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Abstract
Over the last decade, data-driven methods have surged in popularity, emerging as valuable tools
for control theory. As such, neural network approximations of control feedback laws, system dy-
namics, and even Lyapunov functions have attracted growing attention. With the ascent of learning
based control, the need for accurate, fast, and easy-to-use benchmarks has increased. In this work,
we present the first learning-based environment for boundary control of PDEs. In our benchmark,
we introduce three foundational PDE problems - a 1D transport PDE, a 1D reaction-diffusion PDE,
and a 2D Navier–Stokes PDE - whose solvers are bundled in an user-friendly reinforcement learn-
ing gym. With this gym, we then present the first set of model-free, reinforcement learning algo-
rithms for solving this series of benchmark problems, achieving stability, although at a higher cost
compared to model-based PDE backstepping. With the set of benchmark environments and de-
tailed examples, this work significantly lowers the barrier to entry for learning-based PDE control -
a topic largely unexplored by the data-driven control community. The entire benchmark is available
on Github along with detailed documentation and the presented reinforcement learning models are
open sourced.

Keywords: Partial Differential Equation Control, Nonlinear Systems, Benchmarking for Data-
Driven Control, Reinforcement Learning

1. Introduction

As learning-based control has exploded across both academia and industry, the need for fast, and
accurate bench-marking is heightened. For example, perhaps the most visible impact of proper
bench-marking is in the field of computer-vision resulting in 15-years of breakthrough results from
AlexNet Krizhevsky et al. (2012) to neural radiance fields (NeRFs) Mildenhall et al. (2020). De-
spite this, the control community has, justifiably, forgone consistent efforts in bench-marking as the
community spawned from an applied mathematics perspective where the focus was behind prov-
able stability guarantees. However, given the recent exploration surrounding data-driven control
methods Berberich et al. (2023); Feng et al. (2023), designing fast, well-documented, and chal-
lenging benchmarks is of utmost importance to ensure new learning-based control approaches are
consistently advancing the state of the art.
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© 2024 L. Bhan, Y. Bian, M. Krstic & Y. Shi.

https://github.com/lukebhan/PDEControlGym
https://pdecontrolgym.readthedocs.io/en/latest/
https://huggingface.co/lukebhan/PDEControlGymModels


BHAN BIAN KRSTIC SHI

In this work, we develop a benchmarking suite for learning-based boundary control of PDEs.
Boundary control of PDEs is of elevated importance compared to control across the full domain
as many real world problems cannot control the PDE across the entire domain, but only at the
boundary input. Thus, boundary control is physically more realistic as the actuation and sensing are
generally non-intrusive Krstic and Smyshlyaev (2008b). For example, in fluid flows, the engineer
only gets control access to the surrounding walls containing the fluid Di Meglio et al. (2012) or in
temperature manufacturing, the engineer is typically unable to set the temperature of entire plate,
but only a specific edge. Furthermore, boundary control is extremely powerful in modeling macro-
level traffic congestion Huan Yu (2023) as modern highways typically only enable actuation and
sensing at the on/off ramps. However, for a majority of these applications, each researcher typically
develops their own simulations and thus there is no standard library with a universal set of problems
to test new algorithms. Thus, in this work, we introduce the first library containing a set of general
PDE control problems and implementations of their corresponding model-based control algorithms
that can be easily modified to fit the wide array of aforementioned target applications.

Contributions This paper has three main contributions. First, we introduce, design, and formal-
ize the first benchmark suite for PDE control including 3 classical problems ranging from boundary
stabilization for 1D transport (hyperbolic) and reaction-diffusion (parabolic) PDEs to trajectory fol-
lowing for the 2D Navier-Stokes PDEs. Along with the proposal of the PDE control benchmarking
suite, we parameterize the numerical scheme implementations as RL gyms - effectively decoupling
the PDE solvers from the controller design, enabling the use of any pre-implemented learning al-
gorithm for PDE control. Second, utilizing our benchmark suite, we train the first set of model-free
RL controllers which effectively stabilize hyperbolic and parabolic PDE problems and achieve ef-
fective tracking for the 2D Navier-Stokes equations. We then compare the resulting controllers
to classical algorithms such as PDE backstepping and adjoint-based optimization highlighting the
trade-offs between performance. Lastly, we provide extensive documentation and numerous exam-
ples for the training of RL controllers, implementation of classical control algorithms and of course
the integration of new PDE control problems into the benchmark suite.

