
Proceedings of Machine Learning Research vol 242:1452–1463, 2024

CACTO-SL: Using Sobolev Learning to improve
Continuous Actor-Critic with Trajectory Optimization

Elisa Alboni1 ELISA.ALBONI@UNITN.IT

Gianluigi Grandesso1 GIANLUIGI.GRANDESSO@UNITN.IT

Gastone P. Rosati Papini1 GASTONE.ROSATIPAPINI@UNITN.IT

Justin Carpentier2 JUSTIN.CARPENTIER@INRIA.FR

Andrea Del Prete1 ANDREA.DELPRETE@UNITN.IT
1 Dept. of Industrial Engineering, University of Trento, Italy
2 INRIA, Paris, France

Abstract
Trajectory Optimization (TO) and Reinforcement Learning (RL) are powerful and complementary
tools to solve optimal control problems. On the one hand, TO can efficiently compute locally-
optimal solutions, but it tends to get stuck in local minima if the problem is not convex. On the
other hand, RL is typically less sensitive to non-convexity, but it requires a much higher com-
putational effort. Recently, we have proposed CACTO (Continuous Actor-Critic with Trajectory
Optimization), an algorithm that uses TO to guide the exploration of an actor-critic RL algorithm.
In turns, the policy encoded by the actor is used to warm-start TO, closing the loop between TO and
RL. In this work, we present CACTO-SL, an extension of CACTO exploiting the idea of Sobolev
Learning. To make the training of the critic network faster and more data efficient, we enrich it
with the gradient of the Value function, computed via a backward pass of the differential dynamic
programming algorithm. Our results show that the new algorithm is more efficient than the original
CACTO, reducing the number of TO episodes by a factor ranging from 3 to 10, and consequently
the computation time. Moreover, we show that CACTO-SL helps TO to find better minima and to
produce more consistent results.
Keywords: Trajectory Optimization, Reinforcement Learning, Sobolev Learning, Global Opti-
mization

1. Introduction

Robot control challenges have long been addressed through Trajectory Optimization (TO). The
high-level desired task is encoded in the cost function of an Optimal Control Problem (OCP), which
is minimised with respect to the OCP decision variables, which represent the state and control tra-
jectories. Constraints are added to ensure that the solution of the OCP takes into account the robot
dynamics, the actuator bounds, and the task-related constraints. When tackling complex prob-
lems, the OCP may feature a highly non-convex cost and/or highly nonlinear dynamics. Therefore,
gradient-based solvers frequently encounter local minima and are unable to find a globally opti-
mal solution. There exist TO methods based on the Hamilton-Jacobi-Bellman equation or Dynamic
Programming, for continuous-time and discrete-time problems, respectively, that can find a globally
optimal solution. However, these methods are hindered by the curse of dimensionality, which limits
their applicability.

© 2024 E. Alboni1, G. Grandesso1, G.P. Rosati Papini1, J. Carpentier2 & A. Del Prete1.

ALBONI1 GRANDESSO1 ROSATI PAPINI1 CARPENTIER2 DEL PRETE1

With the emergence of deep Reinforcement Learning (RL) and its application to the continuous
domain, this machine learning tool is applied more and more widely to robot control problems
showing impressive results on continuous state and control spaces Lillicrap et al. (2015); Fujimoto
et al. (2018); Haarnoja et al. (2018); Schulman et al. (2017). RL algorithms are less prone to
converge to local minima due to their exploratory nature. Yet, there are still several challenges
related to the application of RL to robot control, such as the necessity for extensive exploration.

As a potential solution to overcome the limitations of RL and TO, we have recently presented the
CACTO algorithm (Continuous Actor-Critic with Trajectory Optimization) Grandesso et al. (2023).
CACTO iteratively leverages the explorative nature of RL to initialize TO to escape local minima,
while exploiting TO to guide the RL exploration. Thanks to the interplay of TO and RL, CACTO’s
policy provides TO with initial guesses that allow it to obtain better trajectories than with other
initialization techniques. While the use of TO demonstrated to efficiently accelerate convergence
of RL, the computational burden associated with solving TO episodes has posed some limitations.
In particular, as the system complexity increases, this issue becomes more relevant, hindering the
scalability of the algorithm. The ability of TO to produce the Value function’s gradient with limited
computational cost presents an opportunity to enhance the algorithm’s data efficiency, by increas-
ing the information extracted from each TO problem. By leveraging Sobolev Learning (SL), the
gradient information can be incorporated in the critic’s training, enhancing the performance of the
algorithm.

