitude). Indeed, from the flow function point of
view the problem can be formulated as a standard (albeit infinite-dimensional) regression problem.
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Furthermore, by imposing the non-restrictive assumption that the input signal is piecewise constant,
we show that there is an exact correspondence between the flow function and a discrete-time
dynamical system. This suggests that one can approximate the flow function by an RNN, resulting
in an architecture that uses only standard learning components and can be easily implemented
and trained with established deep learning toolchains. Due to the nature of the spike signals, the
trajectories must be densely sampled in order to correctly capture the timing and height of each
spike. We propose a simple data reduction method based on rejection sampling, which enables
a significant reduction of the required amount of time samples per trajectory by focusing on the
most important regions of the signal. This is made possible by our continuous-time approach,
which naturally allows for data that is irregularly sampled in time. Moreover, we show how the
complexity of the optimisation problem can be subdued by considering segments of trajectories,
using the properties of the flow function. We numerically evaluate our approach through simulations
of conductance-based models of a single neuron and an interconnection of two neurons. We build
upon our recent work (Aguiar et al., 2023a) in which we describe a neural network architecture for
learning flow functions of continuous-time control systems. In the current paper, we focus explicitly
on challenges arising in learning the dynamics of spiking systems which require special attention
when applying this architecture.

The remainder of the paper is organised as follows. In section 2 we introduce conductance-based
neuron models in state-space form as a prototype for spiking behaviours, define the concept of flow
function of a control system, and formulate the problem of constructing a surrogate model of such
a system as an optimisation problem. In section 3 we describe the proposed architecture and two
methods for reducing the complexity of the training process. Finally, in section 4 we report and
discuss results from numerical experiments, and in section 5 we conclude and discuss possibilities
for future work.

2. Problem formulation

We begin by introducing a class of state-space models of biological neurons and their interconnections
which serve as prototypical examples of systems exhibiting spiking behaviour, before introducing the
definition of the flow function of a control system and the mathematical formulation of the surrogate
modelling problem for these systems.

2.1. Conductance-based models

The general conductance-based model of a neuron is given by the system of differential equa-
tions (Burghi et al., 2021)

CmV̇ (t) = u(t)− gleak(V (t)− Vleak)−
NI∑
k=1

Ik(V (t),mk, nk)

ṁ(t) = Am(V (t))m(t) + bm(V (t))

ṅ(t) = An(V (t))n(t) + bn(V (t)),

(1)

where V is the membrane potential, u the external (input) current, Cm > 0 the membrane capacitance,
gleak the leak conductance, and Vleak the reversal potential. The gating variables m,n ∈ [0, 1]NI are
dimensionless, and Am(V ), An(V ) and bm(V ), bn(V ) are diagonal matrices and vectors depending
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on V , respectively. The ionic currents are given by Ik(V,mk, nk) = gkm
αk
k nβk

k (V − Vk), where
gk > 0 and Vk ∈ R are constants and αk, βk are nonnegative integers. A detailed description of this
class of models and their biological motivation is given in Hodgkin and Huxley (1952) and Pospischil
et al. (2008). These models are prototypes of spiking systems: for certain choices of the input current
one observes spiking behaviour in the membrane potential signal V (Sepulchre et al., 2018).

One can interconnect several neuron models (1) to obtain more complex spiking behaviours (Gi-
annari and Astolfi, 2022). In particular, we can model the interconnection of n neurons through
electrical synapses

Ci
mV̇i(t) = ui(t)− gileak(Vi(t)− V i

leak)−
N i

I∑
k=1

Iik(Vi(t),m
i
k, n

i
k) +

n∑
j=1

ϵij(Vj(t)− Vi(t)), (2)

where mi and ni satisfy differential equations with the same structure as those in (1) (depending only
on Vi) and ϵij ≥ 0 is the weight of the electric synapse from neuron j to neuron i.

