
Proceedings of Machine Learning Research vol 242:528–540, 2024 6th Annual Conference on Learning for Dynamics and Control

Uncertainty Quantification and Robustification of Model-based
Controllers using Conformal Prediction

Kong Yao Chee CKONGYAO@SEAS.UPENN.EDU

Thales C. Silva SCTHALES@SEAS.UPENN.EDU

M. Ani Hsieh M.HSIEH@SEAS.UPENN.EDU

George J. Pappas PAPPASG@SEAS.UPENN.EDU

University of Pennsylvania, Philadelphia, PA 19104

Editors: A. Abate, M. Cannon, K. Margellos, A. Papachristodoulou
Abstract

In modern model-based control frameworks such as model predictive control or model-based re-
inforcement learning, machine learning has become a ubiquitous class of techniques deployed to
improve the accuracy of the dynamics models. By leveraging expressive architectures such as
neural networks, these frameworks aim to improve both the model accuracy and the control perfor-
mance of the system, through the construction of accurate data-driven representations of the system
dynamics. Despite achieving significant performance improvements over their non-learning coun-
terparts, there are often little or no guarantees on how these model-based controllers with learned
models would perform in the presence of uncertainty. In particular, under the influence of mod-
eling errors, noise and exogenous disturbances, it is challenging to ascertain the accuracy of these
learned models. In some cases, constraints may even be violated, rendering the controllers unsafe.
In this work, we propose a novel framework that can be applied to a large class of model-based
controllers and alleviates the above mentioned issues by robustifying the model-based controllers
in an online and modular manner, with provable guarantees on the model accuracy and constraint
satisfaction. The framework first deploys conformal prediction to generate finite-sample, provably
valid uncertainty regions for the dynamics model in a distribution-free manner. These uncertainty
regions are incorporated into the constraints through a dynamic constraint tightening procedure.
Together with the formulation of a predictive reference generator, a set of robustified reference tra-
jectories are generated and incorporated into the model-based controller. Using two practical case
studies, we demonstrate that our proposed methodology not only produces well-calibrated uncer-
tainty regions that establish the accuracy of the models, but also enables the closed-loop system to
satisfy constraints in a robust yet non-conservative manner.
Keywords: Learning-based control, Model-based control, Uncertainty quantification

1. Introduction
There is an uptrend in the application of model-based controllers across a wide range of domains
due to recent advances in nonlinear optimization frameworks and an increase in the availability
of computational resources, e.g., for temperature control in buildings (Yao and Shekhar (2021)),
for autonomous vehicles (Wu et al. (2022)) and in quadrotor control (Chee et al. (2023a)). The
proliferation of machine learning methods has concurrently led to an increase in the development of
learning-enhanced, model-based control frameworks that leverage learning tools to improve control
performance through an improvement in the dynamics models, e.g. Jiahao et al. (2023). Despite the
surge in these developments, the question of how these learning-based control frameworks would
perform in the presence of uncertainty, remains an active research topic (Mesbah et al. (2022);
Brunke et al. (2022)). In this work, we approach this problem by proposing a novel framework that
systematically allows the model-based controller to satisfy constraints robustly, under the collective
influence of model mismatch, noise and external disturbances.
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Related Works: There are a number of methods in the literature that provide constraint satisfac-
tion through the modification of the control inputs. Examples include methods that utilize control
barrier functions, e.g., Marvi and Kiumarsi (2021) and Ames et al. (2019), and predictive safety
filters, such as Chen et al. (2023) and Wabersich and Zeilinger (2021). Our approach in this work
is fundamentally different from these methods since we aim to augment the reference trajectories
given to the model-based controller, rather than the output of the controller. There are works that
use either neural networks or Gaussian processes to characterize the uncertainty of the system dy-
namics such as in Aswani et al. (2013); Berkenkamp and Schoellig (2015); Soloperto et al. (2018).
However, these are often limited to linear nominal models. For a survey of methods that consider
safety from various aspects, readers are referred to Brunke et al. (2022). Reference and command
governors (Garone et al. (2017)) are methods, which at first glance, have some resemblance to our
approach. However, our pipeline is more holistic as it includes an uncertainty quantification proce-
dure and the distribution-free nature of conformal prediction (CP) allows us to quantify uncertainties
of any form. Furthermore, our method is general as it can be applied and is catered to nonlinear sys-
tems. There is a growing interest in the application of CP within control and planning frameworks,
with recent works given in Lindemann et al. (2023) and Dixit et al. (2023). In this work, we not only
adopt a state-of-the-art variant of CP that does not require the data samples to be exchangeable, but
we also delineate a principled approach of incorporating the uncertainties into a predictive reference
generator, which enables robust constraint satisfaction for a given model-based controller.

