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Abstract
The Lagrangian Inspired Polynomial (LIP) estimator Giacomuzzo et al. (2023) is a black-box es-
timator based on Gaussian Process Regression, recently presented for the inverse dynamics identi-
fication of Lagrangian systems. It relies on a novel multi-output kernel that embeds the structure
of the Euler-Lagrange equation. In this work, we extend its analysis to the class of underactuated
robots. First, we show that, despite being a black-box model, the LIP allows estimating kinetic and
potential energies, as well as the inertial, Coriolis, and gravity components directly from the overall
torque measures. Then we exploit these properties to derive a two-stage energy-based controller for
the swing-up and stabilization of balancing robots. Experimental results on a simulated Pendubot
confirm the feasibility of the proposed approach.
Keywords: Learning for Control, Inverse Dynamics Identification, Gaussian Process Regression

1. Introduction

In recent years, learning for control in complex robotics applications has gained increasing interest.
Several machine learning methods have been presented, both for modeling and direct synthesis of
the controller. In this context, under-actuated robots (UR) are an important class of systems. UR
are mechanical systems characterized by fewer control inputs than degrees of freedom (DOF). Such
systems are ubiquitous in robotics: examples are manipulators with passive joints, autonomous
bicycles and motorcycles, bipedal robots, and most of aerospace and marine vehicles. To control
such systems, for instance, several Reinforcement Learning algorithms have been explored. These
algorithms aim at automatically learning a control law, see for example Lillicrap et al. (2015) for a
model-free approach or Deisenroth and Rasmussen (2011); Amadio et al. (2022) for model-based
solutions. Although effective, generally these methods ignore previous contributions on UR from
control theory. As a result, they typically require a huge amount of interactions with the system and
do not provide any performance guarantees.

A viable alternative consists of combining model learning with classic model-based control
methods. Within this approach, a model of the system dynamics is derived from experimental data
using machine learning techniques without the need for manually deriving accurate models of the
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dynamics, which is the main drawback of classic model-based methods. Then, the learned model is
used inside a model-based controller, exploiting results from control theory.

Typically, such control strategies rely on the inverse dynamics model, which relates torques to
the robot trajectories. The problem of learning the inverse dynamics from data has been extensively
explored in the literature Nguyen-Tuong and Peters (2010); Romeres et al. (2016); Camoriano et al.
(2016); Dalla Libera and Carli (2020). An interesting class of solutions is represented by black-box
methods, which propose to learn the inverse dynamics map by means of universal approximators,
without any knowledge about the underlying system kinematics and dynamics Gijsberts and Metta
(2011); Polydoros et al. (2015); Schreiter et al. (2015); Rueckert et al. (2017). However, learning
inverse dynamics models for the control of UR is particularly challenging. Indeed, most of the
strategies proposed for UR control require models that return the different inverse dynamics com-
ponents and the system energy, see Spong and Praly (2005). Typically, black-box models do not
provide such information. Underactuation further exacerbates these problems: torques of the under-
actuated dimensions are constant signals equal to zero, leading to an ill-posed estimation problem.

Physics-Informed (PI) models are a class of black-box solutions that could mitigate the afore-
mentioned problem Rezaei-Shoshtari et al. (2019); Lutter et al. (2019); Karniadakis et al. (2021). PI
methods have been recently proposed to improve the data efficiency and generalization of black-box
estimators. Instead of learning the inverse dynamics in a completely unstructured manner, PI meth-
ods embed knowledge from physics as priors in the model structure. As a result, learned models
not only show better accuracy but also provide insights about relevant physical properties. For in-
stance, in Lutter et al. (2019), the authors proposed Deep Lagrangian Networks (DeLaNs), a neural
networks model with structure inspired by Euler-Lagrange (EL) equations. Similar ideas have been
explored in Ayed et al. (2019), Greydanus et al. (2019), Cranmer et al. (2020).

