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Abstract
We propose a novel distributed data-driven scheme for online aggregative optimization, i.e., the
framework in which agents in a network aim to cooperatively minimize the sum of local time-
varying costs, each depending on a local decision variable and an aggregation of all of them. We
consider a “personalized” setup in which each cost exhibits a term capturing the user’s dissatisfac-
tion and, thus, is unknown. We enhance an existing distributed optimization scheme by endowing it
with a learning mechanism based on neural networks that estimate the missing part of the gradient
via users’ feedback about the cost. Our algorithm combines two loops with different timescales
devoted to performing optimization and learning steps. In turn, the proposed scheme also embeds
a distributed consensus mechanism aimed at locally reconstructing the unavailable global informa-
tion due to the presence of the aggregative variable. We prove an upper bound for the dynamic
regret related to (i) the initial conditions, (ii) the temporal variations of the functions, and (iii) the
learning errors about the unknown cost. Finally, we test our method via numerical simulations.
Keywords: Distributed Optimization, Online Optimization, Deep Learning, Neural Network

1. Introduction

Distributed architectures are becoming more and more popular to control networks of computing
and communicating devices. For this reason, distributed optimization is gaining increasing atten-
tion, see, e.g., the surveys Notarstefano et al. (2019); Giselsson and Rantzer (2018); Nedić and
Liu (2018); Yang et al. (2019) for a comprehensive overview of existing setups and solution strate-
gies. Distributed architectures are intrinsically suited for the so-called personalized optimization
frameworks, i.e., the recent branch of research considering human satisfaction in the optimization
process. Essentially, personalized optimization problems focus on cost functions given by the sum
of a known part, named engineering function and related to measurable quantities (e.g., time or en-
ergy), and an unknown part representing the user’s (dis)satisfaction with the current solution. Since
synthetic models involving human preferences often work only in an average sense without ensuring
effectiveness on the specific preferences of single users, in personalized optimization the key idea
is to adopt data-driven strategies using feedback from specific users about the current solution.

Given the evolving synergy between teams of robots and teams of humans across various fields,
personalized optimization approaches could yield significant benefits in the control of networks
of cooperative robots. Differently from the well-known consensus optimization problems, the so-
called aggregative setup allows for formulating many tasks arising in the context of cooperative
robotics Testa et al. (2023). This novel framework has been introduced in Li et al. (2021a) and
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considers a network of agents that aim to minimize the sum of local costs depending on both lo-
cal and global information (the so-called aggregative variable). The dependence on an aggregative
variable has also been investigated in the context of aggregative games, see, e.g., Belgioioso et al.
(2020); Gadjov and Pavel (2020); Cenedese et al. (2020); Carnevale et al. (2024a), where, however,
the agents cooperate to find a Nash equilibrium rather than an optimal solution. In Chen and Liang
(2022), the scheme proposed in Li et al. (2021a) has been extended to deal with quantized commu-
nication among the agents. In Wang and Yi (2023), the problem is addressed via a projection-free
distributed method based on the Franke-Wolfe update. Online and constrained versions of the prob-
lem are considered in Li et al. (2021b); Carnevale et al. (2022a). The aggregative setup has been
also studied from the perspective of feedback optimization Carnevale et al. (2022b, 2024b). The
work Pichierri et al. (2023) adapts the scheme in Carnevale et al. (2022a) for multi-robot coop-
erative surveillance, while Carnevale and Notarstefano (2022) enhances it with a Recursive Least
Square (RLS) method to estimate the unknown cost via feedback from the users.

In the field of centralized optimization, a first step towards the usage of a user’s feedback for
the definition of human discomfort has been done by Luo et al. (2020), in which a trajectory de-
sign problem has been approached considering a cost function depending on human complaints.
In Simonetto et al. (2021), personalized optimization is addressed by combining a learning mech-
anism based on Gaussian Processes (GP) with an optimization method. In Fabiani et al. (2022),
the personalized framework is addressed in the context of game theory. As for personalized dis-
tributed frameworks, the articles Ospina et al. (2022) and Notarnicola et al. (2022) respectively use
GP combined with a primal-dual method and RLS merged with the gradient tracking algorithm.

