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Abstract
A growing body of work leverages the Hamiltonian formalism as an inductive bias for physically
plausible neural network based video generation. The structure of the Hamiltonian ensures con-
servation of a learned quantity (e.g., energy) and imposes a phase-space interpretation on the low-
dimensional manifold underlying the input video. While this interpretation has the potential to
facilitate the integration of learned representations in downstream tasks, existing methods are lim-
ited in their applicability as they require a structural prior for the configuration space at design time.
In this work, we present a GAN-based video generation pipeline with a learned configuration space
map and Hamiltonian neural network motion model, which allow us to learn a representation of
the configuration space from data. We train our model with a physics-inspired cyclic-coordinate
loss function which encourages a minimal representation of the configuration space and improves
interpretability. We demonstrate the efficacy and advantages of our approach on the Hamiltonian
Dynamics Suite Toy Physics dataset.
Keywords: Dynamics Learning, Structure-Preserving Neural Networks, Physics-Informed Ma-
chine Learning, Generative modeling

1. Introduction

Hamiltonian mechanics can be applied to systems on general manifolds, and is independent of a par-
ticular choice of coordinates (Holm et al. (2009)). This flexibility is attractive in data-driven mod-
elling learning where low-dimensional manifolds are often approximated from high-dimensional
data (Bengio et al. (2013)). In this work, we leverage the structure of the Hamiltonian within the
generative adversarial network (GAN) (Goodfellow et al. (2014)) framework for physics-guided
video generation. The problem of video generation asks for a representation of video frames and
frame-to-frame transitions. The Hamiltonian formalism provides a useful framing for this problem:
each video frame is an observation of the system state; the set of all states is the phase-space; and
state transitions are determined by Hamilton’s equations. With this framing, the time evolution
of the video-generating process is determined by well-understood physical principles which gives
an interpretation to the learned representation which can be useful for downstream tasks such as
control.

The Hamiltonian formalism has been used as an inductive bias in physics-guided video gener-
ation in several recent works (Toth et al. (2019); Saemundsson et al. (2020); Zhong and Leonard
(2020); Higgins et al. (2021)). In each of the aforementioned, a variational autoencoder (VAE)
(Kingma and Welling (2013)) is used as the generative model and a Hamiltonian neural network
(HNN) (Greydanus et al. (2019)) (or symplectic recurrent neural network (SRNN) (Chen et al.
(2019))) is used to compute trajectories in the latent space. The use of the HNN model allows
for an interpretation of the latent space as a phase-space for the dynamical system underlying the
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video. While this interpretation has the potential to facilitate the integration of learned representa-
tions in downstream tasks such as control, a persistent challenge has been in the identification of an
appropriate structural prior for the phase-space.

The authors in Toth et al. (2019); Saemundsson et al. (2020) and Higgins et al. (2021) circum-
vent this challenge by using a standard Gaussian prior and a phase-space of substantially higher
dimension than the dynamical system underlying the video. While this approach is common in
the VAE literature, it can lead to solutions with poor reconstructive ability; a limitation discussed
in Davidson et al. (2018) and Dai and Wipf (2019), and observed in Zhong and Leonard (2020) and
Botev et al. (2021); which can limit the utility of learned representations in downstream tasks. In
contrast, the authors in Zhong and Leonard (2020) use prior knowledge of the configuration space
to select a distribution with the appropriate structure. While this lends greater interpretability to the
latent space, it requires prior knowledge of the structure of the phase-space and the availability of a
distribution on that space that admits the reparameterization trick (Kingma and Welling (2013)).

