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Abstract
We study the problem of fitting a model to a dynamical environment when new modes of behavior
emerge sequentially. The learning model is aware when a new mode appears, but it cannot access
the true modes of individual training sequences. The state-of-the-art continual learning approaches
cannot handle this setup, because parameter transfer suffers from catastrophic interference and
episodic memory design requires the knowledge of the ground-truth modes of sequences. We de-
vise a novel continual learning method that overcomes both limitations by maintaining a descriptor
of the mode of an encountered sequence in a neural episodic memory. We employ a Dirichlet Pro-
cess prior on the attention weights of the memory to foster efficient storage of the mode descriptors.
Our method performs continual learning by transferring knowledge across tasks by retrieving the
descriptors of similar modes of past tasks to the mode of a current sequence and feeding this de-
scriptor into its transition kernel as control input. We observe the continual learning performance
of our method to compare favorably to the mainstream parameter transfer approach.
Keywords: continual learning, multi-modality, external memory, dynamics modeling.

1. Introduction

Continual Learning (CL) aims to develop a versatile model that is capable of solving multiple pre-
diction tasks which are presented to the model one task at a time. The model is then expected to
learn the latest task as accurately as possible while preserving its excellence at the previous ones.
Performance drop caused by the newly learned task is called catastrophic forgetting. CL is essential
for developing intelligent agents that can adapt to new environmental conditions not encountered
during training. For instance, an autonomous driving controller may improve its policy based on
new experiences collected during its customer-side lifetime.

There exists a solid body of work that adopts parameter transfer across tasks as the key element
of task memorization (Kirkpatrick et al., 2017; Nguyen et al., 2018; Singh et al., 2019; Zenke
et al., 2017). There also appear preliminary studies on building attentive memories to capture tasks
(Garnelo et al., 2018; Fraccaro et al., 2018). Principles that yield memory mechanisms optimal for
CL are yet to be discovered. There has been prior work that focuses on CL for Recurrent Neural
Networks (RNN) (Cossu et al., 2021) but either classification or instance forecasting for time series.
Complementarily, we study CL in the context of dynamical system identification. Probabilistic
State-Space Models (SSM) are the gold standard methodology for the inference of complex latent
dynamics. SSMs are widely applicable to forecasting impactful quantities such as weather, currency
exchange, equity prices, and sales trends. SSM research gains significance also in robot learning
parallel to the growing interest in model-based reinforcement learning (Hafner et al., 2019, 2020).
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Figure 1: Our research shows that inferring and using mode
descriptors from observed sequences significantly
enhances CL performance. Storing these descrip-
tors in external neural episodic memory and in-
tegrating them into subsequent tasks drives im-
proved learning outcomes.

Our main contributions are two-
fold. First is a novel problem
setup where dynamical system mod-
eling tasks emerge sequentially and
a probabilistic SSM is expected to
learn them cumulatively. We assume
each task to follow multi-modal dy-
namics, where each individual se-
quence of a task follows one of
the possible modes that describe the
task. Successful CL in such a setup
presupposes maximally efficient en-
coding of tasks into long-term mem-
ory and their accurate retrieval. Our
second contribution is a novel CL
model tailored for addressing this
challenging problem. The state of
the art in CL uses either param-
eter transfer or end-to-end differ-
entiable attentive episodic memory
for knowledge transfer across tasks.
The multimodality of the sequences
would undermine the parameter transfer approach due to catastrophic interference (the effect of
global parameter updates on unintended regions of the input space) and it would require the ground-
truth modality labels for the memory-based approaches to be applicable. Our approach sidesteps
these limitations by capturing the characteristics of unknown modes of sequences of the present task
into fixed-sized vectors, called mode descriptors, and storing these descriptors in an external neural
episodic memory addressable via a learnable attention mechanism. Our approach represents mul-
tiple task modes by feeding these mode descriptors into the state transition kernel as an additional
input. We place a Dirichlet Process (DP) prior on the attention weights of the memory to encourage
the explanation of the data with a minimum number of modes. Figure 1 illustrates our model with
external memory and the problem with two tasks and four modes. Our resulting Bayesian model
can be efficiently trained using a straightforward adaptation of existing variational SSM inference
techniques.

