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Abstract
Transformers are a class of autoregressive deep learning architectures which have recently
achieved state-of-the-art performance in various vision, language, and robotics tasks. We
revisit the problem of Kalman Filtering in linear dynamical systems and show that Trans-
formers can approximate the Kalman Filter in a strong sense. Specifically, for any observ-
able LTI system we construct an explicit causally-masked Transformer which implements
the Kalman Filter, up to a small additive error which is bounded uniformly in time; we call
our construction the Transformer Filter. Our construction is based on a two-step reduction.
We first show that a softmax self-attention block can exactly represent a Nadaraya–Watson
kernel smoothing estimator with a Gaussian kernel. We then show that this estimator
closely approximates the Kalman Filter. We also investigate how the Transformer Filter
can be used for measurement-feedback control and prove that the resulting nonlinear con-
trollers closely approximate the performance of standard optimal control policies such as
the LQG controller.

1. Introduction

Transformers are a class of autoregressive deep learning architectures designed for various
sequence modelling tasks, first introduced in Vaswani et al. (2017). Transformers have
quickly emerged as the best performing class of deep learning models across a variety of
challenging domains, including computer vision Dosovitskiy et al. (2020), natural language
processing Yang et al. (2019), and robotics Brohan et al. (2022), and have also been studied in
the context of reinforcement learning and decision-making (e.g. Chen et al. (2021); Lee et al.
(2023); Lin et al. (2023); Zheng et al. (2022)). While the empirical successes of Transformers
are exciting, we still lack a formal theory that explains what Transformers can do and why
they work. In this paper, we study how Transformers can be used for filtering and control
in linear dynamical systems. We ask perhaps the most basic question one could ask: can a
Transformer be used for Kalman Filtering? The Kalman Filter is foundational in optimal
control and a crucial component of the Linear-Quadratic-Gaussian (LQG) controller. If
Transformers were unable to perform Kalman Filtering, then the use of Transformers in
signal processing and control would be suspect; conversely, establishing that Transformers
can indeed perform Kalman Filtering is a crucial first step towards establishing the viability
of Transformers in these domains.

In the mathematical theory of deep learning, three questions naturally arise. First, which
functions can a given deep learning architecture represent? Second, when trained on data,
what function does the deep learning system actually learn? Lastly, how well does this
learned function generalize on new data? We focus on the first of these questions and leave
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the other two for future work. Specifically, we investigate the following questions. First, is
the nonlinear structure of a Transformer compatible with a Kalman Filter at all? This is not
obvious; it is possible a priori that no matter how a Transformer is implemented, the softmax
nonlinearity in the self-attention block will cause the state estimates of the Transformer
and the Kalman Filter to diverge over time. Second, if it is possible to represent the
Kalman Filter with a Transformer, what would that Transformer look like? How should the
states and observations be represented within the Transformer? It is known that positional
encoding improves the performance of Transformers in some tasks - is it necessary for Kalman
Filtering? How large must the Transformer must be, e.g., how large must the embedding
dimension be, and how many self-attention blocks are required?

1.1. Key contributions

We construct an explicit Transformer which implements the Kalman Filter, up to a small
additive error; we call our construction the Transformer Filter. Our construction is based
on a two-step reduction. First, we show that a self-attention block can exactly represent a
Nadaraya–Watson kernel smoothing estimator with a Gaussin kernel. We select a specific
covariance in our Gaussian kernel with a system-theoretic interpretation: it measures how
closely a previous state estimate matches the most recent state estimate, where the measure
of “closeness" is the ℓ2 distance between the one-step Kalman Filter updates using each of
the state estimates. The kernel takes as inputs nonlinear embeddings of the previous state
estimates and observations; these embeddings have quadratic dependence on the size of the
underlying state-space model. In particular, if the state-space model has an n-dimensional
state and p-dimensional observations, the kernel we construct takes as input embeddings
of dimension O((n + p)2). The second step in our construction is to show that this kernel
smoothing algorithm approximates the Kalman Filter in a strong sense. Specifically, for
every ε > 0, we show that by increasing a temperature parameter β in our kernel, we can
ensure that the sequence of state estimates generated by the Transformer Filter is ε-close
to the sequence of state estimates generated by the Kalman Filter. A noteworthy aspect of
our construction is that it does not use any positional embedding; permuting the history of
state estimates and observations has no effect on the state estimates generated in subsequent
timesteps.

