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Abstract
We focus on the problem of uncertainty informed allocation of medical resources (vaccines) to
heterogeneous populations for managing epidemic spread. We tackle two related questions: (1)
For a compartmental ordinary differential equation (ODE) model of epidemic spread, how can we
estimate and integrate parameter uncertainty into resource allocation decisions? (2) How can we
computationally handle both nonlinear ODE constraints and parameter uncertainties for a generic
stochastic optimization problem for resource allocation? To the best of our knowledge current liter-
ature does not fully resolve these questions. Here, we develop a data-driven approach to represent
parameter uncertainty accurately and tractably in a novel stochastic optimization problem formula-
tion. We first generate a tractable scenario set by estimating the distribution on ODE model param-
eters using Bayesian inference with Gaussian processes. Next, we develop a parallelized solution
algorithm that accounts for scenario-dependent nonlinear ODE constraints. Our computational ex-
periments on two different non-linear ODE models (SEIR and SEPIHR) indicate that accounting
for uncertainty in key epidemiological parameters can improve the efficacy of time-critical alloca-
tion decisions by 4-8%. This improvement can be attributed to data-driven and optimal (strategic)
nature of vaccine allocations.
Keywords: non-linear epidemiological models, ODEs, Parameter estimation, Bayesian Inference,
Gaussian Processes, Gradient matching, resource allocation.

1. Introduction
In this paper we study the problem of uncertainty informed optimal resource allocation to control
the spread of an infectious disease such as Covid-19. We develop a data-driven, scalable and ODE
model agnostic approach while accounting for uncertainty for the vaccine allocation problem. Our
approach is flexible in that it can be easily adapted to other control strategies such as imposing lock-
downs Birge et al. (2022); Cianfanelli et al. (2021) and allocation of other resources such as medical
personnel, supplies, testing facilities Somers and Manchester (2023); Köhler et al. (2020) & etc.

The vaccine allocation problem has been well studied in the literature. This includes earlier
works like Brøgger (1967); Becker (1975) to more recent optimization based methods like Bertsi-
mas et al. (2020); Fu et al. (2021). Researchers have also studied ways to incorporate uncertainty
through stochastic epidemiological modelling Clancy and Green (2007); Fu et al. (2021) , stochas-
tic optimization with uncertain parameters Tanner et al. (2008); Yarmand et al. (2014) and robust
optimization Han et al. (2015). However, prior works have two major limitations:
i) Most papers such as Tanner et al. (2008); Yarmand et al. (2014); Yin and Buyuktahtakin (2021);

Clancy and Green (2007) which claim to account for uncertainty, do not provide a principled
data-driven method to model (and estimate) uncertainty. They simply model the allocation prob-
lem as a stochastic program under the assumption that a scenario-set exists without outlining a
principled procedure on how to generate or estimate this scenario-set from data. Clearly, this
does not effectively solve the problem of uncertainty informed vaccine allocation.
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ii) The presence of product term between the susceptible (S) and infected (I) population is a key
characteristic of most compartmentalized epidemiological ODE models Bertsimas et al. (2020);
Hayhoe et al. (2021). Due to this non-linearity, the resource allocation problem with the dis-
cretized ODEs results in a non-convex quadratic program. This is difficult to solve even in the
nominal case i.e. without accounting for uncertainty, let alone uncertainty informed. To avoid
the product term, previous papers Tanner et al. (2008); Yarmand et al. (2014); Yin and Buyuktah-
takin (2021); Yin et al. (2023) resort to using simple (linear) epidemiological models so that the
discretized ODEs result in a linear program which is easy to solve. Such linear models are lim-
ited in their ability to capture the true underlying non-linear dynamics of disease transmission;
hence the resulting allocation strategies are not globally optimal.