2.2. Flow functions

Consider a dynamical system described in state-space form by

ξ̇(t) = f(ξ(t), u(t)), ξ(0) = x

η(t) = h(ξ(t)),
(3)

with state ξ(t) ∈ Rdx , input u(t) ∈ Rdu and output η(t) ∈ Rdy . Assume that f is such that solutions
to (3) exist on R≥0 for x ∈ X , with X ⊂ Rdx being an invariant set, and u : R≥0 → U is measurable
and essentially bounded. Define a map φ : R≥0 ×X × U → X , U := L∞(R≥0,U), such that for
any such x and u it holds that ξ(t) = φ(t, x, u), t ≥ 0. The map φ is called the flow function of (3).
The flow function satisfies the identity property: for any x ∈ X and u ∈ U, φ(0, x, u) = x; and the
semigroup property: for any x ∈ X , t, s ≥ 0 and u, v ∈ U, φ(t+ s, x, u ∧

s
v) = φ(t, φ(s, x, u), v).

Here u ∧
s
v denotes the concatenation of u and v at time s ≥ 0, defined as [u ∧

s
v](t) = u(t),

0 ≤ t < s, and [u ∧
s
v](t) = v(t− s), t ≥ s.

Henceforth we assume that the considered controls are piecewise constant1 with sampling
period ∆ > 0. Thus, let U0

∆ ⊂ U, where ∆ > 0 and u ∈ U0
∆ if and only if there exists a sequence

(ωk)
∞
k=0 ⊂ U such that u(k∆+t) = ωk for all k ≥ 1 and t ∈ [0,∆). We let U∆ =

⋃
s∈[0,∆) σ

s(U0
∆),

where σ is the time-shift operator defined by (σsu)(t) = u(t + s) for s ≥ 0, and restrict φ to
R≥0 ×X × U∆.

The conductance-based models (1) and (2) can be written in the form (3), with the state ξ given
by the membrane potentials Vi together with the gating variables mi

k, n
i
k of each neuron and the

input signal u given by the collection of input currents ui. We take the output η to be the collection
of membrane potentials Vi, as these are the spiking signals we are interested in simulating and, as
in (2), the relevant signals when interconnecting neuron models.

1. The approach can be extended to more general classes of controls, but we proceed with this assumption as it simplifies
the exposition and piecewise constant controls are sufficient for our purposes. See Aguiar et al. (2023b) for a discussion
on extensions.
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2.3. Problem

Let us now define the problem considered in this paper. Let y(t, x, u) := h(φ(t, x, u)) be the
trajectory of the output signal. We define the problem of obtaining a surrogate model of the
system (3) as that of solving the optimisation problem

minimise
ŷ∈H

ℓT (ŷ) := Ex,u
1

T

∫ T

0
∥y(t, x, u)− ŷ(t, x, u)∥1 dt, (4)

where x, u are assumed to be independent and distributed according to probability distributions Px

and Pu, describing the initial conditions and control inputs of interest, respectively. The distribution
Pu has its support in U∆, so that sampling the values of a control u ∼ Pu on [0, T ] is equivalent to
sampling a finite sequence of control values. We use the 1-norm to measure the approximation error
due to the sparse nature of the spike signals. The set H ⊂

{
ŷ : R≥0 × Rdx × U∆ → Rdx

}
is the

hypothesis class from which the surrogate model ŷ is to be selected. In this paper, we consider a
hypothesis class given by the RNN architecture described in the following section.

3. Methodology

In this section, we first motivate the approximation of the flow function by an RNN and describe
the proposed architecture. We then discuss the data collection process and two issues arising in the
training of the RNN architecture, as well as methods to mitigate them.

3.1. Architecture

Fix t ≥ 0, x ∈ X and u ∈ U0
∆. Let (ωk) be the sequence of values of u, and define for ω ∈ U the

constant control uω through uω(t) := ω. With kt := ⌊t/∆⌋ (the sample index corresponding to t),
the value of φ(t, x, u) can be evaluated recursively as follows:

x0 = x

xk+1 = φ(∆, xk, uωk
), 0 ≤ k < kt

xkt+1 = φ(t− kt∆, xkt , uωkt
).

(5)

By the semigroup property, we then have xkt+1 = φ(t, x, u). Letting Φ : [0, 1]× X × U → X be
defined by Φ(τ, x, ω) = φ(τ∆, x, uω), and τk by τk = 1 for 0 ≤ k < kt and τkt = (t− kt∆)/∆,
we can rewrite (5) as xk+1 = Φ(τk, xk, ωk), 0 ≤ k ≤ kt.