Contributions: Our contributions in this work are three-fold. First, by considering a receding
horizon variant of weighted conformal prediction (WCP), we show how the uncertainty regions
computed by WCP can be incorporated into a dynamic constraint tightening procedure. Second, we
formulate a novel methodology, which integrates uncertainty quantification and constraint tighten-
ing with a predictive reference generator in an online manner. The predictive reference generator
computes a set of robustified reference trajectories, which can be incorporated to a large class of
model-based control frameworks. By tracking these robustified trajectories, the proposed frame-
work guarantees robust constraint satisfaction with high probability. Finally, through two case stud-
ies, we show that our proposed framework enhances the robustness of the given model-based control
schemes, without inducing additional feasibility issues. To the best of our knowledge, this is the first
work that integrates weighted conformal prediction with constraint tightening in a receding horizon
procedure and leverages them to enhance the robustness of model-based controllers.

2. Problem Setup and Preliminaries
We consider a discrete-time, nonlinear system with the following dynamics,

x+ = f (x, u, w, d(x, u)) , (1)
where the function f : Rn × Rnu × Rp × Rq → Rn denotes the system dynamics, the vectors
x, x+ ∈ Rn are the current and successor states, u ∈ Rnu is the control input to the system, w ∈ Rp

is the process noise acting on the system. The function d : Rn × Rnu → Rq maps (possibly
unknown) external disturbances to the system dynamics. To control the system, we are given a
model-based control framework that generates a sequence of control inputs, which is applied to the
system during deployment, described in the following section.

2.1. Model-based Control with Learned Dynamics Models
In many model-based control frameworks that use machine or deep learning techniques, architec-
tures such as neural networks are trained to obtain an accurate model of the system dynamics.
In this work, we assume that we are given a (possibly partially unknown) model-based control
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Figure 1: Schematic of the proposed framework, highlighted in blue. Quadrotor image: Bitcraze.

framework to control the system (1). In particular, at each time step k, the model-based controller
π : Rn × Rn × R(N+1)n × RNn → Rnu produces a control input u⋆(k) ∈ Rnu , which is given as

u⋆(k) = π
(
x(k), f̂(x, u; θ), R, V

)
, (2)

where x(k) ∈ Rn denotes the current measurement of the state, the sequences R := {ri}N+1
i=1 and

V := {vi}Ni=1 denote the reference state and control trajectories that the model-based controller
is required to track, and N ∈ N+ denotes the length of the reference trajectories. The function
f̂ : Rn × Rnu → Rn denotes the dynamics model with learned parameters θ ∈ Rb. While we may
not know the full details of the control framework, we assume to have access to the learned model
f̂(x, u; θ). Many existing frameworks fall within this general class of control frameworks. For
instance, recent methods in learning-based model predictive control (MPC), e.g., Salzmann et al.
(2023), Chee et al. (2023c), lie within this class of controllers. Model-based reinforcement learning
techniques such as those formulated by Lambert et al. (2019) and Williams et al. (2016) fall within
this category as well. Iterative LQR and differential dynamic programming methods, such as those
described in Li and Todorov (2004) and Tassa et al. (2014) can also be subsumed under this class.

Problem 1: Given the model f̂(x, u; θ), we would like to quantify the uncertainty region be-
tween the model and the true system dynamics with provable guarantees on the model accuracy, and
utilize these uncertainty regions to ensure that constraints are robustly satisfied for a given model-
based controller π(x, f̂ ,R,V), in the presence of modeling errors, noise and external disturbances.

