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4 Department of Engineering Science, University of Oxford, UK
5 Department of Computer Science, University of Oxford, UK
6 Division of Decision and Control Systems, KTH Royal Institute of Technology, Sweden

Abstract

This paper is concerned with model predictive control (MPC) of discrete-time linear sys-
tems subject to bounded additive disturbance and mixed constraints on the state and input,
whereas the true disturbance set is unknown. Unlike most existing work on robust MPC,
we propose an algorithm incorporating online learning that builds on prior knowledge of the
disturbance, i.e., a known but conservative disturbance set. We approximate the true dis-
turbance set at each time step with a parameterised set, which is referred to as a quantified
disturbance set, using disturbance realisations. A key novelty is that the parameterisation
of these quantified disturbance sets enjoys desirable properties such that the quantified
disturbance set and its corresponding rigid tube bounding disturbance propagation can
be efficiently updated online. We provide statistical gaps between the true and quantified
disturbance sets, based on which, probabilistic recursive feasibility of MPC optimisation
problems is discussed. Numerical simulations are provided to demonstrate the effectiveness
of our proposed algorithm and compare with conventional robust MPC algorithms.

Keywords: Rigid tube MPC, Learning uncertainty, Scenario approach.

1. Introduction

Robust model predictive control (MPC) (Goodwin et al., 2014) can ensure constraint satis-
faction by design under all realisations of uncertainty. This guarantee is essential in many
practical applications, such as safety critical systems and power system operation. Tube-
based methods (Langson et al., 2004; Mayne et al., 2011) are one of the most well-known
approaches in robust MPC. Relying on knowledge of the worst-case disturbance bounds,
one can calculate a sequence of sets to bound disturbance propagation over an infinite hori-
zon. This sequence is referred to as a tube. Nevertheless, tube-based methods suffer from
potential conservatism, as the disturbance sets used in these worst-case strategies can be
overly conservative, resulting in small feasible sets (Saltık et al., 2018). The tube is usually
either constructed offline, or is otherwise subject to constraints based on prior information
on model uncertainty, and it can therefore be difficult to exploit information obtained dur-
ing online implementation to refine the uncertainty model and update the tube accordingly.
This precludes the use of data-driven methods, i.e., the scenario approach (Calafiore and
Campi, 2006) and sample average approximation (Luedtke and Ahmed, 2008), to further
quantify uncertainty on the basis of online measurements.
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Figure 1: The framework.

To mitigate the aforementioned conservatism, we propose
an MPC algorithm incorporating online learning of the exact
yet unknown disturbance set Wtrue. The framework is shown
in Fig. 1. Given a known yet conservative disturbance set W
(⊇ Wtrue) and disturbance realisations, we construct a set Ŵ⋆

k

as a homothetic transformation of W to approximate Wtrue

at each time step. Accordingly, the MPC optimisation is up-
dated at each time step. The main contributions of this paper
are: 1) The parameterisation of set Ŵ⋆

k enables the scenario
programs yielding the problem to be equivalently rewritten as
linear programs (LPs). 2) We provide statistical gaps between
Wtrue and Ŵ⋆

k. The latter leads to larger feasible sets of initial
conditions than that of the tube MPC based on W. 3) The
rigid tube {Ŝ⋆k, Ŝ⋆k, . . .} based on the set Ŵ⋆

k is updated effi-
ciently online, without resorting to recomputing an outer approximation of the Minkowski
sum of infinitely many polytopic sets.

Related work Recent developments in data-driven methods have considerably improved
our ability to infer model uncertainty from measurements. In chance-constrained problems,
a typical approach is to identity a high-probability region of the uncertainty space using sam-
ples. This region is then used to determine robust constraints that conservatively replace the
original chance constraints. Different parameterisations of the region have been proposed,
including hyper-rectangles (Margellos et al., 2014), norm balls (Mammarella et al., 2020)
and a finite union of norm balls (Alexeenko and Bitar, 2020). Similar ideas are applied to
uncertainty in stochastic MPC problems (Shang et al., 2020; Shang and You, 2019), where
support vector clustering is used to identify a high-density region of disturbance. Conformal
prediction (Shafer and Vovk, 2008) is another technique for uncertainty quantification. For
example, in Dixit et al. (2023); Lindemann et al. (2023), it is used to quantify uncertainty
in predicted agent trajectories and to provide high-confidence regions surrounding the pre-
dicted trajectories using past observations. These regions are then employed in an MPC
problem, which is solved to perform motion planning with probabilistic safety guarantees.

