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Abstract
Many of the popular reachability analysis methods rely on the existence of system models. When
system dynamics are uncertain or unknown, data-driven techniques must be utilized instead. In this
paper, we propose an approach to data-driven reachability that provides a probabilistic guarantee
of correctness for these systems through nonconvex scenario optimization. We pose the problem of
finding reachable sets directly from data as a chance-constrained optimization problem, and present
two algorithms for estimating nonconvex reachable sets: (1) through the union of partition cells
and (2) through the sum of radial basis functions. Additionally, we investigate numerical examples
to demonstrate the capability and applicability of the introduced methods to provide nonconvex
reachable set approximations.
Keywords: Reachability analysis, scenario optimization, data-driven methods

1. Introduction
To guarantee the safety of dynamical systems, reachability analysis is often used to determine the
set of states that a system could possibly visit. However, in practice, computing exact reachable sets
is an undecidable problem. For this reason, approximation methods are often used to reason about
these systems and present guarantees. For example, over-approximated reachable sets guarantee
safety when they do not overlap with unsafe regions of the state space.

There are many approaches that have been developed for this type of reachability analysis for
systems with known dynamics. The most common of these include utilization of Hamilton-Jacobi
differential equations (Mitchell et al., 2005; Bansal et al., 2017; Chen and Tomlin, 2018) or barrier
certificates (Prajna, 2003; Prajna and Jadbabaie, 2004). While these techniques handle complex
nonlinear dynamics well, their computational cost increases sharply with state dimensions. Set
propagation techniques (Althoff, 2010; Althoff et al., 2021) iteratively compute a sequence of sets
and achieve better scalability with state dimension. The most commonly used families of sets are
ellipsoids (Kurzhanski and Varaiya, 2000; Botchkarev and Tripakis, 2000), hyperrectangles (Meyer
et al., 2021), zonotopes (Girard, 2005), polytopes (Althoff et al., 2010), and support functions (Al-
thoff and Frehse, 2016).

However, when the exact dynamics of a system are not known or only partially known, none
of the techniques above can be used. Instead, we must estimate reachable sets in a data-driven
manner. Several methods attempt to provide probabilistic guarantees of correctness for reachable
sets directly from data. These methods include results from simulation and trajectory sensitivity
analysis (Donzé and Maler, 2007; Girard and Pappas, 2006; Fan et al., 2017) or Gaussian processes
(Devonport and Arcak, 2020a) and utilize simulation-based data to learn reachable sets. Other
simulation-based and data-driven reachability methods include (Duggirala et al., 2013; Maidens
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and Arcak, 2015; Arcak and Maidens, 2018; Lew and Pavone, 2020; Alanwar et al., 2021; Sun and
Mitra, 2022; Qi et al., 2018).

Another data-driven approach to estimating reachable sets utilizes results from scenario opti-
mization (Yang et al., 2017; Sartipizadeh et al., 2019; Devonport and Arcak, 2020b). This approach
reduces the assumptions imposed on a system and can be applied to any system which admits sim-
ulation. Scenario optimization is an approach to solving chance-constrained optimization problems
by solving a non-probabilistic relaxation of the original problem (Dembo, 1991). Scenario opti-
mization has been used in solving robust control problems (Marseglia et al., 2014) and specifically
problems related to reachability (Hewing and Zeilinger, 2020; Xue et al., 2020).

In this paper, we generalize the scenario-based reachability method of (Devonport and Arcak,
2020b). The scenario formalism therein is restricted to the convex case, which features critically
in the construction of the probabilistic safety guarantees. However, this formalism places certain
formal restrictions, such as convex parameterization, that preclude many popular classes of estima-
tors. We generalize to a nonconvex formalism that allows for a broader class of sets. In particular,
both the parametric representation of the minimal reachable set estimator and the reachable set itself
can be nonconvex. Additionally, the existing work of (Devonport and Arcak, 2020b) yields a-priori
complexity bounds for a desired probability of a problem. Our presented approach does not require
a-priori bounds, as we calculate the probability of the original problem after solving the relaxed opti-
mization problem. This allows us to solve a problem given any number of samples and significantly
decreases the computational cost in finding reachable sets through scenario optimization.

We present two approaches in Section 3, both of which allow nonconvex reachable set approx-
imations. In the first approach we examine the union of partition cells, and in the second approach
we examine the sum of radial basis functions, and use sublevel sets as reachable set estimates.