We evaluate our model in two time series prediction data sets and three synthetic data sets gen-
erated from challenging nonlinear multi-modal dynamical systems. The performance of our method
improves consistently over the established parameter transfer approach, verifying the importance of
parsimonious use of neural episodic memory for efficient acquisition of knowledge within tasks and
effective transfer of knowledge across different tasks.

2. Continual Multi-Modal Dynamics Learning

We assume a learning agent that observes a dynamical environment via sequences y1:T = {y1, . . . , yT }
consisting of time-indexed measurements yt ∈ Y living in a measurable space Y . We denote a snip-
pet of a sequence yt:t′ = {yt, . . . , yt′} for an arbitrary time interval [t, t′]. Modes refer to general
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distinguishable properties of a dynamic system such as states with different characteristics of a sine
wave (amplitude, frequency) or semantically different dynamics such as different character trajec-
tories. We define the mode of a sequence y1:T as a fixed-sized vector and m as an element of a
K−dimensional embedding space X . A dynamical system can potentially operate within a large
number of modes. Making an analogy to the real world, an autonomous vehicle accounts for differ-
ent environmental characteristics when planning and controlling for different weather conditions,
countries, and times of a day. Only a few of the modes are active for a particular time point and
each mode instantly activates and deactivates for limited time periods.

We search for a learning algorithm that enables the agent to fit a dynamical environment that
has perpetually changing global characteristics. We cast the corresponding learning problem as CL
of multi-modal dynamical systems, where each task is defined as a group of modes that modulate
a specific dynamical system. In formal terms, a task Ti is defined as a group of mode descriptors
sampled from a mode generating oracle P (X ), that is

Ti = {mi
r|mr ∼ P (X ), r = 1, · · · , R}, i = 1, · · ·U, (1)

where R is the number of modes per task and U is the number of tasks. We assume that each
sequence of a task follows dynamics modulated by a mode sampled from Ti

DTi =
{
yn1:T

∣∣∣mn ∼ P (Ti), yn1:T ∼ p(y1:T |mn), n = 1, · · · , N
}
, (2)

where N is number of instances per task, P (Ti) is a probability mass function defined on the modes
of task Ti, and p(y1:T |mr) is the probability measure that describes the true behavior of the envi-
ronment dynamics under mode mr within a time interval [1, T ]. The marginal distribution of a task
with respect to its modes is given as p(y1:T |Ti) =

∑R
r=1 p(y1:T |mr)P (mr|Ti). The agent observes

a task via a data set DTi that contains only the sequences yn1:T but not their corresponding modes.
We are interested in learning a model that minimizes the true CL risk function below

RCLL (hθ) = lim
U→+∞

U∑
i=1

ETi∼P (X )

[
Ey1:T∼p(y1:T |Ti) [L(hθ(·|y1:C), yC+1:T )]

]
, (3)

which amounts to the limit of the cumulative risk of individual tasks as they appear one at a time.
Above, hθ : YC → YT−C is a stochastic process that can map an observed sequence of an arbitrary
length C to the subsequent T − C time steps. We call the first C observations in the sequence
y1:C as the context and define L as a sequence-specific loss function defined on the future values
of the sequence yC+1:T . We evaluate the performance of predictions ŷ via two scores: Normalized
Mean Squared Error (NMSE) as a measure of the prediction accuracy of hθ when used as a Gibbs
predictor, and Negative Log-likelihood (NLL) as a measure of Bayesian model fit that quantifies the
model’s own assessment on the uncertainty of its assumptions. We approximate the true CL risk
by its empirical counterpart: R̂CLL = 1

N

∑U
i=1

∑N
n=1 L

(
hθ(y

n
C+1:T |yn1:C), ynC+1:T

∣∣Ti) for a finite
number U of tasks presented to hθ one at a time.

3. Novel Baseline: Variational Continual Learning for Bayesian State-Space Models

We build our target model on a Bayesian treatment of state-space modeling, which is proven to be
effective in learning under high uncertainty and knowledge transfer across tasks, as practiced in the
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seminal prior art of CL (Kirkpatrick et al., 2017; Nguyen et al., 2018). We perform approximate
inference using variational Bayes due to its multiple successful applications to state-space models
(Frigola et al., 2014; Doerr et al., 2018; Ialongo et al., 2019) and its favorable computational proper-
ties. As there does not exist any prior work tailored specifically towards CL for dynamical systems,
we curate our own baseline. We adopt the established practice of setting the posterior of the learned
parameters of the previous task as the prior of the next one and determine Variational Continual
Learning (VCL) (Nguyen et al., 2018) as the state-of-the-art representative of this approach. Elastic
Weight Consolidation (EWC) (Kirkpatrick et al., 2017) also follows the same approach but uses a
simpler posterior inference scheme.