Our approach to solving Problem 1 is depicted in Fig. 1. Before describing our approach in
Section 3, we first recall some key concepts in conformal prediction.
2.2. Conformal Prediction
Conformal prediction (CP) is an uncertainty quantification technique that is used in tandem with a
given regression model to produce provably valid prediction intervals, as described in Vovk et al.
(2005). This method assumes that the data samples used to compute the prediction intervals are
either i.i.d. or exchangeable. For time series data, this is a strong assumption. In this work, we use
a state-of-the-art variant of CP, known as weighted CP (WCP), developed by Barber et al. (2023),
to alleviate this assumption.

Consider a dataset of K samples, D := {(zi, yi)}Ki=1, where {zi}Ki=1 and {yi}Ki=1 are the fea-
tures and labels of the dataset. For time series data, these features and labels are the states and
successor states of the system respectively, but for clarity, we maintain the notation of z and y in our
exposition of WCP. The objective is to construct a conformalized uncertainty interval Q(z) such
that for a test data sample z that is not within D, its label y lies within Q(z) with a pre-defined
probability. The algorithm first uses the samples in the dataset to compute a set of nonconformity
scores S := {si}Ki=1, where

si(zi) := ||ŷi(zi)− yi||1 (3)
and {ŷi(zi)}Ki=1 are the predictions computed using the model f̂ . These nonconformity scores ac-
count for the deviation between the predictions given by the model and the true values in a natural
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way - the smaller the nonconformity scores, the more accurate the predictions. Next, given a mis-
coverage rate α ∈ (0, 1), we compute the weighted (1 − α)th empirical quantile of S, Q1−α(S),

Q1−α(S) := Q1−α

(∑K

i=1
wi δsi + wK+1 δ+∞

)
, (4)

where {wi}K+1
i=1 are normalized weights, Q1−α(·) denotes the (1 − α)th quantile of the argument

and δa denotes a probability point mass for a real number a on the extended real line (Barber
et al. (2023)). Finally, the conformalized interval is attained by extending symmetrically from the
predictions of the learned model,

Q(z) := [ŷ(z)−Q1−α(S), ŷ(z) +Q1−α(S)] . (5)

Qualitatively, this procedure uses the dataset D to compute the half-width of the intervals Q1−α.
The choice of weights {wi}K+1

i=1 plays a role on how the exchangeability assumption is alleviated.
For details on how the weights are chosen, the reader is referred to Barber et al. (2023).

3. Robustification of Model-based Controllers
3.1. Online Uncertainty Quantification
To quantify the uncertainty between the model and true system dynamics in an efficient manner, we
consider a method to perform WCP in a receding horizon manner. We follow a procedure similar to
that described in Section 2.2 by using the data samples within a window of size m. In particular, at
each time step, the most recent nonconformity score is added and the oldest one is removed from the
set of scores. This approach promotes recency, since we only use the most recent data samples to
compute the uncertainty intervals. Details of this procedure are given in Algorithm 1. An inherited
attribute of Algorithm 1 is that it makes no assumptions on the data distribution, and hence can be
applied to any dynamics model to quantify any form of uncertainty between the model and the true
system, such as those caused by modeling errors, process noise or external disturbances. Although
not necessary, we highlight that using learning methods can help to bridge the gap between the
model and the true system substantially, and this often leads to uncertainty intervals with relatively
small magnitudes as compared to the magnitudes of the states. Instead of choosing the most recent
data points, other sampling methods can be applied. For instance, it is possible to maintain a buffer
and choose data that are representative of the errors between the model and true system. This
may lead to smaller intervals and is related to the notion of persistent excitation, often discussed in
adaptive control (Narendra and Annaswamy (2012)). Formally, the uncertainty intervals computed
by Algorithm 1 satisfy the following guarantees.

