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Abstract

A key problem in using microorganisms as bio-factories is achieving and maintaining cellular com-
munities at the desired density and composition to efficiently convert their biomass into useful
compounds. Bioreactors are promising technological platforms for the real-time, scalable control
of cellular density. In this work, we developed a learning-based strategy to expand the range of
available control algorithms capable of regulating the density of a single bacterial population in
bioreactors. Specifically, we used a sim-to-real paradigm, where a simple mathematical model,
calibrated using a single experiment, was adopted to generate synthetic data for training the con-
troller. The resulting policy was then exhaustively tested in vivo using a low-cost bioreactor known
as Chi.Bio, assessing performance and robustness. Additionally, we compared the performance
with more traditional controllers (namely, a PI and an MPC), confirming that the learning-based
controller exhibits similar performance in vivo. Our work demonstrates the viability of learning-
based strategies for controlling cellular density in bioreactors, making a step forward toward their
use in controlling the composition of microbial consortia.
Keywords: Control Applications, Learning-Based Control, In Vivo Validation, Sim-To-Real, Syn-
thetic Biology

1. Introduction

Microorganisms, such as bacteria and yeast, have been widely used in industry as efficient, low-
waste bio-factories capable of converting nutrients into useful proteins or chemicals (Brenner et al.,
2008; Satyanarayana, 2009; Su et al., 2020; Jullesson et al., 2015; Choi et al., 2018; Hug et al.,
2020). These bio-factories offer significant benefits, including sustainability and reduced environ-
mental impact, by leveraging biological processes for production. This is achieved by engineering
de novo synthetic circuits into cells or combining the natural bio-processing capabilities of different
organisms.
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In this context, an important issue is how to utilize cell resources to efficiently transform biomass
into protein production while preventing the accumulation of toxic by-products (Mauri et al., 2020;
Tian et al., 2020; Xu et al., 2018; Lv et al., 2019). Bioreactors play a crucial role in this process.
They provide a controlled environment where it is possible to achieve and maintain a desired cell
density, creating optimal conditions for the bio-production of a given chemical. Figure 1 presents
an example of automated control architecture applied to cell growth regulation. Specifically, by
modulating the dilution with the introduction of new nutrients, it is possible to adjust the culture
density in real time. An external controller can be designed to run on a computer and automatically
regulate the cell density by evaluating the error between the measured density inside the chamber
and the desired density level.

Various strategies exist for regulating cell populations within a chamber, including those that
manipulate dilution rates in chemostats (De Leenheer and Smith, 2003) and those that leverage ge-
netic interventions of cell strains, utilizing different control inputs such as light (Gutiérrez Mena
et al., 2022; Lugagne et al., 2024) or various nutrients (Treloar et al., 2020). From a control de-
sign perspective, existing approaches utilize traditional controllers like PIs (Kusuda et al., 2021),
non-linear piecewise smooth methods, or gain scheduling state feedback strategies (Fiore et al.,
2021). Some approaches harness computational capabilities to derive control laws incorporating
constraints, either through mechanistic models (Bertaux et al., 2022; Aditya et al., 2021; Zhu et al.,
2000) or through data-driven methods utilizing reinforcement learning (Treloar et al., 2020) or deep
neural networks (Lugagne et al., 2024).

Recent developments in quantitative systems and synthetic biology have led to the increased
adoption of compact and cost-effective bioreactors, such as those explored by Bertaux et al. (2022);
Steel et al. (2020); Wong et al. (2018). These bioreactors offer integrated control equipment and
multiple sensors in a unified platform, enabling precise manipulation of environmental conditions
for extended periods in microbial cultures, making them highly attractive for controlling microbial
consortia. Among the various low-cost, open-source bioreactor platforms available for the rapid
prototyping of novel microbial communities for bio-production, the Chi.Bio (Steel et al., 2020)
provides a controlled, static environment where culture parameters such as nutrient availability and
temperature can be regulated. It also includes the ability to frequently measure cellular density and
bulk fluorescence, and offers optogenetic actuation. This platform employs a PI controller for the
real time control of cell density in the culture vial. However, to enhance robustness, it is common
practice to optimally tune the control gains using a mathematical model of the controlled system
(Fiore et al., 2021; Wong et al., 2018). While being effective, this often requires accurate and well-
calibrated mathematical models, which can be challenging to obtain.