Sobolev spaces are metric spaces where the distance between functions is defined in terms of
both the difference between the function values and the difference between their derivatives values.
The universal approximation theorem for neural networks in Sobolev spaces Hornik (1991) shows
that, under some assumptions, not only a neural network can approximate the value of a function, but
also its derivatives with respect to its inputs. This work inspired other research, such as Czarnecki
et al. (2017), which extensively studied the employment of the neural network derivatives to improve
the training process in different kinds of problems, including policy distillation and regression on
datasets. Sobolev Learning found applications also in the robot control field. For example, in
Parag et al. (2022), this technique is used to learn a Value function to be used as an approximate
terminal cost in an OCP, thus allowing to shorten the problem horizon, and speeding up the solver.
In Le Lidec et al. (2023), stochastic Sobolev Learning is used to include computationally efficient
higher-order information in the policy training, resulting in improved sample efficiency and stability.
Even though the use of the derivatives comes with a computational overhead, Sobolev Learning
increases robustness against noise and improves generalization as well as data-efficiency Masuoka
(1993); Lee and Oh (1997). In this work, we incorporate Sobolev Learning in CACTO to improve
its efficiency and scalability. Our main contributions are:

• We present a new version of the CACTO algorithm that computes the gradient of the Value
function using the backward pass of the differential dynamic programming algorithm, and
uses it to improve the training of the critic network.

• We show that using ReLU activation functions is detrimental when training the critic with
Sobolev Learning, and we address this issue by switching to smooth periodic activation func-
tions.

• We integrated our open-source implementation of CACTO with the software libraries CasADi An-
dersson et al. (2019) (for numerical optimization) and Pinocchio Carpentier et al. (2019) (for
multi-body dynamics), making it more versatile and easily accessible by the community.

2

CACTO-SL

• We exemplify the behavior of our algorithm in the companion video using a simple 1D toy
problem.

2. Method

In Grandesso et al. (2023), we presented CACTO, an algorithm for finding globally-optimal control
policies through TO-guided actor-critic RL, which we summarize in Section 2.1. To increase its
computational efficiency, we propose to use Sobolev Learning Czarnecki et al. (2017) for training
the critic network, as detailed in Section 2.2.

2.1. Original CACTO Formulation

This section presents the former formulation of CACTO, an optimization algorithm designed to ad-
dress discrete-time optimal control problems with a finite time horizon, with the following structure:

minimize
X ,U

L(X ,U) =
T−1

∑
t=0

lt (xt ,ut)+ lT (xT) (1a)

subject to xt+1 = f (xt ,ut) ∀t = 0 . . .T −1, (1b)

|ut | ≤ umax ∀t = 0 . . .T −1, (1c)

x0 = xinit (1d)

where the decision variables are the state and control sequences denoted as X = x0...T and U =
u0...T−1, with xt ∈ Rn and ut ∈ Rm. The cost function L(·) is defined as the sum of the running
costs lt (xt ,ut) and the terminal cost lT (xT). The dynamics, control limits and initial conditions are
represented by (1b), (1c) and (1d).

The algorithm begins with the TO-phase, where it solves N TO problems (1) with random
initial states xinit , random time horizons in [1,T], and using a classic warm-starting technique, e.g.
initializing states to xinit and control inputs to zero. For each optimal state computed by TO, we
compute the partial L-step cost-to-go, where L is the number of lookahead steps used for Temporal
Difference (TD) learning, and store them in a replay buffer along with the relative transition (i.e.,
state, control, and state after L steps). The states stored in the replay buffer are augmented states
x̃ = [x, t], where t is the time. Next we start the update phase: for M times, a batch of NB transitions
is sampled from the replay buffer and used to update the neural networks of the critic and the actor.
In particular, the critic loss is the mean squared error between the critic’s output and the so-called
TD target, while the actor loss is the action-value (i.e., Q) function. Finally, a rollout of the actor’s
policy is used to warm-start the TO problems in the next episodes, closing the loop. In Grandesso
et al. (2023), we showed the capabilities of CACTO to escape local minima, while being more
computationally efficient than state-of-the-art RL algorithms. Moreover, CACTO has been proven
to converge to a global optimum in a discrete-space setting.