Bayesian State Space Models (BSSM): are characterized by the data generating process below

θ ∼ p(θ), x0 ∼ p(x0), xt|xt−1, θ ∼ p(xt|xt−1, θ), yt|xt ∼ p(yt|xt), (4)

where xt and yt correspond to the latent and observed state variables for time step t, respectively.
The system dynamics are modeled by the first-order Markovian transition kernel p(xt|xt−1, θ) pa-
rameterized by θ that in turn follows a prior distribution p(θ). The latent states are mapped to the
observation space via a probabilistic observation model p(yt|xt). We formulate the initial latent
state x0 as another random variable that follows the prior distribution p(x0).

Variational Inference is required to approximate the posterior p(x0:T , θ|y1:T ), which will be in-
tractable for many choices of distribution families for the data generating process in Eq. 4. Follow-
ing Yildiz et al. (2019), we choose the variational distribution to be mean-field across the parameters
of the dynamics and the latent states

qξ,ψ(x0:T , θ|y1:T ) = qξ(x0|y1:C)
T∏
t=1

p(xt|xt−1, θ)qψ(θ), (5)

where qξ,ψ is an approximation to the true posterior p(x0:T , θ|y1:T ) with variational free parameters
(ξ, ψ). This formulation has multiple advantages. Firstly, modeling the marginal posterior on the
initial latent state x0 by amortizing on the context observations y1:C makes the Evidence Lower
BOund (ELBO) calculation invariant to the context length. Secondly, adopting the prior transi-
tion kernel avoids duplicate learning of environment dynamics with twice as many free parameters
and prevents training from instabilities caused by the inconsistencies between prior and posterior
dynamics. Applying Jensen’s inequality in a conventional way, the corresponding ELBO will be

log p(y1:T ) ≥ Ep(x1:T |θ,x0)qξ(x0|y1:C)qψ(θ)[log p(y1:T |x1:T )] (6)

−KL(qξ(x0|y1:C)||p(x0))−KL(qψ(θ)||p(θ)),
where KL(·||·) stands for the Kullback-Leibler (KL) divergence between the two distributions on
its arguments, and X = {x0, · · · , xT }.
VCL for BSSMs can be implemented as follows. Having fitted the ELBO (Eq. 6) on the data set
for the first task which has observed sequences DT1 , we attain (ξ∗1 , ψ

∗
1) = argmaxξ,ψL(ξ, ψ,DT1).

When the next task arrives with data DT2 , we assign p(θ)← qψ∗
1
(θ) and maximize the ELBO again

(ξ∗2 , ψ
∗
2) = argmaxξ,ψL(ξ, ψ,DT2) . We repeat this process continually for every new task. We

refer to this newly curated baseline in the rest of the paper as VCL-BSSM. We neglect the coreset
extension of VCL since its application to BSSMs is tedious and its advantage is not demonstrated
with sufficient significance in static prediction tasks studied in original work.
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4. Target Model: The Continual Dynamic Dirichlet Process

The commonplace Bayesian approach to CL transfers knowledge across tasks by assigning the
learned posterior on the parameters of the previous task as the prior on the parameters of the current
task. This is an effective approach when the subject of transfer is a feed-forward model, such as a
classifier in a supervised learning setup (Nguyen et al., 2018) or a policy network in reinforcement
learning (Kirkpatrick et al., 2017). We conjecture that the existing parameter transfer Ansatz would
not be sufficient for the transfer of more complex task properties such as modes of dynamical sys-
tems. We address this problem by tailoring a novel CL approach from an original combination of an
aged statistical machine learning tool, the DP, with modern neural episodic memory and attention
mechanisms.