In the literature of robust and stochastic MPC problems, the scenario approach is often
used to handle uncertainty. A typical application is to approximate a probabilistic constraint
with a number of hard constraints, see, e.g., Prandini et al. (2012); Schildbach et al. (2014).
This approximation results in significant computational challenges. To avoid this issue,
Hewing and Zeilinger (2020) exploits probabilistic reachable sets which are constructed
offline using the scenario approach. Although this work provides closed-loop constraint
satisfaction, it uses an MPC initialisation scheme (Hewing et al., 2020), in which there is no
direct feedback from true state measurements. It is yet unclear whether this setting leads
to adequate closed-loop performance in general (Mayne, 2018).

Notation N is the set of nonnegative integers. N≥n is the set of nonnegative integers
that are larger than or equal to n. R is the set of real numbers. For sets X and Y,
X⊕Y = {x+ y | x ∈ X, y ∈ Y}. Matrices of appropriate dimension with all elements equal
to 1 and 0 are denoted by 1 and 0, respectively. A positive (semi-) definite matrix Q is
denoted by Q ≻ 0 (Q ≽ 0). The cardinality of a set X is denoted by |X|.
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2. Problem Description

We consider an uncertain discrete-time linear system described by

xk+1 = Axk +Buk + wk, (1)

which is subject to a mixed constraint Fxk +Guk ≤ 1 with F ∈ Rnc×nx and G ∈ Rnc×nu .
In (1), xk ∈ Rnx is the state, uk ∈ Rnu the control input, and wk ∈ Wtrue ⊂ Rnx the
additive disturbance. We assume perfect state feedback and that the matrices A, B are
known, while the true disturbance set Wtrue is unknown.

Assumption 1 The pair (A,B) is stabilisable, and set Wtrue is a convex subset of a known
convex and compact polytope W in the form of W = {w ∈ Rnx | V w ≤ 1}, where V ∈
Rnv×nx. The disturbance realisations wk of the system (1) are independent and identically
distributed (i.i.d.) according to an unknown probability distribution Pr with support Wtrue.

2.1. Rigid Tube MPC based on Conservative Disturbance Set W

We first review the theory of rigid tube MPC. Given a prediction horizon N , one can
decompose the predicted dynamics at time step k as

xi|k = si|k + ei|k, ui|k = Kxi|k + ci|k, si+1|k = Φsi|k +Bci|k, ei+1|k = Φei|k + wi|k, (2)

where Φ = A + BK and wi|k ∈ W for all i ∈ N. In (2), si|k and ei|k are nominal and
uncertain components of the state, respectively. The feedback gain K ∈ Rnu×nx is fixed,
while the free variable is ck = [cT0|k · · · cTN−1|k]

T with ci|k = 0 for i ∈ N≥N .

Given the state decomposition (2), we consider a nominal predicted cost as the objective
of online MPC optimisation at time step k given by

J(s0|k, ck) =

∞∑
i=0

(∥si|k∥2Q + ∥vi|k∥2R), (3)

where Q ≽ 0, R ≻ 0, and vi|k = Ksi|k + ci|k. Suppose the matrix pair (A,Q) is observable.
Then, there exists a unique solution, Px(≻ 0), to the following algebraic Riccati equation

Px = ATPxA+Q−ATPB(BTPxB +R)−1BTPxA.

Let K = −(BTPxB + R)−1BTPxA, which ensures that Φ is strictly stabilising. As shown
in Kouvaritakis and Cannon (2016), (3) can be rewritten in a compact form as

J(s0|k, ck) = ∥s0|k∥2Px
+ ∥ck∥2Pc

, with Pc = diag{BTPxB +R, · · · , BTPxB +R}.