To overcome the need for an accurate mathematical model, several approaches have resorted to
data-driven modeling. In (Lugagne et al., 2024), the authors trained a deep network to accurately
predict the expression of single cells in a microfluidic device. They used light stimuli to induce
or not the expression of a fluorescence protein. For each cell in the device, they collected various
features such as fluorescence, cell count in each chamber, and light inputs. The dataset included
16.000 time series approximately, which enabled extensive training of the model. Whereas the ar-
chitecture of the neural network comprises two components: a long short-term memory that encodes
the data series of each feature into a unique lower-dimensional vector, and a multi-layer perceptron
that predicts fluorescence evolution. This deep network was then used as a model in a Model Pre-
dictive Control scheme to regulate the expression of thousands of cells based on their response to
light stimuli. However, applying this approach to low-cost bioreactors like Chi.Bio is challenging, if
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not impossible, because data from these bioreactors are collected from aggregate populations rather
than individual cells, making data efficiency a significant issue. Another strategy is to employ a
learning-based control approach, where data are used to directly learn the controller rather than the
model. As proposed by Treloar et al. (2020), a suitable control law for a fixed reference can be
learned within 24 hours using five parallel bioreactors. However, this approach lacks in vivo valida-
tion, where noise and population heterogeneity could hinder controller performance. Additionally,
if the reference point changes, entirely new training is required to adjust the system to the new set
point due to difficulties in training and on how the policy is shaped (Zhang et al., 2023; Zhao et al.,
2022; Hafner and Riedmiller, 2011). In practice, this approach inherits the typical challenges of re-
inforcement learning, such as sample inefficiency, which requires extensive time and a large amount
of experimental data (see Buşoniu et al. (2018); Bertsekas (2005)).

A possible solution to learn a control policy without requiring extensive experimental data is
the sim-to-real approach, where the control policy is learned in simulated environments and subse-
quently transferred to the real system (Rusu et al., 2017; Tan et al., 2018; James et al., 2017). This
is particularly challenging in biological applications, as these systems evolve and grow, character-
ized by cell-to-cell variability, uncertainties, and other disturbances that are difficult to accurately
capture in synthetic mathematical models. Therefore, a key open problem is to determine if and
how learning-based controllers trained with a simple model parametrized on limited experimental
data can be effectively deployed in vivo to control bacterial populations, bridging the gap between
simulations and real-world experiments.

In this work, we address this problem by developing a learning-based controller for regulating
cellular density to different desired set points in a bioreactor. In line with the sim-to-real approach,
the control law is learned by interacting with synthetically generated data. These data are generated
from a simple deterministic model capturing the main features of the growth dynamics. Notably,
even though partial knowledge of the system’s dynamics is required, a coarse calibration of the
parameters, obtained using a few open-loop experiments, is sufficient to generate the data needed
for training the control algorithm to achieve set point regulation. We demonstrate through a se-
ries of exhaustive in vivo experiments that the sim-to-real gap can be bridged and that the control
performance learned using a simple model can be transferred to real experiments conducted us-
ing a bioreactor. We benchmark our controller in terms of performance and robustness against the
on-board PI controller in the Chi.Bio and a Model Predictive Controller developed for compari-
son, which employs the same simple deterministic model used to generate synthetic data for the
learning-based controller.

2. Control Problem Formulation

We consider the growth dynamics of a bacterial species inside a microbial culture chamber described
as a continuous-time dynamical system of the form:

ẋt = f(xt, ut), x0 = x̃0,

yt = αxt,
(1)

where xt ∈ X is the concentration of bacteria in the microbial culture chamber at time t, with
X ⊆ R≥0 being the state space, x̃0 ∈ X is the initial concentration, ut ∈ U is the control input or
pump rate delivered as an exogenous injection of fresh growth media in the microbial chamber, with
U ⊆ R≥0 being the set of feasible inputs, f : X × U → X is the vector field defining the system
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Figure 1: An automated cell growth setup: the cell density at a given time is estimated via optical density measures,
while a computer automatically implements a control law able to regulate the dilution (hence the density inside the
chamber) by adding fresh media and discarding the waste.

dynamics, and the output y ∈ [0, 1] is the optical density (OD) measured by the platform, expressed
in arbitrary units. For the sake of simplicity, we assume that α is equal to 1, and therefore from now
on we will equivalently refer to either bacterial concentration x or optical density y. This causes
only a simple rescaling of the output signal, and does not affect the control design that follows.