2. Related Work

2.1. Learning-based PDE benchmarks

Benchmarking for machine
learning in PDEs

Compilation of a
premade dataset Supports control Differentiable PDE

solver
Supports custom
PDEs

Supports reinforcement
learning

Implementation of
model-based control

PhiFlow Holl et al. (2020)

PDEBench Takamoto et al. (2022)
(created from PhiFlow)
PDEArena Gupta and Brandstetter (2022)
(created from PhiFlow)

PDE Control Gym (Ours)

Table 1: Comparison of benchmarks for machine learning in PDEs.

Currently, to the author’s knowledge, there are no benchmarking suites focused on boundary con-
trol of PDEs as most benchmarks such as Takamoto et al. (2022); Gupta and Brandstetter (2022)
present datasets for learning PDE solution maps from initial conditions. These benchmarks are typ-
ically used for comparing neural network-based PDE solvers like neural operators Lu et al. (2021);
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Li et al. (2021) and PINNs Raissi et al. (2019). Although these benchmarks are effective, they do
not allow users to incorporate boundary control or alter the PDEs within their datasets. The ϕFlow
framework Holl et al. (2020) provides a flexible PDE solver that supports automatic differentia-
tion for the calculation PDE derivatives to be used in control algorithms. While adaptable for PDE
control, it does not natively support RL algorithms and lacks a set of model-based controllers for
learning-based control comparisons. Lastly, it is worth noting that while there are ODE control
suites like Duan et al. (2016); Tassa et al. (2018) tailored for ODE control tasks. The PDE control
gym, to our knowledge, represents the first PDE-focused benchmarking suite for learning-based
control algorithms.

2.2. Learning as a tool for PDE control

As with most scientific disciplines, machine learning has had a broad impact in PDE control. In
1D PDE problems, a series of work has been developed to use neural operators for approximating
control feedback laws Bhan et al. (2023a,b); Krstic et al. (2024); Qi et al. (2023), under a supervised
learning framework with provable stability guarantees. Furthermore, an optimal control approach
using PINNs is explored in Mowlavi and Nabi (2023). Additionally, the closest paper to this work
is by Yu et al. (2022) who presented the first exploration utilizing RL for PDE boundary control.
However, they do not explore the benchmark PDE problems presented in this paper instead focusing
on Aw-Rascale-Zhang (ARZ) traffic model.

2.3. Reinforcement learning in control

Reinforcement learning (RL) has demonstrated significant success in various control applications,
including robotics Brunke et al. (2022), power systems Chen et al. (2022), and autonomous driv-
ing Kiran et al. (2021). From a controls perspective, deep RL (DRL) algorithms learn feedback
laws that maps observations (states) into actions (control inputs), typically via neural networks
(NN). These RL controllers are trained to optimize specific reward functions, such as the L2 spatial
norm of states for stabilization tasks Yu et al. (2022). The most appealing feature of deep RL is
its model-free nature, allowing it to control complex systems without requiring explicit model es-
timations. Consequently, RL has potential to outperform model-based control methods in highly
complex tasks with hard-to-model dynamics. To demonstrate the use of PDE Control Gym, we
conduct experiments using off-the-shelf RL algorithms implemented with Stable-Baselines3 Raffin
et al. (2021). We selected the off-policy soft actor-critic (SAC) (Haarnoja et al., 2018) and on-policy
proximal policy optimization (PPO) (Schulman et al., 2017) algorithms for their demonstrated effi-
ciency in solving challenging continuous control tasks Duan et al. (2016).

3. Formalization of PDE Control Problems

3.1. General PDE control problem

We consider a partial differential equation (PDE) defined on a domain X , which can be either one-
dimensional (1D), X = [0, 1] ⊂ R, or two-dimensional (2D), X = [0, 1] × [0, 1] ⊂ R2. The time
domain is T = [0, T ] ⊂ R+. Let u(x, t), x ∈ X , t ∈ T describe the state of the system governed
by the PDE according to the dynamics

∂u

∂t
= P

(
u,

∂u

∂x
,
∂2u

∂x2
, . . . , U(t)