Lemma 1 (Rakovic et al. (2005)) If Assumption 1 holds and Φ is strictly stable, there
exist a finite integer r and a scalar ρ ∈ [0, 1) such that (i) ΦrW ⊆ ρW and (ii) the set

S =
1

1− ρ

r−1⊕
i=0

ΦiW (4)

is a convex and compact set, satisfying ΦS⊕W ⊆ S and
⊕∞

i=0Φ
iW ⊆ S.
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The sequence {S,S, . . .} provides a bound on {e0|k, e1|k, . . .}, and is referred to as a rigid
tube, which further helps to define a vector of constraint tightening parameters as

hs = max
e∈S

(F +GK)e. (5)

In (5), the maximisation is performed for each row of F + GK. This is then used to
reformulate the mixed constraint as a deterministic constraint. Now we can formulate the
rigid tube MPC optimisation problem to be solved at time step k as

OPT(S, hs, νs) :


min
s0|k,ck

∥s0|k∥2Px
+ ∥ck∥2Pc

s.t : xk − s0|k ∈ S, F̄Ψi

[
s0|k

ck

]
≤1− hs,∀i ∈ N[0,νs],

(6)

where F̄ =
[
F +GK GE

]
, Ψ =

[
Φ BE
0 M

]
, E =

[
Inu 0 · · · 0

]
, and M is the block-

upshift operator. Problem (6) is necessarily recursively feasible if νs is chosen as the smallest
positive integer such that F̄Ψνs+1z ≤ 1− hs for all z satisfying F̄Ψiz ≤ 1− hs, i ∈ N[0,νs].

2.2. Problem under Study

In practice, it is challenging to determine exact bounds on the disturbance wk. To ensure
robustness, we usually tailor a conservative set W to contain all possible realisations of wk.
Such a set, however, may lead to a small feasible region or even infeasibility of problem (6).
Under Assumption 1, W is an a priori known yet conservative set for wk, whereas Wtrue

is an exact yet unknown set that tightly contains all possible realisations of wk, and we
have Wtrue ⊆ W. These conditions motivate us to learn the set Wtrue and then use the
learned disturbance set, denoted by Ŵ⋆

k, to reduce the conservativeness of the rigid tube
formulation. More specifically, our aim is two-fold: (1) characterisation of the gap between
Wtrue and Ŵ⋆

k; (2) analysis of the rigid tube MPC algorithm based on Ŵ⋆
k.

3. Learning Uncertainty Set

In this section, we approximate the set Wtrue online using the set W and the collected
disturbance realisations. We first define the initial disturbance information set that contains
the disturbance samples collected offline as Iw

0 = {ws
i , i = −Noff , · · · ,−1}, where Noff ∈ N.

As states can be measured exactly, we can recover a new disturbance sample at time step
k + 1 by ws

new = xk+1 −Axk −Buk and update the disturbance information set as

Iw
k+1 = Iw

k ∪ {ws
new}. (7)

It follows that Wtrue is approximated by computing the minimum set in the form of

W(vk, αk) := (1− αk)vk ⊕ αkW, (8)

which contains all samples in Iw
k . The design parameters are vk ∈ W and αk ∈ [0, 1].

Suppose Assumption 1 holds, it is shown in Gao et al. (2021) that W(v, α) defined in (8)
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satisfies: (i) W(v, α) ⊆ W, for all v ∈ W and α ∈ [0, 1]; (ii) W(v, α1) ⊆ W(v, α2), for
all v ∈ W and 0 ≤ α1 ≤ α2 ≤ 1. Given these properties, we formulate the following
optimisation problem to minimise the set W(vk, αk) while containing all samples in Iw

k :
min
v,α

α

s.t : ws ∈ W(v, α), ∀ws ∈ Iw
k ,

v ∈ W, α ∈ [0, 1],

⇐⇒


min
v,α

α

s.t : −(1− α)V v ≤ α1− V ws,∀ws ∈ Iw
k ,

V v ≤ 1, α ∈ [0, 1].

(9)

Proposition 2 shows that the nonconvex problem (9) can be reformulated as an LP.