The unknown terms in this work are tackled through a learning strategy based on Artificial Neu-
ral Networks (ANN). In the context of optimization, neural networks have also been used in Cothren
et al. (2022, 2023), where the authors embed them into feedback controllers to estimate the system
state from perceptual information. In Pirrone et al. (2023), neural networks are combined with a
zeroth-order scheme. The work Camisa and Notarstefano (2022) uses generative adversarial net-
works in the context optimization for smart grids. Finally, in Fabiani and Goulart (2022), a Model
Predictive Controller is equipped with neural networks to reduce the required computational burden.

This paper addresses online aggregative optimization with objective functions inherited from
personalized optimization, i.e., composed of both a known engineering term and an unknown user-
related one. Notably, to the best of the authors’ knowledge, this work is the first one addressing
the personalized aggregative framework with completely time-varying costs. In this setup, we pro-
pose ANN-PROJECTED AGGREGATIVE TRACKING (ANN-PAT), namely a distributed strategy
that enhances an already existing algorithm by introducing ANNs combined with an automatic
differentiation procedure to learn the missing part of the cost function gradients. In detail, at each
iteration, agents use their feedback data to train locally a network in a different timescale to improve
the gradient approximations. These estimates feed the distributed scheme PROJECTED AGGREGA-
TIVE TRACKING (PAT) Carnevale et al. (2022a), which, in turn, is the interconnection between a
distributed approximated projected gradient method and a consensus scheme due to locally recon-
structing the unavailable global information related to the aggregative variable. We theoretically
provide a bound on the achieved dynamic regret that depends on (i) the initial conditions, (ii) the
temporal variations of the functions, and (iii) the learning errors about the unknown parts.

The paper is organized as follows. Section 2 presents the problem setup. Section 3.1 introduces
ANN-PAT that is analyzed in Section 4. Section 5 tests ANN-PAT via numerical simulations.
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Notation: The vertical concatenation of the vectors x1, x2, . . . , xn is col(x1, x2, . . . , xN ). We
use blkdiag(M1, . . . ,MN ) to denote the block diagonal matrix where the i-th diagonal block is
given by Mi ∈ Rni×mi . The symbol 1N denotes the vector of N ones, while Im is the identity
matrix in Rm×m. The symbol ⊗ refers to the Kronecker product, while 1N,d := 1N ⊗ Id. The
Euclidean projection of the vector y ∈ Rn on a closed convex set X ⊂ Rn is denoted by PX [y].
Given g : Rn × Rd → Rm, ∇1g(·, ·) and ∇2g(·, ·), represent the gradients with respect to the first
and the second argument, respectively. Given M ∈ Rn×n, we denote as ρmax(M) its spectral radius.

2. Problem Formulation

We consider N agents that, for each t ≥ 0, aim to cooperatively solve online personalized aggrega-
tive optimization problems in the form

min
(x1,...,xN )∈X

N∑
i=1

(Vi,t (xi, σt(x)) + Ui,t (xi, σt(x))) , (1)

where x := col(x1, . . . , xN ) ∈ Rn is the global decision vector with each xi ∈ Rni such that
n =

∑N
i=1 ni. We consider a constraint set X ⊆ Rn given by X := X1 × · · · × XN with each

Xi ⊆ Rni . We identify for each agent the engineering cost function Vi,t : Rni × Rnσ −→ R and
the unknown user’s dissatisfaction term Ui,t : Rni × Rnσ −→ R. Their sum defines the local cost
fi,t(xi, σt) := Vi,t(xi, σt) + Ui,t(xi, σt). The aggregation term σt(x) reads as

σt(x) :=
1
N

N∑
i=1

ϕi,t(xi),

where ϕi,t : Rni −→ Rnσ denotes the contribution of agent i at time t, for all i ∈ {1, . . . , N} and
t ≥ 0. Furthermore, we introduce the global cost ft(x, σt(x)) :=

∑N
i=1 fi,t(xi, σt(x)), ϕt(x) :=

col(ϕ1,t(x1), . . . , ϕN,t(xN )), and ∇ϕt(x) := blkdiag(∇ϕ1,t(x1), . . . ,∇ϕN (xN )). As customary
in online optimization, the new information Vi,t, ϕi,t, and user’s feedback data are revealed only
once the new estimate xi,t has been computed. This implies that, in general, the optimal solution
x⋆t cannot be reached and, thus, given T > 0, the performance of our distributed algorithm will be
evaluated via dynamic regret, i.e., the metric RT defined as

RT =

T∑
t=1

ft(xt, σt(xt))− ft(x
⋆
t , σt(x

⋆
t )). (2)

We address problem (1) according to the distributed paradigm and, thus, agent i can only access its
private information Vi,t, Xi, ϕi,t, the user’s feedback, and data received by its neighboring agents.