)
, (1)
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1D Hyperbolic 1D Parabolic 2D Navier-Stokes
Supported
Configuration Sensing (o(t)) Actuation (a(t)) Sensing (o(t)) Actuation (a(t)) Sensing (o(t)) Actuation (a(t))

full-state u(x, t) u(1, t) u(x, t) u(1, t) u(x, y, t) u(x, 1, t)
colloacted ux(1, t) u(1, t) ux(1, t) u(1, t) — —
anti
collocated u(0, t) u(1, t) — — — —

anti
collocated ux(0, t) u(1, t) ux(0, t) u(1, t) — —

full-state u(x, t) ux(1, t) u(x, t) ux(1, t) u(x, y, t) u(x, 0, t)
collocated u(1, t) ux(1, t) u(1, t) ux(1, t) — —
anti
collocated u(0, t) ux(1, t) — — — —

anti
collocated ux(0, t) ux(1, t) ux(0, t) ux(1, t) — —

full-state — — — — u(x, y, t) u(1, y, t)
full-state — — — — u(x, y, t) u(0, y, t)

Table 2: Configurations for actuation and sensing supported by the PDE Control Gym for the three
problems. Full state indicates the measurement is the entire PDE state, collated indicates
that the sensing and measurement is done at the same boundary point, and anti-collocated
indicates sensing and measurement are done at opposite boundary points. The configura-
tions marked in blue correspond to the experiment examples in Section 5.

where P is the partial differential equation(s) that model(s) the system dynamics, and U(t) is the
control function. Then, the goal of a PDE control problem is to optimize a cost function (e.g.
regulate u(x, t) to be the desired trajectory while reducing the control cost, stabilize the PDEs)
from just boundary inputs. Note that in some methods such as PDE backstepping, optimization is
forgone in favor of just asymptotic stabilization as the infinite dimensional nature of PDE control is
extremely challenging.

3.2. Markov decision processes (MDPs) for PDE control

We give a brief overview of the components of the MDP governing both the 1D and 2D support
problems. More details about the specific MDPs governing the examples in Section 5 can be found
in the supplemental.

State and Observation Space. In all PDE control problems addressed, the state s(t) at time t is
represented by the PDE value u(x, t), x ∈ X . To enhance flexibility for different PDE tasks such as
observer design, we have developed different partial state measurement settings, which we denote
as the observation space o(t). The types of sensing supported for each problem are detailed in Table
3.2. Furthermore, we offer the ability to introduce custom noise functions (with built-in support for
Gaussian noise). This allows users to simulate real-world sensor noise in their experiments.

Action Space. The action a(t) = U(t) for both the RL and control agents is determined by
the actuation locations and boundary condition type. In 1D hyperbolic and parabolic systems, we
consider both Neumann and Dirichlet boundary actuation U(t) ∈ R at either boundary, with four
possible cases: 1) u(0, t) = U(t), 2) u(1, t) = U(t), 3) ux(0, t) = U(t), and 4) ux(1, t) = U(t).
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Considering the symmetry between the boundaries x = 0 and x = 1, there are eight distinct
combinations for the 1D Hyperbolic PDE problem and six for the 1D Parabolic PDE problem,
including an additional boundary condition at u(0, t). These combinations are outlined in the first
two sections of Table 3.2. For the 2D Navier–Stokes problem, we consider Dirichlet-type boundary
actuation on any of the four boundaries: top, bottom, left, and right. The gym also allows users to
customize actuator positions, enabling research into optimizing both location and actuation type.

State Evolution. To simulate the PDE system evolution with the control input U(t), we use a
first-order Taylor approximation for temporal evolution,

u(t+∆t) = u(t) + ∆t · P
(
u(t),

∂u

∂x
,
∂2u

∂x2
, . . . , U(t)

)
. (2)

Spatial derivatives are approximated using appropriate finite difference schemes and are explicitly
given for each gym environment in the supplemental. In practice, selecting the time step ∆t and
spatial discretization ∆x for each problem requires careful consideration, particularly based on the
number of approximated spatial derivatives. Nonetheless, we found that reasonable choices such as
∆x = 0.01, ∆t = 0.0001 yield both fast and numerically stable results.

Reward. Reward shaping plays a pivotal role in the training of RL algorithms. Generally speak-
ing, for stabilization tasks, it is appropriate to employ a form of trajectory-based reward∫ T

0

(∫
x∈X

∥u(x, t)∥2dx+ ∥U(t)∥2
)
dt , (3)

which minimizes the state magnitudes and control efforts. For tracking tasks, a trajectory reward as∫ T

0

(∫
x∈X

∥u(x, t)− uref (x, t)∥2dx+ ∥U(t)− Uref (t)∥2
)
dt , (4)

is a reasonable choice as it penalizes deviations from the reference trajectory given in both state
uref (x, t) and control actions Uref (t). However, in practice, for the 1D hyperbolic and parabolic
PDE problems, we found that the reward as given in (3) was insufficient for training and thus we
use a specifically tuned reward that penalizes the difference of the L2 norms between the current
state and next state after action a(t) (presented in supplemental).