2. Nonconvex Scenario Optimization

Take ∆ to be a probability space with a σ-algebra and a probability measure P, and let a scenario, δ,
be a random outcome from this probability space. Since probability P is not known, it is not possible
to directly compute the probability that an unseen scenario will violate a given set of constraints.
Instead we use these scenarios, δ(i), to construct a scenario optimization problem. Nonconvex
scenario optimization (Campi et al., 2018; Garatti and Campi, 2024) is a technique to a-posteriori
evaluate the robustness level of a scenario solution. Consider any constrained optimization problem
of the form

minimize
x∈X

f(x)

subject to x ∈
⋂

i=1,...,N

Xδ(i)
(1)

where x ∈ X ⊆ Rd is the decision variable, Xδ(i) are constraints, and δ(1), ...δ(N) are N indepen-
dently and identically-distributed (i.i.d) scenarios. There are no other restrictions on f and Xδ.

In solving (1), we aim to find a solution that is robust against constraint violation. The violation
probability of a given x ∈ X is defined as V (x) = P{δ ∈ ∆ : x /∈ Xδ}. Let x∗N be the solution
to (1) and define the violation of (1) to be V (x∗N ). This is the probability that a new, randomly
selected scenario, δ, will violate the constraints of (1). If V (x∗N ) ≤ ϵ, then (1) is robust against
constraint violation at level ϵ. If the value of ϵ we achieve in our a-posteriori evaluation is not at
the intended level, we iteratively increase N and recalculate ϵ. Therefore, this approach takes on a
wait-and-judge perspective (Campi and Garatti, 2018).
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We determine ϵ a-posteriori as a function of support scenarios. A scenario, δ, is a support sce-
nario if its removal changes the solution of (1). We evaluate the number of support scenarios, s∗N , by
re-solving (1) upon individual removal of each scenario. If removing an individual scenario changes
the solution to (1), then it is a support scenario. Through this process, we obtain an irreducible set
of support scenarios with cardinality s∗N . To calculate an estimate of ϵ based on s∗N , ϵ(s∗N ), we first
choose a confidence parameter, β, then calculate ϵ(s∗N ) through Theorem 1.

Theorem 1 ((Campi et al., 2018), Theorem 1) Given β ∈ (0, 1), for any s∗N ∈ {0, 1, ..., N},
where N is the number of scenario samples, let

ϵ(s∗N ) :=

1 if s∗N = N ,

1− N−s∗N

√
β

N( N
s∗
N
)

otherwise. (2)

Then, the following probability bound holds:

P{V (x∗N ) > ϵ(s∗N )} ≤ β. (3)

If we apply this general scenario theory to convex problems in which we restrict Xδ from (1) to be
a family of convex constraints, we can bound the number of support scenarios. We know s∗N < d
where d is the number of optimization variables. It is known that a convex optimization problem
with d optimization variables will never have more than d support scenarios. Therefore, we refine
the definition of ϵ in Theorem 1 as follows:

ϵ(s∗N ) :=

1 if s∗N ≥ d,

1− N−s∗N

√
β

d( N
s∗
N
)

otherwise. (4)

3. Nonconvex Scenario-Based Reachability

We define a forward reachable set as R = {Φ(t1; t0, x0, d) : x0 ∈ X0, d ∈ D} where X0 ⊆ Rnx is
the set of initial states, D is the set of disturbance signals d : [t0, t1] → Rnd , and Φ : X0×D → Rnx

is the state transition function. This is the set of all states to which the system can transition to at
time t1 from state X0 at time t0 subject to disturbances in D. Since we cannot compute exact
reachable sets, we aim to compute an approximation, R, that is close to the true reachable set in a
probabilistic sense.

Let X0 ∈ X0 and D ∈ D be random variables, define R = Φ(t1; t0, X0, D), and take
accuracy parameter ϵ ∈ (0, 1) and confidence parameter β ∈ (0, 1). Given a set of samples

δ(i) = Φ(t1; t0, x0i, di), i = 1, . . . , N where x01, . . . , x0N
i.i.d∼ X0, d1, . . . , dN

i.i.d∼ D. We will
explore reachable set estimates of the form

R(θ) = {x ∈ Rnx : g(x, θ) ≤ 0} (5)

where g : Rnx × Rnθ → R. In (5), θ represents a parameterization of the class of admissible
reachable set estimators: to fix a value of θ is to choose an estimator.
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We next fix a functional Vol : Rnθ → R that represents the volume of R(θ). This motivates the
following scenario program:

minimize
θ

Vol(θ)

subject to θ ∈
⋂

i=1,...,N

{θi : g(δ(i), θi) ≤ 0} (6)

The violation probability, V (R(θ)), of (6) may be interpreted as the probability that an unseen
scenario will violate the bounds of the reachable set estimate. Our goal is to select θ such that the
probability of V (R(θ)) > ϵ is less than or equal to β while minimizing Vol(θ).

