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Abstract
With neural networks being used to control safety-critical systems, they increasingly have to be both
accurate (in the sense of matching inputs to outputs) and robust. However, these two properties
are often at odds with each other and a trade-off has to be navigated. To address this issue, this
paper proposes a method to generate an approximation of a neural network which is certifiably
more robust. Crucially, the method is fully convex and posed as a semi-definite programme. An
application to robustifying model predictive control is used to demonstrate the results. The aim of
this work is to introduce a method to navigate the neural network robustness/accuracy trade-off.
Keywords: Neural network robustness, convex synthesis, accuracy vs. robustness trade-off.

1. Introduction

Neural networks have emerged as powerful and flexible nonlinear function approximators for map-
ping input/output data. For control applications, the main strengths of neural networks are, arguably,
their ability to learn complex feedback policies for control problems which are challenging to formu-
late mathematically. Examples include problems where only data is available (and no model exists)
or when the costs/models/constraints may be unknown, as encountered, for instance, in image-based
control of autonomous robotics. However, neural networks also have weaknesses. They suffer from
a lack of robustness and explainability; two issues which have, so far, prevented their widespread
adoption into safety-critical systems. As a consequence, whilst neural networks have thrived as
control systems for technologies where failure is not catastrophic (such as robotic demonstrations
in the lab), there remains scepticism about their value for systems where crashes can be deadly (such
as with aircraft autopilot software). For these safety-critical applications, traditional control theory
still dominates.

The growing appreciation of the need to embed robustness more deeply into neural network
design mirrors the concerns raised by the control community during the 1980s in light of high
profile incidents, such as the Gripen JAS39 prototype incident detailed in Stein (2003). In the wake
of these incidents, robust control theory emerged as a new design paradigm that placed as much
emphasis on a control system’s robustness as its performance (Green and Limebeer (2012)), with
the control synthesis results building upon earlier robustness analysis results such as the Zames-Falb
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multipliers of Zames and Falb (1968). Arguably, a similar transition has yet to take place with neural
networks, even after several well-publicised incidents, such as deadly autonomous vehicle crashes.
The question then arises as to whether the strengths of neural networks (namely, as powerful, yet
simple to train, function approximattors) can be balanced against their weaknesses (e.g. their lack
of tight robustness guarantees) in a rigorous and quantifiable way.

Contribution: Addressing this balance between neural network robustness and accuracy is the
focus of this paper. Specifically, a method to address the following neural network design problem
is developed:

“Given a neural network, generate another one which is quantifiably more robust yet
has a similar input/output mapping as the original neural network.”

The solution to this problem presented here in Theorem 7 is referred to as a neural network synthesis
method, as it is motivated by the linear matrix inequalities (LMIs) widely used in robust control
synthesis Dullerud and Paganini (2013). Crucially, the proposed method is fully convexified in the
sense that the weights and biases of the robustified network are obtained from the solutions of a
semi-definite programme (SDP) that trade-off robustness against accuracy. This convexification is
achieved by: i) using the classical slope restrictions on the activation functions and, more crucially,
ii) using the 1-norm for the robustness bounds instead of the 2-norm commonly used with Lipschitz
bound-type results. We demonstrate the validity of our results in an application towards robustifying
model predictive control (MPC) policy.

Literature: The results of Pauli et al. (2021b) and Wang and Manchester (2023) are perhaps
the most relevant to this paper. Focussing on Pauli et al. (2021b), a method to embed robustness
(imposed by LMI constraints) into the neural network training was developed. This was achieved by
using the ADMM algorithm to switch between training on the data and imposing Lipschitz bounds.
A similar approach was developed in Wang and Manchester (2023), with points of differences being
the focus on equilibrium networks and the direct parameterisation of the weights to satisfy Lipschitz
bounds. One issue with the approach of Pauli et al. (2021b) is that, because robustness is measured
using the 2-norm (as in Lipschitz bounds), then a bilinearity appears in the training process, as both
the neural network weights/biases and the multipliers of the robustness LMIs are decision variables
for the solver. This bilinearity is a source of non-convexity for the optimisation problem, and has
appeared in earlier synthesis results such as Drummond et al. (2022b) on generating reduced-order
approximations of large neural networks. By contrast, here we propose formulating the robustness
bounds in terms of the 1-norm instead of the 2-norm. Moreover, it is proposed to approximate
a given neural network which is assumed to give a good model of the data. Theorem 7 shows
that with these two tweaks to the problem formulation, the trade-off between network robustness
and accuracy can be fully convexified and combined within a single SDP- instead of the iterative
projection type approach of ADMM.