Indeed, we use an undirected graph G = ({1, . . . , N}, E ,W), to model the communication
among the agents, where {1, . . . , N} represents the set of agents, E ∈ {1, . . . , N} × {1, . . . , N} is
the edge set, and W ∈ RN×N is the weighted adjacency matrix. Agent i and agent j can exchange
information if and only if j ∈ Ni, where Ni := {j | (j, i) ∈ E} is the set of neighbors of agent i.
Given the (i, j)-entry wi,j of W , it holds wi,j ≥ 0 if and only if (i, j) ∈ E , otherwise wi,j = 0.
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3. ANN-PAT: Algorithm Description and Convergence Properties

In this section, we present ANN-PROJECTED AGGREGATIVE TRACKING (ANN-PAT), a novel
distributed optimization algorithm to address personalized aggregative problems of the form (1).
ANN-PAT consists of two main blocks: (i) the distributed optimization algorithm named PAT
Carnevale et al. (2022a) and (ii) a deep-learning procedure aimed at reconstructing the gradients of
the unknown parts Ui,t(xi, σt(x)). These two parts are briefly introduced in Section 3.1 and 3.2.
Then, in Section 3.3, the novel algorithm is introduced and its convergence properties are stated.

3.1. PROJECTED AGGREGATIVE TRACKING

When running PAT, agent i maintains an estimate xi,t ∈ Rni about the i-th portion x⋆i,t ∈ Rni of
the optimal solution x⋆t := col(x⋆1,t, . . . , x

⋆
N,t) of problem (1) and updates it with an approximated

projected gradient step. Indeed, the derivative of ft(·, σt(·)) with respect to xi, would read as

∂ft(x, σt(x))

∂xi
= ∇1fi,t(xi, σt(x)) +

1

N
∇ϕi,t(xi)

N∑
j=1

∇2fi,t(xi, σt(x)),

where, however, the local knowledge of the global terms σt(x) and
∑N

j=1∇2fj,t(xj,t, σt(x)) would
be required thus violating the desired distributed paradigm. To compensate for this lack of knowl-
edge, agent i maintains si, ri ∈ Rnσ providing proxies about σt(x) and

∑N
j=1∇2fj,t(xj , σt(x)),

respectively, and replaces
∂ft(x, σt(x))

∂xi
with di,t : Rni × Rnσ × Rnσ → Rni given by

di,t(xi, si, ri) := ∇1fi,t(xi, si) +
1
N∇ϕi,t(xi)ri. (3)

The variables si and ri are updated via dynamic consensus Kia et al. (2019), namely

si,t+1 =
∑
j∈Ni

wi,jsj,t + ϕi,t+1(xi,t+1)− ϕi,t(xi,t)

ri,t+1 =
∑
j∈Ni

wi,jrj,t +∇2fi,t+1(xi,t+1, si,t+1)−∇2fi,t(xi,t, si,t),

in which we recall that each wi,j represents the (i, j)-entry of the weighted adjacency matrix W .

3.2. Learning mechanism based on Neural Networks and Automatic Differentiation

The local costs of problem (1) are partially unknown and, thus, the direction di,t(xi, si, ri) (cf. (3))
cannot be directly computed. Thus, we introduce a learning mechanism in which each agent exploits
its user’s feedback data to train a feedforward neural network that approximates the unknown user
dissatisfaction Ui,t(xi, si). In detail, for each t ≥ 0, a set of Q samples from the user are available
and can be used to perform τ > 0 training steps for the network considering the regression problem

min
θi∈Rp

1

Q
Q∑

q=1

|yi(θi, xqi , s
q
i )− Ui,t(x

q
i , s

q
i )|

2
, (4)

where θi ∈ Rp is the vector containing the network trainable parameters and yi : Rp×Rni×Rnσ −→
R is the inference dynamics of the network i. More in detail, along a different timescale with
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iteration index k ∈ N, agent i maintains an estimate θi,t,k ∈ Rp of a solution of problem (4) that
is iteratively improved along the training phase. Then, at the end of such a training phase, agent i
retrieves the final estimate θi,t := θi,t,τ and uses it to approximate Ui,t(xi, si) via Ûi,t(xi, si) defined
as

Ûi,t(xi, si) := yi(θi,t, xi, si).