Proposition 2 Under Assumption 1, the optimal solution to the problem (9) can be ob-
tained by solving the following LP:

max
y,β

β s.t : −V y ≤ (1− β)1− V ws, ∀ws ∈ Iw
k , V y ≤ β1, β ∈ [0, 1]. (10)

Proof Replacing α and v in (9) with β = 1− α and y = βv directly yields (10).

Denote by (y⋆k, β
⋆
k) the optimiser to (10). Let α⋆

k = 1 − β⋆
k and v⋆k = y⋆k/β

⋆
k if β⋆

k > 0.
Then the quantified disturbance set at time step k is given by

Ŵ⋆
k = W(v⋆k, α

⋆
k). (11)

Note that when β⋆
k = 0 and α⋆

k = 1, Ŵ⋆
k = W regardless of the choice of vk ∈ W. Next we

provide a statistical gap between Ŵ⋆
k and Wtrue.

Theorem 3 Suppose Assumption 1 holds. Given ϵ, γ ∈ (0, 1) and Euler’s number e, if

|Iw
k | ≥

1
ϵ

e
e−1

(
ln 1

γ + nx

)
, then Pr[wr ∈ Wtrue : w

r /∈ Ŵ⋆
k] ≤ ϵ is satisfied with probability no

less than 1− γ.

Proof We first define the following robust LP:

max
y,β

β s.t : −V y ≤ (1− β)1− V ws, ∀ws ∈ Wtrue, V y ≤ β1, β ∈ [0, 1].

Problem (10) is its corresponding scenario LP, where Iw
k is the set of i.i.d. samples from

the convex uncertainty set Wtrue. Therefore, (Alamo et al., 2010, Theorem 4) yields the
stated sample complexity and the confidence guarantee in Theorem 3.

Given the prescribed ϵ and γ, one can determine the size of the initial disturbance
information set Iw

0 according to Theorem 3.

3.1. Online Update of Ŵ⋆
k

Note that the computation complexity of (10) increases with the update of set Iw
k . To

mitigate this, we can online update the set Ŵ⋆
k = W(v⋆k, α

⋆
k) as follows. If the disturbance

realisation wk−1(= xk − Axk−1 − Buk−1) collected at time step k is in the set Ŵ⋆
k−1, let

(v⋆k, α
⋆
k) = (v⋆k−1, α

⋆
k−1); otherwise, we solve the following problem:

(v⋆k, α
⋆
k) = argmin

v,α
{α | Ŵ⋆

k−1 ⊆ W(v, α), wk−1 ∈ W(v, α), v ∈ W, α ∈ [0, 1]}. (12)

5



Gao Yan Zhou Cannon Abate Johansson

Proposition 4 The optimal solution to (12) can be obtained by solving the following LP:
max
y,β

β

s.t :

{
−V y ≤ (1− β − α⋆

k−1)1− (1− α⋆
k−1)V v⋆k−1,

−V y ≤ (1− β)1− V wk−1, V y ≤ β1, β ∈ [0, 1].

(13)

Proof Since W(α, v) = {z ∈ Rnx | V z ≤ α1+(1−α)V v}, it follows that Ŵ⋆
k−1 ⊆ W(v, α)

holds if and only if α⋆
k−11 + (1 − α⋆

k−1)V v⋆k−1 ≤ α1 + (1 − α)V v. Then (13) is obtained
using the same argument as the proof of Proposition 2.

4. Learning-based Rigid Tube MPC

In this section, we formulate the tube MPC problem using the quantified disturbance set
Ŵ⋆

k. We first show how to efficiently construct the rigid tube for the set Ŵ⋆
k.

Proposition 5 Suppose that Assumption 1 holds. Given the sets Ŵ⋆
k = W(v⋆k, α

⋆
k) in (11)

and S in (4), we can construct a set that satisfies ΦŜ⋆k ⊕ Ŵ⋆
k ⊆ Ŝ⋆k via

Ŝ⋆k = α⋆
kS⊕ (1− α⋆

k)(I − Φ)−1v⋆k. (14)

Proof From Lemma 1, we have ΦS ⊕ W ⊆ S. Since Φ is strictly stable and I − Φ is
invertible, we have

ΦŜ⋆k ⊕W(v⋆k, α
⋆
k) = α⋆

kΦS⊕ (1− α⋆
k)Φ(I − Φ)−1v⋆k ⊕ α⋆

kW⊕ (1− α⋆
k)v

⋆
k

= α⋆
k(ΦS⊕W)⊕ (1− α⋆

k)(Φ(I − Φ)−1 + I)v⋆k

= α⋆
k(ΦS⊕W)⊕ (1− α⋆

k)(I − Φ)−1v⋆k ⊆ α⋆
kS⊕ (1− α⋆

k)(I − Φ)−1v⋆k,

which yields the expression in (14).