Algorithm 1 A receding horizon variant of WCP
Input: Current state and control input x(k), u(k), learned model f̂(θ), window size m, weights {wi}mi=1,

miscoverage rate α
Output: Conformalized uncertainty interval Q

1: Initialize: S ← {0}
2: At each time step k,
3: Compute model prediction ŷk using f̂(x(k), u(k); θ)
4: if k ≥ 1 then
5: Calculate latest nonconformity score sk element-wise and add to set, S ← {sk} ∪ S
6: if k > m then
7: Compute Q1−α(S) and Q in (4) and (5) using {wi}mi=1, α and ŷk−1, with S := {si}k−1

i=k−m

8: Remove oldest nonconformity score from set, S ← S \ {sk−m}
9: end if

10: end if
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Lemma 1 (Adapted from Barber et al. (2023)) Given the dataset D := {(zi, yi)}k−1
i=k−m and the

dynamics model f̂ , let the predictions computed by the dynamics model at time t ≥ k be denoted by
ŷ(zt). Then, for the miscoverage rate α ∈ (0, 1), the following inequality holds for the label yt and
the width of the uncertainty interval Q1−α(S) computed by Algorithm 1,

P {||yt − ŷ(zt)|| ≤ Q1−α(S)} ≥ 1− δt, (6)
where δt := α +

∑m
i=1wi dTV

(
S, Si

)
. The metric dTV denotes the total variation between two

distributions. The set Si consists of the scores when the data sample (zt, yt) is replaced with the ith

sample in S, as defined in Algorithm 1.

Proof For any data sample (zt, yt), t ≥ k, applying Theorem 2 in Barber et al. (2023) gives
P {yt ∈ Q (zt)} ≥ 1− δt. With Q(zt) as in (5), yt ∈ Q (zt)⇔ ||yt − ŷ(zt)|| ≤ Q1−α(S) and that
gives the required result.
Lemma 1 implies that for any feature zt, the corresponding label yt is guaranteed to be within Q
with probability of 1 − δt. Importantly, the data samples do not have to be i.i.d. or exchangeable.
This result implies the following for a sequence of states predicted by the dynamics model.

Proposition 2 Consider an arbitrary state trajectory of length N at time k, denoted by {xi}k+N
i=k ,

and let δ := Nδt. For a predicted state trajectory {x̂i}k+N
i=k+1 computed by the dynamics model f̂

starting from xk, we have
P {||xi − x̂i|| ≤ Q1−α(S), ∀i ∈ {k + 1, . . . , k +N}} ≥ 1− δ (7)

Proof We use a technique similar to that in Theorem 1 of Lindemann et al. (2023). We first apply
Lemma 1 with zt := xi−1 and yt := xi. For each i ∈ {k + 1, . . . , k +N}, we have

P {||xi − x̂i|| ≤ Q1−α(S)} ≥ 1− δt ⇔ P {||xi − x̂i|| > Q1−α(S)} < δt.

By applying the union bound, we have

P
{
∃i ∈ {k + 1, . . . , k +N}

∣∣∣ ||xi − x̂i|| > Q1−α(S)
}
= P

{⋃k+N

i=k+1
||xi − x̂i|| > Q1−α(S)

}
≤

∑k+N

i=k+1
P {||xi − x̂i|| > Q1−α(S)} < Nδt = δ.

The result in (7) is obtained by considering the probability of the complementary event.
Proposition 2 provides a certificate that the sequence of state predictions given by the learned model
would be close to the true system states, with high probability. We note that even though the second
term of δt may be challenging to compute, the effect of this term can be controlled through a careful
selection of weights, wi. In Section 5, we show that as the intervals are computed online and with
an accurate model, the intervals are not overly conservative. This paves the way for these intervals
to be used in constraint tightening, which enables robust constraint satisfaction.

3.2. Dynamic Constraint Tightening
To ensure that the constraints are satisfied in a robust yet non-conservative manner, our approach
is to tighten the constraint sets dynamically during deployment, using the uncertainty intervals
computed by Algorithm 1. In general, given the constraint set X , we would like to find a set
of operations, denoted by ⊖, such that it tightens the constraint set in an online manner, i.e.,
Xc(k) := X ⊖ E(k), where E(k) denote the uncertainty intervals. In this work, we consider a
common, yet important, type of constraints to exemplify the role of the uncertainty intervals in the
dynamic constraint tightening procedure. Consider constraints that are represented by the poly-
hedral set, X := {x ∈ Rn : Ax ≤ b}, where A ∈ RnX×n and b := [b1, . . . , bnX ]