The proposed problem (6) can be equivalently expressed in the functional form

minimize
θ

Vol(θ)

subject to g(δ(i), θ) ≤ 0, i = 1, . . . , N

θ ∈ Rnθ .

(7)

The solution to (7) is the minimum-volume set that contains sample points δ(1), . . . , δ(N), and guar-
antees P{V (R(θ)) > ϵ} ≤ β. The algorithms we present in this section solve (7) given arbitrary
values of ϵ, β ∈ (0, 1) and N samples.

3.1. Tiling with Basis Functions

We first present a method to construct a sublevel set function g(x, θ) that is convex in θ but noncon-
vex in x, as was done in (Devonport, 2023). While convex scenario optimization methods can be
used to analyze this approach, they require large sample sizes and are not computationally efficient.
We show that by utilizing the nonconvex scenario optimization tools introduced in Section 2, we
can significantly improve upon these limitations. To construct g(x, θ), select a finite set of basis
functions f1(x), ..., fm(x) : RD → R and take g to be

g(x, θ) =
m∑
i=1

θifi(x) (8)

In this section, we will use this approach to construct a tiling of the state space and estimate the
reachable set of a given problem. To create this tiling, assume that the reachable set, R, is contained
in a subset A ⊆ RD. We then partition A into m cells, creating a collection of sets A1, ..., Am such
that ∪m

i=1Ai = A and Ai ∩ Aj = ∅ ∀i. This approach can produce arbitrarily fine estimates of the
reachable set, depending on how refined the partition is. The accuracy of the partition increases as
m increases. Further, we define 1Ai to be the zero-one indicator function for the set Ai, so that
1Ai(x) = 1 if x ∈ Ai and 1Ai(x) = 0 otherwise. Therefore, the reachable set estimate is a union
of the partitioned cells. We write this as a constrained optimization problem:

minimize
θ

−
m∑
i=1

θi

subject to
m∑
i=1

θi1Ai(δ
(j)) ≤ 0, j = 1, . . . , N

θ ∈ [0, 1]m,

(9)

4



NONCONVEX SCENARIO REACHABILITY

To satisfy the scenario constraints, we set θi = 0 ∀i such that scenario δ(j) ∈ Ai for at least one
j ∈ {1, ..., N}. To minimize the objective while respecting θ ∈ [0, 1]m we set θi = 1 for all other
Ai. Therefore, R(θ) is the solution to (9), the union of cells Ai that contain one or more scenarios
δ(j). This is the minimum volume union of cells that contains all scenarios, δ(1), . . . , δ(N).

We define a support scenario to be the first scenario, δ(j), in any cell Ai. While this set of
support scenarios is not unique, it is irreducible. These scenarios represent the smallest set of
reachable states that is possible without changing the solution to (9). This satisfies the conditions
needed to obtain the number of support scenarios, s∗N . We calculate ϵ a-posteriori using (4) with s∗N
and the number of optimization variables, d (the number of cells in our partition). If the obtained ϵ
does not satisfy the necessary bounds, we iteratively increase the number of samples, N , and repeat
the process. This reachability algorithm based on partition A1, ..., Am is described in Algorithm 1.

Algorithm 1 : Scenario reachability through tiling

1: Input: Black-box transition function model Φ(t1; t0, x0, d); Random variables X0 and D; Par-
tition dimension m; Batch size B; Confidence parameter β ∈ (0, 1).

2: Output: θ1, ..., θm corresponding to union of cells Aj such that Aj ∈ R(θ) iff θ = 0; Robust-
ness against constraint violation ϵ.