There are deep connections between control theory and neural network robustness analysis,
most notably through the application of results from absolute stability theory. Early results in this
area include Chu and Glover (1999a) and Chu and Glover (1999b) where the application to neural
networks led to the development of a new set of static multipliers for nonlinearities with repeated
terms. Similar results were obtained by Barabanov and Prokhorov (2002) for recurrent neural net-
works. More recent efforts in this direction include the works of Wang et al. (2022), Fazlyab et al.
(2019) and Pauli et al. (2021a) where the connection to LMIs and SDP solvers has been made
more explicit. One of the major issues when using these SDP formulations is the lack of algorithm
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scalability to the large networks often seen in practice. Efforts to address this scalability issue are
now under development, for example with Wang et al. (2024) and Newton and Papachristodoulou
(2023) where sparsity of the neural network was exploited. With the connections between neural
networks maturing, there is now a push towards moving away from solving analysis type problems
of neural networks and going towards controller synthesis, as exemplified by papers such as Furieri
et al. (2022), Junnarkar et al. (2022) and Newton and Papachristodoulou (2022).

Notation

Real matrices M of size m × n are denoted M ∈ Rn×m. The set of positive-definite matrices
M ≻ 0 of size n are M ∈ Sn≻0. The set of diagonal matrices of dimension n with positive elements
are Dn

+. The identity matrix of dimension n is In. The set of symmetric matrices A of dimension n
are A ∈ Sn. The Hermitian operation is defined such that He(M) = M +M⊤. When appropriate,
element (i, j) of a matrix M is referred to as M i,j . The ⋆-notation for symmetric matrices is used,

as in M =

[
a b
b c

]
=

[
a b
⋆ c

]
. Real vectors p of dimension n are denoted p ∈ Rn, non-negative

vectors are p ∈ Rn
+ and non-negative scalars are p ∈ R+. The vector of ones of dimension n is

1n and the vector of zeros of dimension n is 0n. The m × n matrix of zeros is 0m×n and that of
ones is 1m×n. Nonlinear functions ϕ : Rn → Rn act component-wise on their arguments, i.e.
ϕ(s) = [ϕ1(s1), . . . , ϕn(sn)]

⊤ for s = [s1, . . . , sn]
⊤ ∈ Rn.

2. Problem setup

2.1. The original neural network

Consider a neural network f(u) : Rnu → Rng in the implicit form of El Ghaoui et al. (2021)

x = ϕ(Wxx+Wuu+ b) (1a)

f(u) = Wf,xx+Wf,uu+ bf , (1b)

with weights Wx ∈ Rn×n, Wu ∈ Rn×nu , Wf,x ∈ Rng×n, Wf,u ∈ Rng×nu and biases b ∈ Rn,
bf ∈ Rng and activation functions ϕ(·).

The primary reasons for using the implicit form of El Ghaoui et al. (2021) to represent the net-
works of (1) in this paper are simply: i) it allows a wide class of network architectures (such as
recurrent and feed-forward neural networks, but also many others as detailed in El Ghaoui et al.
(2021)) to be represented within a unified framework, ii) it makes the notation more compact. How-
ever, we expect that, after a minor tweaking of the notation, the presented results could be applied to
a wider class of architectures besides those with the structure of (1). Finally, it is remarked that the
implicit neural networks of (1) are structured similarly to others from the literature, most notably
deep equilibrium neural networks Revay et al. (2023); Bai et al. (2019); Pokle et al. (2022).

In this work, the neural network of (1) is regarded as the true mapping of the data, and it
is around this mapping that the accuracy of the robustified network is defined. Several standard
assumptions are imposed on the neural network of (1).

Assumption 1 The neural network f(u) of (1) is assumed to be well-posed, in the sense that for
every u ∈ Rnu there is a unique solution x to the implicit equation (1a).
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Assumption 2 The activation function ϕ(·) is diagonal and [0, 1]-slope-restricted.