2.2. CACTO with Sobolev Learning (CACTO-SL)

To exploit Sobolev Learning we need to provide the gradient of the Value function with respect
to the state: Vx. To analytically compute Vx, we use the backward-pass of Differential Dynamic
Programming (DDP) Jacobson (1968); Tassa et al. (2012), an efficient optimal control method for

3

ALBONI1 GRANDESSO1 ROSATI PAPINI1 CARPENTIER2 DEL PRETE1

Figure 1: Scheme of the CACTO-SL algorithm.

unconstrained nonlinear problems. A scheme of the CACTO-SL algorithm is depicted in Fig. 1.
Notice that, since DDP does not handle control bounds, the OCPs solved with CACTO-SL do not
feature control bounds, but penalties.

2.2.1. USING THE GRADIENT OF THE VALUE FUNCTION IN CACTO-SL

To exploit Vx when training the critic, we store it in the replay buffer along with the associated
transition. Then, during the update-phase, the critic parameters θV are updated to match both the
target values V̄ and their gradients Vx:

minimize
θV

1
NB

NB

∑
i=1

(
V̄i −V (x̃i|θV)

)2
+ kS

(
Vx,i −SxVx̃(x̃i|θV)

)2
, (2)

where NB is the batch size and the matrix Sx =
[
In×n 0n

]
∈Rn×n+1 selects the first n elements of the

vector Vx̃(x̃i|θV) ∈ Rn+1, thus excluding from the error the derivative of V w.r.t. t. This is because
the state in CACTO is augmented with the time t, therefore the gradient of the critic contains also
the derivative w.r.t. t. However, DDP does not compute it because it uses a discrete representation
for the time.

The relative weight of the two components in (2) is defined by the coefficient kS. Tuning kS to
achieve the right trade-off is important for optimal performance. As kS gets smaller, CACTO-SL
tends to the original CACTO algorithm. Setting kS to a large value may seem sensible because the
training of the actor, which is our ultimate goal, relies solely on Vx. However, we should consider
that the Value function is likely discontinuous at the boundaries of the basins of attraction of the dif-
ferent locally-optimal solutions of the OCP. Around discontinuities, the gradient fails to capture the
local behavior of the function, therefore setting kS too large may result in extremely poor approxi-
mations of the Value around discontinuities. This could slow down, or even prevent, convergence
to a globally-optimal policy.

To achieve an ideal trade-off, given the rapid changes and extended range of values taken by Vx

in our problems, we introduce a symmetric logarithmic function in the gradient-related loss:

minimize
θV

1
NB

NB

∑
i=1

(
V̄i −V (x̃i|θV)

)2
+ kS

(
logsym(Vx,i)− logsym(SxVx̃(x̃i|θV))

)2
, (3)

4

CACTO-SL

where the function logsym(x) is defined as

logsym(x) =

{
log(x+1) if x ≥ 0
− log(−x+1) if x < 0

(4)

The logsym function reduces the relative importance of potential large (either positive or negative)
values in the gradient, which may arise when the network tries to approximate a discontinuous Value
function (see the companion video for a visual illustration of this phenomenon).

2.2.2. DIFFERENTIABILITY OF THE CRITIC NETWORK

The original CACTO algorithm used ReLU activation functions for both actor and critic. In CACTO-
SL, we have observed that ReLU functions do not work well with Sobolev Learning. Indeed, ReLU
functions lead to piecewise-linear approximations, for which the gradient may not represent well the
local behavior of the function. For this reason, in CACTO-SL the critic network uses SIREN (Si-
nusoidal Representation Networks) layers Sitzmann et al. (2020). Characterized by its smooth and
continuously differentiable nature, SIREN layers bring a crucial advantage to learning the gradient,
preventing the generation of ill-behaved gradients from the loss term on the derivative mismatch.