The gradients ∇1Ui,t(xi, si) and ∇2Ui,t(xi, si) are estimated by means of an automatic differen-
tiation procedure running in backward mode Baydin et al. (2018). This method generalizes the
well-known backpropagation for evaluating derivatives of numeric functions expressed as computer
programs. By denoting with L ∈ N the number of network layers and with P l ∈ N the neurons
number of the l-th layer, the network inference dynamics is given by

vl+1
i = Φl

i(v
l
i, θ

l
i), (5)

for all l ∈ {1, . . . , L}, where, given the activation function φl,p
i : R → R of neuron p of layer l,

Φl
i(·) := col

(
φl,1
i (·), . . . , φl,P l

i (·)
)

. Let vli := col
(
vl,1i , . . . , vl,P

l

i

)
and θli ∈ RP l·P l+1

denote the
stack of the neurons output and the subset of all the network weights of layer l, respectively. Note
that, vli can be evaluated for all l ∈ {0, . . . , L} by executing the network dynamics. Furthermore,
we can consider

v̄l,pi :=
∂yi(θi, xi, si)

∂vl,pi
,

which can be always expressed recursively as a function of both v̄l+1
i := col(v̄l+1,1

i , . . . , v̄l+1,P l+1

i )
and vli by exploiting the derivation chain rule. Since by definition

v̄L,1i =
∂yi(θi, xi, si)

∂yi
= 1,

we can evaluate v̄li for all l ∈ {0, 1, . . . , L} starting from the network output. Note that the entries
of v̄0i are the network inputs, i.e. v̄0i := col(xi, si). Thus, we can write

∇1Ûi,t(xi, si) = ∇2yi(θi,t, xi, si) =
[
v̄0,1i . . . v̄0,ni

i

]
∇2Ûi,t(xi, si) = ∇3yi(θi,t, xi, si) =

[
v̄0,ni+1
i . . . v̄0,ni+nσ

i

]
,

where ∇3yi(θi,t, xi, si) is the gradient of yi(θi,t, xi, si) with respect to si. We formalize this proce-
dure in Algorithm 1, where “forwardPass” denotes an execution of the network dynamics to evaluate
vi := col(v1i , . . . , v

L
i ). Note that, each φl,p

i (·) is known from the network structure definition.

Algorithm 1: Backward-pass for Neural Networks
Input: θi, xi, si
vi = forwardPass(θi, xi, si)
for l = L− 1, L− 2, . . . , 0 do

for p = 1, 2, . . . , P l do

v̄l,pi =
∑P l+1

k=1 v̄l+1,k
i

∂φl+1,k
i (vli)

∂vl,pi
end

end
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The next assumption states the learning capability of the mechanism considered in this work.

Assumption 1 (Neural Network) For each time instant t > 0, consider the estimate Ûi,t(xi, si)
given from the network of agent i. Then, there exist b1,t, b2,t > 0 such that∥∥∥∇1Ûi,t(xi, si)−∇1Ui,t(xi, si)

∥∥∥ ≤ b1,t ,
∥∥∥∇2Ûi,t(xi, si)−∇2Ui,t(xi, si)

∥∥∥ ≤ b2,t,

for all xi ∈ Xi, si ∈ Rnσ , and i ∈ {1, . . . , N}.

3.3. ANN-PROJECTED AGGREGATIVE TRACKING

The ANN-PAT scheme merges PAT and the described learning procedure. In particular, agent i
approximates ∇1fi,t(xi, si) and ∇2fi,t(xi, si) via ∇1f̂i,t(xi, si) and ∇2f̂i,t(xi, si) defined as

∇1f̂i,t(xi, si)=∇1Vi,t(xi, si) +∇1Ûi,t(xi, si), ∇2f̂i,t(xi, si)=∇2Vi,t(xi, si) +∇2Ûi,t(xi, si).