Recall that a function ϕ(·) : Rn → Rn is called diagonal if (ϕ(s))i = ϕi(si) for all s ∈ Rn and
i = 1, 2 . . . , n. A diagonal function satisfies a [δ1, δ2]-slope restriction, for given δ1 < δ2, if

δ1 ≤
ϕi(s1)− ϕi(s2)

s1 − s2
≤ δ2 ∀ s1, s2 ∈ R, s1 ̸= s2 . (2)

The slope restriction assumption for the nonlinearities of neural networks is widely used, e.g. in Chu
and Glover (1999a); Barabanov and Prokhorov (2002); Fazlyab et al. (2019); Drummond et al.
(2022a). The present [0, 1]-slope restriction may be relaxed to a [0, δ]-slope restriction for δ > 0 by
invoking a loop-shifting argument.

2.2. The robustified neural network and robustness in the 1-norm

The goal of this paper is to develop a method to compute a quantifiably robust neural network (in
the sense of Definition 2 for some γ, γu,1, γu,2) which can approximate the input/output map of the
original one given by (1). To this end, a second neural network is introduced

z = ϕ(Ψzz +Ψuu+ β), (3a)

g(u) = Ψg,zz +Ψg,uu+ βg, (3b)

with weights Ψz ∈ Rn×n, Ψu ∈ Rn×nu , Ψg,z ∈ Rng×n, Ψg,u ∈ Rng×nu and biases β ∈ Rn,
βg ∈ Rng . The goal is to compute values for these weights and biases whilst navigating the accu-
racy/robustness trade-off with respect to the original neural network (1). To facilitate the robustness
analysis, the following notation will be used to characterise the outputs generated by two inputs
u1 and u2 acting on this network. Specifically, we let (z, u) = (zi, ui) for i = 1, 2 denote two
input/state pairs of (3), and set gi := g(ui) as the corresponding outputs. The following set will be
used to define the space of these two inputs.

Definition 1 For some εu,1 ≥ 0, εu,2 ≥ 0, two inputs u1 and u2 are constrained by the set
U(ε1, ε2) := {(u1, u2) : ∥u1 − u2∥22 ≤ εu,2, ∥u1 − u2∥1 ≤ εu,1}.
In this work, the following notion of neural network robustness will be used. Compared to earlier
work on neural network robustness certificates using SDPs where the 2-norm of the outputs was
bounded, such as Fazlyab et al. (2019), the 1-norm is used presently.

Definition 2 The neural network (3) is said to be robust if there exists γ ≥ 0, γu,1 ≥ 0, γu,2 ≥ 0
such that

∥g(u1)− g(u2)∥1 ≤ γ + γu,1∥u1 − u2∥1 + γu,2∥u1 − u2∥22 ∀ (u1, u2) ∈ U . (4)

The following measure of the similarity between two neural networks (Li et al. (2021)), as in their
accuracy with respect to each other’s input/output mappings, will be used.

Definition 3 The two neural networks (1) and (3) are said to be similar if they have the same
biases, as in β = b, βf = bf , and their weights are “close” in the sense that there exists non-
negative scalars εWx , εWu , εWf,x

, and εWf,u
such that, for each matrix element i, j,{

|W i,j
x −Ψi,j

z | ≤ εWx , |W i,j
u −Ψi,j

u | ≤ εWu ,

|W i,j
f,x −Ψi,j

g,z| ≤ εWf,x
, |W i,j

f,u −Ψi,j
g,u| ≤ εWf,u

.
(5)

If the above holds, then it said that g(u) ≈ f(u) for all u ∈ Rnu .
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Whilst there are limitations with the above definition for network similarity (a more robust version
such as that considered in Li et al. (2021) may provide improved theoretical nuance), it was observed
that this form empirically performs well and, crucially, allows the problem to be convexified.

2.3. Problem statement

Solutions to the following problem are the considered.

Problem 1 Determine weights and biases of the neural network (3) such that it is robust in the
sense of Definition 2 and is similar to the original neural network in the sense of Definition 3.

The idea of this problem is to explore the trade-off between neural network accuracy and ro-
bustness. The main benefit of the present results are that they lead to a convex synthesis problem.