Dirichlet Processes are stochastic processes defined on a countably infinite number of categorical
outcomes, every finite subset of which follows a multinomial distribution drawn from a Dirichlet
prior (Teh et al., 2006). A DP follows a Griffiths-Engen-McCloskey (GEM) distribution (Pitman
et al., 2002)

π′r|α0 ∼ Beta(1, α0), πr = π′r

r−1∏
j=1

(1− π′j), π = [π1, . . . , πR], (7)

which we denote in short hand as π ∼ GEM(α0, R). The GEM distribution can also be viewed
as a stick-breaking process (Sethuraman, 1994; Fox et al., 2011) where α0 > 0 is a scalar hyper-
parameter. The data generation process below is called a DP for a base measure G0(X ) defined on
a σ−algebra B of X

mr ∼ G0(X ), π ∼ GEM(α0, R), G|π =
R∑
r=1

πrδmr , (8)

where δx(A) is Dirac delta measure that takes value 1 if x ∈ A and 0 otherwise for any measurable
set A ∈ B and G is a categorical distribution with parameters π.

Neural Episodic Memory. We assume that the environment dynamics can be expressed within a
measurable latent embedding space xt ∈ X , and a sequence encoder eλ(xt:t′) parameterized by λ
for t ≤ t′ that maps a sequence of latent embeddings into a fixed dimensional vector, as well as a
neural memory M = {m1, · · · ,mR} consisting of R elements mr ∈ X that live in the same space
as latent embeddings xt. We can construct a probability measure for B from the memory M by
updating

mr ← (1− wr(y1:C ,mr))mr + wr(y1:C ,mr)eλ(y1:C) (9)

for each sequence where wr(y1:C ,mr) =
e⟨mr,eλ(y1:C)⟩∑R
j=1 e

⟨mj ,eλ(y1:C)⟩
for some similarity function ⟨·, ·⟩ :

X ×X → R+. This construction imposes a memory attention mechanism, where the encoded mode
descriptors attend to the memory elements. Here we make the fair assumption that the modality of
a sequence can be identified also from the observation space, while we need to infer the latent
representations accurately to model the mode dynamics in detail. We choose an uninformative base

measure that assigns equal prior probabilities to memory elements G0(M) =
∑R

k=1

1

R
δmr .
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The full model. We complement the BSSM in Eq. 4 with an external neural episodic memory
M that is updated for each observed sequence with the rule in Eq. 9. We place a DP prior on
the retrieval of mode descriptors mr ∈ M to encourage the model to generate a minimum number
of modes. We also feed the retrieved mode descriptor into the transition kernel p(xt|xt−1,m, θ)
as control input. The resultant model, which we call as the Continual Dynamic Dirichlet Process
(CDDP), follows the generative process

π ∼ GEM(α0, R), m|π ∼
R∑
r=1

πrδmr , θ ∼ p(θ), (10)

x0 ∼ p(x0), xt|xt−1,m, θ ∼ p(xt|xt−1,m, θ), yt|xt ∼ p(yt|xt), (11)

where memory capacityR is set to a bigger number than the expected upper limit of the mode count.

Inference. Since p(x0:T , θ|y1:T ) is intractable, we approximate it by variational inference. We
inherit the advantages of the BSSM inference scheme by choosing the variational distribution as

qξ,ψ(x0:T , θ, π|y1:T ) = qξ(x0|y1:C , π)
T∏
t=1

R∑
r=1

qξ(π = r|y1:C)p(xt|xt−1,mr, θ)qψ(θ), (12)

where

qψ(θ) = N (θ|µ,Σ), qξ(π|y1:C) = Cat(w1(m1, y1:C), . . . , wR(mR, y1:C)), (13)

qξ(x0|y1:C , π) =
R∑
r=1

πrN
(
x0

∣∣∣v1(mr, eλ(y1:C)), v2(mr, eλ(y1:C))
)

(14)

with x0 ∼ N (0, I). In the expressions above, v1 and v2 refer to dense layers. The corresponding
ELBO is then calculated with

log p(y1:T ) ≥
R∑
r=1

qξ(π = r|y1:C)Ep(x1:T |θ,x0,mr)qξ(x0|y1:C)qψ(θ)[log p(y1:T |x1:T )] (15)

−KL(qξ(x0|y1:C)||p(x0))−KL(qψ(θ)||p(θ))−
R∑
r=1

wr(mr, y1:C) log(wr(mr, y1:C)/πr).