A pseudo-code of ANN-PAT is reported in Algorithm 2 from the perspective of agent i. The
parameters α > 0 and δ ∈ (0, 1) are respectively the stepsize and the convex combination constant.
We indicate with the function “TrainSteps” τ iteration of any optimization method (e.g. Adam) for
the solution of Problem (4) to update the vector of network weights and with “GradLearning” the
automatic differentiation procedure described in Algorithm 1. Moreover, cqi,t ∈ Rninσ represents a
random sample picked in the interval [cmin, cmax] considering a uniform probability distribution. It is
worth mentioning that Algorithm 2 works on two independent timescales, one for the optimization
steps and one for the network training. In addition, we recall that the learning mechanism is im-
plemented locally by each agent, resulting in a fully distributed algorithm suitable for large-scale
systems.

Algorithm 2: ANN-PROJECTED AGGREGATIVE TRACKING (for agent i)

Initialization:
xi,0 ∈ Xi, si,0 = ϕi,0(xi,0), ri,0 = ∇2Vi,0(xi,0, si,0), θi,0 ∈ Rp

for t = 0, 1, 2, . . . do
Optimization:
x̃i,t = PXi [xi,t − α(∇1f̂i,t(xi,t, si,t) +∇ϕi,t(xi,t)ri,t)]
xi,t+1 = xi,t + δ(x̃i,t − xi,t)
si,t+1 =

∑
j∈Ni

wi,jsj,t + ϕi,t+1(xi,t+1)− ϕi,t(xi,t)

Measure:
for q = 1, . . . , Q do

uqi,t+1 = col(xi,t+1, si,t+1) + cqi,t+1

mq
i,t+1 = Ui,t+1(u

q
i,t+1)

end
Learning:
θi,t+1 = TrainSteps(m1

i,t+1, . . . ,m
Q
i,t+1, u

1
i,t+1, . . . , u

Q
i,t+1, τ)(

∇1Ûi,t+1(xi,t+1, si,t+1),∇2Ûi,t+1(xi,t+1, si,t+1)
)
= GradLearning(θi,t+1, xi,t+1, si,t+1)

ri,t+1 =
∑

j∈Ni
wi,jrj,t +∇2f̂i,t+1(xi,t+1, si,t+1)−∇2f̂i,t(xi,t, si,t)

end
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To present the convergence properties of Algorithm 2, we collect all the local updates (omitting
the learning steps) obtaining the following stacked vector formulation

xt+1 = xt + δ(PX [xt − α(Ĝ1,t(xt, st) +∇ϕt(xt)rt)]− xt) (6a)

st+1 = Wst + ϕt+1(xt+1)− ϕt(xt) (6b)

rt+1 = Wrt +∇2Ĝ2,t+1(xt+1, st+1)−∇2Ĝ2,t(xt, st), (6c)

where we consider W = W ⊗ IN , Ĝ1,t(xt, st) := col(∇1f̂1,t(x1,t, s1,t), . . . ,∇1f̂N,t(xN,t, sN,t))

and Ĝ2,t(xt, st) := col(∇2f̂1,t(x1,t, s1,t), . . . ,∇2f̂N,t(xN,t, sN,t)). With analogous notation, we
also introduce G1,t(xt, st) := col(∇1f1,t(x1,t, s1,t), . . . ,∇1fN,t(xN,t, sN,t)) and G2,t(xt, st) :=
col(∇2f1,t(x1,t, s1,t), . . . ,∇2fN,t(xN,t, sN,t)). In the next, we will provide a bound for the dy-
namic regret of ANN-PAT. To this end, we introduce the error vector zt ∈ R3 defined as

zt :=
[
∥xt − x⋆t ∥ ∥st − 1s̄t∥ ∥rt − 1r̄t∥

]⊤
,

with s̄t :=
1

N

∑N
i=1 si,t and r̄t :=

1

N

∑N
i=1 ri,t. Then, we consider

ηt := sup
x∈Rn,s∈RNnσ

∥G2,t+1(x, s)−G2,t(x, s)∥ , ωt := sup
x∈Rn

∥ϕt+1(x)−ϕt(x)∥

ζt :=
∥∥x⋆t+1−x⋆t

∥∥ , νt := col(ζt, ηt+ωt, ηt+L2ωt), Ht := col(δαb1,t, 0, (1+
√
N)b2,t+1+b2,t).

Now, we state the class of problems and graphs needed to provide our result.

Assumption 2 (Global Problem Convexity) The set Xi is closed, convex, and nonempty for all
i ∈ {1, . . . , N}, while the function ft(x, σt(x)) is µ-strongly convex for all t ≥ 0, with µ > 0.