3. Preliminary results

We present a solution to Problem 1 in Theorem 7 below, the proof of which is supported by the
preliminary material in this section. This result will rely upon the expression of the 1-norm of
a vector as a sum of ReLU functions. Recall that the ReLU function r(·) : Rnσ → Rnσ is the
diagonal function with equal components given by

r(σ) = ReLU(σ) = max
{
0, σ

}
∀ σ ∈ R . (6)

This nonlinearity is [0, 1]-slope-restricted and also satisfies a range of other quadratic constraints,
as detailed in Richardson et al. (2023) for example. The key idea behind the robust neural network
synthesis of Theorem 7 is the following representation of the absolute value as ReLU functions:

|σ| = ReLU(σ) + ReLU(−σ) ∀ σ ∈ R. (7)

This representation allows the 1-norm of the robustified neural network’s output to be expressed
as a linear sum of [0,1]-slope-restricted nonlinear functions acting on the output. With this linearity,
the problem can be convexified. By contrast, using the 2-norm of the Lipschitz bounds introduces
a bi-linearity into the matrix inequalities, as also encountered in Drummond et al. (2022b), and so
only gives locally optimal results.

With r(s) = ReLU(s) as in (6), define the incremental variables

g̃ũ
z̃

 =

g2 − g1
u2 − u1
z2 − z1

 =

Ψg,z z̃ +Ψg,uũ
u2 − u1
z2 − z1

 , g̃± =

[
r(g̃)
r(−g̃)

]
,

ũ± =

[
r(ũ)
r(−ũ)

]
, and p(u1, u2) =

[
g̃⊤± ũ⊤± z̃⊤ ũ⊤ 1

]⊤
.

(8)

Recall that the inputs u1, u2 and outputs g1 = g(u1), g2 = g(u2) are given by the neural network (3).
With these variables, the following lemmas define incremental quadratic constraints for (3).

Lemma 4 For all Tz ∈ Dn
+, it follows that

sz(u1, u2) := p(u1, u2)
⊤Ωz(Tz)p(u1, u2) ≥ 0 ∀ (u1, u2) ∈ U ,

with the matrix Ωz(Tz) defined in equation (16) in the Appendix.
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Proof The quadratic constraint of sz(u1, u2) can be expanded out as z̃⊤Tz(Ψz z̃ + Ψuũ − z̃) ≥ 0
whose non-negativity follows from the assumed [0, 1]-slope-restriction of the activation function.

Lemma 5 For all Tu,1 ∈ R+ and Tu,2 ∈ R+, it follows that

su(u1, u2) := p(u1, u2)
⊤Ωu(Tu,1,Tu,2)p(u1, u2) ≥ 0 ∀ (u1, u2) ∈ U ,

with the matrices Ωu(Tu,1,Tu,2) defined in equation (17) in the Appendix.

Proof Using the decomposition of the 1-norm in terms of the ReLU of (7), then the quadratic
constraint of su(u1, u2) can be expanded out as

p(u1, u2)
⊤Ωu(Tu,1,Tu,2)p(u1, u2) = Tu,1εu,1 + Tu,2εu,2 −

1

2
Tu,2∥ũ∥22

− 1

2
Tu,2(r(ũ)

2 + r(−ũ)2)− Tu,1(r(ũ) + r(−ũ)),

= Tu,1εu,1 + Tu,2εu,2 − Tu,2∥ũ∥22 − Tu,1∥ũ∥1 ≥ 0,

since (u1, u2) ∈ U following Definition 1.

Lemma 6 For all Tg ∈ Dng

+ , it follows that

sg(u1, u2) := p(u1, u2)
⊤Ωg(Tg)p(u1, u2) ≥ 0 ∀ (u1, u2) ∈ U ,

with the matrix Ωg(Tg) defined in equation (18) in the Appendix.

Proof Similarly to Lemma 4, the quadratic constraint of sg(u1, u2) can be expanded out as
r(g̃)⊤ Tg(g̃ − r(g̃)) + r(−g̃)⊤ Tg(−g̃ − r(−g̃)) ≥ 0 which is again non-negative owing to the
[0,1] slope restriction of the ReLU(·) function.