2.2.3. SAMPLE EFFICIENCY

By incorporating the Value gradient, the amount of information provided by each transition is much
higher than in CACTO: each transition contains both the partial cost-to-go (1 scalar) and the gradient
of the Value function (an n-dimensional vector). Therefore, while ensuring sufficient exploration
of the state space is still necessary, we can expect fewer TO episodes to be needed for learning
a good approximation of the Value function. This was empirically confirmed by the fact that we
could benefit from increasing the ratio between the number of network updates and the number of
TO episodes. In particular, with the aim of reducing the total number of TO episodes, we increased
both the number of TO episodes before each update phase, eupdate, and the number of updates
performed at each algorithm iteration, K. We start with a small value of K, because it is not useful
to accurately learn the initial policy, which represents the TO solver. As the algorithm progresses,
we increase K, performing more network updates after each TO-phase, as the accumulated data are
expected to represent the Value function of a policy closer and closer to global optimality.

This strategic adjustment enables a significant reduction in the number of TO episodes (by a
factor of 3 to 10) and, as a consequence, in the computation time.

2.2.4. SOFTWARE FOR TRAJECTORY OPTIMIZATION AND MULTI-BODY DYNAMICS

While CACTO relied on Pyomo Nicholson et al. (2018) for solving TO problems, CACTO-SL
switched to CasADi Andersson et al. (2019), an open-source Automatic Differentiation framework
for numerical optimization. By leveraging its symbolic framework and automatic differentiation
capabilities, CasADi enables efficient computation of the cost function’s derivatives, required for
implementing Sobolev Learning. Moreover, CasADi is compatible with Pinocchio Carpentier et al.
(2019), a versatile rigid-body dynamics library, which freed us from the burden of hand-coding
the system dynamics. Each TO problem is transcribed using collocation, and then solved with the
nonlinear optimization solver IpOpt Wächter and Biegler (2006). Finally, to speed up the code, we
parallelized the generation of the warm-start trajectories, the TO problems, and the computation of
the cost-to-go and its gradient.

5

ALBONI1 GRANDESSO1 ROSATI PAPINI1 CARPENTIER2 DEL PRETE1

Figure 2: Cost, control and Value obtained
using a naive initial guess.

Figure 3: Critic smooths Value’s disconti-
nuities.

Figure 4: Actor after first iteration. Figure 5: Value after first iteration.

3. Results

3.1. 1-Dimensional Toy Problem

This section exemplifies the behaviour of CACTO and the effect of Sobolev Learning using a 1D toy
problem, with a 1D state, a single integrator dynamics and a cost function with three local minima
(Fig. 2). Solving TO problems with a naive initial guess, highlights the presence of three basins of
attraction (see Fig. 2). Notice that V (x) is not continuous at the boundaries of these basins. We now
analyse the first iteration of CACTO. First, we solve 100 TO problems and train the critic network.
Fig. 3 shows that the network smooths out the discontinuities because the critic network cannot
represent discontinuous functions. After pre-training the actor network to imitate the TO control
inputs, the actor network is trained to minimize the Q function. Fig. 4 and Fig. 5 show that the
resulting actor provides a better policy, as the basin of attraction of the worst minimum is shrunk
and the Value obtained by initializing TO with the trained actor policy has improved.

We now analyse the effect of Sobolev Learning. As mentioned above, the critic is trained
to predict the Value resulting from TO, which is typically discontinuous at the boundaries of the
basins of attraction associated to the different local minima. This leads to a poor fit of the gradient
in proximity of the discontinuities, and at the boundaries of the explored space. Introducing Sobolev
Learning helps to smooth out the discontinuities because the critic tries to match also Vx, see Fig. 6
and Fig. 7. As shown in Fig. 6 and Fig. 7, increasing kS, the smoothing increases, which can help
the actor to improve faster. However, kS should not be increased too much because it may lead to
a complete removal of the discontinuities. This alters the real Value of the states and may prevent
convergence to a globally optimal policy.

Interested readers can find a more detailed explanation in the companion video.

6

https://youtu.be/zAv8dP8itpM

CACTO-SL

Figure 6: Effect of ks on critic learning: V . Figure 7: Effect of ks on critic learning: Vx.