Assumption 3 (Function Regularity) For all t ≥ 0, each function fi,t(x, σt(x)) is differentiable
and ft(x, σt(x)) has L1-Lipschitz continuous gradient, i.e.,∥∥∇ft(x, σt(x))−∇ft(x

′, σt(x
′))
∥∥ ≤ L1

∥∥x− x′
∥∥ , ∀x, x′ ∈ Rn.

Further, consider Gt(x, s) := ∇1ft(x, s) + ∇ϕ(x)1N ⊗ 1

N

∑N
i=1∇2fi,t(xi, si). Then, for all

t ≥ 0, Gt(x, s) and ∇2ft(x, s) are Lipschitz continuous, respectively with constant L1, L2 > 0.
Moreover, for all i ∈ {1, . . . , N} and t ≥ 0, the function ϕi,t(xi) is differentiable and L3-Lipschitz
continuous. Finally, assume both ηt and ωt finite for all t ≥ 0.

Assumption 4 (Communication Graph) G is connected and W is doubly stochastic.

With these assumptions at hand, we are ready to provide the main result of the paper.

Theorem 1 Consider ANN-PAT as reported in Algorithm 2. Let Assumptions 1, 2, 3, and 4 hold.
Then, there exist λ, δ̄ > 0, and ρ̃ ∈ (0, 1), such that for all T ≥ 1 it holds

RT ≤ L1λ
2

2

( ∥z0∥2
1− ρ̃2

+ 2 ∥z0∥UT +QT

)
,

for any α ∈
(
0,

1

L1

)
and δ ∈

(
0, δ̄
)
, where UT and QT are given by

UT :=
T∑
t=1

t−1∑
k=0

ρ̃t+1 ∥νt−k−1 +Ht−k−1∥ , QT :=
T∑
t=1

( t−1∑
k=0

ρ̃k ∥νt−k−1 +Ht−k−1∥
)2

. (7)
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The proof of Theorem 1 is provided in Section 4. The bound provided by Theorem 1 depends on
(i) the initial conditions, (ii) the temporal variations of the functions, and (iii) the learning errors
about the unknown part of the cost. As it will become clearer in the proof, Theorem 1 is stated
by interpreting ANN-PAT as a perturbed version of PAT. More in detail, the perturbation is due
to the learning error about the unknown terms ∇1Ui,t and ∇2Ui,t. Indeed, in the case in which the
learning process is perfect and/or the unknown terms are not present, Theorem 1 recovers the results
provided by (Carnevale et al., 2022a, Th. 1), i.e., the dynamic regret bound achieved by PAT.

4. Convergence Analysis

To prove Theorem 1, the idea is to consider Algorithm 2 as a perturbed version of PAT. To shorten
the notation, we introduce the quantities: dt(x, s, r) := G1,t(x, s) + ∇ϕt(x)r, d̂t(x, s, r) :=
Ĝ1,t(x, s) + ∇ϕt(x)r and ey,t(x, s) := Ĝ2,t(x, s) − G2,t(x, s). Let us introduce nx,t : Rn ×
RN ·nσ × RN ·nσ → Rn and nr,t : Rn × RN ·nσ × RN ·nσ → RN ·nσ defined as

nx,t (x, s, r) := x+ δ (PX [x− α (G1,t (x, s) +∇ϕt (x) r)]− x)

nr,t (x, s, r) := Wr +G2,t+1 (nx,t (x, s, r) ,Ws + ϕt+1 (nx,t (x, s, r))− ϕt (x))−G2,t (x, s) .

These functions describe the dynamics of xt and rt when both G1,t(x, s) and G2,t(x, s) are com-
pletely known and, thus, coincide with the update laws of PAT Carnevale et al. (2022a). Hence,
by adding and subtracting the terms (i) δ(PX [xt − αdt(xt, st, rt)]) and (ii) G2,t+1(xt+1, st+1) −
G2,t(xt, st) to the right-hand side of (6a) and (6c), respectively, we rewrite them as

xt+1 = nx,t(xt, st, rt) + δ(PX [xt − αd̂t(xt, st, rt)]− PX [xt − αdt(xt, st, rt)]) (8a)

rt+1 = nr,t(xt, st, rt) + ey,t+1(xt+1, st+1)− ey,t(xt, st), (8b)

These equations allow us to interpret (6) as a perturbed version of a nominal system coinciding

with PAT. Let nr̄,t(x, s) :=
1

N

∑N
i=1∇2fi,t(xi, si) and ēy,t(x, s) :=

1

N

∑N
i=1 e

i
y,t(xi, si), with

eiy,t(xi, si) :=
1

N

∑N
i=1(∇2f̂i,t(xi, si)−∇2fi,t(xi, si)). Then, it holds

r̄t+1 = nr̄,t+1(xt+1, st+1) + ēy,t+1(xt+1, st+1). (9)

Preparatory Lemmas

At this point, we can introduce three preparatory Lemmas, necessary for the proof of Theorem 1.