In the context of inverse dynamics identification of fully-actuated manipulators, we proposed a
PI solution based on Gaussian Process Regression (GPR), named LIP estimator Giacomuzzo et al.
(2023). The LIP estimator derives a multioutput kernel of the torques by encoding EL equations. In
this work, we extend the analysis of the LIP estimator to the class of UR and show its applicability
in traditional model-based control strategies for UR.
Contribution: Our contribution is twofold. First, we review the recently proposed LIP estimator
and extend its analysis in the context of UR, showing its ability to learn the inverse dynamics map,
its different components, and the kinetic and potential energies. Second, we exploit the LIP to
derive an energy-based controller for the stabilization of balancing UR. The controller is based
on two modules: an energy-based controller for the swing-up, and an LQR which stabilizes the
system once it has reached the unstable equilibrium. The energy-based controller performs a partial
feedback linearization on the actuated system and a regulation of the energy to steer the non-actuated
system to a trajectory passing through the unstable equilibrium. Once the system is sufficiently
close to the target, the control is switched to the LQR. We show that the LIP model is suitable to
implement this kind of controller since it returns the inertia matrix, the Coriolis and gravity torques,
energy estimates, and the linearization of the system dynamics required by the LQR. This allows
performing the swing-up and stabilization of the balancing robot in a completely black-box fashion.
The method is validated on a simulated setup involving a Pendubot Spong and Block (1995). The
LIP method is compared with DeLaNs and with the true analytical model, which has been included
as a baseline. Results confirm the feasibility of the proposed approach.

The paper unfolds as follows. In Section 2, we review the modeling and control of UR and
we define the inverse dynamics identification problem. Then, in Section 3, we present the LIP
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estimator and show how to derive the balancing controller. Section 4 reports the results of the
performed experiments, while Section 5 draws the conclusions.

2. Background and problem statement

In this section, we first provide the inverse dynamics model of UR under the rigid body assumption.
Then we review the class of energy-based controllers we consider in this work.

2.1. Inverse dynamics

Consider a mechanical system with nDOF and let q ∈ Rn be the vector of generalized coordinates.
We assume the system to have m < n control inputs, each of which actuates a single DOF. We
partition the vector q ∈ Rn as qT = [qT1 , q

T
2 ], where q1 ∈ Rm and q2 ∈ Rn−m refer respectively

to the actuated and the non-actuated DOFs. Under the rigid body assumption, the inverse dynamics
of the system can be derived from the Euler-Lagrange equations (see Spong and Praly (2005)) as[

M11(q) M12(q)
M21(q) M22(q)

] [
q̈1
q̈2

]
︸ ︷︷ ︸

m(q,q̈)

+

[
c1(q, q̇)
c2(q, q̇)

]
︸ ︷︷ ︸

c(q,q̇)

+

[
g1(q)
g2(q)

]
︸ ︷︷ ︸

g(q)

=

[
τ 1

0

]
︸ ︷︷ ︸

τ

, (1)

where

M(q) =

[
M11(q) M12(q)
M21(q) M22(q)

]
is the symmetric, positive definite inertia matrix, m(q, q̈) represents the inertial torque, c(q, q̇)
accounts for the Coriolis and centripetal torques, g(q) represents the gravity contribution while
τ 1 ∈ Rm is the vector of generalized torques produced by the m actuators. For the sake of brevity,
in the following, we will explicitly point out the dependency on q, q̇ only when necessary.

The inverse dynamics identification problem consists of estimating the map in eq. (1) that relates
x̃ = (q, q̇, q̈) and the torques τ from a set of noisy measures. Black-box solutions treat the inverse
dynamics as an unknown function and, generally, rely on universal approximators to estimate the
function from experimental data. Several solutions, including our approach, adopt GPR Williams
and Rasmussen (2006), which is a framework for Bayesian inference widely used in machine learn-
ing and robotics.

Remark 1 The standard approach when using GPR consists of considering the different torque
components independently and solving n independent regression problems, one for each generalized
coordinate. In UR, torques of the under-actuated dimensions are constant signals equal to zero,
leading to an ill-posed estimation problem if the components are learned independently of each
other, which prevents the possibility of deriving any inverse dynamics model useful for model-based
control strategies.