3.2. Empirical Results

This section presents our empirical results, with the goal to understand whether the use of Sobolev-
Learning in CACTO is actually beneficial. The ability of CACTO-SL to provide good warm-starts
to TO problems is analysed in the same scenarios presented in Grandesso et al. (2023). The source
code is available on the GitHub page of the project.

The analysed task consists in reaching in the shortest time a desired final position, while avoid-
ing three ellipse-shaped obstacles, and minimizing the control effort. The task is described by the
following running cost:

l(x,u) =wd ||pee − pg||2︸ ︷︷ ︸
l1(x)

+−
wp

α1
ln(e−α1

(√
(xee−xg)2+c2+

√
(yee−yg)2+c3+c4

)
+1)︸ ︷︷ ︸

l2(x)

+

+
wob

α2

3

∑
i=1

ln(e
−α2

(
(xee−xob,i)

2

(ai/2)2
+

(yee−yob,i)
2

(bi/2)2
−1

)
+1)︸ ︷︷ ︸

l3(x)

+wu||u||22︸ ︷︷ ︸
l4(u)

+

∥∥∥∥ u
umax

∥∥∥∥10

2︸ ︷︷ ︸
l5(u)

(5)

where l1 penalizes the distance between pee = (xee,yee) (the x-y coordinate of the system’s end-
effector) and pg (the goal position to be reached); l2 encodes a cost valley in the neighborhood of
the goal position; l3 penalizes collision with the three obstacles centered in pob,i = (xob,i,yob,i) with
axes ai, and bi; the w∗’s are user-defined weights; c2, c3, c4, α1, and α2 are the parameters of the
softmax functions; l4 and l5 are the control regularization and penalty to ensure that the optimal
controls are in the desired range. The terminal cost is equal to the running cost, except for l4 and l5.
Fig. 8 depicts the cost function, neglecting the control-effort term and control-penalty.

The task is designed to ensure the presence of many local minima. In particular, if the system
starts from the Hard Region, highlighted by a green rectangle in Fig. 8, it is very hard for the solver
to provide a globally optimal solution. In all our tests, we compute the critic targets with TD(50)
(i.e. L = 50), which empirically led to a stable training of critic and actor.

3.3. Comparison between activation functions

We compared the critic network based on SIREN layers with the critic networks based on ReLU
and based on ELU, another smooth activation layer, in combination with Sobolev Learning using
kS = 103. Fig. 9 shows that using the SIREN layers (or also ELU layers, but to a slightly lower
extent) leads to a critic that clearly captures the lower values of states inside the C-shaped obstacle.

7

https://github.com/gianluigigrandesso/cacto

ALBONI1 GRANDESSO1 ROSATI PAPINI1 CARPENTIER2 DEL PRETE1

Figure 8: Cost function (5) without the control effort term, considering a target at pg = [−7,0] with
weights wd = 10−3, wp = 5 and wob = 101. The green rectangle delimits the Hard Region.

−10

0

10

R
eL

U
Y

[m
]

1000 updates 5000 updates 10000 updates

−50

0

50

−10

0

10

E
L

U
Y

[m
]

−50

0

50

−10 0 10

−10

0

10

X [m]

SI
R

E
N

Y
[m

]

−10 0 10
X [m]

−10 0 10
X [m]

−50

0

50

Figure 9: Comparison of critic networks based on ReLU (top), ELU (middle) and sinusoidal (bot-
tom) activation functions at 1000, 5000 and 10000 updates for a point mass with single
integrator dynamics.

8

CACTO-SL

On the other hand, this is completely overlooked by the critic using ReLU functions, even after
10000 iterations.

3.4. Comparison between CACTO-SL and CACTO

The comparison between CACTO-SL and CACTO is conducted with a 2D double integrator, and
a Dubins car, using ks = 103. We compared the algorithms by computing the mean cost of the
trajectories obtained by initializing TO with the policy’s rollout. We used as initial states a grid of
points over the analysed XY space, with mesh size equal to 1 m. The analysis focuses on the Hard
Region (x∈ [0,15] m and y∈ [−5,5] m). For an easier interpretation of the results, the initial velocity
of the system is set to zero. In the Dubins car test, the initial heading is randomly chosen. For each
test, we performed 5 runs using the same seeds for both CACTO and CACTO-SL to minimize the
effect of the network initialization.