Lemma 1 Let Assumptions 1, 2, 3, and 4 hold. If α ≤ 1/L1, then for all t ≤ 0∥∥xt+1 − x⋆t+1

∥∥ ≤ (1− δµα) ∥xt − x⋆t ∥+ δαL1 ∥st − 1s̄t∥+ δαL3 ∥rt − 1ȳt∥+ ζtδαb1,t.

Lemma 2 [(Carnevale et al., 2022a, Lemma 3)] Let Assumptions 1, 2, 3, and 4 hold. Then

∥st+1 − 1s̄t+1∥ ≤ (Λ + δαL1L3) ∥st − 1s̄t∥+ δ(2L3 + αL1L3 + αL1L
2
3) ∥xt − x⋆t ∥

+ δαL2
3 ∥rt − 1r̄t∥+ ωt,

for all t ≤ 0, where Λ is the maximum eigenvalue of the matrix W − 11⊤/N .

8
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Lemma 3 Let Assumptions 1, 2, 3, and 4 hold. Then for all t ≤ 0

∥rt+1−1r̄t+1∥ ≤ (Λ+δαL3(L2+L2L3)) ∥rt−r̄t∥+δ(2+αL1+αL1L3)(L2+L2L3) ∥xt−x⋆t ∥
+(δαL1(L2+L2L3)+2L2) ∥st−1s̄t∥+L2ωt+ηt+(1 +

√
N)b2,t+1+b2,t,

where Λ is the maximum eigenvalue of the matrix W − 11⊤/N .

The proofs for Lemma 1 and Lemma 3 are not included as they are straightforward extentions
of (Carnevale et al., 2022a, Lemma 1, Lemma 4).

Proof of Theorem 1

Now, we prove Theorem 1 using Lemma 1, 2, and 3. These results allow us to write

zt+1 ≤ M(δ)zt + νt +Ht,

with M(δ) := M0 + δE, where the matrices M0, E ∈ R3×3 read as

M0 :=

1 0 0
0 Λ 0
0 2L2 Λ

 , E :=

−µα αL1 αL3

E21 αL1L3 αL2
3

E31 E32 E33

 ,

in which E21 := 2L3 + αL1L3 + αL1L
2
3, E31 := (2 + αL1 + αL1L3)(L2 + L2L3), E32 :=

αL1(L2 + L2L3) and E33 := αL3(L2 + L2L3). Since zt, M(δ), νt, and Ht contain all positive
quantities, we exploit the Lagrange formula to write

zt ≤ M tz0 +
t−1∑
k=0

Mk(νt−k−1 +Ht−k−1). (10)

From (Carnevale et al., 2022a, Appendix E), there exists δ̄ > 0 such that ρmax(M(δ)) < 1 for all
δ ∈ (0, δ̄). Let us arbitrarily choose ρ̃ ∈ (ρmax(M(δ)), 1) and γ = ρmax(M(δ)) − ρ̃. Then, we
apply (Horn and Johnson, 2012, Lemma 5.7.13) to guarantee the existence of a matrix norm ∥·∥γ
such that ∥M∥γ ≤ ρ̃ < 1. Furthermore, by applying (Horn and Johnson, 2012, Theorem 5.7.13),
there exists a vector norm ∥·∥γ compatible with the previous matrix norm, such that ∥Mv∥γ ≤
∥M∥γ ∥v∥γ for all M ∈ R3×3 and v ∈ R3. Because of the equivalence of all norms on finite-
dimensional vector spaces, there exist always λ1, λ2 > 0 such that ∥·∥ ≤ λ1 ∥·∥γ and ∥·∥γ ≤ λ2 ∥·∥.
Thus, by applying the norm ∥·∥γ on both sides of (10), we get

