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Abstract
Traditionally, first-principle models are used to monitor and control dynamical systems. However,
modeling complex systems using first principles can be challenging. Learning the dynamics from
data using neural networks has emerged as a viable alternative. In practice, some parameters of
a system may vary across different system instances, but training separate neural networks for all
possible parameter combinations can be infeasible. Therefore, meta-learning using, e.g., condi-
tional neural processes (CNPs), aims to learn a prior model over the system dynamics for various
parameters. These models can then adapt on deployment to the parameters of a system instance
using a context set composed of past observations. However, changes in parameters can also oc-
cur online during operation and naively adding past observations across parameter variations to the
context set can distort the model’s latent representation, leading to inaccurate predictions over time.
This paper introduces an adaptation scheme to enable CNPs to cope with such online variations.
We combine a sliding window to accommodate gradual variations with the use of event triggers to
detect sudden changes. The event triggers are based on concentration inequalities, they reset the
context set of the CNP once observations deviate significantly from the CNP’s predictions. We vali-
date our concepts on two nonlinear dynamical systems under parameter variations and demonstrate
that our approaches decrease the prediction error over time as well as their efficacy for control.
Keywords: neural process, time-varying environment, event-triggered learning, meta learning

1. Introduction

Dynamical systems are prevalent across various fields including engineering and biology. Effective
monitoring and control of these systems are essential for maintaining operation and ensuring safety.
Traditionally, first-principle models have been employed for this task. However, modeling com-
plex systems using first principles can be challenging, especially for nonlinear and noisy systems.
Machine learning (ML) approaches, such as neural networks (NNs), have emerged as promising
alternatives to first-principle modeling. They directly learn the dynamics from data, bypassing the
need for explicit modeling. NNs have proven to be effective in approximating complex systems and
have been applied in various control applications (Zhang et al., 2019; Salzmann et al., 2023).

A challenge for model learning in practice is that dynamical systems often have deviations in
the parameters between different system instances; consider e.g., two robots with different friction
coefficients in the joints. Training separate NNs for each combination of parameters and choosing
the one closest to the system instance is inefficient and a waste of compute and data resources.
Meta-learning using e.g., conditional neural processes (CNPs), offers a solution to this problem by
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learning a prior model capturing the core dynamics of a system, which can then adapt to differ-
ent system instances at deployment using a context set composed of past observations (Beck et al.,
2023). In real applications, the dynamics of a controlled system will often change. Such changes
may be gradual (e.g., wear and tear) or more sudden (e.g., driving dynamics due to different pay-
loads). If data is naively added to the context set across time-variations, this can distort the latent
representation of a CNP of the dynamics and thus lead to inaccurate predictions. Poor predictions
will harm the performance of a downstream task such as lead to sub-optimal control performance
when used in a model predictive controller.

Conditional neural process
of the dynamical system

Dynamical system (1)

Online adaptation scheme:
Sliding window + Event trigger

Context
 set

Figure 1: Schematic overview of our adaptation
scheme for CNPs.

In this paper, we propose an adaptation
scheme for CNPs (Garnelo et al., 2018a) (see
Figure 1) to obtain accurate predictions across
time-variations in the dynamics. The adaptation
scheme has two components. First, it utilizes
a sliding window, a common technique in ML
to deal with time-variations, to obtain a con-
text set that characterizes the current dynamics.
We will demonstrate that there is a fundamental
trade-off between speed of adaptation and accu-
racy in the prediction. In particular long windows will yield accurate predictions but lead to slow
adaptation. Therefore, second, we employ an event trigger (ET) to detect significant deviations in
the system behavior based on predictions of the CNP and observations from the dynamical system.
This ET resets the context when necessary, allowing the CNPs to rapidly adapt to new dynamics.
We evaluate our approach on two nonlinear dynamical systems and demonstrate that with the ET we
achieve uniformly better trade-offs than using only a sliding window alone. While we employ CNPs
to illustrate our method, the adaptation scheme can be utilized for other neural processes (NPs) or
meta-learning models with a latent context representation. In summary, our main contributions are:

(i) We demonstrate how to effectively utilize CNPs for online predictions and control of dynami-
cal systems with time-varying parameters.

(ii) An adaptation scheme for CNPs to adapt to online parameter changes composed of a sliding
window and an ET.