We next investigate how the Transformer Filter can be incorporated into a measurement-
feedback control system. A key technical challenge is to understand the closed-loop dynamics
that are induced by the Transformer Filter; since the state-estimates produced by the Trans-
former Filter are a nonlinear function of the observations, the resulting closed-loop map is
also nonlinear. This means that standard techniques for establishing stability of the system,
such as bounding the eigenvalues of the closed-loop map, cannot be used. We show that
the Transformer Filter can closely approximate an LQG controller, in the following sense:
for every ε > 0, we construct a controller using the Transformer Filter which generates a
state sequence that is ε-close to the state sequence generated by the LQG controller. A
consequence of this result is that the controllers we construct are weakly stabilizing in the
following sense; while they may not drive the state all the way to zero, they are guaranteed
to drive the state into a small ball centered at zero. Our result also implies that the cost
incurred by our new controller can be driven arbitrarily close to the optimal cost achieved by
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the LQG controller. All of our approximation results also hold when the reference algorithm
is taken to be an H∞ filter or H∞ controller.

2. Preliminaries

2.1. Filtering and Control

The first problem we consider is Filtering in Linear Dynamical Systems. In this problem,
we consider a partially observed linear system

xt+1 = Axt + wt, yt = Cxt + vt,

where xt ∈ Rn is an unknown state and yt ∈ Rp is a noisy linear observation of the state; the
variables wt vt are exogenous disturbances which perturb the state and observation. The
state is initialized at time t = 0 to some fixed state x0. The task of filtering is to sequentially
estimate the state sequence given the observation sequence. We focus on the strictly causal
setting, where the filtering algorithm estimates the state xt after observing y0, . . . , yt−1. The
best-known algorithm for filtering in linear dynamical systems is undoubtedly the Kalman
Filter, which is the mean-square-optimal linear filter when the disturbances are stochastic.
More precisely, if {wt}t≥0 and {vt}t≥0 are assumed to be independent, white noise processes,
then the estimate x̂⋆t produced by the Kalman Filter satisfies

x̂⋆t = inf
z
E
[
∥z − xt∥2

]
,

where the infimum is taken over all linear functions z(y0, . . . yt) of the observations. In
the special case where the disturbances are Gaussian, the Kalman Filter estimate is also
a maximum likelihood estimate of the state conditioned on the observations. The Kalman
Filter has the following recursive form: the prediction of the next state given the observations
y0, . . . yt−1 is

x̂⋆t = (A− LC)x̂⋆t−1 + Lyt−1, (1)

where L is a fixed matrix called the Kalman gain and we initialize x⋆0 = x0. We also note that
the H∞ filter has an identical recursive form to the Kalman Filter, except with a different
gain matrix L (Hassibi et al. (1999)).

The second problem we consider is Measurement-Feedback Control in Linear Dynamical
Systems. In this problem, we again consider a partially observed linear system, but the
system is now augmented to include a control input ut ∈ Rm:

xt+1 = Axt +But + wt, yt = Cxt + vt.

The goal of the controller is to select the control action ut to regulate the state using only the
observations y0, . . . , yt. In the Linear-Quadratic-Gaussian (LQG) model, the disturbances
{wt}t≥0 and {vt}t≥0 are once again assumed to be independent, white noise processes, and
the control actions are selected to minimize the infinite-horizon cost

lim
T→∞

1

T
E

{wt,vt}t≥0

[
T∑
t=0

x⊤t Qxt + u⊤t Rut

]
.
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It is known that in this case the optimal policy is to use the Kalman Filter to produce a
state estimate x̂⋆t and then to pick the control actions as a linear function of the estimate
(Hassibi et al. (1999)). The Kalman Filter estimate is adjusted to account for the influence
of the control input, so the LQG policy is

x̂⋆t = (A+BK − LC)x̂⋆t−1 + Lyt−1, ut = Kx̂⋆t , (2)

where K is called the state-feedback matrix. Other measurement-feedback controllers of the
general form (2) include the H∞ measurement-feedback controller, which uses a different
choice of L and K (Hassibi et al. (1999)).