⊤ ∈ RnX .
The rows of A are given by {a⊤i }

nX
i=1, ai ∈ Rn. Next, we define an uncertainty vector e(k) :=
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[e(k)x1 , . . . , e(k)xn ]
⊤ ∈ Rn, where e(k)xi := Q1−α (Sxi) is the width of the interval Q(Sxi) com-

puted for the ith element of x at time step k. With that, we have the following tightened constraints,

a⊤i x ≤ bi − a⊤i e(k) := ci(k), ∀i ∈ {1, . . . , nX }, (8)

and Xc(k) := {x ∈ Rn : Ax ≤ c(k)}, where c(k) := [c1(k), . . . , cnX (k)]
⊤. This procedure can

be generalized for the case where the uncertainty intervals are asymmetric about the predictions,
e.g., with methods in Romano et al. (2019), by formulating the constraints and e(k) appropriately.

This proposed procedure of computing the uncertainty intervals with Algorithm 1 and incorpo-
rating them into a dynamic constraint tightening procedure is also useful as a standalone compo-
nent. It can be applicable in related contexts such as in robust MPC (Rawlings et al. (2017)) and
in trajectory planning schemes, e.g., Romero et al. (2022). In the next section, we incorporate this
procedure into a predictive reference generator, and that allows us to construct a set of reference
state and control trajectories for a given controller.

3.3. Predictive Reference Generator
To generate reference trajectories that enable the model-based controller to satisfy constraints ro-
bustly, we first consider the following finite-horizon optimization problem at each time step k,

minimize
{ri},{vi}

∑M−1

i=0
||ri − yr,i(k)||2Q + ||vi − yu,i(k)||2R + ||rM − yr,M (k)||2P (9a)

subject to ri+1 = f̂(ri, vi; θ), i ∈ {0, . . . ,M − 1} (9b)
ri ∈ Xc(k), vi ∈ U , i ∈ {0, . . . ,M − 1} (9c)
rM = yr,M (k), (9d)
r0 = xk, (9e)

where M ∈ N+ is the reference horizon and Xc(k) ⊆ Rn, U(k) ⊆ Rnu denote the tightened state
and control input constraints respectively. The matrices Q, P ∈ Rn×n and R ∈ Rnu×nu penalize
the stage and terminal costs, and the control input cost respectively. The sequences {yr,i(k)}Mi=0 and
{yu,i(k)}M−1

i=0 denote the desired states and control inputs, which are not necessarily dynamically
feasible nor adhere to the constraints. For instance, the desired states can be step commands. The
vector xk ∈ Rn is the state measurement obtained at time step k. Upon solving (9) at each time step,
we obtain a set of optimal state and control trajectories, {r⋆i }

k+M
i=k and {v⋆i }

k+M−1
i=k . These reference

trajectories are dynamically feasible and are robustified, as they adhere to both the dynamics and
tightened constraints. The predictive reference generator, and details on how the trajectoriesR and
V are extracted, are given in Algorithm 2.

A few remarks are in order. First, the terminal equality constraints (9d) play an essential role,
as it allows the reference trajectories to be extrapolated in a smooth manner, when necessary (see
lines 13-16 of Algorithm 2). Second, the problem (9) is solved in a receding horizon manner, albeit
at a lower sampling rate, as compared to the operating frequency of the given controller. Down-
sampling allows the reference generator to consider a longer horizon, while maintaining moderate
computational costs. Third, the reference horizon M is of a different length, as compared to that
of the given controller, and should be chosen such as it is longer than the latter. This allows the
reference generator to account for the effect of the tightened constraint sets on the trajectories over
a longer horizon. We demonstrate the importance of this design choice in Section 5. We highlight
that the estimated uncertainties are not propagated along the prediction horizon and this helps to
promote feasibility when solving (9). Instead, we rely on the tracking performance of the model-
based controller to follow the reference trajectory well enough such that constraints can be satisfied.
With Proposition 2 and the dynamic constraint tightening procedure, we have the following result
for the state trajectories obtained from solving (9).
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Theorem 3 Consider a set of reference state and control trajectories obtained from the solution of
Problem (9) at time k, denoted by {r⋆i }

k+N
i=k and {v⋆i }

k+N−1
i=k . For a state trajectory {xi}k+N

i=k that
starts at an initial state xk ∈ X and is obtained by applying {v⋆i }

k+N−1
i=k , it holds that

P {xi ∈ X} ≥ 1− δ, ∀i ∈ {k, . . . , k +N}. (10)