2.2. Model-based balancing control of underactuated systems

In what follows, we focus our attention on a particular class of robots described by eq. (1), known as
balancing systems. Common examples of balancing systems are the Cartpole, the Furuta Pendulum,
the Acrobot, and the Pendubot. For such systems, the typical control challenge requires swinging up
and balancing the robot in the unstable equilibrium point, hereafter denoted by x⋆ = [qT⋆ , q̇

T
⋆ ]

T with
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q̇⋆ = 0. In the remainder of this section, we review one of the most common approaches presented
in the literature, which combines an energy-based controller for the swing-up and an LQR for the
balancing.

2.2.1. ENERGY-BASED SWING-UP CONTROLLER

We review the energy-based swing-up controller presented in Spong (1996); Kolesnichenko and
Shiriaev (2002). The first step consists of a partial feedback linearization. From eq. (1) we isolate
the dynamics of the actuated and non-actuated subsystems respectively as

M11q̈1 +M12q̈2 + c1 + g1 = τ 1, (2)

M21q̈1 +M22q̈2 + c2 + g2 = 0. (3)

We can solve eq. (3) for q̈2 as q̈2 = −M−1
22 (M21q̈1 + c2 + g2) since M22 is invertible (given that

M > 0). Substituting the resulting expression into eq. (2) leads to

M̄11q̈1 + c̄1 + ḡ1 = τ 1, (4)

with M̄11 = M11 −M12M
−1
22 M21, c̄1 = c1 −M12M

−1
22 c2 and ḡ1 = g1 −M12M

−1
22 g2.

A feedback linearizing controller for eq. (4) can be defined as

τ 1 = M̄11u+ c̄1 + ḡ1, (5)

where u is a design parameter. Choosing τ 1 as in eq. (5) leads to the following closed-loop system

q̈1 = u (6)

M22q̈2 + c2 + g2 = −M21u (7)

We obtained a linear second-order dynamics for the actuated subsystem. Selecting u according to

u = −k1q1 − k2q̇1 + ū, k1, k2 > 0, (8)

makes the linear subsystem in eq. (6) asymptotically stable for ū = 0. The remaining design
problem is the choice of ū, which can be used to stabilize the non-actuated dynamics in eq. (7). Most
of the existing literature proposes to design ū based on energy concepts, penalizing the mismatch
w.r.t. the system energy at the desired configuration. This leads to control laws of the form

ū = fe(T ,V), (9)

where T (q, q̇) = 1
2 q̇

TM(q)q̇ is the kinetic energy, while V(q) denotes the potential energy. How-
ever, the choice of fe depends on the system of interest. We will clarify our choice in the exper-
imental section after introducing our setup. Examples of energy-compensating terms for common
balancing robots can be found in Spong (1996), Åström and Furuta (2000), Xin et al. (2013).

Remark 2 As highlighted in Spong (1996), the controller presented in this section is not stabilizing
the system to a fixed point but only to a manifold. For this reason, in applications such as the swing-
up of balancing robots, the control must switch to another controller achieving local asymptotic
stability to the equilibrium.
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2.2.2. LINEAR QUADRATIC REGULATOR

To stabilize the system at the equilibrium x⋆ we resort to a Linear Quadratic Regulator (LQR).
First, we provide a state space description for the system with dynamics expressed in eq. (1). Let
the system state x be such that xT = [qT , q̇T ]. The state evolution can be derived from eq. (1) as

ẋ =

[
q̇

−M−1(q)[c(q, q̇) + g(q)]

]
+

[
0n

M−1(q)

]
τ = f(x) + g(x, τ ) (10)

Now we linearize the non-linear system in eq. (10) around xT
⋆ . Moreover, let τ ⋆ be the reference

input at the equilibrium. Applying a first-order Taylor expansion, the system dynamics around
(x⋆, τ ⋆) can be approximated as

ẋ ≈ A(x− x⋆) +B(τ − τ ⋆). (11)