Proposition 5 implies that the rigid tube {Ŝ⋆k, Ŝ⋆k, . . .} for the set Ŵ⋆
k can be directly

constructed using {S,S, . . .}. This provides significant computational advantages since we
do not need to recompute the rigid tube using (4) when the set Ŵ⋆

k is updated online. Based

on Ŝ⋆k in (14), the corresponding tube MPC problem at time step k can be formulated as

OPT(Ŝ⋆k, h⋆k, νk) :


min
s0|k,ck

∥s0|k∥2Px
+ ∥ck∥2Pc

s.t : xk − s0|k ∈ Ŝ⋆k, F̄Ψi

[
s0|k

ck

]
≤ 1− h⋆k, ∀i ∈ N[0,νk],

(15)

where h⋆k is defined as

h⋆k = max
e∈Ŝ⋆k

(F +GK)e, (16)

and νk is a positive integer such that F̄Ψνk+1z ≤ 1− h⋆k for all z satisfying F̄Ψiz ≤ 1− h⋆k,
i ∈ N[0,νk].
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4.1. Computing νk

We next consider how to efficiently compute νk in problem (15). Let Ω(q, ν) = {z ∈
Rnx+Nnu | F̄Ψiz ≤ q, i ∈ N[0,ν]}, where q ∈ Rnc and ν ∈ N. Let νs be such that

max
z∈Ω(1−hs,νs)

F̄Ψνs+1z ≤ 1− hs (17)

and Ps = P T
s ∈ R(nx+Nnu)×(nx+Nnu), Ps ≻ 0 such that

{z ∈ Rnx+Nnu | zTPsz ≤ 1} ⊇ Ω(1− hs, νs). (18)

At time step k, we want to find νk such that maxz∈Ω(1−h⋆
k,νk)

F̄Ψνk+1z ≤ 1−h⋆k. Algorithm 1
provides a procedure to compute such νk.

Algorithm 1 Computation of νk.

Require: S in (4), hs in (5), νs in (17), and Ps in (18).
1: Compute h⋆

k in (16)
2: Let ζk = max

i
[1− h∗

k]i/[1− hs]i and ν = νs

3: while max
i

[F̄ ]iΨ
ν+1P−1

s Ψν+1T [F̄ ]Ti − [1− h⋆
k]i/ζ

2
k > 0 do

4: Let ν = ν + 1
5: end while
6: return νk = ν

Proposition 6 If hs < 1 in (5), the integer νk obtained from Algorithm 1 necessarily
satisfies maxz∈Ω(1−h⋆

k,νk)
F̄Ψνk+1z ≤ 1− h⋆k.

Proof First, since
⊕∞

i=0Φ
iW ⊆ S and v⋆k ∈ W, we have (I − Φ)−1v⋆k ∈ S. From the

definition of Ŝ⋆k in (14), it follows that Ŝ⋆k ⊆ S. By the definitions of hs in (5) and h⋆k
in (16), it holds that h⋆k ≤ hs. Let ζk = maxi[1 − h⋆k]i/[1 − hs]i. Then, if hs < 1,
we have ζk(1 − hs) ≥ (1 − h⋆k) ≥ (1 − hs) > 0. This implies that Ω

(
ζk(1 − hs), ν

)
⊇

Ω(1− h⋆k, ν) ⊇ Ω(1− hs, ν). Therefore, maxz∈Ω(1−h⋆
k,ν)