Prediction. Having trained the model on the latest task Ti, its posterior predictive distribution for
new sequence Y ∗ and corresponding latent embeddings X = {x0, · · · , xT } reads

p(Y ∗
C+1:T |DTi , Y

∗
1:C) = (16)

R∑
r=1

q(π = r|Y ∗
1:C)

∫
X,θ

qξ(x0|Y ∗
1:C , π = r)qψ(θ)

[ T∏
t=C+1

p(y∗t |xt)p(xt|xt−1, θ,mr)
]
.

5. Related Work

State Space Models. There exists a considerable body of work on Bayesian versions of SSMs
that employ Gaussian Process as transition kernels (Ialongo et al., 2019) and perform variational
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inference. Another vein of work named Recurrent SSMs (Hafner et al., 2019, 2020) models the
transition dynamics as RNN that map a state to the next time step deterministically while admitting
a random state variable from the previous time step as input and feeding its output to the distribution
of this variable at the subsequent time step.

Attention and Memory in Neural Nets. Neural Turing Machines (Graves et al., 2014) are the
first examples of attention-based neural episodic memory use with external updates. Attentive Neu-
ral Process (Kim et al., 2019) employs an attention network to build a neural stochastic process that
is consistent over observed predictions. Evidential Turing Process (Kandemir et al., 2022) main-
tains an external memory that learns to feed a Dirichlet prior on class distribution with informative
concentration parameters inferred during minibatch training updates.

Continual Learning is an instance of meta-learning (Finn et al., 2017) where new tasks are in-
troduced one at a time and a base model is expected to learn the newest task without forgetting the
previous ones. Early approaches to CL such as EWC (Kirkpatrick et al., 2017) transfer knowledge
by the transfer of either deterministic parameters or their inferred distribution using Fisher informa-
tion. VCL (Nguyen et al., 2018) improves on EWC with a more comprehensive inference scheme.
Generalized VCL (Loo et al., 2021) maximizes the same ELBO as VCL but uses β-VAE to prevent
the training instability caused by the dominance of the KL-divergence term. We do not use β-VAE
since our setup does not have this problem.

Knoblauch et al. (2020) explains the superior performance of memorization-based CL algo-
rithms based on experience replay, core set, and episodic memory (Shin et al., 2017; Lopez-Paz
and Ranzato, 2017; Lüders et al., 2016) over regularization-based algorithms (Kirkpatrick et al.,
2017). For the first time, our CDDP studies probabilistic multi-modal dynamics in a CL setting by
knowledge transfer via learned mode descriptors maintained in external memory.

Continual Learning with Episodic Memory. Rios and Itti (2019) builds a memory by maximum
sample diversity in order to reduce catastrophic forgetting by remembering samples of previous
tasks. In Guo et al. (2020), a memory keeps sample random examples from previous tasks and these
samples are used in the training of the new tasks. There are other works Lopez-Paz and Ranzato
(2017); Chaudhry et al. (2019) that use memory for CL however, all of them build the memory with
the help of data points provided with the ground truth but in our setup mode labels are not provided.
Hence our work is not comparable to theirs. As neither of them studies dynamics modeling, their
adaption to our setup is not straightforward.

6. Experiments

We evaluate the performance of CDDP rigorously on five challenging applications of CL to time
series forecasting. We provide a supplementary that includes a comprehensive PyTorch implemen-
tation of the entire experimental process, encompassing the studied models, the data generation
process of the used synthetic environments, as well as the performance evaluation procedures.

Baseline Selection. As we are the first to investigate CL for BSSM inference, there is no prior
work we can take as a baseline without significant adaptation. We determine knowledge transfer
across tasks by setting the parameter posterior of the previous task as the prior of the next as the
state-of-the-art approach in CL. We adapt VCL, the most established variant of this approach, to
BSSMs in §3 as a baseline that can maximally challenge our CDDP. Baseline methods must be
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generative due to the nature of the dynamic modeling problem. Furthermore, as stated in the prob-
lem setup (§2), the correct mode labels are not provided therefore baseline methods need to be
unsupervised generative. No method meets these requirements but we adapt the VCL method.
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Figure 2: After learning is finished, CDDP and VCL-BSSM pre-
dictions on Character Trajectories are displayed along-
side ground-truth trajectories. Context and predictions
are plotted in red and blue respectively. CDDP ex-
hibits superior memory of the initial task and precise
adaptation to the last task due to its external episodic
memory.