Proof First, for each time step k, the reference trajectories, {r⋆i }
k+N
i=k and {v⋆i }

k+N−1
i=k , comply with

the model f̂ , since they satisfy the constraints (9b). Next, by applying Proposition 2, the following
holds with probability of at least 1− δ,

||xi − r⋆i || ≤ Q1−α(S) = e(k)⇔ xi ≤ r⋆i + e(k), ∀i ∈ {k + 1, . . . , k +N}, (11)
with e(k) defined in Section 3.2. Next, since the reference states satisfy the tightened constraints
(9c), we have

r⋆i ∈ Xc(k)
(8)⇐⇒ Ar⋆i ≤ b−Ae(k)⇔ A(r⋆i + e(k)) ≤ b, ∀i ∈ {k + 1, . . . , k +N}

Combining this with (11), and together with the hypothesis xk ∈ X , we get the required result,
where

Axi ≤ A(r⋆i + e(k)) ≤ b ⇔ xi ∈ X , ∀i ∈ {k, . . . , k +N},

holds with a probability of at least 1− δ.

Algorithm 2 Robustification of Model-based Control
Input: Current state x(k), model f̂(θ), constraint setsX ,U , desired trajectories {yr}, {yu}, down-sampling

count p, reference horizon M , control horizon N
Output: Output state trajectoriesR and control input trajectories V

1: Initialize: j ← 0, {rs} ← {0}, {vs} ← {0}, {rc} ← {0}, {vc} ← {0}
2: At each (control) time step k,
3: Compute uncertainty intervals Q(k) with Algorithm 1
4: if k mod p = 0 then
5: Compute tightened constraint set Xc(k) using Q(k), X and (8)
6: Solve problem (9) with x(k), f̂ , Xc(k), U and {yr, yu} to get {r⋆i }

k+M
i=k and {v⋆i }

k+M−1
i=k

7: Extract output trajectories {r⋆i }
k+N
i=k , {v⋆i }

k+N−1
i=k from {r⋆i }

k+M
i=k , {v⋆i }

k+M−1
i=k , M ≫ N

8: Store reference trajectories {rc}, {vc} ← {r⋆i }
k+M
i=k , {v⋆i }

k+M−1
i=k

9: Store time index j ← k
10: else
11: if k +N ≤ j +M then
12: Extract output trajectories {r⋆i }

k+N
i=k , {v⋆i }

k+N−1
i=k from latest ref. trajectory {rc}, {vc}

13: else
14: Remove oldest element and append with last element in latest ref. trajectory,
15: {r⋆i }

k+N
i=k ← (rs \ rs, 0) ∪ r⋆j+M , {v⋆i }

k+N−1
i=k ← (vs \ vs, 0) ∪ v⋆j+M−1

16: end if
17: end if
18: Store output trajectories {rs}, {vs} ← {r⋆i }

k+N
i=k , {v⋆i }

k+N−1
i=k

19: Apply output trajectoriesR := {r⋆i }
k+N
i=k and V := {v⋆i }

k+N−1
i=k to model-based controller π

We note that while this result is applicable when the proposed framework is incorporated into
a model-based controller, this is considered an open-loop result. The closed-loop performance is
primarily dependent on how well the controller track the reference trajectories, which falls beyond
the scope of this paper and will be explored in future work. In the following sections, we show that
the framework performs well, when integrated with contemporary model-based controllers.