4. Benchmark PDE Control Tasks

4.1. 1D Hyperbolic (transport) PDEs

We consider the benchmark transport PDE in the form

ut(x, t) = ux(x, t) + β(x)u(0, t), (5)

for x ∈ [0, 1), t ∈ [0, T ]. Physically, (5) is a “transport process (from x = 1 towards x = 0)
with recirculation” of the outlet variable u(0, t). Recirculation causes instability and the goal is to
stabilize “full-state” recirculation from only boundary inputs. In practice, we consider the same
PDE as studied in Bhan et al. (2023a) where β is governed by the Chebyshev polynomial β(x) =
5 cos(γ cos−1(x)) and Dirichlet actuation u(1, t) = U(t). Classically, this PDE, with recirculation,
has been a seminal-benchmark for PDE backstepping, as the 1D transport PDE can model a wide
range of applications from chemical processes to shallow water waves and traffic flows Krstic and
Smyshlyaev (2008a).
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Model-based backstepping control. The backstepping controller given by the following

U(t) =

∫ 1

0
k(1− y)u(y, t)dy , (6)

k(x) = −β(x) +

∫ x

0
β(x− y)k(y)dy , (7)

for x ∈ [0, 1]. (6) results in stabilization of (5) Krstic and Smyshlyaev (2008a). In practice, the
backstepping kernel (7) is implemented using the successive approximations approach although a
Laplace transform approach is also viable Krstic and Smyshlyaev (2008b).

4.2. 1D Parabolic (reaction-diffusion) PDEs

We consider the benchmark reaction-diffusion PDEs governed by recirculation function λ(x) as

ut(x, t) = uxx(x, t) + λ(x)u(x, t), (8)

u(0, t) = 0, (9)

with Dirichlet or Neumann actuation at x = 1. Again, instability is caused by the λ(x)u(x, t) term
otherwise the problem would simplify to the classical heat equation. This PDE appears in different
applications ranging from a chemical tubular reactor Shi et al. (2022) to electro-chemical battery
models Moura et al. (2014) and diffusion in social networks Wang et al. (2020).

Model-based backstepping control. For the PDE (8), (9), with Dirichlet boundary actuation
u(1, t) = U(t), the backstepping controller with full state measurement is given by the following
Smyshlyaev and Krstic (2004, 2010),

U(t) =

∫ 1

0
k(1, y)u(y, t)dy. (10)

where k(x, y) ∈ C2(T̃ ), T̃ = {0 ≤ y ≤ x ≤ 1}.

kxx(x, y)− kyy(x, y) = λ(y)k(x, y), ∀(x, y) ∈ T̆ , (11)

k(x, 0) = 0 , (12)

k(x, x) = −1

2

∫ x

0
λ(y)dy , (13)

where T̆ = {0 < y ≤ x < 1}.

4.3. 2D Navier-Stokes PDEs

We consider the 2D in-compressible Navier-Stokes equations as the third benchmark control task,

∇ · u = 0 , (14a)
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u . (14b)

With slight abuse of notation, we denote the spatial variable (in 2D) as x = (x, y) ∈ X = [0, 1] ×
[0, 1], and u = (u, v) : X × T → R2 represents 2D velocity field, ν is the kinematic viscosity of
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the fluid, ρ is the fluid density, and p is the pressure field. Navier-Stokes equation is fundamental
in fluid dynamics with extensive applications including aerodynamic design, pollution modeling,
and wind turbine flows Jameson et al. (1998); Li et al. (2021). For the experiments, we consider
boundary control along the top boundary as u(x, 0, t) = U(x, t), ∀x ∈ [0, 1]. All other boundary
conditions are Dirichlet boundary conditions where the velocity is set to be 0. The task here is to
find boundary control U(x, t) such that the resulting velocity field is close to the reference trajectory
given in both desired velocity field uref (x, t) and desired actions Uref (x, t).