3: Initialize θj = 1
4: while ϵ is large do
5: N = (B· number of iterations)
6: for all i ∈ {1, ..., N} do
7: Take samples x0i ∼ X0, di ∼ D
8: Evaluate δ(i) = ϕ(t1; t0, x0i, di)
9: If δ(i) ∈ Ai, then set θi = 0

10: calculate ϵ using Equation 4 where s∗N = |R(θ)| and d = m.
11: return θ1, . . . , θm; ϵ

3.2. Radial Basis Functions (RBFs)

We now turn to a method that allows nonconvexity in both parameters, θ and x. Unlike the method
proposed in Section 3.1, this method is not amenable to existing approaches, such as those presented
in (Devonport and Arcak, 2020b; Devonport, 2023). In this approach, we construct g(x, θ) from a
finite set of RBFs. We define a RBF, f(x, µ, σ), to be a Gaussian function of x, µ, σ, such that

f(x, µ, σ) = e
− 1

2

(x−µi)
2

σ2
i

(10)

where µ is the center of a RBF and σ is the width of a RBF. We take g to be

g(x, θ) =

m∑
i=1

f(x, µi, σi)− γ (11)

Therefore, θ = (µ1, . . . , µm;σ1, . . . , σm; γ).
Figure 1 demonstrates that RBFs are particularly well-suited for constructing reachable sets due

to the tail interactions that allow multiple RBFs to connect into shapes more complicated than unions
of ellipsoids. This approach allows the number of RBFs, m, to be arbitrarily set. If m is larger than
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Figure 1: (Left) Radial basis function generated by a set of data with the plane defined by the
threshold value, γ, (Right) the contour line (black), created by the intersection of the threshold
plane with the RBF, and the set of data (dark blue).

needed, Algorithm 2 will produce disconnected sets. However, the unnecessary RBFs will only
contain their initial center. This approach further allows us to produce disconnected reachable sets
for systems that exhibit these dynamics. We write this as a constrained optimization problem:

minimize
µ,σ

m∑
i=1

σ2
i

subject to
m∑
i=1

e
− 1

2

(δ(j)−µi)
2

σ2
i − γ ≥ 0, j = 1, . . . , N,

σ ∈ [0,∞)m

(12)

We define a support scenario as any scenario, δ(j), that changes the solution to Equation (12)
when removed from the set of all scenarios, δ(1), . . . , δ(N). In other words, the removal of δ(j)

results in different optimal widths, σ, of the calculated RBFs. It is worth noting that the process
of finding these support scenarios can be parallelized. By definition, this satisfies the conditions
needed to obtain the number of support scenarios, s∗N . Due to the nonconvex nature of this problem,
we calculate ϵ a-posteriori using (2) with s∗N . If the obtained value of ϵ does not satisfy the necessary
bounds, we iteratively increase the number of samples, N , and repeat the process. This description
is summarized in Algorithm 2.

4. Examples

This section demonstrates the ability of the presented data-driven approaches to accurately estimate
the forward reachable sets of two numerical examples posed in (Devonport et al., 2021). We evaluate
Algorithms 1 and 2, to expose extensions of scenario optimization, but we do not attempt to compare
these methods. All computations were done on a Apple M2 Pro, 12-core CPU. One Python thread
was run to compute all tiling problems, while ten Python threads were used in computing the radial
basis functions.

To verify that the computed reachable sets in the following examples satisfy the guarantee that
they are ϵ-accurate, we compute an a-posteriori empirical estimate of the reachable set using a
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Algorithm 2 : Scenario reachability with radial basis functions

1: Input: Black-box transition function model ϕ(t1; t0, x0, d); Random variables X0 and D;
Threshold Γ; Number of RBFs m; Batch size B; Confidence parameter β ∈ (0, 1).

2: Output: Σ = {σ1, ..., σm} corresponding to optimal widths of RBFs; µi, . . . , µm correspond-
ing to centers of RBFs; Robustness against constraint violation ϵ.

3: Initialize number of support scenarios, S = 0.
4: while ϵ is large do
5: N = (B· number of iterations)
6: Step 1:
7: for all i ∈ {1, ..., N} do
8: Take samples x0i ∼ X0, di ∼ D
9: Evaluate δ(i) = ϕ(t1; t0, x0i, di)

10: Take γ = Γ; µ1, . . . , µm = k-means(m clusters); and σ1, . . . , σm to be arbitrary

11: Evaluate c = e
− 1

2

(δ(i)−µi)
2

σ2
i − γ

12: If c ≥ 0, then set σi = 0. Else set σi = ∞.
13: Let Σ = {σ1, . . . , σm} be the set of optimal widths of the calculated RBFs from Step 1.
14: Step 2:
15: for all i ∈ {1, ..., N} do
16: Remove sample δ(i) from δ(1), . . . , δ(N) taken from Step 1
17: for all j ∈ {1, ..., N} \ i do