∥zt∥ ≤ λ1 ∥zt∥γ ≤ λ1

∥∥∥∥M tz0 +

t−1∑
k=0

Mk(νt−k−1 +Ht−k−1)

∥∥∥∥
γ

(a)

≤ ρ̃tλ1 ∥z0∥γ + λ1

t−1∑
k=0

ρ̃k ∥νt−k−1 +Ht−k−1∥γ , (11)

where in (a) we have combined the triangular inequality, the Cauchy-Schwarz inequality, and the
definition of ρ̃. From Assumption 3, ∇ft(xt, st) is L1-Lipschitz continuous. Then, it holds

ft(xt, σt)− ft(x
⋆
t , σt(x

⋆
t )) ≤

L1

2
∥xt − x⋆t ∥2

(a)

≤ L1

2
∥zt∥2 ,

9
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(b)

≤ L1λ2
1

2

(
ρ̃2t ∥z0∥2γ+2ρ̃t ∥z0∥γ

t−1∑
k=0

ρ̃k ∥νt−k−1+Ht−k−1∥γ+
( t−1∑

k=0

ρ̃k ∥νt−k−1+Ht−k−1∥γ

)2)
(c)

≤ L1λ2

2

(
ρ̃2t ∥z0∥2+2ρ̃t ∥z0∥

t−1∑
k=0

ρ̃k ∥νt−k−1+Ht−k−1∥+
( t−1∑

k=0

ρ̃k ∥νt−k−1+Ht−k−1∥
)2)

,

where (a) uses the fact that ∥xt − x⋆t ∥ is a component of zt, (b) uses (11), and (c) sets λ = λ1λ2.
The proof follows from this inequality by using the fact that ρ̃ ∈ (0, 1), the geometric series prop-
erty, and the definitions of RT , UT , and QT .

5. Numerical Simulations

Consider N = 10 agents communicating according to an undirected, connected Erdős-Rényi graph
with connectivity parameter 0.5. We fix ni = 2 ∀i ∈ {1, . . . , N}, nσ = 2, and consider the costs

Vi,t(xi, σt(x))=
1

2
∥xi−pi,t∥2+

β

2
∥xi−σt(x)∥2, Ui,t(xi, σt(x))=

1

2

∥∥xi−uxi,t
∥∥2+1

2
∥σt(x)−uσt

i,t∥2,

where β = 0.4, pi,t := pi,c + col(cos(t/100), sin(t/100)) with pi,c ∈ [0, 100] × [0, 100], uxi,t :=
uxi,c+col(cos(t/100), sin(t/100)), and uσt

i,t := uσt
i,c+col(cos(t/100), sin(t/100)). We select the ag-

gregative variable as σt(x) =
∑N

i=1 li,txi/N with li,t > 0 such that li,t := li,t−1+0.01 sin(t/100) ·
(−1)i for all i ∈ {1, . . . , N} and t ≥ 0. We choose uxi,c, u

σt
i,c, pi,c, li,0, and xi,0 randomly, consider-

ing a uniform probability distribution. As for the feasible sets, we consider Xi := [0, 100]× [0, 100]
for all i ∈ {1, . . . , N}. Further, each agent uses a network with L = 12 and P l = 20, the well-
known Rectified Linear Unit activation function for all neurons, τ = 500, Q = 100, cmin = −100,
and cmax = 100. As for the algorithm parameters, we set δ = 0.1 and α = 0.1.

0 50 100 150 200 250 300

2 · 10−2

10−1

t

||x
t
−
x
⋆ t
||

||x
⋆ t
||

Figure 1: Relative solution error

0 50 100 150 200 250 300

103

104

t

R
t t

Figure 2: Average dynamic regret

Fig. 1 and 2 show the evolution of the relative error ∥xt − x⋆t ∥ / ∥x⋆t ∥ and the average dynamic
regret RT /T , respectively. Future works will provide simulations on more realistic datasets.

6. Conclusions

This paper proposed ANN-PAT, a novel distributed data-driven algorithm for personalized online
aggregative optimization. This new scheme has been designed by interlacing an existing distributed
optimization method with a deep-learning mechanism aimed at reconstructing the unknown terms
due to the considered personalized setup. We analyzed the proposed distributed algorithm by provid-
ing an upper bound on the dynamic regret. Finally, we tested ANN-PAT via numerical simulations.
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