To accommodate the technological constraints of common microbiology platforms, we consider
a scenario where the control input can only be applied at fixed discrete time steps. Therefore, we
design our control strategy based on the following discrete-time dynamical system:

xtk+1
= xtk +

∫ tk+1

tk

f(xτ , utk), dτ, xt0 = x̃0, (2)

where tk ∈ N≥0 represent discrete time steps, and utk is a piecewise constant function defining the
constant pump rate applied during the time interval [tk, tk+1) to the system dynamics described in
(1). Moreover, when utk ̸= 0, indicating that fresh media is being pumped into the chamber, the
experimental platform automatically expels some of the fluid from the chamber at a rate greater than
the input rate to prevent overflow.

Considering the following assumptions:

A1. The concentration x is quantified through OD measurements,

A2. The measures are collected at every minute,

A3. The control input, i.e. the pumping rate, is limited to avoid overflows,

the control goal is to regulate the bacterial concentration x in the chamber to some desired steady-
state value x̄ ∈ [0.2, 1]. This range corresponds to the operating conditions where cells are in the
exponential growth phase, which facilitates protein production.

2.1. Stating the Learning-Based Control Problem

Following (Recht, 2019), the previous control goal can be reformulated as a learning-based control
problem. Specifically, we aim to learn the control policy π : X → U to solve the following dynamic
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optimization problem over a finite time horizon tN ∈ N>0:

max
π

Jπ, (3a)

s.t. xtk+1
= xtk +

∫ tk+1

tk

f(xτ , utk) dτ, tk ∈ {0, . . . , tN−1}, (3b)

utk = π(xtk), tk ∈ {0, . . . , tN−1}, (3c)

xt0 given, (3d)

where the objective function is a discounted cumulative reward defined as:

Jπ = rtN (xtN ) +
N−1∑
k=0

γkr(xtk), (4)

with r : X → R being the reward received by the learning agent, γ a discount factor set to 0.99,
and rtN : X → R being the final reward. In particular, the reward function is formulated as a
distance-like function between the bacterial density in the chamber and a given reference set point
x̄ as follows:

r(xtk) = −(xtk − x̄)2, (5)

which steers the learning agent towards achieving and maintaining the bacterial density at the refer-
ence setpoint value x̄ .

3. Control Design and Validation

To solve the learning problem and regulate the density of the bacterial population in a bioreactor,
we designed a Deep Q-Learning algorithm leveraging the sim-to-real approach. Specifically, as a
test-bed species, we utilized the Escherichia coli (E. coli) strain designed by Gardner et al. (2000),
which embeds a plasmid implementing a genetic toggle-switch (i.e., a reversible bistable memory
mechanism).

In this section, we illustrate the three-step pipeline we used to develop our control algorithm
(Figure 2). First, we selected and calibrated a dynamical model capable of capturing the growth dy-
namics of the microorganisms. Next, this mathematical model was employed to generate synthetic
data for training the neural network. Finally, the trained network was deployed in vivo to control
the population density inside the bioreactor.

3.1. Modeling the Microbial Growth Simulator

The production of synthetic data for model training requires the selection and parameterization of a
mathematical model that captures the main dynamical features of bacterial growth. An established
model for describing the exponential growth of bacteria in bioreactors can be written as (Monod,
1949):

ẋt =
(
µ(T )− ut

τ

)
xt, (6)

where x is the density of the cellular population, µ is the growth rate of the population, τ is a scaling
factor, and u represents our control input (i.e. the dilution rate applied by modulating the speed of
the pump carrying fresh media into the reactor). Note that the growth rate of the cells is generally

5



BRANCATO SALZANO DE LELLIS FIORE RUSSO* DI BERNARDO*

influenced by the temperature of the culture T . However, in our modeling we assumed a constant
temperature, hence we fixed µ(T ) = µ.