Model-based optimization-based control. We provide an optimization-based controller based
on Pyta et al. (2015) as the model-based control baseline.

min
U(x,t)

J(U(·, t),u) =
1

2

∫
T

∫
X
∥u(x, t)− uref (x, t)∥2dxdt

+
γ

2

∫
T
∥U(·, t)− Uref (·, t)∥2dt (15a)

s.t. (14a), (14b), u(x, 0, t) = U(x, t), ∀x ∈ [0, 1]. (15b)

To ensure computational tractability, the control actions are set to be the tangential, uniform velocity,
i.e., u(x, 0, t) = U(t), v(x, 0, t) = 0, followed in Pyta et al. (2015). The optimal control actions
are obtained by solving the PDE-constrained optimization problem presented in (15). This solution
employs Lagrange multipliers, utilizing the adjoint method McNamara et al. (2004); Gunzburger
(2002) for gradient computation of the Lagrangian function.

5. Experiments
For each of the 3 environments in PDE Control Gym, we implemented baseline model-based con-
trol algorithms as well as off-the-shelf RL algorithms including soft actor-critic (SAC) (Haarnoja
et al., 2018) and proximal policy optimization (PPO) (Schulman et al., 2017) trained using Stable-
Baselines3 (Parameters available in supplemental). We note that all the experiments can be trained
in under 1 hour (Nvidia RTX 3090ti) and entire trajectories can be simulated in seconds.

Hyperbolic PDE Parabolic PDE Navier-Stokes PDE

Algorithm Average Episode Reward
for Trained Policy ↑

Average Episode Reward
for Trained Policy ↑

Average Episode Reward
for Trained Policy ↑

Model-based 246.3 299.1 -7.931
PPO 172.3 293.3 -5.370
SAC 184.2 229.1 -17.829

Table 3: Resulting control algorithm performance on 50 test episodes in each gym (larger value
indicates better performance). The model-based algorithm for the hyperbolic and parabolic
PDEs are the backstepping schemes given in (6), (7) and (10), (11), (12), (13) respectively
while the method for the Navier-Stokes PDE solves the optimization problem (15).
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Training Rewards for Hyperbolic, Parabolic, and Navier-Stokes PDEs

Figure 1: Rewards for training PPO (blue) and SAC (orange) on the 1D transport PDE, 1D reaction-
diffusion PDE, and 2D Navier-Stokes PDE from left to right. The solid lines represent
the mean and the shaded bounds are 95% confidence intervals across 5 seeds.

5.1. 1D Hyperbolic (transport) PDEs
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Time
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Figure 2: Example of the 1D transport PDE system stabilization using backstepping, PPO, and
SAC (left to right) under initial conditions u(x, 0) = 10. The recirculation coefficient is
defined as β(x) = 5 cos(γ cos−1(x)) with γ = 7.35.

Experimental design Our experimental setup for the Hyperbolic 1D problem, detailed in Section
4.1, considers full state measurements and boundary control u(1, t) = U(t). We use the Chebyshev
polynomial recirculation function β(x) = 5 cos(γ cos−1(x)) from Bhan et al. (2023a), with γ =
7.35 (future studies may vary γ). Each episode is initiated from a random initial condition, u(x, 0) ∼
Uniform(1, 10). This setup presents a challenging control scenario, as the open loop system (U(t) =
0) is unstable (See Figure 1 in supplemental).

Results We now present detailed results on the policies trained and their comparison with model-
based backstepping. In the left of Figure 1, we present the average reward functions for both RL
algorithms over 1 million training steps. Then, in Table 3, we present the average reward where we
run the trained final RL policies, and the model-based backstepping policy for 50 test episodes with
different initial conditions, noting that model-based backstepping performs the best. Additionally,
in Figures 2 we provide a comparison across all 3 control approaches where u(x, 0) = 10. We
can clearly see that although all 3 policies are stabilizing for the examples, model-based PDE back-
stepping again performs the best and the RL control signals are high oscillatory leaving room for
improvement in applying model-free PDE control algorithms.
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5.2. 1D Parabolic (reaction-diffusion) PDEs
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Figure 3: Example of reaction-diffusion PDE system stabilization using backstepping, PPO, and
SAC (left to right) under initial conditions u(x, 0) = 10. The recirculation coefficient
using the Chebyshev polynomial defined as λ(x) = 50 cos(γ cos−1(x)) with γ = 8.