3.4.1. DOUBLE-INTEGRATOR SYSTEM

We consider a 2D double integrator, with state vector [x,y,vx,vy, t]∈R5 and control vector [ax,ay]∈
R2. The maximum episode length is 10 s. The target point is pg = [−7,0]. In contrast to the previous
version of CACTO, where we alternated eupdate = 25 TO episodes and K = 80 network updates, in
CACTO-SL we perform eupdate = 200 TO episodes and an increasing number of network updates,
starting from K = 1000 up to K = 15000. Fig. 10 reports the median (across 5 runs) of the mean
cost (across initial conditions) starting from the Hard Region against the number of TO episodes
obtained initializing the TO problems with CACTO and CACTO-SL. In both cases, we stopped the
training after 50k updates, when both algorithms have converged to a stable TO solution.

Fig. 10 shows that CACTO-SL has led to a 92% reduction in the number of TO problems. As
regards the computation time, it is important to recall that it heavily depends on the algorithm im-
plementation, on the hardware, and on the number of cores used in the parallelization. Parallelizing
the execution on 10 cores, the decrease of TO problems has resulted in a reduction of just 7% of the
total execution time because the system is quite simple. However, without parallelization, the total
computation time is reduced from 111 to 49 minutes. Moreover, Fig. 10 shows a significant reduc-
tion in the variance across the five runs. This outcome can be attributed to the enhanced training
of the critic through Sobolev Learning. The improved training results in a more consistent set of
critic networks. As a consequence, the actors converge towards similar policies, leading to a more
uniform initial guess across runs.

3.4.2. CAR SYSTEM

The second problem involves a Dubins car modelled as a point mass. The 6D state vector consists in
the displacement along x and y, angular displacement, linear velocity, linear acceleration and time.
The 2D control vector contains the angular velocity and the linear jerk. The car should reach the
target point pg = [−7,0] m. No penalty is added on its orientation. We updated the networks every
eepisode = 500 TO episodes, using an increasing number of updates, starting from K = 1000 and
reaching K = 15000. In CACTO instead the ratio between TO episodes and network updates was
25/160. Fig. 10 shows the results. In this case, 170k updates have been performed.

In this case, CACTO-SL leads to a notable reduction in the number of TO problems solved and,
consequently, in the computation time, from 10 h to 6.30 h (parallelizing the TO problems on 10
cores). Note that the reduction in computation time increases significantly also with parallelization,

9

ALBONI1 GRANDESSO1 ROSATI PAPINI1 CARPENTIER2 DEL PRETE1

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

TO episodes [104]

M
ea

n
co

st
CACTO
CACTO-SL

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

TO episodes [104]

M
ea

n
co

st

CACTO
CACTO-SL

Figure 10: Median (across 5 runs) of the mean cost (across initial conditions) starting from the
Hard Region with zero initial velocity against the number of TO episodes for a point
mass with double integrator dynamics (top) and a Dubins car (bottom). The shaded area
represents the area between the first and third quartiles.

even though the Dubins car has only one more state than the 2D double integrator. Also in this test,
Sobolev Learning plays an important role in achieving smaller variance across the runs.

4. Conclusions

This paper presented CACTO-SL, an extension of the CACTO algorithm, featuring Sobolev Learn-
ing. CACTO-SL efficiently computes the gradient of the Value function using the backward pass of
the DDP algorithm, and exploits this information to improve the training of the critic network. Our
results show that this makes CACTO-SL significantly more sample efficient than CACTO, reducing
the number of TO episodes by a factor ranging from 3 to 10. This also leads to almost halving the
computation time required to reach a stable solution. Moreover, our results show that CACTO-SL
reduces the variance of the algorithm across different runs, and helps TO to find better minima.

In the future, we plan to switch to a BoxDDP backward pass Tassa et al. (2014), which would
allow us to consider hard bounds on the control inputs. Moreover, we are exploring different ap-
proaches to bias the sampling of initial states towards more informative state regions, which should
improve even further the sample efficiency of CACTO and allow us to scale better to more complex
systems.