All the quantities in the above model are dimensionless. The measured optical density (OD)
takes values between 0 and 1, corresponding to the absence and abundance of bacteria in the cham-
ber, respectively, and is calibrated at the beginning of the experiments.

To parametrize this model we conducted a single open-loop experiment growing the bacteria in
the Chi.Bio at different values of the dilution rate, which were changed randomly every 30 minutes.
All the experiments, were performed at 37 oC in Luria broth media supplemented with 50µg/mL
Kanamycin and 1mM Isopropyl β-D-1-thiogalactopyranoside (IPTG).

The values of µ and τ were estimated from experimental data using a least square estimator in
MATLAB and validated via open-loop experiments. In these experiments, cells were grown for 60
minutes. Subsequently, the cell culture was diluted using the maximum available dilution rate of
0.02mL/s until the OD fell below 0.3. Finally, the dilution rate was randomly changed every 30
minutes.

Figure 2.a (bottom left panel) shows the trajectory generated by the model parametrized with
experimental data (in orange) alongside the real data recorded from the Chi.Bio (in blue). Note that
the model effectively captures both the dynamics of the exponential growth of the population and the
effects of dilution. However, the prediction of the system trajectories achieved a root mean squared
error (RMSE) of 7.15, which is less accurate if compared with more sophisticated models. For
instance, the model employed in (Brancato et al., 2024) achieved an RMSE of 3.18. The question
is now whether using such a simple model can be effective when generating synthetic data for the
design of a learning-based controller to be used in vivo.

3.2. Training and Deployment of the Learning-Based Controller

We implement a DQN algorithm (Mnih et al., 2015) in which a neural network approximates the
optimal action-value function (see Watkins and Dayan (1992)). Specifically, the neural network is
used to estimate the action u based on the current OD measure x and the desired reference values
x̄ of the OD, which are the neural network inputs. The training is performed by using synthetic
data generated by the simplified deterministic mathematical model (6), while x̄ is randomly drawn
with uniform distribution from the discrete set {0.2, 0.3, . . . , 0.9, 1} at each episode. By doing
so, we enable the artificial agent to regulate the system on multiple set points using only a single
Q-network. Similarly, for each episode, we generate initial conditions from the same discrete set
as x̄. The set of possible control actions, u, comprises 17 discrete uniformly distributed in the
interval [0, 0.02] representing the admissible pump rates. The neural network architecture includes
two fully connected layers, each with 64 nodes activated by ReLU functions. We used the Adam
Optimizer for training with a learning rate of 0.001. Training involved 100 in-silico episodes using
the model (6), with each episode consisting of 100 steps corresponding to the one-minute sampling
time dictated by the bioreactor’s constraints. To accurately simulate the continuous-time dynamics
of the cells, the synthetic OD measures, x, were generated by integrating (6) with a finer time step
of 0.1 minutes. The results of the cumulative reward are depicted in Figure 2.b.

Once the DQN was trained with synthetic data, we implemented the control strategy in real-time
to regulate the OD within a Chi.Bio bioreactor. This bioreactor housed a culture of E. coli strain
embedding a plasmid with a genetic toggle switch. The time evolution of the OD, as shown in Figure
2.c, demonstrates the controller’s effectiveness; the desired set point of 0.5 is successfully achieved
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Figure 2: Sim-to-real pipeline. Panel a) Top: Selection and calibration of a dynamic model to describe microorganism
growth. Bottom: Comparison of the calibrated model predictions (orange) and actual data collected using the Chi.Bio
(blue). Panel b) Top: Use of the mathematical model to generate synthetic data for training the neural network. Bottom:
Graph showing the progression of the cumulative reward over 100 training episodes. Panel c) Top: Application of the
trained network to regulate the density of the cell population within the bioreactor. Bottom: Time evolution of the optical
density (OD) controlled by the DQN-based algorithm, with the corresponding control inputs to the pump. Solid lines (in
blue) indicate the average state and input evolution over the three in vivo experiments (in gray). The red dashed lines
mark the set point x̄ of 0.5.

and maintained, with an average settling time of 10 minutes. This rapid stabilization indicates the
controller’s efficiency in managing the system dynamics effectively.