In our work, we use a generative adversarial network (GAN) (Goodfellow et al. (2014)) based
video generation approach to circumvent the challenge of identifying an appropriate distribution
in advance by implicitly learning the structure of the phase-space from data. We take inspiration
from other GAN-based video generation pipelines (e.g., Tulyakov et al. (2018); Yoon et al. (2019);
Gordon and Parde (2021); Skorokhodov et al. (2021)) where motion and content vectors are ini-
tialized with Gaussian random noise, propagated forward in time using a recurrent neural network,
and mapped into the image space by a generator network. To allow for the interpretation of the
motion vectors as elements of phase-space for the underlying dynamical system, we incorporate
three key elements: (1) a configuration-space map that learns to transform Gaussian random vectors
to an intermediate space which we interpret as the configuration space of the system; (2) a HNN
module in place of the standard discrete recurrent unit to enforce continuous and conservative latent
dynamics, and (3) a physics-inspired cyclic-coordinate loss function that encourages a sparsity in
the configuration space representation allowing for the discovery of phase-space structure.

We empirically evaluate our model on the Hamiltonian Dynamics Suite Toy Physics dataset
(Toth et al. (2019)). Our analysis highlights the importance of the HNN module for temporal co-
herence of generated sequences, and of the configuration-space map and cyclic-coordinate loss for
a compact and interpretable representation of the motion subspace.

2. Related work

In the physics-guided learning literature, a growing number of works investigate the integration of
Hamiltonian and Lagrangian formalisms as an inductive bias for dynamical systems forecasting.
The authors in Greydanus et al. (2019) learn to predict the change in position and momentum for
conservative mechanical systems using a system specific Hamiltonian parameterized by a neural
network. The authors in Chen et al. (2019) find that using the Hamiltonian neural network as a
recurrent module improves long term prediction accuracy without the need for gradient information.
This observation is leveraged in Zhong et al. (2019); Lutter et al. (2019); Roehrl et al. (2020) for
control, Allen-Blanchette et al. (2020); Zhong and Leonard (2020) for video prediction and Toth
et al. (2019); Saemundsson et al. (2020) for variational autoencoding (VAE) (Kingma and Welling
(2013)) based video generation. To the best of our knowledge, we are the first to use the Hamiltonian
or Lagrangian formalism as an inductive bias in generative adversarial network (GAN) (Goodfellow
et al. (2014)) based video generation.
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Figure 1: HGAN video generation pipeline. Physically plausible videos of conservative systems
are generated from motion and content Gaussian random samples ϵm and ϵc. The motion
sample ϵm is mapped to an initial condition z0m of the underlying dynamical system by the
configuration space map f , then integrated forward in time using Hamilton’s equations
and the learned Hamiltonian Hθ in the HNN module. Each element of the resulting
sequence ztm is concatenated with the content sample ϵc, then passed to the generator
network GI to produce an image x̂t. During training, individual images are passed to the
discriminator DI and image sequences {x̂j , . . . , x̂j+T } are passed to the discriminator
DV .

In contrast to VAE-based video generation methods which impose an explicit prior, GAN-based
video generation methods implicitly learn the data distribution during training. The authors in Von-
drick et al. (2016) learn to map Gaussian random noise vectors to image sequences using a generator
network with 3D deconvolutional layers. The authors in Tulyakov et al. (2018); Yoon et al. (2019)
find they are able to substantially reduce complexity and improve performance by decomposing
the Gaussian random noise vector into motion and content vectors, propagating them forward in
time using a recurrent neural network, then mapping each resulting vector to an image using a gen-
erator network with 2D deconvolutional layers. This high-level structure is used in many recent
GAN-based video generation methods. Some of these methods introduce alternatives to the stan-
dard convolutional generator network – the authors in Yu et al. (2022) use alternative architecture
types, the authors in Tian et al. (2021) use large pre-trained image generator networks, and the au-
thors in Wang et al. (2020) use multiple generator networks. Others have worked to increase the
expressivity of the latent code – the authors in Wang et al. (2020) use a content-motion integration
scheme to improve latent space disentanglement, and the authors in Skorokhodov et al. (2021) learn
a map from the standard Gaussian distribution to an intermediate distribution which may better rep-
resent the data distribution. Still others have introduced alternative motion models – the authors
in Tian et al. (2021) use an RNN-based motion model to learn dynamical updates rather than sub-
sequent states, and the authors in Gordon and Parde (2021) replace the discrete recurrent unit with
the continuous NeuralODE (Chen et al. (2018)).