If now v ∈ U∆, there is some u ∈ U0
∆ and δ ∈ [0,∆) such that v = σδu, and by the semigroup

property φ(t, x, v) = φ(t − δ, φ(δ, x, uω0), σ
∆u) for t ≥ δ. Thus, since σ∆u, uω0 ∈ U∆, one can

proceed as above also in this case. This shows that the flow can be exactly computed at any time
instant by a discrete-time finite-dimensional dynamical system (with inputs (τ, ω)), suggesting that
one can approximate φ (and thus y) through this representation.

The previous derivation motivates the choice of the hypothesis class H given by a parameterisation
of ŷ based on the composition of an RNN with a pair of encoder–decoder networks, as illustrated in
Figure 1. This architecture is in fact a universal approximator of the flow function corresponding
to (3) under mild conditions on f (Aguiar et al., 2023b).
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Figure 1: Schematic of the proposed architecture for kt = 3.

3.2. Data collection

To generate training data, we integrate N trajectories of the differential equation (3) with initial
conditions xi and ui, i = 1, . . . , N , sampled from Px and Pu, respectively, obtaining samples

ξik = φ(tik, xi, ui), k = 1, . . . ,K, i = 1, . . . , N, (6)

where, for each i, the sampling times tik are uniform on [0, T ] and increasing in k. Using these
samples, we construct an approximation of ℓT in (4) as

ℓ̂T (ŷ) :=
1

N

1

K

∑
i,k

∥h(ξik)− ŷ(tik, xi, ui)∥1 . (7)

Because φ is the flow of a spiking system, the optimisation of (7) is not without challenges.
The spikes can be very ‘thin’, which can imply that a large number of samples are required when
the sampling times tik are uniformly distributed, increasing the computational load during training.
Furthermore, the spikes might be relatively infrequent, and consequently underrepresented in the
data, which can make it harder to learn the spiking behaviour properly. In the next subsection we
describe a simple rejection sampling algorithm that alleviates these issues.

3.3. Rejection sampling for data reduction

We propose a method that simultaneously reduces the amount of samples per trajectory needed to
represent the spike signal and weights the loss function in order to emphasise learning the spiking
behaviour. This is done as follows: first, sample data (6) with tik uniform and dense, and then use
rejection sampling to ‘prune’ the data, i.e. select which samples to remove so that the remaining tik
have a distribution which favours learning the spiking behaviour correctly.

Consider first the case of a single output, i.e. y is scalar-valued. Roughly speaking, the output
signal y(·, x, u) has higher frequency content when its amplitude is higher (i.e. when a spike is
emitted). One should thus sample more densely when the value of y(·, x, u) is higher. In other
words, we would like that the sampling times tik be distributed according to the density function
p(t, xi, ui) ∝

[
y(t, xi, ui)−mins∈[0,T ] y(s, xi, ui)

]
(or more generally p ∝ α(y), where α is an
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increasing function). If tik are sampled with this density, ℓ̂T in (7) is the empirical estimate of the
weighted loss function

Ex,u
1

T

∫ T

0
p(t, x, u) ∥y(t, x, u)− ŷ(t, x, u)∥1 dt,

giving higher weight to parts of the trajectories where spiking occurs.
In our case, where tik are given a priori and uniformly distributed, we can use rejection sam-

pling (Ross, 2013) to discard certain samples so that the remaining tik are distributed approximately
according to p. This implies the following procedure for each (i, k):

• Draw Υik ∼ Uniform([0, 1]);

• If Υik >
p(tik, xi, ui)

Mi
, where Mi := maxk p(tik, xi, ui), remove the sample.

After a single pass through the dataset, the undiscarded tik will be approximately distributed with
density p(·, xi, ui). Furthermore, the probability of accepting a sample from the ith trajectory is
approximately equal to 1/Mi, giving the approximate fraction of samples which will be retained.

We are thus at once able to reduce the volume of data while retaining a faithful representation
of the spiking signals, and to increase the weight of the spiking regions in the loss function. Other
choices of p, e.g. involving the derivative or frequency content of the output signal, could of course
also be used.