Experimental design We adopt the same approach as the 1D Hyperbolic PDE in Section 5.1
except that the dynamics are now governed by (8), (9), with full state measurements and u(1, t) =
U(t). The time-horizon is shortened to 1 second as the algorithms are able to stabilize faster. We
choose λ(x) = 50 cos(γ cos−1(x)) where γ is fixed to be 8 (future studies may vary γ). At each
episode, the initial conditions are uniformly randomized according to u(x, 0) ∼ Uniform(1, 10),
and we note that the system is always open-loop unstable for all possible initial conditions (See
Figure 5 supplemental). For training, we follow the same procedure as Section 5.1 except that we
require a finer simulation resolution of ∆x = 0.005, and the PDE is simulated at ∆t = 0.00001
due to the approximation of the second spatial derivative in the reaction-diffusion PDE.

Results Figure 1 presents the average reward over 1 million training steps. Unlike the hyperbolic
PDE where both RL algorithms performed relatively equal, the PPO algorithm achieved better per-
formance during training which is corroborated by the testing rewards in the middle column of Table
3. Figure 3 demonstrates a test case with u(x, 0) = 10. Similar to the transport PDE, we observe
oscillations in the RL feedback laws, suggesting potential improvement via enforcing continuity
constraints as in Asadi et al. (2018). Notably, in Figure 3, perhaps due to reward shaping, PPO
differs from the backstepping controller’s approach, but maintains excellent performance.

5.3. 2D Navier-Stokes PDEs

Experimental design For the Navier-Stokes 2D problem (Section 4.3), both velocity components
are zero initially, i.e., u(x, y, 0) = v(x, y, 0) = 0. We apply boundary control on the top boundary
with tangential, uniform controlled velocity, setting u(x, 1, t) = U(t) ∈ R and v(x, 0, t) = 0.
For implementation, we discretize the state space with a spatial step of ∆x = 0.05 and the PDE
is simulated at ∆t = 0.001. The reward for training is derived from the negative of the cost in
optimization (15). The reference velocity vector uref is the resulted velocity vector under the
boundary control U(t) = 3− 5t, and Uref = 2.0 .

Results Figure 1 (right) shows the average reward per episode for PPO and SAC, with PPO out-
performing SAC both in terms of higher final rewards and more stable training curves. Table 3
(right) details the average episodic rewards over 50 test episodes, where PPO surpasses both SAC
and the model-based optimization algorithm, which often gets stuck in local optima. Despite the
reward difference, on a singular example presented in Figure 4, all methods effectively track the
reference velocity vectors.

9
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Figure 4: Example of Navier-Stokes PDE tracking using optimization-based control, PPO, and
SAC under initial conditions u(x, y, 0) = 0 at t = 0 (top) and t = 0.2 (bottom). Red
and black arrows represent the actual and reference velocity field respectively. The back-
ground color represents the magnitude of the velocity vector.

6. Conclusion

Future work Throughout this paper, we have mentioned several avenues for future research based
on the PDE Control Gym. As such, we conclude this work by briefly summarizing these ideas. We
employed relatively simple policy network architectures in our RL algorithms, not fully fine-tuning
them to the specific problems. The PDE Control Gym presents opportunities to optimize policy
network structures, improve reward shaping, and develop better RL algorithms for PDE control
tasks. Additionally, our experiments were based on time-invariant linear instability coefficients
where β(x) and λ(x) are unknown but static during RL training. Thus, there is much to be explored
for model-free controllers when considering time-varying models, adaptive control, and sensing
noise. Furthermore, given the superior performance of backstepping controllers, investigating the
potential of pre-training RL methods through imitation learning could be a valuable direction.

Conclusion In this study, we introduced the first benchmark suite for learning-based boundary
control of PDEs. We developed RL gyms for three fundamental PDE control problems: the 1D
transport PDE, 1D reaction-diffusion PDE, and 2D Navier Stokes PDE. This gym allows for the
separation of algorithm design from the numerical implementation of PDEs. Moreover, we trained
a series of model-free RL models on the three benchmarks and compared their performance with
model-based PDE backstepping and optimization methods. Finally, our work discussed multiple
avenues for future research, aiming to inspire new research in the challenging field of PDE control.
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2023.

A. Jameson, L. Martinelli, and N. A. Pierce. Optimum aerodynamic design using the Navier-Stokes
equations. Theoretical and Computational Fluid Dynamics, 10(1):213–237, Jan 1998.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
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