The work in Toth et al. (2019) and Gordon and Parde (2021) are most similar to ours. Toth
et al. (2019) use the Hamiltonian formalism as an inductive bias for VAE-based video generation.
Their framework generates physically plausible video sequences at different time scales and time
directions. We also use a Hamiltonian neural network for video generation and thereby inherit these
capabilities; by using the GAN framework, however, we circumvent the challenge of selecting an
appropriate prior distribution in advance of training. Gordon and Parde (2021) use the Neural ODE
(Chen et al. (2018)) recurrent unit to learn continuous dynamics in a GAN-based video genera-
tion pipeline. They demonstrate performance commensurate with other GAN based video gener-
ation approaches while benefiting from a continuous motion model. Our motion model is distinct
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from Gordon and Parde (2021), however, since we enforce continuous and conservative dynamics
on a transformed latent space which we interpret as the underlying configuration space. Moreover,
we impose a novel cyclic-coordinate loss function to encourage sparsity in the configuration space
representation to facilitate discovery of phase-space structure.

3. Background

In this section we present Hamilton’s equations and describe how they can be used to identify cyclic
coordinates. We also present Hamiltonian neural networks (Greydanus et al. (2019)), and generative
adversarial neural networks (Goodfellow et al. (2014)) as themes from each of these appear in the
proposed approach.

3.1. Hamilton’s equations and cyclic coordinates

The Hamiltonian formalism is a reformulation of Newton’s second law, F = ma, in terms of the
system energy rather than its forces (Goldstein et al. (2002)). This formulation is preferable in set-
tings such as ours where the identification and quantification of system forces may be challenging.
The Hamiltonian of a system, H : T ∗Q 7→ R, is a map from generalized position and momentum
coordinates (q, p) ∈ T ∗Q, to the total energy of the system, where T ∗Q denotes the co-tangent
space of the system configuration space Q. The behavior of a Hamiltonian system is governed by
Hamilton’s equations:

ṗ = −∂E

∂q
, q̇ =

∂E

∂p
, E = H(q, p). (1)

Given the system Hamiltonian and its initial conditions, we can forecast future system states by
integrating Hamilton’s equations forward in time.

We can also use Hamilton’s equations to identify cyclic coordinates. The generalized position
coordinate qi is called cyclic or ignorable if it does not contribute to the total energy of the system:

−∂E

∂qi
= 0 = ṗi. (2)

From equation 2, we see that for a cyclic coordinate qi, the corresponding conjugate momentum pi
is conserved (Goldstein et al. (2002)).

Previous work using Hamilton’s equations for dynamical systems forecasting either assume
prior knowledge of the dimension of the configuration space for improved interpretability (Allen-
Blanchette et al. (2020); Zhong and Leonard (2020)), or select the dimension to be arbitrarily large
for model flexibility (Toth et al. (2019); Saemundsson et al. (2020)). In our approach we achieve in-
terpretability with an arbitrarily large latent dimension by incorporating our novel cyclic-coordinate
loss function. Our loss function, detailed in section 4.2, encourages the identification of cyclic
coordinates by regularizing the change in momentum.

3.2. Hamiltonian Neural Networks

Hamiltonian neural networks (HNNs) (Greydanus et al. (2019); Chen et al. (2019)) model the un-
derlying dynamics of sequential data using the Hamiltonian formalism. The data are assumed to
be sampled from a continuous and conservative dynamical system, and the system Hamiltonian is
assumed to be unknown.
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HNNs are one of a larger class of models termed NeuralODEs (Chen et al. (2018)), that use
neural networks to parameterize the ordinary differential equations (ODEs) governing the dynamics
underlying sequential data. NeuralODEs learn a neural network fθ, with parameters θ, to predict a
next state, x(t1), from a current state x(t0) by the following:

x(t1) = x(t0) +

∫ t1

t0

fθ(x(t0), t) dt,
dx(t)

dt
= fθ(x(t), t).