18: Evaluate c = e
− 1

2

(δ(j)−µj)
2

σ2
j − γ

19: If c ≥ 0, then set σj = 0. Else set σj = ∞.
20: Let Σi = {σ1, . . . , σm} be the set of optimal widths of the RBFs without scenario δ(i).
21: If Σi = Σ, then S = S + 1.
22: calculate ϵ using Equation 2 where s∗N = S.
23: return Σ; µi, . . . , µm; ϵ.

one-sided Chernoff bound (Tempo et al., 2012). This ensures that the a-posteriori estimate of the
reachable set given an additional 46, 052 samples exceeds the true measure by no more than .01
with confidence 0.9999. The results are shown in Tables 1 and 2 and validate that the reachable sets
are indeed ϵ-accurate.

4.1. Duffing Oscillator

The first example is a reachable set estimation problem for the nonlinear, time-varying system with
dynamics: ẍ = −αy + x− x3 + γ cos(ωt), with states x, y ∈ R and parameters α, γ, ω ∈ R. This
system is known as the Duffing oscillator, a nonlinear oscillator which exhibits chaotic behavior for
certain values of α, γ and ω, for instance α = 0.05, γ = 0.4, ω = 1.3. The set of initial states is
the interval such that x(0) ∈ [0.95, 1.05], y(0) ∈ [−0.05, 0.05], and we take X0 to be the uniform
random variable over this interval. The time range is [t0, t1] = [0, 100].

4.1.1. TILING WITH BASIS FUNCTIONS

We take A to be the hyperrectangle A = [−5, 5] x [−5, 5] and partition A into a 20x20 grid. We take
N = 1000 samples and β = 10−9. The output of Algorithm 1 for this problem, which took 1.70

7



DIETRICH DEVONPORT ARCAK

Figure 2: Duffing Oscillator problem in R2: (Left) Enlarged view of reachable set (light blue) using
a grid-based partition and N=1000 samples (dark blue). (Right) Reachable set (purple) and support
scenarios (orange) using two radial basis functions and N=1000 samples (dark blue).

seconds to compute, is shown on the left in Figure 2. We calculate the number of support scenarios,
s∗N = 67, and ϵ = 0.2509 a-posteriori to get the probability that our tiling contains at least 74.91%
of the reachable set distribution, with a ”one in a billion” chance of failure. We performed 100
trials of the same experiment and the number of support scenarios was always between 63 and 72.
On average, the probabilistic volume outside the reachable set did not exceed 25.09% under the
convexity refined nonconvex approach. Additionally, we utilize the wait-and-judge perspective to
investigate the effect of a larger N on ϵ. The results are shown in Table 1.

4.1.2. RADIAL BASIS FUNCTIONS

We take m = 2, such that we will calculate two radial basis functions. We set the initial centers of
the RBFs to be close to optimal using a k-means clustering algorithm and allow the widths of our
RBF to be chosen arbitrarily. We take γ = 0.25 to be the threshold of our RBF, N = 1000 samples,
and β = 10−9. The output of Algorithm 2 for this problem, which took approximately 7 minutes to
compute, is shown on the right in Figure 2. We calculate the number of support scenarios, s∗N = 19,
and ϵ = 0.1182 a-posteriori to get the probability that our radial basis functions contain at least
88.82% of the reachable set distribution, with a ”one in a billion” chance of failure. We performed
100 trials of the same experiment and the number of support scenarios was always between 5 and
24. On average, the probabilistic volume outside the reachable set did not exceed 10.34% under
the nonconvex approach. Additionally, we utilize the wait-and-judge perspective to investigate the
effect of a larger N on ϵ. The results are shown in Table 1.

4.2. Quadrotor Model

The next example is a reachable set estimation problem for a nonlinear model of a quadrotor used
as an example in (Mitchell et al., 2019) and (Bouffard, 2012). The dynamics for this system are

ẍ = u1Ksin(θ), ḧ = −g + u1Kcos(θ), θ̈ = −d0θ − d1θ̇ + n0u2 (13)

where x and h denote the quadrotor’s horizontal position and altitude in meters, respectively, and
θ denotes its angular displacement. The system has 6 states, which we take to be x, h, θ, and
their first derivatives. The two system inputs u1 and u2 represent the motor thrust and the desired
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Sample Size Run Time of (1)/(2) ϵ Estimate