Recalling that at the equilibrium q̇⋆ = 0, matrices A and B are

A =
∂f

∂x

T
∣∣∣∣
x⋆,τ⋆

=

[
0 I

−M−1(q)∂g(q)∂q M−1(q)C(q, q̇)

]∣∣∣∣
x⋆,τ⋆

=

[
0 I

−M−1(q⋆)
∂g(q⋆)
∂q 0

]
(12)

and

B =
∂g

∂τ

T
∣∣∣∣
x⋆,τ⋆

=

[
0

M−1(q⋆)

]
, (13)

where C(q, q̇) ∈ Rn×n is the skew-symmetric Coriolis matrix, such that c(q, q̇) = C(q, q̇)q̇.
Then, we introduce the infinite horizon control problem on the linearized system in (11), namely,

argmin
τ

∫ ∞

0
(x− x⋆)

TQ(x− x⋆) + (τ − τ ⋆)
TR(τ − τ ⋆)dt,

which leads to the control input τ = −Kx, with K being the optimal control gain, which can be
computed by solving the continuous time algebraic Riccati equation.

3. Lagrangian Inspired Polynomial Estimator for modeling and control of
under-actuated systems

In this section, we briefly review the proposed inverse dynamics LIP estimator for the control of
UR. Then, we detail the application of the LIP model to the UR control described in Section 2.

3.1. LIP estimator

The LIP estimator is based on GPR Williams and Rasmussen (2006), which is a framework for
Bayesian inference widely used in machine learning and robotics applications. Generally, GPR
solutions for inverse dynamics identification model each torque component τ i(x̃) as a Gaussian
Process (GP) by assuming τ i(x̃)s are independent given x̃, and then apply standard GPR inference.
As discussed in the previous section, this approach is not effective for UR. The LIP estimator follows
an alternative strategy and defines the kinetic and potential energies as two independent GPs. Then,
it derives a multi-output kernel of the torques by exploiting EL equations. In this way, the inverse
dynamics problem is well defined also in the UR setup.
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Our framework models T and V as independent GPs, namely T ∼ GP
(
0, kT (·, ·)

)
and V ∼

GP
(
0, kV(·, ·)

)
, where kT and kV are the kernels that defines the covariance of T and V . For

instance, let x̃ and x̃′ be two input locations, then the covariance between the values of T at x̃ and
x̃′ is E [T (x̃)T (x̃′)] = kT (x̃, x̃′). For convenience, we introduce also KT

XX′ , that is the matrix
that collects kT evaluated at X = {x̃1, . . . , x̃N}, X ′ = {x̃′

1, . . . , x̃
′
M}:

KT
XX′ =

kT (x̃1, x̃
′
1) . . . kT (x̃1, x̃

′
M )

...
...

...
kT (x̃N , x̃′

1) . . . kT (x̃N , x̃′
M )

 .

Similar definitions hold for kV and all the other kernels we will introduce. The LIP estimator defines
kT and kV relying on a polynomial formulation that extends Dalla Libera and Carli (2020). Due to
space constraint, we refer the interested reader to Giacomuzzo et al. (2023) for further details.

Notice that, (i) once we define T and V as zero-mean GPs, for the properties of GPs also the
Lagrangian function L = T −V is a zero-mean GP with kernel kL(·, ·) = kT (·, ·)+kV(·, ·), namely
L ∼ GP

(
0, kL(·, ·)

)
. Furthermore, (ii) under rigid body assumptions, each τ i(x̃) is described by a

linear differential equation of L, namely, τ i = d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi
. Expanding explicit derivations w.r.t.

time, we obtain

τ i =
n∑

j=1

(
∂2L

∂q̇i∂q̇j
q̈j +

∂2L
∂q̇i∂qj

q̇j
)
− ∂L

∂qi
=: GiL,

where Gi is the linear operator that maps L in the linear differential equation of τ i. Finally, (iii) GPs
are closed w.r.t. linear operators Särkkä (2011), namely, if f is a zero-mean GP with kernel kf (·, ·)
and g(x̃) = Gf(x̃), then also g(x̃) is a zero-mean GP with kernel kg(x̃, x̃′) = GG′kf (x̃, x̃′). The
last expression means that kg(x̃, x̃′) is obtained by applying two times the operator G to kf (x̃, x̃′),
first w.r.t. the input x̃ then w.r.t. x̃′.