Data Sets

Synthetic Data Sets. We eval-
uate our CDDP on three non-
linear dynamical systems, where
forecasting is challenging, while
ground-truth task similarity is
controllable. Too much task
similarity would make CL un-
necessary, while too much task
difference would make it infea-
sible. When tasks share a rea-
sonable degree of similarity, a
successful CL algorithm is ex-
pected to capture, encode, and
memorize these similarities and
discard their differences.

We generate modes that
share similar dynamical proper-
ties, as their time evolution fol-
lows the same set of differential
equations. However, modes dif-
fer from each other in the choice
of the free parameters that gov-
ern the dynamical system. i)
Sine Waves data set consists of
signals grouped into modes de-
scribed by different magnitudes and frequencies. Sine waves are created from the function
Asin(2πft) where A is the magnitude, f is the frequency, and t is time. We generate different
modes by changing the choices for magnitude and frequency levels. For ii) Lotka-Volterra and
iii) Lorenz Attractor, we follow the prior works Haußmann et al. (2021); Satorras et al. (2019)
and generate different modes by changing the free parameters of the systems. We perturb all three
dynamical systems with Gaussian white noise for training splits.

Real-World Data Sets. We evaluate our CDDP in two real-world time series classification data
sets from Dua and Graff (2017). i) Libras Movement Data Set is the official Brazilian sign lan-
guage and the data set consists of sequences of (x, y) coordinates of hand movements from 15
different classes. ii) Character Trajectories data set consists of sequences of velocities of (x, y)
coordinates and pen force collected from hand-writings of 20 English alphabet characters, which
can be written by a single pen-down segment. Treating each class as a mode, we create multimodal
time series forecasting tasks from these two data sets that satisfy the learning setup in Eq. 3.
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Table 1: Model performance on five datasets: Mean ± standard error over 10 repetitions. Area
Under Curve (AUC) represents the averaged score across tasks.

Data Set #modes Model Score AUC 1 Task 2 Tasks 3 Tasks 4 Tasks 5 Tasks

Sine
Waves

15
VCL-BSSM

NMSE 1.00± 0.04 0.13± 0.02 0.97± 0.14 1.22± 0.15 1.27± 0.09 1.39± 0.08
NLL 3.57± 0.09 1.76± 0.22 3.75± 0.24 3.84± 0.13 4.20± 0.15 4.29± 0.10

CDDP
NMSE 0.91± 0.03 0.16± 0.02 0.88± 0.11 1.07± 0.15 1.12± 0.14 1.31± 0.11
NLL 3.50± 0.09 2.09± 0.27 3.43± 0.22 3.77± 0.17 4.05± 0.14 4.15± 0.10

Lotka-
Volterra

8
VCL-BSSM

NMSE 0.58± 0.04 0.17± 0.03 0.71± 0.08 0.92± 0.15 0.53± 0.03
NLL 1.50± 0.05 0.56± 0.20 1.97± 0.28 2.02± 0.19 1.46± 0.12

CDDP
NMSE 0.60± 0.06 0.13± 0.03 0.72± 0.20 0.96± 0.18 0.60± 0.05
NLL 1.32± 0.08 0.32± 0.18 1.35± 0.21 2.05± 0.15 1.54± 0.21

Lorenz
Attractor

12
VCL-BSSM

NMSE 0.26± 0.00 0.22± 0.02 0.25± 0.03 0.27± 0.02 0.28± 0.01
NLL 4.42± 0.04 4.22± 0.16 4.41± 0.08 4.55± 0.09 4.52± 0.04

CDDP
NMSE 0.24± 0.01 0.21± 0.02 0.24± 0.02 0.25± 0.02 0.26± 0.02
NLL 4.35± 0.06 4.06± 0.19 4.33± 0.02 4.53± 0.06 4.46± 0.03

Libras 15
VCL-BSSM

NMSE 0.14± 0.00 0.13± 0.01 0.14± 0.00 0.13± 0.01 0.15± 0.00 0.14± 0.00
NLL −0.37± 0.02 −0.41± 0.04 −0.35± 0.03 −0.42± 0.04 −0.32± 0.03 −0.36± 0.03