2. Problem Setting

We want to predict the evolution of a nonlinear discrete time dynamical system over discrete time
steps t ∈ NH := {1, . . . ,H} until a time horizon H . The dynamical system with states st ∈ RD,
observation yt ∈ RD as noisy state measurements, and control inputs ut ∈ RU is given as

st+1 = f(st,ut,pt) + vt, yt = st +wt (1)

with unknown time-varying parameters pt ∈ P ⊆ RP , and vt and wt are process and measurement
noise, respectively. We assume that the dynamics f are unknown, but we have a data set S with
trajectories from different system realizations, i.e. different pt. Importantly, the parameters pt are
unknown and cannot be measured during inference time. For the training data, we assume that the
parameters stay constant for each trajectory. In practice, such setting could be ensured by controlling
the (operating) conditions during data recording in a design phase. The data set can be used to train
a model of the system dynamics obtaining predictions ŷt ∈ RD using past outputs and control
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inputs from the current episode as D = {(yi+1,yi,ui)}ti=1. The prediction error as the difference
between observation and prediction at time step t is then et := ŷt − yt.
Problem Statement. Our objective is to minimize the cumulative prediction error over the time
horizon H at test time. Over this time horizon, the parameters pt governing the system dynamics
may change. Since the parameters can not be measured, we seek to develop an adaptation scheme
to identify these changes to enable fast adaptation of our prediction model to the system changes.

3. Learning a Prior over Dynamical Systems using Conditional Neural Processes

We first describe how to obtain the CNP prediction model of the dynamical system shown in Figure 1
from the data set S. In Section 4, we will then describe our adaptation scheme for updating the
context set of this CNP to account for online time-variations in the parameters.

As discussed, we use a CNP to learn a prior model over the system dynamics in (1). CNPs
were introduced by Garnelo et al. (2018a) to model stochastic processes. They use a context set C
consisting of input/output pairs and a target set T of unlabeled input points. The output of a CNP
are posterior predictions at the points in the target set given the context set; with this, they behave
similar to Gaussian processes. While CNPs were the first introduced neural processes (NPs), it has
recently been shown that they can still perform competitively with newer NP variants (Bruinsma
et al., 2023). We will focus on CNPs but our adaptation scheme could also be applied to other
variants from the NP family (Garnelo et al., 2018b; Kim et al., 2019; Gordon et al., 2020), or any
other meta learning model with a latent space that allows for a context set of varying size.

To model the dynamical system in (1) where the next state depends both on the current state as
well as control input we further define x̃t−1 := [y⊤

t−1,u
⊤
t−1]

⊤ ∈ RD+U for convenience in notation
as the inputs. As outputs, we define ỹt := yt. Hence, our context set is composed of tuples of the
form (x̃t−1, ỹt) ∈ Ct. We make the context set depend on the current time step t since we obtain
additional input and output pairs online. Usually, we are only interest in predicting the next state
and therefore our target set is, if not explicitly stated otherwise, defined as Tt = {x̃t}. The CNP
then consists of three main building blocks (see also Figure 2 for an illustration of the architecture):

(i) The encoder network ri = Encϕ(x̃i−1, ỹi) that computes a latent representation for all input
and output pairs in the context set (x̃i−1, ỹi) ∈ Ct.

(ii) The aggregator Rt =
1
C

∑C
i=1 ri to deal with a varying set size where C = |Ct|.

(iii) The decoder (ŷt+1,σt+1) = Decψ(x̃t,Rt) that generates independent location and scale pa-
rameters for a Gaussian distribution, respectively, for points in the target set x̃t ∈ Tt.

We denote the parameters of the whole CNP as θ := ϕ∪ψ. With these components, one can state the
predictive distribution of the CNP for the next observation as pθ(ỹt+1 | Ct, x̃t) = N (ŷt+1,σt+1).