We assume that the pair (A,C) is observable, and the pair (A,B) is controllable; we refer
to Kailath et al. (2000) for background on linear systems. We let ∥A∥ denote the spectral
norm of a matrix A. We make repeated use of the following facts.

Fact 1 Let A ∈ Rq×q be any stable matrix, i.e., any matrix with spectral radius strictly less
than 1. There exist matrices M, θ such that A = MθM−1 and ∥θ∥ < 1.

Fact 2 Let (L,K) represent any stabilizing linear measurement-feedback controller. The
matrices A− LC and A+BK are both stable.

2.2. Transformers and Softmax Self-Attention

A Transformer is a deep learning architecture which alternates between self-attention blocks
and Multilayer Perceptron (MLP) blocks. In this paper we focus on Transformers with a
single self-attention block, followed by a single MLP block; furthermore, we always assume
that the weights of the MLP block are chosen so that the MLP block represents the identity
function. The interesting part of our construction hence lies in how we choose the parameters
of the self-attention block.

A general softmax self-attention block has the following form. It takes as input a series
of tokens q0, . . . , qN and a query token q, and outputs

F (q0, . . . qN ; q) =

∑N
i=0 exp (q

⊤Aqi)Mqi∑N
j=0 exp (q

⊤Aqj)
,

where A and M are parameters of the Transformer; we refer to Phuong and Hutter (2022)
for an excellent overview of Transformers. In our paper we consider causally masked Trans-
formers, which means that we think of the tokens as being indexed by time and at each
timestep t we drop all the tokens which have not yet been observed, only keeping those up
until time t. In our results, we also drop all but the last H observed tokens, to obtain the
self-attention block

F (qt−H+1, . . . qt; q) =

∑t
i=t−H+1 exp (q

⊤Aqi)Mqi∑t
j=t−H+1 exp (q

⊤Aqj)
.

In our construction, the tokens qi are embeddings of the the i-th state-estimate and the i-th
observation, i.e., qi = ϕ (x̂i, yi) , where ϕ is a nonlinear embedding map. The Transformer
Filter generates state estimates recursively; it takes as input the past H state estimates and

4



Can a Transformer Represent a Kalman Filter?

observations (x̂t−H , yt−H), . . . , (x̂t−1, yt−1), embeds them as tokens using the map ϕ, feeds
these tokens qt−H+1, . . . , qt into the self-attention block, and outputs a new state estimate
x̂t = F (qt−H+1, . . . qt; q), where we take q = qt. We note that the Kalman Filter has a
similar recursive form; it uses the previous estimate x̂t−1 and the previous observation yt−1

to generate the new estimate x̂t. In fact, in the special case when H = 1, the Transformer
Filter exactly coincides with the Kalman Filter.

3. Nadaraya–Watson Kernel Smoothing via Softmax Self-Attention

Our first result is that the class of Transformers we study is capable of representing a
Nadaraya–Watson estimator with a Gaussian kernel. Intuitively, given data {zi}Ni=0 and a
query point z, a Gaussian kernel smoothing estimator outputs a linear combination of the
data, weighted by how close each datapoint zi is to z, where the measure of “closeness" is
determined by a fixed covariance matrix Σ. We refer to Murphy (2012) for more background
on kernel smoothing and the Nadaraya–Watson estimator.