In HNNs, the system Hamiltonian is parameterized using a neural network and next state predictions
are formed by integrating Hamilton’s equations (equation 1).

HNNs have been used for dynamical systems forecasting when position-momentum values are
assumed to be known (Greydanus et al. (2019); Chen et al. (2019)) and in VAE-based video gen-
eration pipelines where ground truth position-momentum values are assumed to be unknown (Toth
et al. (2019); Saemundsson et al. (2020)). As far as we know, we are the first to use HNNs for
GAN-based video generation.

3.3. Generative Adversarial Networks (GANs)

In the generative adversarial network (GAN) (Goodfellow et al. (2014)) framework two networks
– the generator network G, and discriminator network D – are learned with opposing objectives.
The objective of the generator is to learn to map samples from a known distribution pz(z), to a
distribution that resembles the training data distribution pdata(x). The objective of the discriminator
is to discern whether or not a given sample is from the training set and indicate this with a 1 or 0
respectively. The formulation of these contrasting objectives proposed in (Goodfellow et al. (2014)),
is the following:

min
G

max
D

L(D,G) = Ez∼pz(z) log[1−D(G(z))]

+ Ex∼pdata(x)[logD(x)].

The objective is maximized when the discriminator correctly labels synthetic samples, G(z), with
zero and samples from the training dataset, x, with one. The objective is minimized when the
generator produces synthetic samples the discriminator incorrectly labels with one.

4. Hamiltonian GAN

In this section we detail our model, a three-stage GAN-based video generation pipeline in which a
configuration-space map and cyclic-coordinate loss function encourage identification of a minimal
configuration-space; and a HNN motion model supports generation of physically plausible video.

4.1. Video generation

Our inference framework consists of a configuration-space map f : Rn 7→ Rk, an HNN (Chen
et al. (2019)) motion model with a learned Hamiltonian H : T ∗Q 7→ R, and an image generator
GI : Z 7→ I. We begin by sampling a Gaussian random noise vector z and decomposing it into
a motion vector zm and content vector zc. We assume the structure of the motion subspace can
be learned by our piecewise continuous configuration map f , and that the underlying dynamical
system is continuous and conservative.
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Given the Gaussian sample zm, the configuration-space map f , a two layer MLP, outputs a
vector y0 which is interpreted as an initial condition on the phase-space T ∗Q. This initial condition
is passed to the HNN motion model which computes future system states yj = (qj , pj) using
Hamilton’s equations (equation 1) and the learned Hamiltonian H. Concretely, the sequence of
motion vectors {yj}N−1

j=0 , where N is the sequence length, is given by:

y0 = f(zm); yj = yj−1 +

∫ tj

tj−1

ẏj−1 dt, j > 0 (3)

where ẏj = (q̇j , ṗj) is given by Hamilton’s equations (equation 1). In our implementation, we
compute the integral (equation 3) using leapfrog integration with dt = 0.05. While a simpler
integration scheme can be used, leapfrog integration preserves simplicity and has been shown to
outperform other integration techniques (Hairer et al. (2006)).

Given the content vector zc and motion sequence {yj}N−1
j=0 , we form the latent sequence {wj}N−1

j=0

where wj = (zc, yj). Given this latent sequence, we generate a synthetic video ṽ = {x̃j}N−1
j=0 where

images x̃j = GI(wj), are determined by the generator network.

4.2. Cyclic-coordinate loss

Our configuration-space map f defines an intermediate space between the sampling distribution,
and the motion model determined by the learned Hamiltonian H. We interpret this intermediate
space as a configuration space for the dynamical system underlying the video data. Since its di-
mension is selected arbitrarily at design time, without constraint, the learned representation may
be dispersed with little identifiable structure. To encourage a minimal representation and improve
interpretability, we introduce a cyclic-coordinate loss function inspired by the observation that the
momentum coordinate pi, corresponding to a cyclic-coordinate qi is conserved (see Section 3.1).
We define our loss:

Lcyc =
1

N

∑
i

λ |ṗi|, (4)

where N is the batch size and i ranges over the latent dimension. We choose a regularization penalty
of λ = 0.01 for all experiments.