Next, we will evaluate the performance of the proposed controller in adjusting to changes in
the desired OD and its robustness against variations in the culture’s temperature, which affect the
intrinsic growth rate of the cells.

3.3. In Vivo Performance and Robustness Assessment

We evaluated the sim-to-real DQN controller’s performance through multiple experiments con-
ducted with the Chi.Bio. Following a recovery phase where the cells were allowed to grow with
abundant nutrients, we diluted the culture to reach a specific target OD. This reference OD value
was then maintained for 30 minutes.

The experiments were replicated three times for each desired value of OD, specifically set to
0.8, 0.65, and 0.5, respectively. The three replicates and averages of the controlled OD and the
control policy, for each experimental scenario, are depicted in Figure 3.a-b 2.c.

Moreover, we assessed the robustness of the DQN controller to temperature variations, which
directly affect the cells’ growth rate. We observed a 10% decrease in growth rate when the tempera-
ture was reduced from the nominal condition of 37°C to 30°C. The robustness test involved starting
the experiments at 37°C and regulating the OD to a target value of 0.5 for 30 minutes. Subsequently,
we lowered the temperature in the Chi.Bio to 30°C. The outcomes of this experiment are displayed
in Figure 3.c. Despite the perturbation in the intrinsic growth rate of the cells due to the tempera-
ture change, the controller successfully maintained the OD at the desired value, demonstrating its
robustness.
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a) b) c)

Figure 3: Performance and robustness analysis. Panel a) Displays the results of OD regulation for a reference of 0.8.
Top subpanel: Time evolution of the OD. Bottom subpanel: Control input computed by the DQN-based controller. Panel
b) Shows the results for a reference OD of 0.65. Top subpanel: Time evolution of the OD. Bottom subpanel: Control input
computed by the DQN-based controller. Panel c) Demonstrates the results of OD regulation for a reference of 0.5 under
a temperature change. After 30 minutes, the temperature is switched from 37°C to 30°C. Solid lines (in blue) represent
the average evolution of state and input over the three in vivo experiments (in gray). The red dashed lines indicate the set
points x̄ of 0.8,0.65,0.5 respectively.

4. Control Benchmarks and Comparison

In what follows, we will compare the performance of our proposed learning-based controller with
other common controller types used in synthetic biology applications for regulating biochemical
processes. Specifically, we focus on the Proportional Integral (PI) controller and the Model Predic-
tive Controller (MPC).

The PI controller is the one already integrated into the Chi.Bio set-up (Steel et al., 2020), while
the MPC has been developed specifically for the sake of comparison. The PI strategy includes a
proportional action based on the error between the desired and measured OD values. It also includes
two integral actions: a traditional action designed to eliminate steady-state errors and an additional
one tailored to compensate for the effects of faulty gaskets in the pumps.

The MPC determines the necessary control inputs by solving an optimization problem during
each control cycle. Specifically, at each time step, the MPC solves an optimization problem over
a finite prediction horizon of five minutes Th = 5min, seeking the policy that minimizes the cost
function:

J =
N−1∑
k=0

ck + VF (xN ), (7)

where the cost term ck is defined as:

ck =

{
100 if u /∈ [0, 0.02]

(xk − x̄)2 otherwise
(8)

This formulation is designed to penalize both the deviation from the desired OD and any viola-
tion of the constraints on the actuators. The final cost is defined as VF (xN ) = (xN − x̄)2.

The MPC uses the model described in (6) to run the optimization problem, which is resolved
using a particle swarm optimizer (Bonyadi and Michalewicz, 2017). The resulting control input,
calculated as the solution to this optimization problem, is then applied to the real system during the
subsequent control interval of one minute.
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a) b) c)

Figure 4: Controllers ’ comparison: The results of the OD regulation for reference of 0.5. The top panels depict the time
evolution of the OD while the bottom panels depict the control input computed by a) DQN, b) PI, c) MPC, respectively.
Solid lines (in blue) represent the average evolution of state and input over the three in vivo experiments (in gray). The
red dashed lines indicate the set point x̄ of 0.5.