We train the CNP by minimizing the negative log-likelihood at target and context points (Gar-
nelo et al., 2018a). For this, we use two trajectories from the data set S that were generated by the
same parameter combination. Next, we construct the input and output pairs as discussed above for
each trajectory. We then sample a number of context points uniformly as N ∼ U(1, Nmax) from
the first trajectory, where Nmax is the maximum context set size. As the target set, we use the whole
second trajectory. Letting Q be the distribution of all possible dynamical system captures in S and
let Gt be the set of ground truth observations, we can define the loss as

L(θ) = −EQ [EN [ln pθ (Gt | Ct, Tt)]] = −EQ
[
EN

[
ln
∏|Tt|

i=1
N (yi | ŷi,σi)

]]
. (2)

3



NEURAL PROCESSES WITH EVENT TRIGGERS FOR FAST ADAPTATION TO CHANGES

Sliding Window

predictionaggregate

increment window

Figure 2: The proposed sliding window of size W for CNPs of dynamical system. The sliding
window increments at each time step to obtain a meaningful context set and therefore
latent representation that approximates the current systems behavior.

Note that during training, we consider multiple points in our target set as well as a factored structure
of the conditional probability to satisfy the conditions for modeling a stochastic process (cf. Garnelo
et al. (2018a)). Varying the size of the context set during training is essential for our adaptation
scheme for CNPs. Both the moving window and the ET will result in potentially different context
sizes over time and for the final performance it its crucial that this is considered during training.

Once trained on data from the dynamical system in (1) as described in this section, a CNP can
be deployed onto a specific instance of the system. By incorporating past observations and control
inputs into the context set, the CNP will implicitly infer the system’s parameters. This enables the
CNP to be utilized for monitoring the system or controlling it through a model predictive controller.
However, during operation, some of the system parameters might change. Adding data across such
time-variations in the parameters to the context set can distort the CNP’s latent representation of the
dynamics and thus lead to inaccurate predictions or sub-optimal control performance.

4. Adapting to Online Changes Using a Sliding Window and Event Triggers

To obtain accurate predictions through time-variations, we now propose our adaptation scheme (red
in Figure 1) consisting of using a sliding window to continuously update the context set of the CNP,
and an ET to detect and react to sudden changes (later summarized in Algorithm 1). We will begin
by introducing the sliding window mechanism for the CNP’s context set, followed by the ET.

4.1. Sliding Window for Continuous Adaptation

Sliding window approaches are common in control as well as machine learning. For CNPs, we fill
up the context set after initialization until a set size of W . This is enabled by the architecture of
the CNP as the aggregation operation ((ii) in Section 3) allows for different context set sizes. The
context vector Rt of the CNP is updated every time step using information from the previous ob-
servation and control input as (see also Figure 2) rt = Encϕ(x̃t−1, ỹt) followed by the aggregation
Rt =

1
W

∑W
i=1 rt−i+1. The window size directly influences the accuracy of the CNPs predictions.

A sliding-window approach enables the CNP to adapt to changes in the system dynamics, including
both gradual and sudden changes as Rt is continuously updated. However, we will demonstrate in
Section 5, that there is a fundamental trade-off between prediction accuracy and speed of adaptation.
Specifically, we will see that for larger W , the prediction is more accurate (see Figure 3); however,
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adapting to changes takes longer. Contrary, a short window sizeW allows the CNP to adapt quickly
to a new parameter configuration, but this comes at the cost of less accurate predictions.

4.2. Event Triggers for Detecting Sudden Changes

To obtain both good predictions and fast adaptation, we further introduce the usage of an ET. The
idea of such an ET is to detect sudden changes in the system dynamics based on the prediction
error of the CNP. Once such changes are detected, we reset the context set and context vector of the
CNP. For the design of the ETs, we assume a perfect prediction model, and with this, deviations
between predictions and observations are independent and identically distributed Gaussian random
variables. This is a strong assumption on the models performance and highly depends on how the
model was trained, if the dataset S is sufficient to model the dynamics, and so on. However, we use
it to derive ETs based on theoretical insights from error bounds on such Gaussian random variables
and demonstrate that these ETs are useful in practice. We employ concentration inequalities that
incorporate the model’s uncertainty estimates to design our ETs. In practice, we expect the model to
be more uncertain in parts of the state-space with limited data increasing the bounds. We introduce
two kinds of ETs: channel-based ETs, i.e. ETs that consider each dimension of the prediction error
separately, and ETs that consider the Euclidean norm of the prediction error.