4.3. Training loss

Our model is trained using the loss proposed in Tulyakov et al. (2018) amended with our cyclic-
coordinate loss function (see equation 4). During training, an image discriminator network DI pre-
dicts whether or not an input image is from the training set, and a video discriminator network DV

predicts whether or not a video is from the training set. The generator and discriminator networks
are trained under the objective function:

min
GI ,R

max
DI ,DV

L(DI , DV , GI , R) = Eṽ[log(1−DI(S1(ṽ)))] + Ev[logDI(S1(v))]

+ Eṽ[log(1−DV (ST (ṽ)))] + Ev[logDV (ST (v))] + Lcyc

where v denotes a video from the training dataset, ṽ denotes a synthetic video, and Si denotes the
random sampling of i consecutive video frames.
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Table 1: FVD comparison. The consistent advantage of our model over MoCoGAN suggests that
the HNN recurrent module is able to generate latent trajectories on the motion manifold
more reliably than the GRU module. The advantage of our model over the HGN model
suggests that the implicitly learned configuration space structure is a better representation
of the actual configuration space than the Gaussian prior used in HGN. The best score is
shown in bold, the second best is shown in blue.

Mass
spring

Pendulum
Double
Pendulum

Two-
body

Three-
body

HGN 385.08 688.12 331.94 830.91 451.40
MoCoGAN 31.37 398.12 979.80 1028.13 2527.78
HGAN (Ours) 45.68 91.64 73.21 105.85 1981.10

5. Empirical analysis

In this section we compare videos generated using the following models:

1. HGN (Toth et al. (2019)): A VAE-based video generation approach in which the latent vec-
tor is interpreted as an element of the phase-space and propagated forward in time with an
HNN (Greydanus et al. (2019)) cell. We use the pytorch implementation of HGN introduced
in Rodas et al. (2021).

2. MoCoGAN (Tulyakov et al. (2018)): A GAN-based video generation approach in which
content and motion vectors are initialized with Gaussian random noise. A motion sequence is
generated using a discrete time RNN cell, and a latent sequence is constructed by concatenat-
ing the content vector to each motion vector. Each latent vector is decoded by the generator
network to produce a sequence of images. We use the pytorch implementation of MoCoGAN
introduced in Kitagawa and Kakiuch (2017).

3. HNN-GAN (Ours): This model differs from MoCoGAN in that the discrete time RNN cell
is replaced with a continuous time HNN cell. This model can be seen as a variant of HGAN
(our model), in which the configuration space map is ablated.

4. HGAN (Ours): This model differs from HNN-GAN in that a configuration space map trans-
forms the Gaussian random noise initialized motion vector to an intermediate space. The
resulting vector is interpreted as the initial condition for the HNN cell and propagated for-
ward in time to give a motion sequence. Moreover, a cyclic-coordinate loss function is used
during training to encourage a compact representation of the configuration-space.

All models are trained on the Hamiltonian Dynamics Suite Toy Physics dataset (Botev et al.
(2021)). HGN and MoCoGAN are trained using the hyperparameters provided in the original paper.
HNN-GAN and HGAN are trained using the hyperparameters proposed in MoCoGAN. The addi-
tional cyclic-coordinate loss regularizer in HGAN is found using grid search λ ∈ [0.1, 0.01, 0.001].
We find λ = 0.01 works well for our experiments.
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Figure 2: Unconditional mass spring video generation. Randomly sampled trajectories from the
training set, HGN, MoCoGAN, and our model (top-bottom).

Figure 3: Unconditional pendulum video generation. Randomly sampled trajectories from the
training set, HGN, MoCoGAN, and our model (top-bottom).