4. Main result

We state the main result of the present work, a theorem containing a SDP to solve Problem 1.

Theorem 7 Set the weights w0, w1, w2 ∈ R+ and the tolerances εWx , εWu , εWf,x
, εWf,u

∈ R+.
If there exists some Tz ∈ Dn

+, Tg ∈ Dng

+ , Tu1 ∈ R+, Tu2 ∈ R+, Yz ∈ Rn×n, Yu ∈ Rn×nu ,
Yg,z ∈ Rng×n, Yg,u ∈ Rng×nu , γ ≥ 0, γu,1 ≥ 0 and γu,2 ≥ 0 that solves

minw0γ + w1γu1 + w2γu,2, (9a)

subject to: Ω̌z(·) + Ω̌g(·) + Ωu(·) + Ωγ(·) ≺ 0, (9b)

with the matrices Ω̌z(Tz,Yz,Yu), Ω̌g(Tg,Yg,z,Yg,u), and Ωγ(γ, γu,1, γu,2) defined in (19)–(21),
and the following element-wise matrix inequalities hold

−εWxTz1n×n ≤ Yz − TzW ≤ εWxTz1n×n, (10a)

−εWuTz1n×nu ≤ Yu − TzWu ≤ εWuTz1n×nu , (10b)

−εWf,x
Tg1ng×n ≤ Yg,z − TgWf,x ≤ εWf,x

Tg1ng×n, (10c)

−εWf,u
Tg1ng×nu ≤ Yg,u − TgWf,u ≤ εWf,u

Tg1ng×nu , (10d)
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then, the neural network of g(u) with weights and biases defined by

Ψz = Tz
−1Yz,Ψu = Tz

−1Yu,Ψg,z = Tg
−1Yg,z,Ψg,u = Tg

−1Yg,u, β = b, βf = bf , (11)

is robust in the sense of Definition 2 and similar to f(u) from (1) in the sense of Definition 3.

Proof Multiplying the matrix inequality of (9b) on the right by p(u1, u2) and on the left by its
transpose implies, with the factorisation of the weights in (11), that

∥g(u1)− g(u2)∥1 − γ − γu,1∥u1 − u2∥1−γu,2∥u1 − u2∥22 + sz(u1, u2)

+ sg(u1, u2) + su(u1, u2) ≤ 0 . (12)

Using Lemmas 4, 5 & 6, then the following quadratic inequalities are non-negative sz(u1, u2),
sg(u1, u2), su(u1, u2) ≥ 0 for all (u1, u2) ∈ U . With these conditions, then (12) implies that
the robustness bound of (4) holds. To show the norm conditions of (5), consider the first set of
element-wise inequalities (10a)

−εWxTi,i
z ≤ Yi,j

z − Ti,i
z W i,j ≤ εWxTi,i

z , ∀ i, j ∈ 1, 2, . . . , n

with superscripts i, j denoting matrix element (i, j). Since Tz ∈ Dn
+, then Ti,i

z > 0, and so

−εWx ≤ Ψi,j −W i,j ≤ εWx , ∀i, j ∈ 1, 2, . . . , n

giving the norm condition of (5). The remaining norm bounds of (5) can be obtained in a similar
manner from (10b)–(10d).

Observe from (11) that the weights and biases of the robustified neural network, Ψz , Ψu, Ψg,z ,
Ψg,u and biases β, βg, can be extracted directly from the matrix variables of the problem: Tz , Tg,
Tu1 , Tu2 , Yz , Yu, Yg,z , Yg,u, γ, γu,1 and γu,2. The conditions of the theorem are therefore linear in
the decision variables, and so can be solved as a single SDP.

5. Numerical example: Robustifying model predictive control

To demonstrate the utility of Theorem 7 for a control-orientated application, consider the problem
of approximating a model predictive control (MPC) policy to increase its robustness. The following
example is based on that from Drummond et al. (2022a) 1.