F̄Ψν+1z ≤ 1− h⋆k necessarily holds

if ν satisfies maxz∈Ω(ζk(1−hs),ν) F̄Ψν+1z ≤ 1 − h⋆k. But {z | zTPsz ≤ 1} ⊇ Ω(1 − hs, νs),

and hence {z | zTPsz ≤ ζ2k} ⊇ Ω(ζk(1 − hs), νs). Furthermore, for any ν ′ ≥ ν, we have
Ω(q, ν) ⊇ Ω(q, ν ′). Thus it holds that {z | zTPsz ≤ ζ2k} ⊇ Ω(ζk(1−hs), νs) ⊇ Ω(ζk(1−hs), ν)
for any ν ≥ νs. This gives a pair of sufficient conditions to ensure maxz∈Ω(1−h⋆

k,ν)
F̄Ψν+1z ≤

1 − h⋆k, that is, maxz∈{z|zTPsz≤ζ2k}
F̄Ψν+1z ≤ 1 − h⋆k and ν ≥ νs. Equivalent conditions are

[F̄ ]iΨ
ν+1P−1

s Ψν+1[F̄ ]Ti ≤ [1− h⋆k]i/ζ
2
k , ∀i, and ν ≥ νs.

4.2. Recursive Feasibility

From the statistical gap between Wtrue and Ŵ⋆
k in Theorem 3, we have the following prob-

abilistic recursive feasibility.

Proposition 7 Suppose that at time step k, problem OPT(Ŝ⋆k, h⋆k, νk) is feasible. Then, with
confidence no less than 1− γ, problem OPT(Ŝ⋆k+1, h

⋆
k+1, νk+1) is feasible with probability at

least 1− ϵ, where γ and ϵ are defined in Theorem 3.

Proof Problem OPT(Ŝ⋆k+1, h
⋆
k+1, νk+1) is feasible if Ŵ⋆

k+1 = Ŵ⋆
k, which holds if and only

if wk ∈ Ŵ⋆
k. The probabilistic recursive feasibility then follows from Theorem 3.

7



Gao Yan Zhou Cannon Abate Johansson

-0.5 0 0.5

wk;1 [m]

-0.2

-0.1

0

0.1

0.2

w
k
;2

[m
=s

]

(a)

-10 0 10

x0;1 [m]

-8

-6

-4

-2

0

2

4

6

8

x
0
;2

[m
=
s]

(b)

-0.5 0 0.5

wk;1 [m]

-0.2

-0.1

0

0.1

0.2

w
k
;2

[m
=s

]

(c)

-10 0 10

x0;1 [m]

-8

-6

-4

-2

0

2

4

6

8

x
0
;2

[m
=
s]

(d)

Figure 2: Comparison of disturbance sets W [ ], Wtrue [ ], Ŵopt [ ], and Ŵ⋆
0

[ ] and their corresponding feasible regions FMPC [ ], Ftrue [ ], F̂opt [ ], and
F̂0 [ ]. (a) The disturbance sets with |Iw

0 | = 50; (b) The feasible regions with |Iw
0 | = 50;

(c) The disturbance sets with |Iw
0 | = 20000; (d) The feasible regions with |Iw

0 | = 20000.
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Figure 3: (a) Volume of Ŵ⋆
0 for MC simulations for different Iw

0 (std. means standard
deviation); (b) State trajectory by UQ-RMPC with |Iw

0 | = 100; (c) State trajectory by
UQ-RMPC with |Iw

0 | = 20000; (d)Volume of Ŵ⋆
k for MC simulations with Iw

k .

5. Case Study

In this section, we consider a car-following example. An ego autonomous vehicle (EV) tries
to follow the longitudinal motion of a leading vehicle (LV) and keep the inter-vehicular
distance as close to a pre-specified distance as possible. Dynamics of the EV and LV can
be described by linear time-invariant models with superscripts e and l respectively, i.e.,
xek+1 = Axek + Buek + ξek, xlk+1 = Axli|k + Bulk + ξlk, where xek = [pek vek]

T, xlk = [plk vlk]
T,

uek = aek ∈ R, ulk = alk ∈ R. The system and input matrices are A = [ 1 T
0 1 ] and B = [ 0T ], and

T is a sampling interval. Here pek, p
l
k are the longitudinal positions of the EV and LV at time

step k, respectively; vek, v
l
k are their longitudinal velocities; and aek, a

l
k are the accelerations.