4.2.1. CHANNEL-BASED EVENT TRIGGER

First, we will introduce the channel-based ETs. As stated, we name them ‘channel-based’ as they
consider each entry dimension of the prediction error et = [et,0, . . . , et,D−1]

⊤ separately. For
this, we first derive bounds on the absolute value of the prediction error in one channel. These
concentration inequalities guarantee that the absolute value will remain below a certain threshold
in probability. Thus, by design, the bounds yield a bound of the false positive rate. By leveraging
these results, we can design our ETs at the end of this subsection.

Lemma 1 (One-step error bound) Let et,i be the zero mean Gaussian prediction error with vari-

ance σ2t,i at time step t. Pick δ ∈ (0, 1) and set ht =
√
2σ2t,i log

1
δ . Then, P {|et,i| ≤ ht} ≥ 1− δ.

Proof This follows directly from standard concentration results for normal distributions (e.g., Srini-
vas et al. (2010)). It uses the fact that if et,i ∼ N (0, 1), then P {et,i > ht} ≤ 1/2e−h

2
t /2. Scaling

with σ2t,i, considering a two sided bound, and solving the right hand side for δ yields the result.

Lemma 1 only holds for one time step. If we consider multiple time steps, the probability of
drawing an outlier from the normal distribution increases. Hence, the threshold ht has to increase
over time to still bound the prediction error in one channel with probability 1 − δ. Following the
approach of Srinivas et al. (2010) we can transform Lemma 1 to the so-called time-uniform case,
i.e. a concentration inequality that is satisfied for all time steps.

Lemma 2 (Time-uniform error bound) Let e1,i, . . . , et,i be t consecutively observed zero mean

Gaussian prediction errors with individual variances σ2t,i. Pick δ ∈ (0, 1). Set ht =
√
2σ2t,i log

πt
δ ,

where
∑

t≥1 π
−1
t = 1, πt > 0. Then the following holds: P {|et,i| ≤ ht, ∀t ≥ 1} ≥ 1− δ.

Proof Using the same approach as in (Srinivas et al., 2010, Lemma 5.1) by setting the right side in
the proof of Lemma 1 to exp(−h2t /(2σ2t,i)) = δ/πt and solving for ht proves the claim.
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A popular choice for πt is πt = π2t2/6 (Srinivas et al., 2010). Based on these results, we design our
channel-based ETs to detect sudden changes in the system dynamics: Given a δ ∈ (0, 1), we can
use Lemma 1 or Lemma 2 to compute a threshold which is then used in the ET. As soon as one of
the channels violated the threshold, i.e. the error in one dimension violates the threshold, we reset
the context set and context vector of the CNP.

Definition 3 (Channel-based Event Trigger) Given threshold ht that may depend on time follow-
ing either Lemma 1 or Lemma 2 with δ ∈ (0, 1), we define the channel-based ET as

γreset = 1 ⇐⇒
∨D−1

i=0
|et,i| > ht (3)

where γreset is the binary indicator for whether to reset the context (γreset = 1) or not (γreset = 0).

We refer to the ET following Definition 3 using Lemma 1 and Lemma 2 as CT(δ) and UCT(δ), re-
spectively, where δ specifies the tightness of the concentration inequalities. The presented channel-
based ETs consider by design each dimension independently. Next, we propose two ETs based on
the norm of the prediction error e.

4.2.2. EUCLIDEAN NORM EVENT TRIGGER

To account for the fact that, in practice, the error in each dimension may be correlated, we now
consider bounds on the Euclidean norm ∥ · ∥2 of the prediction error. Similar to the last section, we
again first derive a one-step error bound followed by a time-uniform error bound. At the end of the
subsection, we will then derive our norm-based ETs from these results.

Lemma 4 (One-step norm error bound) Let et ∈ RD be a zero mean Gaussian prediction error

with covariance matrix Σt ∈ RD×D. Pick δ ∈ (0, 1) and set ht =
√

8Tr (Σt) log(
√
e
δ ). Then, the

following holds: P {∥et∥2 ≤ ht} ≥ 1− δ.