Consider the discrete-time, time-invariant, linear control system[
w1[k + 1]
w2[k + 1]

]
=

[
4/3 −2/3
1 0

] [
w1[k]
w2[k]

]
+

[
0
1

]
v[k],

with state w[k] ∈ R2 and control action v[k] ∈ R. Define the collection of future states and inputs
as w = [w[k]⊤, w[k + 1]⊤ . . . , w[k + N ]⊤] and v = [v[k]⊤, v[k + 1]⊤ . . . , v[k + N ]⊤]. The
control action is to be obtained by solving the following quadratic program:

minimize: J(w,v) = w[k +N ]⊤Pw[k +N ] (13)

+

N−1∑
i=1

w[k + i]⊤Qiw[k + i] + v[k + i− 1]⊤Riv[k + i− 1],

subject to: Gv ≤ Svw[k] + c,

1. Code to generate these results can be found at: https://github.com/r-drummond/convex-nn-synthesis-1norm.
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where Qi ∈ S2≻0, P ∈ S2≻0, Ri > 0 ∀i = 1, . . . , N − 1, and the constraint set is v ∈ V . This
quadratic program can be more compactly expressed as

minimize
v

v⊤Hv + 2w[k]⊤F⊤v,

subject to: Gv ≤ Svw[k] + c.

Here, we set the horizon length to N = 10 and the control action to be saturated at −10 ≤ v ≤ 10,
so G = 0.1 ×

[
Im −Im

]⊤, c = [1, 1, . . . 1, 1]⊤ and Sv = 0. Furthermore, the MPC quadratic
cost function of (13) is parameterised by

P =

[
7.1667 −4.2222
−4.2222 4.6852

]
, Qi =

[
1 −2/3

−2/3 3/2

]
, Ri = 1.

In a recent paper from Valmorbida and Hovd (2023), it was shown that the MPC control policy can
be expressed as

x = (In −GH−1G⊤)ϕ(x)− (Sv +GH−1F )w[k]− c, (14a)

v[k] = f(w[k]) = −H−1Fv[k]−H−1G⊤ϕ(x), (14b)

with ϕ(x) being the ReLU function. By defining x̂ = (In−GH−1G⊤)−1(x+Sw[k] + c) = ϕ(x),
it was shown in Drummond et al. (2024) that the MPC policy of (14) can be re-written as

x̂ = ϕ((In −GH−1G⊤)x̂− (Sv +GH−1F )w[k]− c),

v[k] = g(w[k]) = −H−1Fw[k]−H−1G⊤ϕ(x)

= −H−1Fw[k]−H−1G⊤x̂ ,

that is, as an implicit neural network in the form of (1) with weights and biases

Wx = In −GH−1G⊤, Wu = (Sv +GH−1F ), b = c,

Wf = −H−1G⊤, Wf,u = −H−1F.

Theorem 7 can then be directly applied to this MPC problem. A neural network of the form
of (3) which trades off accuracy relative to the original MPC policy and its own robustness measured
by Definition 2 can then be synthesized. In this example, the tolerances for the weights and biases
are set to a fixed value of εWx = εWu = εWf,x

= εWf,u
= ε. Increasing ε opens up the search

space for the weights, and so increases the neural network’s robustness as it is that property which
is optimised by Theorem 7. But, it also means that the gap between the weights of the original
and robustified networks can be increased, which can reduce the accuracy relative to the original
network of (1). Tuning this tolerance ε allows the trade-off between accuracy and robustness of (3)
to be navigated.

Figures 1 and 2 compare the response of both the original MPC problem and the robustified
neural network generated by Theorem 7. Figures 1 prioritises accuracy with respect to the MPC
policy, with ε = 10−5 whereas Figure 2 prioritises robustness, ε = 10−1. This trade-off is captured
by the responses, with the ε = 10−5 response able to replicate that of the MPC (and capture the
input saturation limits) unlike the ε = 10−1 response.
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Figure 1: Comparison between MPC controller and neural network generated by Theorem 7 with a
tolerance of ε = 10−5. (a) Compares the inputs v[k], (b) the state w1[k], and (c) the state w2[k].
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Figure 2: Comparison between MPC controller and neural network generated by Theorem 7 with a
tolerance of ε = 10−1. (a) Compares the inputs v[k], (b) the state w1[k], and (c) the state w2[k].
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Figure 3: Trade-off between robustness
(measured by γ of Definition 2) and accu-
racy (measured by ε of Definition 3) for the
MPC problem.