Based on (i), (ii), and (iii), we conclude that torques are a zero-mean GP, with covariance defined
by a multi-output kernel kτ (x̃, x̃′) ∈ Rn×n that encodes the EL equations, and is expressed as

kτ (x̃, x̃′) =

G1G′
1k

L(x̃, x̃′) . . . G1G′
nk

L(x̃, x̃′)
...

. . .
...

GnG′
1k

L(x̃, x̃′) . . . GnG′
nk

L(x̃, x̃′)

 . (14)

To derive (14) we applied the multi-output version of property (iii). For a more detailed derivation,
we refer the interested reader to Giacomuzzo et al. (2023).

Once kτ is defined, we can compute torque estimates following standard GPR. Let X be a set
of N training input locations, and y =

[
yT
1 , . . . ,y

T
N

]T the respective torque measurements, with
yi ∈ Rn equal to the torque measures at input x̃i. The LIP torque estimate in a general input
location x̃ is

τ̂ (x̃) = Kτ
x̃X (Kτ

XX +Σe)
−1 y, (15)

where Σe is a regularization parameter that accounts for the additive Gaussian noise modeled by
GPR. For each dimension, we assumed independent and identically distributed noise, thus obtaining
a block diagonal matrix with equal diagonal blocks, namely Σe = diag(Σe1 , . . . ,ΣeN ), with Σe1 =
Σe2 = . . . = ΣeN = diag(σ2

e1 , . . . , σ
2
en), where σ2

ei is the variance of the τ i measures.
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3.2. LIP for control

In this section, we describe how to estimate the kinetic and potential energies, the inertial, Coriolis,
and gravity vector as well as ∂g

∂q required by the control laws presented in Section 2.

3.2.1. KINETIC AND POTENTIAL ENERGIES

The kinetic energy T and potential energy V are required to implement the energy based control
law described by eq. (9). The LIP model provides a principled way to estimate them from the torque
measurements y. Indeed, within the LIP framework, T , V and τ are jointly Gaussian distributed,
since the prior of τ is derived by applying the linear operator G to the kinetic and potential GPs T
and V . The covariances between T and τ and between V and τ at general input locations x̃ and x̃′

are

Cov[T (x̃), τ (x̃′)] = Cov[T (x̃),GL(x̃′)] =: kT τ (x̃, x̃′), (16a)

Cov[V(x̃), τ (x̃′)] = Cov[V(x̃),GL(x̃′)] =: kVτ (x̃, x̃′). (16b)

Recalling that we model T and V as independent GPs, and in view of the properties of GPs under
linear operators, we obtain

kT τ (x̃, x̃′) = Cov[T (x̃),GT (x̃′)] =
[
G′kT (x̃, x̃′)

]T
= [G′

1k
T (x̃, x̃′), . . . ,G′

nk
T (x̃, x̃′)] (17a)

kVτ (x̃, x̃′) = Cov[V(x̃),GV(x̃′)] =
[
G′kV(x̃, x̃′)

]T
= [G′

1k
V(x̃, x̃′), . . . ,G′

nk
V(x̃, x̃′)] (17b)

From the posterior distributions of T and V given y we can obtain an estimate of the energies at
arbitrary input location x̃ as

T̂ (x̃) = KT τ
xX(Kτ

XX +Σe)
−1y, V̂(x̃) = KVτ

x̃X(Kτ
XX +Σe)

−1y, (18)

where the covariance matrices KT τ
x̃X ∈ R1×nN and KVτ

x̃X ∈ R1×nN are obtained as KT τ
x̃X =[

kT τ (x̃,x1), . . . , k
T τ (x̃, x̃N )

]
and KVτ

x̃X =
[
kVτ (x̃, x̃1), . . . , k

Vτ (x̃, x̃N )
]
.