Proof From Pinelis and Sakhanenko (1986, Corollary 3) we have for Gaussian random vectors that

P
{
∥X∥ − E[∥X∥] ≥ h̄

}
≤ exp

(
− h̄2

2E[∥X∥2]

)
for h̄ ≥ 0. (4)

Following Pinelis (2023) of setting h̄ := ht − E[∥X∥] and multiplying the RHS by
√
e we obtain

P {∥X∥ ≥ ht} ≤
√
e exp

(
− h2t

8E[∥X∥2]

)
for ht ≥ 0 (5)

using the fact that ht − E[∥X∥] ≥ ht/2. By design, note that if h2t < 4E[∥X∥2], the upper bound
in (5) is > 1 and therefore trivial. We can therefore state without loss of generality that h2t ≥
4E[∥X∥2] ≥ 4E[∥X∥]2 so that E[∥X∥] ≤ ht/2 ensuring h̄ > 0 and proving ht − E[∥X∥] ≥ ht/2.
If X ∼ N (0,Σ), then for the Euclidean norm we have E[∥X∥2] = E[

∑N
i=1X

2
i ] =

∑N
i=1 E[X2

i ] =∑N
i=1 σ

2
i = Tr(Σ). Setting the right hand side of (5) to δ and solving for ht proves the claim.

Lemma 5 (Time-uniform norm error bound) Let e1, . . . , et ∈ RD be t consecutively observed
zero mean Gaussian prediction errors with individual covariance matrices Σt ∈ RD×D. Pick

δ ∈ (0, 1) and set ht =
√
8Tr (Σt) log(

√
eπt
δ ), where

∑
t≥1 π

−1
t = 1, πt > 0. Then,

P {∥et∥2 ≤ ht, ∀t ≥ 1} ≥ 1− δ. (6)
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Proof We can use the same argumentation as in the proof of Lemma 2 (based on arguments from
Srinivas et al. (2010)) and set the upper bound in (5) to δ/πt and solve for ht to prove the claim.

Different to Definition 3, we now consider the combined prediction error at every time step: Given
a δ ∈ (0, 1), we can use either Lemma 4 or Lemma 5 to compute a threshold. As soon as the
Euclidean norm of the prediction error exceeds this threshold, we reset the context set of the CNP.

Definition 6 (Euclidean Norm Event Trigger) Given threshold ht that may depend on time fol-
lowing either Lemma 4 or Lemma 5 with δ ∈ (0, 1), we define the Euclidean norm ET as

γreset = 1 ⇐⇒ ∥et∥2 > ht (7)

where γreset is the binary indicator for whether to reset the context (γreset = 1) or not (γreset = 0).

Algorithm 1 Adaptation Scheme for CNPs
Input: Trained CNP, W , H , event trigger (Def. 3 or

Def. 6) with δ ∈ (0, 1), controller
for t = 1, . . . ,H do

Observe yt from dynamical system
if t ≥ 2 then

γreset ← EVENT TRIGGER(yt, (ŷt,σt), t)
if γreset then
Ct ← {(x̃t−1, ỹt)}

else
Ct ← Ct−1 ∪ {(x̃t−1, ỹt)}
if t > W then
Ct ← Ct \ {(x̃t−W−1, ỹt−W )}

end
Apply ut from controller to dynamical system
Update prediction target x̃t ← [y⊤

t ,u
⊤
t ]

⊤

(ŷt+1,σt+1)← CNP(Ct, x̃t)
end

We refer to the ET following Defini-
tion 3 using Lemma 1 and Lemma 2 as
NT(δ) and UNT(δ), respectively, where
δ specifies the tightness of the respective
concentration inequalities.

Our adaptation scheme consisting of a
sliding window and an ET is summarized
in Algorithm 1. In the next section, we will
empirically test this scheme on two non-
linear dynamical systems to test if it im-
proves the prediction performance of our
CNP across time-variations.

5. Numerical Experiments

We evaluate our adaptation scheme on two
example dynamical systems: the Van-der-
Pol oscillator (VDP) in Section 5.1 and a
cart-pole system (CP) in Section 5.2.1 For both, we choose the encoder ((i) in Section 3) as an
MLP with 2 hidden layers of size 256 and the decoder ((iii) in Section 3) as an MLP with 4 hidden
layers with size 128. The current state is further encoded by an one layer MLP of size 128. The
latent representation is of size 128. We encode absolute angles with sin, cos, normalize the data
in the network and use a global residual connection to learn a difference for numerical stability as
recommended by Deisenroth and Rasmussen (2011). This results in a CNP that directly maps one
state to the next. We train the model over 80 epochs using Adam (Kingma and Ba, 2015). As initial
learning rate, we use lr = 0.001 for the VDP and lr = 0.0005 for the CP and multiply it by 0.2
in epochs {40, 65, 70, 75}. The batch size is 64 and we use gradient clipping at 0.5. The training
data consists of randomly sampled transitions (50%) and initial state rollouts with random inputs
(50%). For all simulation, we use a delta time of 0.02s. As baseline, we add the trained CNP with
an infinite window size (w∞). This baseline can not adapt to changes.