CDDP
NMSE 0.14± 0.00 0.14± 0.00 0.13± 0.01 0.14± 0.01 0.14± 0.01 0.14± 0.01
NLL −0.39± 0.04 −0.42± 0.03 −0.40± 0.04 −0.38± 0.05 −0.40± 0.03 −0.37± 0.04

Character
Trajectories

20
VCL-BSSM

NMSE 0.87± 0.04 0.42± 0.04 0.80± 0.04 0.90± 0.02 1.11± 0.08 1.11± 0.10
NLL 0.14± 0.02 −0.23± 0.06 0.06± 0.05 0.20± 0.05 0.31± 0.08 0.35± 0.09

CDDP
NMSE 0.64± 0.01 0.52± 0.05 0.56± 0.02 0.69± 0.04 0.71± 0.03 0.71± 0.02
NLL −0.19± 0.03 −0.05± 0.05 −0.26± 0.04 −0.17± 0.03 −0.23± 0.04 −0.26± 0.04

Context Length. We select context length empirically as one-third of the sequence length amount-
ing to five for Sine Waves, eight for Lotka-Volterra, 16 for the Lorenz Attractor, 15 for Libras, and
35 for Character Trajectories. The reason for that is, generally, one-third of the sequence captures
the general characteristic of the dynamics and gives indications about modes.

Neural Network Architecture Details. Our CDDP has four main architectural elements: Encoder:
The sequence encoder eλ(xt:t′) governs the mean of our normal distributed recognition model
qψ(x0|y1:C , π). We feed C observations as a stacked set of values into the encoder. The sequence
encoder is a single dense layer for Sine Waves, Lotka-Volterra, Libras; and a multi-layer perceptron
for the Lorenz Attractor, and Character Trajectories with two hidden layers. The perceptron uses
the tanh(·) activation function followed by layer normalization. Decoder: The likelihood func-
tion p(yt|xt) of the base model serves as a probabilistic decoder that maps the latent state xt to
the observed state yt. We choose the emission distribution to be normal with mean governed by
a single dense layer for Sine Waves, Lotka-Volterra, Libras; and a multilayer perceptron with two
hidden layers for the rest. The perceptron uses the tanh(·) activation function followed by layer
normalization. Transition Kernel: We choose the transition kernel p(xt|xt−1,m, θ) of CDDP to
be a normal distribution with mean governed by a plain RNN that receives a concatenation of the
previous hidden state and the mode descriptor as input. The RNN on the mean is a multilayer per-
ceptron with one hidden layer. The perceptron uses the tanh(·) activation function followed by
layer normalization. The transition kernel of the base model of VCL p(xt|xt−1, θ) follows the same
RNN architecture except that its input does not contain a mode descriptor. External Memory: We
set the memory size to 20 for the Sine Wave environment, 10 for Lotka-Volterra, 15 for the Lorenz
Attractor, 20 for Libras, and 30 for Character Trajectories.
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Main Results. Table 1 presents model performance throughout the whole CL process as the
area under the learning curve. Our CDDP outperforms the parameter transfer-based VCL-BSSM
baseline consistently in nearly all cases. Storing mode descriptors of the learned dynamics in an
external memory, retrieving them in the subsequent tasks, and feeding them into the state tran-
sition kernel prevents catastrophic forgetting more effectively than plain parameter transfer. As
seen in Figure 2, in the challenging character trajectories dataset, the prediction accuracy of our
CDDP significantly outperforms VCL-BSSM in both the early and late stages of the CL period.

Table 2: Ablation study results given as the AUC on the Sine
Waves data set. The reported numbers are mean± stan-
dard error over 5 repetitions.

Parameter
Transfer

Probabilistic
Parameters

Memory
Content NMSE NLL

RNN ✓ × N/A 1.03± 0.05 3.50± 0.10
VCL-BSSM ✓ ✓ N/A 0.93± 0.03 3.59± 0.16

CDDP Variants

× ✓ Zeros 0.94± 0.04 3.56± 0.12
× ✓ Ones 1.12± 0.13 3.75± 0.14
× ✓ Twos 1.35± 0.23 3.80± 0.18
✓ ✓ Learned 0.91± 0.04 3.56± 0.12