10

CACTO-SL

Acknowledgments

This work was supported by PRIN project DOCEAT (CUP n. E63C22000410001).

References

Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. CasADi – A
software framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 11(1):1–36, 2019. doi: 10.1007/s12532-018-0139-4.

Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent Lamiraux, Olivier
Stasse, and Nicolas Mansard. The pinocchio c++ library – a fast and flexible implementation of
rigid body dynamics algorithms and their analytical derivatives. In IEEE International Sympo-
sium on System Integrations (SII), 2019.

Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pascanu.
Sobolev training for neural networks. Advances in neural information processing systems, 30,
2017.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pages 1587–1596. PMLR,
2018.

Gianluigi Grandesso, Elisa Alboni, Gastone P. Rosati Papini, Patrick M. Wensing, and Andrea
Del Prete. Cacto: Continuous actor-critic with trajectory optimization—towards global optimal-
ity. IEEE Robotics and Automation Letters, 8(6):3318–3325, 2023. doi: 10.1109/LRA.2023.
3266985.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

David H Jacobson. New second-order and first-order algorithms for determining optimal control: A
differential dynamic programming approach. Journal of Optimization Theory and Applications,
2:411–440, 1968.

Quentin Le Lidec, Wilson Jallet, Ivan Laptev, Cordelia Schmid, and Justin Carpentier. Enforcing
the consensus between trajectory optimization and policy learning for precise robot control. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pages 946–952. IEEE,
2023.

Jeong-Woo Lee and Jun-Ho Oh. Hybrid learning of mapping and its jacobian in multilayer neural
networks. Neural computation, 9(5):937–958, 1997.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

11

ALBONI1 GRANDESSO1 ROSATI PAPINI1 CARPENTIER2 DEL PRETE1

Ryusuke Masuoka. Noise robustness of ebnn learning. In Proceedings of 1993 International Con-
ference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pages 1665–1668. IEEE,
1993.

Bethany Nicholson, John D. Siirola, Jean Paul Watson, Victor M. Zavala, and Lorenz T. Biegler.
Pyomo.Dae: a Modeling and Automatic Discretization Framework for Optimization With Dif-
ferential and Algebraic Equations. Mathematical Programming Computation, 10(2):187–223,
2018. ISSN 18672957. doi: 10.1007/s12532-017-0127-0. URL https://doi.org/10.
1007/s12532-017-0127-0.

Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, and Olivier Stasse. Value learning from
trajectory optimization and sobolev descent: A step toward reinforcement learning with super-
linear convergence properties. In 2022 International Conference on Robotics and Automation
(ICRA), pages 01–07, 2022. doi: 10.1109/ICRA46639.2022.9811993.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 7462–7473. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/53c04118df112c13a8c34b38343b9c10-Paper.pdf.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, pages 4906–4913, 2012. ISBN 9781467317351. URL https:
//dada.cs.washington.edu/homes/todorov/papers/MPCGetUp.pdf.

Yuval Tassa, Nicolas Mansard, and Emo Todorov. Control-limited differential dynamic program-
ming. In Proceedings - IEEE International Conference on Robotics and Automation, pages 1168–
1175, 2014. ISBN 9781479936854. doi: 10.1109/ICRA.2014.6907001.

Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical programming, 106:25–57, 2006.

12

https://doi.org/10.1007/s12532-017-0127-0
https://doi.org/10.1007/s12532-017-0127-0
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://dada.cs.washington.edu/homes/todorov/papers/MPCGetUp.pdf
https://dada.cs.washington.edu/homes/todorov/papers/MPCGetUp.pdf

	Introduction
	Method
	Original CACTO Formulation
	CACTO with Sobolev Learning (CACTO-SL)
	Using the gradient of the Value function in CACTO-SL
	Differentiability of the Critic Network
	Sample Efficiency
	Software for Trajectory Optimization and Multi-Body Dynamics

	Results
	1-Dimensional Toy Problem
	Empirical Results
	Comparison between activation functions
	Comparison between CACTO-SL and CACTO
	Double-integrator system
	Car system

	Conclusions