Variables ξek ∈ R2 and ξlk ∈ R2 represent uncertainties of the EV and LV models. We assume
that ξlk ∈ Ξl

true and ξek ∈ Ξe
true, where Ξ

l
true and Ξe

true are the true uncertainty sets of the LV
and the EV, respectively. In addition, we have ulk ∈ Ul

true ⊂ R. Note that Ξl
true, Ξ

e
true, and

Ul
true are unknown to the EV. Let xdes = [−L 0]T, where L is a desired safety distance. We

define xk = xek −xlk −xdes and uk = aek. Thus, wk = ξek −Bulk − ξlk is the disturbance of the
relative dynamics xk+1 = Axk+Buk+wk where wk ∈ Wtrue := Ξe

true⊕(−Ξl
true)⊕(−BUl

true).
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The unknown set Wtrue is overestimated by set W. All the parameters for the implemen-
tations in this section are provided in our published code1. In the following, RMPC refers to
the conventional robust MPC, i.e., the formulation (6), while UQ-RMPC refers to the pro-
posed algorithm, i.e., the formulation (15). Realisations from the sets Ξe

true, Ξ
l
true, and Ul

true

are uniformly selected at random. Problems (6) and (15) are solved by Ipopt (Wächter and
Biegler, 2006) in CasADi (Andersson et al., 2019), and set calculations are implemented by
Multi-Parametric Toolbox 3.0 (Herceg et al., 2013) and Yalmip (Löfberg, 2004).

5.1. Comparison of the Feasible Regions

We begin by comparing the feasible regions of RMPC and UQ-RMPC. For RMPC, the

feasible region is defined as F(S, hs, νs) = F(hs, νs) ⊕ S, with F(hs, νs) =
{
s ∈ Rnx :

∃c such that F̄Ψi

[
s
c

]
≤ 1 − hs,∀i ∈ N[0,νs]

}
. Similarly, the initial feasible region of UQ-

RMPC is defined as F(Ŝ⋆0, h⋆0, ν0), which depends on the initial disturbance information set
Iw
0 . As a baseline, we denote by Ŵopt the minimum set in form of (8) that covers Wtrue and

by F̂opt its feasible region. In addition, the feasible region associated with Wtrue is denoted

by Ftrue. For simplicity, we write FMPC = F(S, hs, νs) and F̂0 = F(Ŝ⋆0, h⋆0, ν0).
The comparison is shown in Fig. 2. It is seen in Figs. 2(a),(c) that the sets Ŵ⋆

0 are
smaller than W. This considerably increases the feasible region compared with FMPC, as
shown in Fig. 2(b),(d). In addition, the set Ŵ⋆

0 approaches Ŵopt as |Iw
0 | increases, and F̂0

also approaches F̂opt. To further evaluate the impact of Iw
0 on learning of Ŵ⋆

0, we compute

the mean and standard deviation of the volume of Ŵ⋆
0, which is denoted by V̂⋆

0, by running
the Monte-Carlo (MC) simulations over 30 different realisations, with |Iw

0 | ranging from 5
to 10000. The results are shown in Fig. 3(a). We see that as |Iw

0 | increases, the mean of
V̂⋆

0 approaches the volume of Ŵopt (the dashed line) and the standard deviation decreases.

Despite the gap between Ŵ⋆
0 and Ŵopt shown in Fig. 3(a), the online implementation in

Section 5.2 shows that the set Ŵ⋆
0 still exhibits sufficient robustness even if |Iw

0 | is small.

5.2. Online Evaluation of UQ-RMPC

For online implementation, we run UQ-RMPC with |Iw
0 | = 100 and |Iw

0 | = 20000, respec-
tively. The initial relative state is x0 = [−12 5]T. The trajectories of the true relative state
xk and the nominal state s⋆0|k, and the associated sets Ŝ⋆k, are shown in Fig. 3(b),(c), where
both trajectories can be seen to converge to a neighbourhood of the origin. In addition, the
set Ŝ⋆k increases with |Iw

0 |, which implies that the robustness is enhanced.