4. Case Studies
We consider two practical systems to illustrate the efficacy of the proposed methodology - the cart-
pole and the quadrotor system.
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4.1. Cartpole with Learning-based MPC
The cartpole dynamics are given as θ̈ = (g sin θ − cos θ(F +mplθ̇

2 sin θ))/(l(43−
mp cos2 θ
mc+mp

)) and

ẍc = (F + mpl(θ̇
2 sin θ − θ̈ cos θ))/(mc + mp), where xc is the cart position and θ is the angle

between the pole and the vertical (Barto et al. (1983)). The masses and the pole length are denoted
by mc, mp and 2l. Gravity is denoted by g and F denotes an external force. By defining the state
x := [xc ẋc θ θ̇]⊤ and the control input u := F , the discretized dynamics form the nominal
dynamics. The cart has a true mass of 1.5kg, while the mass within the nominal dynamics is set
at 1kg. We consider additive Gaussian process noise w with zero mean and standard deviations of
{0.01m, 0.1m/s, 2o, 10o/s} added to the dynamics. The cart is to track a sequence of step commands.
The state constraints are X := Axx ≤ bx , where Ax :=

[
0 A1

0 A2

]
, A1 := [ 1 0

−1 0 ] and A2 := [ 0 1
0 −1 ],

and bx := [1.7 1.7 4.2 3.8]⊤. For Alg. 1, the window size m := 150 and runs at the same rate as
the given model-based controller of 10Hz. The miscoverage rate α := 0.01. The computation of
the uncertainty intervals is activated after t = 15s, since m = 150. For the constraint tightening
procedure, we increase the tightening by a factor of two to enhance the robustness of reference
trajectories. The horizon in the reference generator is M := 100. The cost matrices in (9a) are set
as Q := I4, R := 0.5 and P := 10 I4. The problem (9) is formulated in CasADi (Andersson et al.
(2019)) and solved using IPOPT (Wächter and Biegler (2006)). For the model-based controller, we
deploy learning-based MPC from our previous work (Chee et al. (2022)). The parameters for this
scheme are given as Q := {1, 0.01, 1, 0.01}, R := 0.5, P := {1, 10, 10, 10} and N := 25 and
we highlight that these are not known to the proposed framework. The learned model f̂ uses the
equations of motion as the nominal dynamics and a neural ODE to account for residual dynamics.
4.2. Quadrotor with Nonlinear MPC
Next, we consider a high-dimensional quadrotor, whose dynamics are written as r̈ = g + Rη/m
and ω̇ = J−1 (τ − ω × Jω), where r, ω ∈ R3 are the position and angular rates of the quadro-
tor, η and τ ∈ R3 are the motor thrust and moments (Mellinger and Kumar (2011)). We denote
gravity and the matrix that maps η to its acceleration by g and R respectively. The mass and mo-
ments of inertia are given as m and J . The state and controls are x := [r⊤ ṙ⊤ q⊤ ω⊤]⊤ and
u := [η τ⊤]⊤.The quadrotor is tasked to track a 3D path and move towards an end position, while
avoiding an cylindrical obstacle, as depicted in Fig. 4. The cross section of the obstacle has an origin
at (xo, yo, zo) = (5, 0, 0)m with radius ro = 1m and extends to (−4, 4)m in the z axis. The tight-
ened state constraint is given by

√
(x− xo)2 + (y − yo)2 ≥ ro + Q1−α(Sr), where Q1−α(Sr) is

computed using Algorithm 1, with the scores sk computed using the 1-norm of the position r. Addi-
tive Gaussian process noise w with zero mean and standard deviations of {0.5m, 0.5m/s, 3o, 20o/s}
are included in the dynamics. The window size m is set to be 150 and α := 0.02. The reference
generator has the parameters M := 250, Q := blkdiag{I3, 5I3, 0.1I4, 0.5I3}, R := 0.0001I4 and
P := blkdiag{100I3, 5I3, 0.1I4, 0.5I3}. We do not consider external disturbances and deploy a non-
linear MPC control scheme as the model-based controller. The parameters Q, P and R are the same
as those of the reference generator, while N := 50. The model-based controller and problem (9)
are formulated in CasADi and IPOPT. The setup for both examples are based on implementations
from our previous work (Chee et al. (2023b,c)).
5. Results and Discussion
For the cartpole system described in Section 4.1, we conduct 30 runs with different process noise
profiles. First, we examine the intervals computed by Algorithm 1–they are plotted in Fig. 2. The
narrow widths of the intervals observed in Fig. 2 highlight the benefit of having an accurate learned
model f̂(x, u, θ), as compared to a possibly less accurate non-learning model. Specifically, using an
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accurate learned model accounts for most of the mismatch between the true system and the nominal
model. This allows the remaining discrepancies to be potentially smaller, resulting in relatively
small uncertainty intervals. Consequently, the dynamic constraint tightening procedure can produce
useful tightened constraints for downstream tasks. In our formulation, there is noise in the system
and the model may not be perfect. Hence, the case in which the nonconformity scores are zero is
not applicable.