Theorem 1 Fix Σ ∈ Rd×d and W ∈ Rk×d. Suppose we are given z0, . . . , zN ∈ Rd and
z ∈ Rd. Define the Nadaraya–Watson estimator

F (z0, . . . zN ; z) =

∑N
i=0 exp (−(z − zi)

⊤Σ(z − zi))Wzi∑N
j=0 exp (−(z − zj)⊤Σ(z − zj))

. (3)

The function F can be represented by a softmax self-attention block of size O(d2H). In
particular, there exists a nonlinear embedding map ϕ : Rd → Rℓ and matrices M ∈ Rk×ℓ

and A ∈ Rℓ×ℓ such that

F (z0, . . . zN ; z) =

∑N
i=0 exp (q

⊤Aqi)Mqi∑N
j=0 exp (q

⊤Aqj)
,

where we define qi = ϕ(zi) and q = ϕ(z) and set ℓ =
(
n
2

)
+ n+ 1.

We defer the proof of this Theorem to the full version of our paper, which is available on
arXiv.

4. Filtering

We ask:

Can a Transformer implement the Kalman Filter?

Naturally, since a Transformer is a complicated nonlinear function of its inputs, it is too
much to expect a Transformer to exactly represent a Kalman Filter. We instead ask the
following approximation-theoretic question: for any ε > 0, does there exist a Transformer
which generates state estimates which are ε-close to the state estimates generated by the
Kalman Filter, uniformly in time?
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We consider the one-layer Transformer whose MLP block is the identity function and
whose self-attention block takes as input embeddings of the past H state estimates and
observations [

x̂t−H

yt−H

]
, . . . ,

[
x̂t−1

yt−1

]
and outputs the estimate

x̂t =

t∑
i=t−H+1

αi,tx̃i,

where we define

αi,t =
exp (−β∥x̃i − x̃t∥2)∑t

j=t−H+1 exp (−β∥x̃j − x̃t∥2)
, x̃i =

[
A− LC L

] [x̂i−1

yi−1

]
,

for all t ≥ 1 and set x̂0, x̃0 = x0. We adopt the convention that x̂i, yi = 0 for all i < 0. We
call this filter the Transformer Filter; it is easy to check that this filter is a special case of
the Gaussian kernel smoothing estimator (3) and hence by Theorem 1 can be represented
by a Transformer. The variables x̃i have the following interpretation; they are the estimates
that would be generated by the Kalman Filter recursion (1) if the previous Kalman Filter
estimate x̂⋆i−1 were replaced by the Transformer estimate x̂i−1. In that sense, the variables
x̃i interpolate between the Kalman Filter and the Transformer Filter. We prove:

Theorem 2 For each ε > 0, there exists a β > 0 such that the state estimates {x̂t}t≥0

generated by the Transformer Filter satisfy

∥x̂t − x̂⋆t ∥ ≤ ε

at all times t ≥ 0, where {x̂⋆t }t≥0 are the state-estimates generated by the Kalman Filter (1).
In particular, it suffices to take

β ≥ H2κ2

2e(1− ∥θ∥)2ε2
,

where M, θ are n × n matrices such that A − LC = MθM−1 and ∥θ∥ < 1, and we define
κ = ∥M∥∥M−1∥.

Proof We first show that for all ε1 > 0, there exists a β such that

∥x̂t − x̃t∥ ≤ ε1

at all times t ≥ 0. Fix any ε1 > 0 and any t ≥ 1. Notice that for each i ∈ {t−H +1, . . . , t},
the following inequality holds:

αi,t < exp (−β∥x̃i − x̃t∥2).

This is because
t∑

j=t−H+1

exp (−β∥x̃j − x̃t∥2) > 1.
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It follows that

∥x̂t − x̃t∥ =

∥∥∥∥∥
t∑

i=t−H+1

αi,t(x̃i − x̃t)

∥∥∥∥∥
≤

t∑
i=t−H+1

αi,t∥x̃i − x̃t∥

<

t∑
i=t−H+1

exp (−β∥x̃i − x̃t∥2)∥x̃i − x̃t∥

≤ Hmax
γ≥0

exp (−βγ2)γ,

where we used the fact that
∑t

i=t−H+1 αi,t = 1 in the first step. It is easy to check that the
function f(γ) = He−βγ2

γ is strictly increasing in the interval (0, (2β)−1/2) and strictly de-
creasing in the interval ((2β)−1/2,∞) and hence takes its maximum value of He−1/2(2β)−1/2

at γ = (2β)−1/2. It follows that ∥x̂t − x̃t∥ ≤ ε1 as long as β ≥ H2

2eε21
.