To investigate the online evolution of Ŵ⋆
k, we run MC simulations for 30 realisations over

10000 time steps with |Iw
0 | = 10. We compute the mean and standard deviation of volume

of Ŵ⋆
k, denoted by V̂⋆

k, during the iteration. The results are presented in Fig. 3(d). Similar

to Fig. 3(a), the mean of V̂⋆
k approaches the volume of Ŵopt (the dashed line) and the

standard deviation decreases. We further evaluate robustness of UQ-RMPC by empirically
quantifying the number of instances of infeasibility during implementation. We run MC
simulations for 300 realisations with different |Iw

0 |. For each realisation, UQ-RMPC is run
for 20 time steps. We select the initial state x0 close to the boundary of F(Ŝ⋆0, h⋆0, ν0), which
is more likely to make the problem infeasible. The results are summarised in Table 1, where

1. https://github.com/JianZhou1212/learning-based-rigid-tube-rmpc
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Table 1: Feasibility of UQ-RMPC in random simulations.

|Iw
0 | x0 Feas. Rate ϵmax |Iw

0 | x0 Feas. Rate ϵmax

10 [−14.9 6.841]T 84.0% 0.8398 100 [−14.9 6.491]T 100% 0.0840
200 [−14.9 6.390]T 100% 0.0420 500 [−14.9 6.308]T 100% 0.0168
2000 [−14.9 6.228]T 100% 0.0042 5000 [−14.9 6.232]T 100% 0.0017

Table 2: Comparison of computation time between UQ-RMPC and SC-MPC.

Sampling Complexity UQ-RMPC SC-MPC

|Iw
0 | Ksc Mean Max. Convergence Mean Max. Convergence

400 50 0.0674 s 0.155 s ✓ 0.141 s 0.233 s ✓
800 100 0.0641 s 0.0932 s ✓ 0.261 s 0.489 s ✓
1600 200 0.0640 s 0.0784 s ✓ 0.606 s 1.201 s ✓
3200 400 0.0941 s 0.114 s ✓ 2.273 s 3.522 s ✓

a feasible realisation means the states and control inputs satisfy the constraints, and ϵmax

is calculated by ϵmax = e
e−1(ln(

1
γ + nx))/|Iw

0 | in Theorem 3 by fixing γ = 0.005. Here ϵmax

indicates the risk of infeasibility. We see that UQ-RMPC encounters a risk of infeasibility
when |Iw

0 | is small, while the feasibility rate reaches 100% when |Iw
0 | increases.

5.3. Comparison with Scenario MPC

We further compare the proposed UQ-RMPC with scenario MPC (SC-MPC) (Schildbach
et al., 2014). The number of scenarios in SC-MPC is chosen as Ksc = |Iw

0 |/N . The compu-
tations are performed on a standard laptop with an Intel i7-10750H CPU, 32.0 GB RAM
running Ubuntu 22.04 LTS and MATLAB R2021b. Both MPC controllers are executed
for 50 steps, and the mean and the maximal computation time of solving UQ-RMPC and
SC-MPC are summarised in Table. 2. We see that although both methods are convergent
in these cases, UQ-RMPC significantly reduces the computation time compared with the
SC-MPC. In addition, the computation time of UQ-RMPC generally remains stable when
the sampling complexity increases, while for the SC-MPC, the computation time increases
considerably with the sampling complexity.

6. Conclusion

This paper investigates robust tube MPC with online learning of uncertainty sets for
discrete-time linear systems subject to state and input constraints. The observed distur-
bance realisations are used to learn the unknown true disturbance set by parameterising a
prior given but conservative set. We provide a bound on the statistical gap between the
true and quantified disturbance sets. The parameterisation of the quantified disturbance
set allows the corresponding rigid tube bounding disturbance propagation to be computed
efficiently. We propose an online implementation that updates the quantified disturbance
set and the corresponding rigid tube at every time step. Numerical simulations demon-
strate the efficacy of our proposed algorithm and compare with conventional robust MPC
and scenario MPC, respectively. Future directions of interest include the quantification of
stochastic uncertainty and its integration with stochastic MPC, as well as investigation of
scalability of this approach to higher dimensional systems.
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