1. The full code base can be found here: https://github.com/NKPmedia/np-et-learn.
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Figure 3: Results on the Van-der-Pol oscillator. Absolute pred. error for different window sizes
(left), and combining a sliding window with the proposed event triggers (middle, right).

5.1. Adaptive CNP for the Van-der-Pol Oscillator

First, we consider the two dimensional nonlinear VDP. Here, µ is the only free parameter and we
set its parameter range to µ ∈ [0.1, 2]. In our experiments, we consider 300 different initial states,
apply random control inputs to the system, and induce Gaussian zero mean measurement noise
with σ2w = 0.001 and state-dependent process noise with σ2v = 0.01 · |st − st−1|, respectively. At
t = 12, we induce a random system change by adding ±0.5 to the current µ and clipping it to the
initial range. We first look at the influence of different sizes W of the sliding window. The results
in Figure 3 (left) show the mean prediction error and verify the statements made in Section 4. A
larger window size improves the prediction error of the CNP. This effect stagnates for very large
W . We can further observe that large window sizes take significantly longer to adapt to the new
system parameters, as it takes longer to overwrite the context set. To have both, a small prediction
error using a large sliding window and fast adaptation to changes, we proposed various ETs. The
different ETs combined with a sliding window of 100 are compared in Figure 3 (middle, right).
Here, w300 eR is the baseline with W = 300 and an exact reset at the time of change as the best
possible performance given our CNP. We can observe that considering the cumulative prediction
error CT performs best. However, note that before the change CT is outperformed by the other
triggers, indicating multiple false positives by CT. Given the low-dimensional system and only one
free parameter, these false positives are not significant to the cumulative error. The norm based
triggers are more conservative and some changes go undetected. Noteworthy is that UNT does not
detect any changes resulting in a performance equivalent to only using a sliding window.

5.2. Adaptive CNP for the Cart-Pole System

Next, we consider the four dimensional cart-pole system which is a classic benchmark in control and
reinforcement learning. We use the model as described by Green (2020). Here, the free parameters
of the system and their ranges are as follows: m ∈ [0.1, 0.5] is the mass of the pole, ℓ ∈ [0.1, 0.5]
is the length of the pole, M ∈ [0.5, 2] is the mass of the cart, and we set µc = 0.01 and µp = 0.001
for the friction of the cart and the pole, respectively (all parameters are in SI units). We use the
same experimental setup as before, but adding ±0.1 to M,m, ℓ. Figure 4 summarizes the results.
We see the same tendencies for different window sizes; however, the differences are more distinct
for this higher dimensional system with more free parameters. We can further observe that the
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Figure 4: Results on the cart-pole system. Absolute prediction error for different window sizes
(left) and combining a sliding window with the proposed event triggers (middle, right).

false positives of CT are now more significant for the cumulative mean prediction error. The more
conservative variant UCT as well as the norm based ETs outperform CT.
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Figure 5: Consecutive swing ups with MPPI.

Cart-Pole Swing-up Using MPPI. To demon-
strate the usefulness of an adaptive meta-learning
model for control, we use the trained CNP in a
model predictive path integral (MPPI) controller
(Williams et al., 2017) to swing up the pole. We
perform five consecutive swing-ups (Run 1-5) and
the parameters in the system change before start-
ing the last one, i.e. before Run 5. We combine
the NT that performed best for this system with a
window size of 300. Per run, we used 300 random
seeds for the initial action sequence of MPPI. The
number of upright poles achieved across the ran-
dom seeds during the runs are shown in Figure 5. Note that until Run 5, the blue, yellow, violet,
and black curve lay on top of each other. We observe that using a longer window spanning across
different runs, MPPI achieves more swing-ups due to more accurate predictions of the dynamics.
After the change, our method with the ET performs only slightly worse than the exact reset; both
outperform w20. Using only a long sliding window, it takes a considerable amount of time to update
the context set and regain accurate predictions, hindering the ability to swing up the pole effectively.