We now show that this result implies Theorem 2. Fix ε > 0 and any t ≥ 0. Set ε1 =
(1−γ)ε

κ and β ≥ H2

2eε21
. Using the preceding argument, this suffices to ensure that ∥x̂t−x̃t∥ ≤ ε1

for all t ≥ 0. We see that

∥x̂t − x̂⋆t ∥ ≤ ∥x̂t − x̃t∥+ ∥x̃t − x̂⋆t ∥
≤ ∥x̂t − x̃t∥+ ∥(A− LC)(x̂t−1 − x̂⋆t−1)∥

Proceeding recursively, we obtain the bound

∥x̂t − x̂⋆t ∥ ≤
t∑

i=0

∥(A− LC)i∥∥x̂t−i − x̃t−i∥

≤ ε1

t∑
i=0

∥(A− LC)i∥.

Using the fact that A− LC = MθM−1 with ∥M∥∥M−1∥ = κ and ∥θ∥ < 1, we see that

∥x̂t − x̂⋆t ∥ ≤ ε1

t∑
i=0

∥(MθM−1)i∥

≤ κε1

t∑
i=0

∥θ∥i

≤ κε1
1− ∥θ∥

= ε.

We note that the only property of the gain matrix L we used is that A− LC is stable;
since this property also holds for the H∞-optimal choice of L, our proof also shows that a
Transformer can approximate an H∞-optimal filter.

7



5. Control

We ask:

Can the Transformer Filter be used in place of the Kalman Filter in the LQG controller?

Since the Transformer Filter only represents the Kalman Filter approximately, we cannot
hope to implement the LQG controller exactly. Instead, we ask if the closed-loop dynamics
generated by the Transformer can closely approximate the closed-loop dynamics generated
by the LQG controller in the following sense: for any ε > 0, can we guarantee that the
states generated by the Transformer are ε-close to the states generated by the Transformer,
uniformly in time? We emphasize that this is far from obvious, and in particular does not
follow directly from Theorem 2. Even if the state-estimates generated by the Transformer
Filter are close to those generated by the Kalman Filter, it does not automatically follow
that the resulting control policies will generate similar state trajectories. This is because
any difference in state estimates will lead to a difference in the control actions, which in turn
affects future states, future observations, and so on; in effect, minute deviations between the
two state estimates could be amplified over time, leading to diverging trajectories. In order
to show that this scenario does not occur, we need to analyze the stability of the closed-loop
map induced by the Transformer Filter. This is challenging, because this map is nonlinear,
and hence we cannot use standard techniques from linear systems theory.

We consider the controller given by

ut = Kx̂t

where we set

x̂t =

t∑
i=t−H+1

αi,tx̃i,

and we define

αi,t =
exp (−β∥x̃i − x̃t∥2)∑t

j=t−H+1 exp (−β∥x̃j − x̃t∥2)
, x̃i = (A+BK − LC)x̂i−1 + Lyi−1.

We initialize the state of the system driven by the Transformer system to match the state
of the system driven by the LQG policy (i.e., x0 = x⋆0) and similarly initialize the state
estimates to be the same (x̂0 = x̂⋆0). We also initialize x̃0 = x̂0. We prove:

Theorem 3 For each ε > 0, there exists a β > 0 such that the states {xt}t≥0 generated by
the Transformer Filter satisfy

∥xt − x⋆t ∥ ≤ ε

at all times t ≥ 0, where {x⋆t }t≥0 are the states generated by the optimal LQG control policy
(2). In particular, it suffices to take

β ≥ CH2κ2

2e(1− ∥Θ∥)2ε2

where we define

C = 2∥BK∥2 + 2∥A+BK − LC∥2, κ = ∥M∥∥M−1∥,
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and M,Θ are 4n× 4n matrices such that A = MΘM−1 and ∥Θ∥ < 1, and we define

A =


A BK 0 0
LC A+BK − LC 0 0
0 0 A BK
0 0 LC A+BK − LC

 .