If there are several outputs, so y is vector-valued, one may combine the outputs into a scalar
signal that contains the spikes of all outputs, for instance, p(t, x, u) ∝ maxi=1,...,dy αi(yi(t, x, u)),
where αi are monotone functions to ensure that yi, i = 1, . . . , dy, are normalised to the same range.

3.4. Windowed loss using the semigroup property

The complexity of optimising the empirical loss (7) with an RNN is highly dependent on the length
of the input sequences. This dependence is twofold: the computational effort of the forward and
backward passes through the recurrent network depends linearly on the simulation length, while
simultaneously the loss function becomes less smooth with respect to the network parameters as the
sequence length increases (Ribeiro et al., 2020). We describe here how this issue can be addressed in
the context of our method, by reducing the length of input sequences while still making use of all
training data. In a similar way to Ribeiro et al. (2020) and Beintema et al. (2023), we construct a new
loss function by considering shorter segments of output trajectories. This is easy to do in our setting,
as we can take advantage of properties of the flow function.

It follows from the semigroup property that for each i, k and j ≥ k we can rewrite each trajectory
sample ξij given as in (6) as ξij = φ(tij − tik, ξik, σ

tikui). Note that σtikui ∈ U∆, so that with the
same training data we can construct the loss function

ℓ̂win(ŷ) :=
1

N

1

K

∑
i,k

1

|Jik|
∑
j∈Jik

∥∥h(ξij)− ŷ(tij − tik, ξik, σ
tikui)

∥∥
1
,

where each Jik ⊂ [k,K], and |Jik| denotes the cardinality of the set. In this case, the maximum
length of the input sequences is given by L := 1 + maxi,k maxj∈Jik⌊

tij−tik
∆ ⌋, which we can choose

by appropriate selection of the index sets Jik. This allows for controlling the time complexity of the
training epochs and the smoothness of the loss function. Of course, it is not necessarily the case that
ℓ̂win is the empirical mean approximation of ℓT , so care must be taken to avoid overfitting.
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4. Numerical experiments

We perform two experiments with data from simulations of two conductance-based models: a single
neuron model, and a model of the feedforward interconnection of two neurons with an electrical
synapse 2.

4.1. Model of a single fast-spiking neuron
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Figure 2: Predictions of output trajectories for a single fast-spiking neuron. The surrogate model
prediction is shown in orange; the real output is plotted in blue (dashed). Note that the surrogate
model closely reproduces the spiking behaviour of the neuron model, and is able to recover from
errors in the prediction of the initial condition.

Dynamics We consider a conductance-based model of a single neuron as in (1) with a sodium
current, I1(V,m1, n1) = g1m

3
1n1(V − V1), and a potassium ionic current, I2(V,m2, n2) =

g2n
4
2(V − V2), i.e. NI = 2. The model can be described with four states, since α2 = 0 and

so m2 can be ignored. This corresponds to a fast-spiking neuron, and is identical to the model
structure originally proposed in Hodgkin and Huxley (1952). The full equations and parameter values
may be found in Giannari and Astolfi (2022).

Data collection We integrate N = 800 state trajectories of the model over t ∈ [0, T ], T = 500 ms,
using a backwards differentiation formula integrator, and collect K = 50000 samples from each
trajectory, with tik sampled uniformly using Latin hypercube sampling. The initial conditions are
sampled uniformly with V (0) ∼ Uniform([−100, 100]) mV and mk(0), nk(0) ∼ Uniform([0, 1]).
The control inputs have period ∆ = 10 ms and input values are sampled according to

ω10k
i.i.d.∼ Uniform([0, 1]) µA, k ≥ 0

ω10k+j = ω10k, k ≥ 0, 0 ≤ j < 10,

i.e. the input changes every 100 ms.
We reduce the dataset using the rejection sampling method described above, sampling according

to the density p(t, x, u) ∝ ỹ(t, x, u), where ỹ is the normalisation of the output y to [0, 1]. We ensure
that the local maxima of the signal (i.e. the spike peaks) and the initial state are included in the

2. The source code used to run the experiments is available at https://github.com/mcpca/flow-learning.
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final dataset. The resulting sampled trajectories are split into training, validation, and testing sets
according to a 60/20/20% random split.