3.2.2. TORQUE COMPONENTS

The energy based control law in eq. (5) requires to estimate m, c and g, while the LQR in Sec. 2.2.2
requires the inverse of the inertia matrix M as well as the term ∂g

∂q . These quantities are derived
similarly to how we computed the energies in the previous section.

First, the inertia matrix is estimated component wise. The element in position ij of M is

M ij(q) =
∂2T (q, q̇)

∂q̇i∂q̇j
=: GM ijT (x̃),

where we introduced the linear operator GM ij . The covariance between Mi,j and τ at general input
locations x̃ and x̃′ can be computed as

Cov
[
M ij(x), τ (x̃′)

]
= Cov

[
GM ijT (x̃),GT (x̃′)

]
= GM ijGkT (x̃, x̃′) =: kM

ijτ (x̃, x̃′).

Accordingly, we can estimate M ij at any input location x̃ as M̂ ij(x̃) = KM ijτ
x̃X (Kτ

XX + Σe)
−1y.

with KM ijτ
x̃X = [kM

ijτ (x̃, x̃1), . . . , k
M ijτ (x̃, x̃N )]. Then, from the estimate of the inertia matrix we

can derive an estimate of the inertial torque component as m̂(x̃) = M̂(x̃)q̈.
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Next, we can estimate the gravity contribution g. Recall that the i-th component of the vector g
is defined as gi(q) = ∂V(q)

∂qi
. The covariance between gi and τ at general input locations x̃ and x̃′ is

Cov
[
gi(x), τ (x̃′)

]
= Cov

[
∂V(x̃)
∂qi

,GV(x̃′)

]
=

∂

∂qi
G′kV(x̃, x̃′) =: kg

iτ (x̃, x̃′).

Accordingly gi can be estimated at any input location x̃ as ĝ(x̃) = Kgiτ
x̃X(Kτ

XX + Σe)
−1y, with

Kgiτ
x̃X = [kg

iτ (x̃, x̃1), . . . , k
giτ (x̃, x̃N )].

Given the estimates of m and g, it is possible to obtain an estimate of the Coriolis and centripetal
contribution c as ĉ(x̃) = τ̂ (x̃)− m̂(x̃)− ĝ(x̃).

Finally, the matrix ∂g
∂q ∈ Rn×n required in the computation of matrix A in eq. (12), is estimated

following the same procedure adopted for the inertia matrix. Its element in position ij is given by[
∂g(q)

∂q

]
ij

=
∂2V(q)
∂qi∂qj

=: GGijV(q) =: Gij(x̃).

Then, the covariance between Gij(x̃) and the torque vector τ at general input locations x̃ and x̃′ is

Cov
[
Gij(x̃), τ (x̃′)

]
= Cov

[
GGijV(q),GV(x̃′)

]
= GGijG′kV(x̃, x̃′) =: kG

ijτ (x̃, x̃′).

Finally, the estimate at a general input location x̃ is computed as Ĝij(x̃) = KGijτ
x̃X (Kτ

XX+Σe)
−1y,

with KGijτ
x̃X = [kG

ijτ (x̃, x̃1), . . . , k
Gijτ (x̃, x̃N )].

4. Experimental results

We chose the Pendubot as a benchmark for testing the LIP estimator performance on the estimation
and control of a UR. The Pendubot is a double-inverted pendulum composed of two links with
only the first one actuated. In this example the links lengths are l1 = l2 = 20 cm and masses are
m1 = m2 = 0.3 kg respectively. The task consists of swinging up and controlling the system in
the unstable equilibrium point. To carry out the task, we first derive an inverse dynamics model
using the LIP estimator, then we implement the controller presented in Section 2 with the learned
model. We implemented all the simulations and controllers in Python and with the auxiliary library
PyTorch, Paszke et al. (2019).