5.1. Datasets

We compare model performance on the Hamiltonian Dynamics Suite Toy Physics dataset (Botev
et al. (2021)). The dataset consists of a collection of video renderings of simulated physical systems.
It includes rendered simulations of the mass spring, double pendulum, pendulum, two-body and
three-body systems. Simulations are performed with and without friction; and videos are rendered
with constant or varied physical quantities (e.g., the mass of the pendulum bob, the length of the
pendulum arm, and location of the pivot in the pendulum dataset) across trajectories, and constant
grayscale, constant color, or varied color across trajectories. Each simulation is sampled at dt =
0.05, and 50k trajectories of 512 samples are generated for every system. Further details about the
dataset can be found in (Botev et al. (2021)). Following HGN we evaluate all models on the version
of this dataset generated without friction, with constant physical quantities across trajectories, and
with constant color.

5.2. Perceptual quality

We compare the performance of our model against the baseline models both quantitatively and qual-
itatively. We quantitatively compare the perceptual quality of generated videos using the Fréchet
Video Distance (FVD) (Unterthiner et al. (2019)). To avoid discrepancies in the evaluation due to
subsampling and data processing procedures, we use FVD evaluation pipeline proposed in Sko-
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Figure 4: Unconditional double pendulum video generation. Randomly sampled trajectories from
the training set, HGN, MoCoGAN, and our model (top-bottom).

Figure 5: Unconditional two body video generation. Randomly sampled trajectories from the train-
ing set, HGN, MoCoGAN, and our model (top-bottom).

rokhodov et al. (2021), and compute the FVD score for each model using 2048 videos of 16 frames.
We compare the perceptual quality of videos qualitatively by randomly generating 5 video se-
quences for each model and selecting the best for comparison. Our random seed is set to 0 for
all models.

We compare the performance of our model against the HGN, and MoCoGAN baseline models.
We randomly generate synthetic video sequences using each model and compare them in Figures
2-6; we report the FVD scores for each model in Table 1. Our model out performs the baseline
models in three out of five cases (i.e., Pendulum, Double Pendulum, Two-body), and demonstrates
comparable performance to the leading model (MoCoGAN) in one of the remaining cases (i.e., Mass
Spring). There is a significant difference in the FVD score of the leading model (HGN), and our
model on the Three-body case. As evidenced by Figure 6, our model produces qualitatively better
videos than HGN. We attribute the discrepancy in FVD score to the difference in the background
color of videos generated with our model and HGN. While videos generated with our model have
a foreground more similar to that of the real data, those generated with HGN have a more similar
background.

5.3. Configuration space structure

We investigate the impact of the configuration space map, and cyclic-coordinate loss on the learned
latent structure. We sample 1024 Gaussian random motion vectors and propagate them through
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Figure 6: Unconditional three-body video generation. Randomly sampled trajectories from the
training set, HGN, MoCoGAN, and our model (top-bottom).

the synthesis pipelines of MoCoGAN, HNN-GAN, and our model trained on the Pendulum in the
Toy Physics dataset. We visualize the motion manifold using t-SNE (Van der Maaten and Hinton
(2008)) projections in Figure 7. Visualizations of the MoCoGAN and HNN-GAN motion manifolds
show no discernible structure, while the motion manifold for our model suggests the system is one
dimensional.

6. Conclusion

In this work, we introduce a video generation model for physical systems that does not require an
explicit prior on the structure of the configuration space. We learn a representation of the underlying
configuration space, and leverage the Hamiltonian formalism to learn a continuous and conservative
motion model. While the latent dimension of our model exceeds the dimension of the systems
considered, we are able to learn compact representations of the configuration space because of our
physics-inspired cyclic-coordinate loss function. Our model outperforms baselines in many cases,
and affords a mechanism for investigating the learned configuration space structure.

Figure 7: t-SNE projection of the motion manifold. We propagate the Gaussian random motion
vector through the synthesis pipelines of MoCoGAN, HNN-GAN, and our model (left-
right), and visualize the one step output of the motion module.
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Irina Higgins. Hamiltonian generative networks. arXiv preprint arXiv:1909.13789, 2019.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing motion
and content for video generation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1526–1535, 2018.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski,
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