CDDP Target × ✓ Learned 0.87± 0.03 3.35± 0.15

Ablation Study. We investi-
gate the contribution of individ-
ual design choices to the to-
tal performance of our target
model. We study the effect of
three design choices: i) knowl-
edge transfer via parameters θ of
the learned transition dynamics,
ii) quantifying the uncertainty of
the parameters of transition dy-
namics by a distribution qψ(θ),
and iii) maintaining an external
memory with learned or unlearned content. Table 2 shows a map of model variants correspond-
ing to the activation status of these three design choices, as well as the corresponding numerical
results on the Sine Waves data set over five repetitions. We observe a performance increase when
knowledge transfer is done via the external memory instead of —but not together with — parameter
transfer, supporting the central assumptions of our target model. Setting the memory content to
unlearned values causes rapid performance deterioration as values diverge from the learned values.
This outcome demonstrates the essential role of the external memory in the CL performance of
CDDP.

7. Conclusion

Summary. We report the first study on CL of multi-modal dynamical systems. We curate a com-
petitive baseline for this new problem setup from an adaptation of VCL to BSSMs. We introduce a
novel alternative to the parameter transfer approach of VCL for within-task knowledge acquisition
and cross-task knowledge transfer using an original combination of neural episodic memory, DPs,
and BSSMs. We observe in CL of challenging multi-modal dynamics modeling environments that
our alternative approach compares favorably to the established parameter transfer approach.

Broad Impact. Our work can be used for varying applications such as: i) weather forecasting,
where features can be transferred from one climate to another, ii) autonomous driving, where driv-
ing patterns can be adapted across different countries, and iii) model-based reinforcement learning
algorithms, when the environment changes due either to the actions of the ego agent or to external
factors. The memory architecture of CDDP may be improved by alternative embedding, update,
and attention mechanisms. Our formulation of the transition rule is agnostic to the architecture that
governs the transition kernel.

10



CONTINUAL LEARNING OF MULTI-MODAL DYNAMICS WITH EXTERNAL MEMORY

References

A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with A-GEM.
In ICLR, 2019.

A. Cossu, A. Carta, V. Lomonaco, and D. Bacciu. Continual learning for recurrent neural networks:
An empirical evaluation. Neural Networks, 143:607–627, 2021. ISSN 0893-6080.

A. Doerr, C. Daniel, M. Schiegg, N. Duy, S. Schaal, M. Toussaint, and T. Sebastian. Probabilistic
recurrent state-space models. In ICML, 2018.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.
uci.edu/ml.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep net-
works. In ICML, 2017.

E.B. Fox, E.B. Sudderth, M.I. Jordan, and A.S. Willsky. A sticky HDP-HMM with application to
speaker diarization. The Annals of Applied Statistics, pages 1020–1056, 2011.

M. Fraccaro, D.J. Rezende, Z. Zwols, A. Pritzel, S.M.A. Eslami, and F. Viola. Generative temporal
models with spatial memory for partially observed environments. In ICML, 2018.

R. Frigola, Y. Chen, and C. E. Rasmussen. Variational Gaussian process state-space models. In
NeurIPS, 2014.

M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D.J. Rezende, S.M. Eslami, and Y.W. Teh. Neural
processes. arXiv preprint arXiv:1807.01622, 2018.

A. Graves, G. Wayne, and I. Danihelka. Neural Turing Machines. arXiv preprint arXiv:1410.5401,
2014.

Y. Guo, M. Liu, T. Yang, and T. Rosing. Improved schemes for episodic memory-based lifelong
learning. NeurIPS, 2020.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In ICML, 2019.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. In ICLR, 2020.

M. Haußmann, S. Gerwinn, A. Look, B. Rakitsch, and M. Kandemir. Learning partially known
stochastic dynamics with empirical PAC Bayes. In AISTATS, 2021.

A.D. Ialongo, M. van der Wilk, J. Hensman, and C.E. Rasmussen. Overcoming mean-field approx-
imations in recurrent Gaussian process models. In ICML, 2019.

M. Kandemir, A. Akgül, M. Haussmann, and G. Unal. Evidential Turing processes. In ICLR, 2022.

H. Kim, A. Mnih, J. Schwarz, M. Garnelo, A. Eslami, D. Rosenbaum, O. Vinyals, and Y.W. Teh.
Attentive neural processes. In ICLR, 2019.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
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