Architecture and training We train 10 models with the architecture described in 3.1. Each RNN
is a long short-term memory (LSTM) network with 24 hidden states. The encoder and decoder are
feedforward networks with tanh activations and three hidden layers. The encoder network maps
the initial condition to the initial hidden state of the LSTM. The cell state of the LSTM is always
zero-initialised.

We apply the windowing technique described in section 3, where Jik has at most 5 elements
drawn uniformly (without repetition) from {k, . . . , k + 20}, so that the input sequences to the RNN
have maximum length L = 20. The windowed empirical loss is minimised using the Adam algorithm
with an initial learning rate of 1× 10−3. The learning rate is reduced by a factor of 10 whenever the
empirical loss (7) constructed with the validation data does not decrease for 5 consecutive epochs.
Training is stopped when the validation loss does not decrease for 15 consecutive epochs.

Results Figure 2 shows two trajectory predictions with unseen test inputs and initial conditions
from the model with the smallest validation loss among the 10 models. We observe that the surrogate
model is able to closely capture the timing and height of the spikes. In the right-hand side figure, we
see that the model is not able to predict the initial condition of the system correctly and consequently
misses the timing of the first few spikes, but nonetheless correctly captures the spikes emitted after
t = 400 ms. It is interesting to note that although the system does not have fading memory, i.e. the
effect of initial conditions does not necessarily disappear as t → ∞, the error in the initial conditions
is not persistent in the output of the surrogate model. Figure 3a shows the distributions of the losses
for the 10 models, and we observe that the training procedure is robust to the initialisation of the
network parameters.

Train (windowed) Validation Test

10−1

2× 10−2
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4× 10−2

6× 10−2

L
og

lo
ss

(a)

Train (windowed) Validation Test

10−2

6× 10−3

2× 10−2

L
og

lo
ss

(b)

Figure 3: Plot of the loss distributions for the 10 models trained with data from each system: (a)
single fast-spiking neuron; (b) feedforward interconnection of two neurons.

4.2. Feedforward interconnection of two neuron models

Dynamics We consider a model of the form (2) with n = 2. Each of the neurons has NI = 3
with I1, I2 as in the previous section and an additional potassium current given by I3(V,m3, n3) =
g3n3(V − V3), so that each neuron has 5 states, and thus the interconnection results in a model
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with 10 states. We take ϵ12 = 0.1 S, ϵ21 = 0 S, and u2 ≡ 0, corresponding to a feedforward
interconnection of two regular spiking with adaptation type neurons, as described in Giannari and
Astolfi (2022).

Data collection We follow the procedure described in the previous subsection, collecting 200 tra-
jectories on the time interval [0, 1000] ms, with the same distributions for the initial conditions of the
membrane voltages and the gating variables, and the same distribution for the current input u = u1.
The rejection sampling is performed with the density p(t, x, u) ∝ maxi=1,2 ỹi(t, x, u).

Architecture and training The details of the architecture and training procedure are as in the
previous section, the sole difference being that the LSTM network now has 32 hidden states.

Results Figure 4 shows two trajectory predictions with unseen test inputs and initial conditions. As
in the previous subsection, we observe that the surrogate model faithfully reproduces the behaviour
of the spiking system. Similarly, in Figure 3b we verify the robustness of the training procedure with
respect to the training parameters.
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Figure 4: Predictions of output trajectories for the feedforward interconnection of two neurons. The
surrogate model prediction is shown in orange; the real output is plotted in blue (dashed).

5. Conclusion

We proposed a framework for surrogate modelling of spiking systems based on approximating the
flow function of a class of state-space models exhibiting spiking behaviour. The flow function
approximation was performed using an RNN architecture which allows for a direct continuous-time
parameterisation of the output trajectories. We discussed two issues which arise when training
this architecture on data from a spiking system, namely, the amount of data required to accurately
represent the spike signals and the complexity of the optimisation problem, and show how these
can be addressed in the context of our method. Finally, we presented results from two numerical
experiments which illustrate the feasibility of using our framework for constructing surrogate models
of spiking systems.

Directions for future research include an extended experimental study to validate the applicability
of the architecture in large networks of spiking systems, and the possibility of further adapting
the architecture to enforce system-theoretic properties characteristic of spiking systems. It is also
interesting to consider whether surrogate models of complex networks can be obtained in a modular
fashion.
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