4.1. Estimation evaluation

First, we test the ability to estimate the torque τ and the components m(q, q̈), c(q, q̇),g(q) and
the potential and kinetic energies on the simulated Pendubot. The trajectories used for training
and test were collected simulating eq. (1). The input torques are different realizations of filtered
white Gaussian noise with variance 0.5 and cutoff frequency of the filter 1 Hz. Test trajectories
are significantly different from the training trajectories, because of high accelerations that are not
present in the training set. The hyperparameters of the LIP estimator were optimized by marginal
likelihood maximization. As a baseline, the LIP model is compared with the DeLaN model and
we considered the same structure as in Lutter et al. (2019) and used the Adam optimizer. The
accuracy when predicting torques and energies is evaluated by means of Mean Squared Error (MSE)
in Fig. 1. We also show the estimated trajectories on the test dataset in Fig. 2. The proposed LIP
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τ1 τ2 m1 m2 c1 c2 g1 g2 V T
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Figure 1: MSE of torque components and energies of the LIP (green) and DeLaN (red).
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Figure 2: Torques and energies and estimates. The dashed blue line represents the ground truth,
LIP and DeLaN are in green and red, respectively.

model outperforms the NN-based torque estimator and can also well estimate all the components
of the torque and the energies. Instead, even though the DeLaN produces reasonable estimates of
torque and energies completely misses the decomposition of inertia and Coriolis components. The
ability of the LIP model to well capture all the different components is fundamental for model-based
controllers like the energy-based one presented in Section 2.

4.2. Control performance evaluation

The goal of this section is to show that using the black-box LIP model we can perform a com-
plete swing up and balancing of the Pendubot without requiring the knowledge of the model. We
implemented the general control scheme described in eq. (5) and eq. (8), with k1 := kp/kd and
k2 := kv/kd. Regarding the choice of ū, we implemented the same strategy as in Xin et al. (2013),
namely

ū =
kE(E − E⋆)Ξ

kd(kdM22 + kE(E − E⋆)|M |) ,
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Figure 3: Time evolution of the generalized coordinates q1 and q2. In dashed black is the real
controller, in green the LIP-based one, and in orange the nominal one.

with Ξ = |M |(kpq1 + kv q̇1) + kd(M12(c2 + g2)−M22(c1 + g1)). The values chosen for the con-
troller’s gains are kE = 0.8, kp = 0.31, kd = 0.029 and kv = 0.064. The energy-based controller
is switched to the LQR when the Pendubot reaches a neighborhood of the vertical equilibrium,
described by the condition |q1|+ |q2|+ 0.1|q̇1|+ 0.1|q̇2| < ϵ, with ϵ = 0.6.

The feedback matrix K of the LQR controller is computed using the lqr routine of the Python
Control Systems Toolbox with Q = I and R = 100, obtaining K = [8.2 8.2 1.8 1.2]. The response
of the LIP-based controller is compared against the response given by the true model and a nominal
model. In the latter, we considered uncertain knowledge of the system’s parameters, assuming that
m1 = 0.315 kg, m2 = 0.285 kg, l1 = 20.4 cm, and l1 = 19.2 cm. The DeLaN estimator has
not been considered for this task, since it does not provide the possibility to implement the LQR
controller. Fig. 3 depicts the time evolution of the joints’ variables. We can notice that the LIP based
controller is capable of swinging up and balancing the system and that the trajectory produced is
almost identical to the one we obtain using the true model. With the nominal model we are still able
to achieve the same goal, however the performances of this controller are worse than the data-driven
ones. The swing-up time needed to reach a neighborhood of the vertical position and switch to the
LQR is higher. Also, the stabilizing controller takes more time, with a larger overshoot.

5. Conclusions and future works

In this paper, we extended our GP-based PI inverse dynamics estimator, named Lagrangian Inspired
Polynomial estimator, to modeling and control of UR. Differently from standard GP-based black-
box models, the LIP estimator, besides deriving an inverse dynamics model in a black-box fashion,
can also estimate the different dynamics components and potential and kinetic energies. Thanks
to these properties, the resulting model can rely on model-based controllers from control theory to
solve control tasks for UR. The proposed strategy has been compared in simulation with state-of-art
solutions, confirming the effectiveness of the proposed strategy.
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