Before we turn to the proof, we note an interesting consequence of this result: the
controller induced by the Transformer Filter is weakly stabilizing in the sense that no matter
how x0 is chosen, if the disturbances are zero then the states generated by the controller
will eventually be confined to a ball of radius ε centered at the origin. This follows from the
fact that the LQG controller is stabilizing (i.e., it drives the state to zero in the absence of
noise).
Proof An identical argument to that appearing in the proof of Theorem 2 establishes that
for all ε1 > 0, choosing

β ≥ H2

2eε21

guarantees that
∥x̂t − x̃t∥ ≤ ε1

at all times t ≥ 0. The closed-loop dynamics can be written as
xt+1

x̃t+1

x⋆t+1

x̂⋆t+1

 = A


xt
x̃t
x⋆t
x̂⋆t

+ ηt + νt (4)

where we set

ηt =


BK(x̂t − x̃t)

(A+BK − LC)(x̂t − x̃t)
0
0

 , νt =


wt

Lvt
wt

Lvt


for all t ≥ 0. We emphasize that while the dynamics (4) may superficially appear linear,
the variable ηt depends on x̂t, which itself is a nonlinear function of the H observations
yt−H+1, . . . , yt, so that the overall behavior of the closed-loop system is nonlinear. In effect,
we have pushed all of the nonlinearity and memory in the closed-loop system into the
variables {ηt}t≥0.

The matrix A is stable. To see this, notice that

A = Q−1SQ,

where we define the 4n× 4n block matrices

Q =


I −I 0 0
0 I 0 0
0 0 I −I
0 0 0 I

 , S =


A− LC 0 0 0
LC A+BK 0 0
0 0 A− LC 0
0 0 LC A+BK

 .
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It is clear that S is stable, because S is block lower-triangular and the matrices A−LC and
A + BK appearing on the diagonal of S are both stable. Since A is similar to S and S is
stable, A must also be stable. It follows that A = MΘM−1 for some 4n × 4n matrices M
and Θ such that ∥Θ∥ < 1.

Fix t ≥ 1 and ε > 0. Set

ε1 =
ε(1− ∥Θ∥)

κ
√
2∥BK∥2 + 2∥A+BK − LC∥2

, β ≥ H2

2eε21
.

The closed-loop dynamics (4) imply that
xt
x̃t
x⋆t
x̂⋆t

 = At


x0
x̃0
x⋆0
x̂⋆0

+

t−1∑
i=0

At−1−i(ηi + νi).

It follows that

xt − x⋆t =
[
I 0 −I 0

]At


x0
x̃0
x⋆0
x̂⋆0

+
t−1∑
i=0

At−1−iνi

+
[
I 0 −I 0

] t−1∑
i=0

At−1−iηi.

Notice that the first term is zero; this follows from the assumption that we initialize x0 = x⋆0
and x̃0 = x̂0 = x̂⋆0 and the block-diagonal structure of A. We see that

∥xt − x⋆t ∥ ≤
∥∥[I 0 −I 0

]∥∥ ·
t−1∑
i=0

∥At−1−i∥∥ηi∥

=
∥∥[I 0 −I 0

]∥∥ ·
t−1∑
i=0

∥∥∥(MΘM−1
)t−1−i

∥∥∥ ∥ηi∥
≤ ε1 · κ

√
2∥BK∥2 + 2∥A+BK − LC∥2

t−1∑
i=0

∥Θ∥t−1−i

≤
ε1 · κ

√
2∥BK∥2 + 2∥A+BK − LC∥2

1− ∥Θ∥
≤ ε,

where in the third step we used the fact that ∥x̃i − x̂i∥ ≤ ε1 for all i ≥ 0.

We note that the only property of the gain matrices L and K we used is that A−LC and
A+BK are stable; since this property also holds for the H∞-optimal choice of L and K, our
proof also shows that a Transformer can approximate an H∞-optimal measurement-feedback
controller.
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