A reduction in robustness is the price payed for
this increased accuracy with respect to the original
MPC policy. Figure 3 demonstrates this trade-off,
which plots the robustified neural networks 1-norm
bound against the weight tolerance ε. Using the def-
inition of Definition 2, the gains γu,1 = γu,2 = 0
were set to have a single valuable capturing the
bound for the 1-norm of the outputs. As ε increased,
the bound γ reduced– indicating that a more robust
network was generated. At ε ≈ 0.3, the bound
dropped suddenly because the solver had found the
most robust network, which in this case was to map
the states to zero. Even though this is not a par-
ticularly useful network, it is “optimally robust”, a
feature which emphasises the need to trade-off ro-
bustness against accuracy. Interestingly, even when
ε was small and so could accurately capture the MPC
response (see Figure 1), the synthesized network was
more robust, with γ = 1, 751 of the MPC reduced to
γ = 560 for the neural network.
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Conclusions

A method to approximate a neural network by a more robust version was developed. By defining the
robustness problem in terms of the 1-norm of the output, the proposed robust neural network syn-
thesis method was shown to be a convex semi-definite programme. An application to robustifying
model predictive control feedback policies demonstrated the applicability of the approach.

Appendix A.

We provide the matrices not given in the main text. The matrices of Lemmas 4, 5 and 6 are,
respectively,

Ωz(Tz) =


02ng×2ng 02ng×2nu 02ng×n 02ng×nu 02ng

⋆ 02nu×2nu 02nu×n 02nu×nu 02nu

⋆ ⋆ He(TzΨz − Tz) TzΨu 0n
⋆ ⋆ ⋆ 0nu×nu 0nu

⋆ ⋆ ⋆ ⋆ 0

 , (16)

Ωu(Tu,1,Tu,2) =


02ng×2ng 02ng×2nu 02ng×n 02ng×nu 02ng

⋆ − 1
2
Tu,2

[
Inu 0nu×nu

⋆ Inu

]
02nu×n 02nu×nu − 1

2
Tu,1

[
1nu

1nu

]
⋆ ⋆ 0n×n 0n×nu 0n
⋆ ⋆ ⋆ − 1

2
Tu,2Inu 0nu

⋆ ⋆ ⋆ ⋆ Tu,1εu,1 + εu,2Tu,2

 , (17)

Ωg(Tg) =



[
−Tg 0ng×ng

⋆ −Tg

]
02ng×2nu

[
TgΨg,z

−TgΨg,z

] [
TgΨg,u

−TgΨg,u

]
02ng

⋆ 02nu×2nu 02nu×n 02nu×nu 02nu

⋆ ⋆ 0n×n 0n×nu 0n
⋆ ⋆ ⋆ 0nu×nu 0nu

⋆ ⋆ ⋆ ⋆ 0

 . (18)

Finally, the following matrices are used in Theorem 7.

Ω̌z(Tz,Yz,Yu) =


02ng×2ng 02ng×2nu 02ng×n 02ng×nu 02ng

⋆ 02nu×2nu 02nu×n 02nu×nu 02nu

⋆ ⋆ He(Yz − Tz) Yu 0n
⋆ ⋆ ⋆ 0nu×nu 0nu

⋆ ⋆ ⋆ ⋆ 0

 , (19)

Ω̌g(Tg,Yg,z,Yg,u) =



[
−Tg 0ng×ng

⋆ −Tg

]
02ng×2nu

[
Yg,z

−Yg,z

] [
Yg,u

−Yg,u

]
02ng

⋆ 02nu×2nu 02nu×n 02nu×nu 02nu

⋆ ⋆ 0n×n 0n×nu 0n
⋆ ⋆ ⋆ 0nu×nu 0nu

⋆ ⋆ ⋆ ⋆ 0

 , (20)

Ωγ(γ, γu,1, γu,2) =



02ng×2ng 02ng×2nu 02ng×n 02ng×nu
1
2

[
1ng

1ng

]
⋆ − 1

2
γu,2 I2nu 02nu×n 02nu×nu − γu,1

2

[
1nu

1nu

]
⋆ ⋆ 0n×n 0n×nu 0n
⋆ ⋆ ⋆ − 1

2
γu,2Inu 0nu

⋆ ⋆ ⋆ ⋆ −γ


. (21)
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