We compare our approach against a nominal case where only the given model-based controller
is used and constraints are not included. The time histories of the states across 30 runs are plotted
in Fig. 3. Due to the presence of modeling errors and noise, there are instances where the states
violate the constraints for the nominal case. On the other hand, the incorporation of the proposed
robustification allows the state trajectories to stay within the constraints.

Next, we consider two test cases where either the nominal or tightened constraints are directly
included in the given controller. This provides a straightforward way of satisfying the constraints,
but may encounter infeasibility during the runs. It is observed that 25 and 2 out of the 30 runs
did not encounter feasibility issues for the cases with the nominal and tightened constraint sets
respectively (83.3% and 6.7% success rate). In contrast, our proposed approach achieved of 100%
success rate and did not encounter any feasibility issues in any of the runs. Apart from illustrating
the brittleness of this direct approach, these test cases lead to an interesting perspective and an
important feature of our framework. As the predictive reference generator in Algorithm 2 considers
a longer horizon as compared to that of the underlying model-based controller, it is easier to obtain
a feasible trajectory that satisfies the constraints robustly. This however comes at the expense of
a higher computational cost, but that can be traded off with a lower sampling rate, as described
in Algorithm 2. Our framework can thus be interpreted as a dual-timescale architecture with the
reference generator working in tandem with the model-based controller such that the system tracks
a sequence of desired states and control inputs, while ensuring robust constraint satisfaction.

For the quadrotor system, the paths under a nominal MPC scheme, with and without tightening,
as well as with the proposed robustification, are depicted in Fig. 4. With the proposed robustifi-
cation, the path taken is more conservative. The tightened constraints are satisfied with a larger
margin, as compared to the case where the tightened constraints are included in nominal MPC. In
the case where the constraints are not tightened, there are instances where the path violates the
constraints, as shown in the bottom right subplot. The uncertainty intervals computed are relatively
small in magnitude, as compared to the magnitudes of the states. One possible reason could be
that the nonconformity scores are computed using one-step model predictions, and that the state
measurements are obtained at a sufficiently high sampling rate. These allow the nonconformity
scores to be closer to being exchangeable, as compared to the case where these scores are computed
using multi-step model predictions, or when the measurements are obtained less frequently. This
interesting observation remains to be studied in future work.
6. Conclusion
We present a novel robustification scheme that can be incorporated into a wide range of model-
based controllers to enhance their ability to satisfy constraints robustly. The framework quantifies
the uncertainties that arise from modeling errors, process noise and external disturbance in a non-
conservative manner, by utilizing WCP. Through dynamic constraint tightening and the predictive
reference generator, a set of robustified trajectories are computed and serve as inputs to the model-
based controller. We demonstrate through the case studies that the proposed framework allows the
system to adhere to the constraints with robust margins, without inducing infeasibility issues.
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Figure 2: Left: Time histories of the cartpole states in a single run. The grey regions are the uncertainty
intervals computed by Alg. 1. The red lines in the first subplot are the commands given to the cart to track.
The dashed magenta lines depict the constraints. Right: The time-varying widths of the uncertainty intervals
Q1−α(S) for each state that are computed during deployment, for the 30 runs.
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Figure 3: Time histories of the cartpole states for the nominal and robustified schemes across 30 runs. The
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denote the spread of the trajectories. The transparency of these regions has been adjusted for visibility. The
dark blue and orange lines denote the mean trajectories, taken across 30 runs. The zoomed-in plots depict
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