6. Related Work

While we discussed and validated our adaptation scheme using CNPs as a prediction model, our
approaches can also be used for different predictors that use a latent representation that it allows for
varying context sizes. Next, we discuss related work to our approaches presented in this paper.
Neural processes for dynamical systems. Galashov et al. (2019) used an attention extended NP for
also predicting the dynamics of a cart pole. Cart-pole dynamics were also considered in Wang and
Van Hoof (2020) with a doubly stochastic latent NP with global and local stochastic latent variables.
In contrast to our work, both did not consider data arriving sequentially as well as online changes in
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the parameters. Still, our adaptation scheme could also be applied to their models. Norcliffe et al.
(2021) proposed a NP architecture designed to model ODEs based on neural ODEs (Chen et al.,
2018). They consider various dynamical systems, but also no online parameter changes.
Meta-learning models for dynamics. Rakelly et al. (2019) use a model similar to CNPs to generate
a latent representation based on state transitions for a soft actor critic agent. In contrast to our
concepts, they use all past transitions as the context set, allowing for no adaption capabilities after
changes. Wang and Van Hoof (2022) use a graph neural network to encode the context allowing for
flexible window sizes and preservation of dependencies; hence our adaptation scheme could also be
applied. Our scheme could also be applied to GP based meta-learning models as in Sæmundsson
et al. (2018). For the work in (Lee et al., 2020; Fu et al., 2021) this is more challenging as they use
an encoder with a fixed input size. Applying our ETs would require, e.g., padding with zeros. For
gradient and RNN-based meta-learning, a sliding window has also been used by Nagabandi et al.
(2018) building on top of (Santoro et al., 2016; Finn et al., 2017). Similarly, Kaushik et al. (2020)
propose multiple initial network weights and environment encodings as well as combining a sliding
window with regular resets. None of these approach consider an ET to adapt to changes.
Adapting to changes online. Several approaches have been proposed for adapting to changes on-
line for dynamical systems. McKinnon and Schoellig (2017) use a model library approach with
different GPs, explicitly selecting the model that best fits the current data. Using NPs, this model
selection is performed implicitly by conditioning on the context set. Also using GPs, Meier and
Schaal (2016) and Ordóñez-Conejo et al. (2022) employed a sliding window for online model learn-
ing and adaptive filtering, respectively. Using an ET to detect changes and adapt to them is inspired
by event-triggered learning where the aim is to re-learn a model or add data to the model only when
necessary (Solowjow and Trimpe, 2020; Brunzema et al., 2023; Umlauft and Hirche, 2019). Our
ETs determine when to reset the context set of the CNP and with this implicitly start a re-learning.
An ET is also similar in spirit to Bayesian online change point detection (Adams and MacKay,
2007; Agudelo-España et al., 2020; Altamirano et al., 2023). In contrast to these approaches, the
model parameters of our CNP remain fixed through time and the ET acts solely as a peripheral for
fast adaptation. This makes our approach computationally more efficient as evaluating the ETs is a
simple comparison and updating the posterior for CNPs is a forward pass through the encoder com-
pared to updating posterior predictive distributions. It is therefore also suitable for online control
tasks. This efficiency however comes at the cost of being less robust to outliers due to the threshold-
ing of the ETs. Interesting future work would be to merge ideas from both spectra by considering
multi-step ETs. Also adaptive control (Åström and Wittenmark, 2013) aims to cope with param-
eter variation. In this context, also meta-learning models have been considered (Richards et al.,
2021; Shi et al., 2021). To the best of our knowledge, this is the first work proposing to combine
meta-learning models with explicit ETs to detect and react to online parameter changes.

7. Concluding Remarks

We presented a method to enable fast reaction to changes. For this, we used a CNP to learn a
prior model over non-linear, parameter-varying systems. To maintain accurate predictions though
online time-variations of these parameters, we proposed an adaptation scheme for CNPs consisting
of a sliding window, to adapt to slow changes, and an ET, to detect and react to sudden changes.
Important for training the CNP model were trajectories where pt remained constant. Extending this
with approaches that can deal with in-trajectory changes such as Harrison et al. (2020) is promising.
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