Duffing Oscillator: Tiling N = 1000 1.70s 0.251 .999966
N = 3000 2.49s 0.117
N = 5000 3.48s 0.078

Duffing Oscillator: RBF N = 1000 7 min 0.118 .999971
N = 2000 11 min 0.033
N = 3000 22 min 0.035

Table 1: Computation times and a-posterior calculation of ϵ for reachable sets of N samples of
Duffing Oscillator, and empirical estimates of the reachable sets (in Figure 2) using a one-sided
Chernoff bound.

angle, respectively. The parameter values used (following (Bouffard, 2012)) are g = 9.81,K =
0.89/1.4, d0 = 70, d1 = 17, n0 = 55. The set of initial states is the interval such that

x(0) ∈ [−1.7, 1.7], h(0) ∈ [0.3, 2.0], θ(0) ∈ [−π/12, π/12],

ẋ(0) ∈ [−0.8, 0.8], ḣ(0) ∈ [−1.0, 1.0], θ̇(0) ∈ [−π/2, π/2],
(14)

the set of inputs is the set of constant functions u1(t) = u1, u2(t) = u2 ∀t ∈ [t0, t1], whose values
lie in the interval u1 ∈ [−1.5 + g/K, 1.5 + g/K], u2 ∈ [−π/4, π/4], and we take X0 and D to be
the uniform random variables defined over these intervals. The time range is [t0, t1] = [0, 5].

Figure 3: Reachable set estimates for the horizontal positon and altitude of the planar quadrotor
model: (Left) Enlarged view of reachable set (light blue) using a grid-based partition and N=1000
samples (dark blue). (Right) Reachable set (purple) and support scenarios (orange) using three
radial basis functions and N=1000 samples (dark blue).

4.2.1. TILING WITH BASIS FUNCTIONS

We take A to be the hyperrectangle A = [−100, 100]6 and partition A to be the grid with 10 sides
along each dimension. We take N = 1000 samples and β = 10−9. The output of Algorithm 1 for
this problem, which took 6.28 seconds to compute, is shown on the left in Figure 3. We calculate
the number of support scenarios, s∗N = 19, and ϵ = 0.1125 a-posteriori to get the probability that
our tiling contains at least 88.75% of the reachable set distribution, with a ”one in a billion” chance
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of failure. We performed 100 trials of the same experiment and the number of support scenarios
remained between 18 and 22. On average, the probabilistic volume outside the reachable set did not
exceed 11.6% under the convexity refined nonconvex approach. Additionally, we investigate the
effect of a larger N on ϵ. The results are shown in Table 2.

Sample Size Run Time of (1)/(2) ϵ Estimate

Quadrotor: Tiling N = 1000 6.28 s 0.113 .999997
N = 3000 8.07 s 0.050
N = 5000 8.37 s 0.032

Quadrotor: RBF N = 1000 30 min 0.125 .999923
N = 2000 3.3 hr 0.065
N = 3000 5.5 hr 0.051

Table 2: Computation times and a-posterior calculation of ϵ for reachable sets of N samples of
Quadrotor, and empirical estimates of the reachable sets (in Figure 3) using a one-sided Chernoff
bound.

4.2.2. RADIAL BASIS FUNCTIONS

We take m = 3, such that we will calculate three radial basis functions. We set the initial centers of
the RBFs to be close to optimal using a k-means clustering algorithm and allow the widths of our
RBF to be chosen arbitrarily. We take γ = 0.25 to be the threshold of our RBF, N = 1000 samples,
and β = 10−9. The output of Algorithm 2 for this problem, which took approximately 30 minutes to
compute, is shown on the right in Figure 3. We calculate the number of support scenarios, s∗N = 22,
and ϵ = 0.1253 a-posteriori to get the probability that our radial basis functions contain at least
87.47% of the reachable set distribution, with a ”one in a billion” chance of failure. We performed
100 trials of the same experiment and the number of support scenarios was always between 14 and
31. On average, the probabilistic volume outside the reachable set did not exceed 11.8% under
the nonconvex approach. Additionally, we utilize the wait-and-judge perspective to investigate the
effect of a larger N on ϵ. The results are shown in Table 2.

5. Conclusion

We presented a method of nonconvex scenario optimization for reachability analysis. This approach
does not require a-priori sample complexity bounds and significantly decreases the computational
cost in finding reachable sets. We first provided a partition-based instance of scenario reachability
that is computationally efficient and scales well to higher state dimensions. We then provided an
estimation of reachable sets using radial basis functions.
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