4.1. Comparison

To assess quantitatively the performance of the control algorithms we used two integral metrics,
namely the Integral Squared Error (ISE) and the Integral Time Absolute Error (ITAE), that provide
a quantitative measure of the transient and static performance, respectively. More precisely, the ISE
and ITAE are defined as (Fiore et al., 2016; Guarino et al., 2020):

ISE =
1

tf

∫ tf

0
(x̄− x(τ))2dτ, ITAE =

1

tf

∫ tf

0
τ |x̄− x(τ)|dτ, (9)

where x̄ is the desired density and tf is the duration of the experiment. The outcome of the experi-
ments shown in Figure 4 confirms the capability of all the controllers to regulate the density of the
population of interest. Furthermore, Table 1 shows the controller’s performances, comparing the
learning-based control strategy with the PI and the MPC, confirming the viability of a sim-to-real
paradigm in a biological setting. Note that all the controllers have comparable performances with
the DQN offering comparable performance and robustness to those of the MPC (see Table 1).

5. Discussion

In this study, we regulated the optical density of an E. coli population in a small turbidostat using a
machine learning-based external control approach. To overcome the data efficiency issue that often
renders algorithms impractical for synthetic biology applications, we adopted and experimentally
validated the use of a sim-to-real paradigm. Specifically, the policy was initially acquired through
training with a deterministic mathematical model of cell growth, which was parametrized using a
limited number of experiments. Subsequently, this policy was validated through in vivo experi-
mental testing, where different sources of noise are present. Our experimental results demonstrate
that a learning-based control, trained on an approximate and deterministic simulator, can effectively
regulate population density during in vivo experiments. We wish to emphasize that this work rep-
resents one of the first experimental confirmations that a sim-to-real policy can be used to regulate
the density of bacterial populations. Building on the results presented here, future work will focus
on enhancing the performance and robustness of the learned policy. For instance, a more accurate
model could be utilized for training by explicitly modeling noise sources. Alternatively, domain
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DQN PI MPC
Reference 0.8
ISE 0.039± 0.010 0.046± 0.010 0.035 ± 0.010

ITAE 12.21± 1.31 12.38± 2.03 10.44 ± 2.57

Reference 0.65
ISE 0.032 ± 0.32 0.039± 0.019 0.092± 0.061

ITAE 11.90± 0.91 10.50± 2.23 9.38 ± 4.23

Reference 0.5
ISE 0.051 ± 0.034 0.111± 0.099 0.117± 0.048

ITAE 7.43 ± 0.82 11.49± 4.14 12.98± 4.64

Temperature 37°C
ISE 0.045± 0.016 0.033± 0.007 0.032 ± 0.007

ITAE 12.42± 1.28 9.65 ± 1.90 11.60± 2.09

Temperature 30°C
ISE 0.031± 0.016 0.025 ± 0.003 0.042± 0.015

ITAE 11.84± 3.64 9.12 ± 1.29 11.54± 3.23

Table 1: Control performance and robustness comparison. The performance indices used are the Integral Squared Error
(ISE) and the Integral Time averaged Absolute Error (ITAE). Each entry shows the average and standard deviation for
each index over the n = 3 experimental replicates. The minimum values in each row are emphasized in boldface.

randomization on the values of µ and τ could be employed during the training phase. From a
methodological perspective, we are also interested in obtaining controllers for biochemical systems
from few example data, exploiting frameworks like that of Gagliardi and Russo (2022), which ac-
counts for nonlinear, non-stationary, and stochastic dynamics. Moreover, we aim to develop and
assess a sim-to-real learning-based controller that leverages differences in growth rates between
two distinct cell populations to regulate their relative densities inside a bioreactor. This presents
a significantly more challenging problem than those addressed with more traditional approaches,
such as PI and MPC.
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