In this work, we address both of the above limitations by making following novel contributions:
i) We make progress in resolving the issue of incorporating parameter uncertainty in the resource

(vaccine) allocation problem in a data-driven manner. We do this by making connections with
the ODE parameter estimation literature with Bayesian inference using GPs with gradient match-
ing methods. We show that the posterior-distributions can be used to represent uncertainty
through a tractable scenario-set.

ii) We provide a novel formulation for the uncertainty informed vaccine allocation problem as a
stochastic optimization problem. We develop technical results for the feasibility and decompos-
ability of this stochastic program.

iii) We develop a parallelized, scalable iterative solution algorithm to solve the stochastic program
while retaining the original non-linear, continuous-time ODE model constraints. Due to this
ODE model agnostic nature of our approach, we are also able to account for different levels of
mobility within different sub-populations and the temporal variations in the onset of the pan-
demic in each of these sub-populations.

iv) We provide extensive empirical results on two different ODE models i.e. the SEIR and the
SEPIHR models. Our results demonstrate that with optimal vaccine allocation, peak infections
can be reduced by around 35%. More importantly, a further gain of around 4 to 8% can be
achieved when incorporating uncertainty.

2. Epidemiological Modelling and Pitfalls of Classical Parameter estimation
Mathematical modelling of pandemics (including epidemics) has an extensive literature going back
to 1960s Brøgger (1967); Becker (1975). A fairly recent and concise overview can be found at
Brauer (2017). More recently, spread of epidemics over networks has been well studied Torres et al.
(2017); Nowzari et al. (2016, 2017); Preciado et al. (2013, 2014); Somers and Manchester (2022).
Throughout literature, modelling the spread of different diseases using a compartmentalized model
through a set of time-dependent ordinary differential equations (ODEs) is common and widely used
Brauer (2008); Paré et al. (2020); Newton and Papachristodoulou (2020). Following the recent
literature on covid-19 Wang et al. (2021); Li et al. (2022); Acemoglu et al. (2021); Cianfanelli et al.
(2021); Cramer et al. (2022) we also adopt the compartmentalized modelling approach.

A popular epidemiological model which we use is the SEIR model, shown in fig. 1. In this
model the entire population (of size N) is divided into four states: Susceptible (S), Exposed (E),
Infected (I) and Recovered (R). The evolution of each state or the system dynamics is governed by
equations in (1).

In (1), α, β, and γ are the model parameters and control the rate at which fraction of the popula-
tion moves from one compartment to another. These model parameters are to be estimated from the
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Fig. 1: SEIR model.

dS(t)

dt
:= Ṡ(t) = − α

N
S(t)I(t),

dI(t)

dt
:= İ(t) = βE(t)− γI(t)

dE(t)

dt
:= Ė(t) =

α

N
S(t)I(t)− βE(t),

dR(t)

dt
:= Ṙ(t) = γI(t)

 (1)

available time-series data which we discuss subsequently. Mobility levels can be easily incorporated
by adjusting the infection rate α accordingly.

Fig. 2: SEPIHR model

Note that we use SEIR model only as a prototypical model, how-
ever, all our subsequent discussion including technical results and so-
lution algorithm holds true for other ODE based models as well. In
fact, in addition to the SEIR model, we also provide results on a second
model, i.e. the SEPIHR model Rohith (2021) with additional states P
(for protective quarantine) and H (for hospitalised quarantined) shown
in fig. 2. The functional form of ODEs for this model is provided in supplementary information
(SI).

Given the time-series data such as number of daily infections and deaths, the main question
arises how to estimate SEIR model parameters i.e. α, β, and γ from this data. Therefore, we next
discuss the commonly used non-linear least squares approach for ODE parameter estimation and its
associated pitfalls, thus providing motivation for adopting Bayesian viewpoint.

2.1. Classical Parameter Estimation: Non-linear Least Squares (NLLS)
Before describing the NLLS approach, we briefly describe the initial-value problem (IVP) in the
context of ODEs. For a given (or fixed) set of parameter values and initial conditions (denoted x0),
a systems of ODEs can be numerically solved using an off-the-shelf ODE solver such as ODE45 in
matlab or ODEINT in python. The solved system (also referred to as simulation) provides the value
(or estimates) of different states at the specified time-stamps.

For a given set of parameters, using the estimated state values obtained by solving the IVP and
time-series data, discrepancy or the least-squares error can be computed. This can be turned into
a optimization problem where we want to find those values of the model parameters for which the
least-squares error is minimized. L-BFGS is commonly used to solve such problems Li et al. (2022).
Mathematically for SEIR model, the NLLS problem can be written as follows:

min
α,β,γ

N∑
t=1

(
(ytR −R(t))2 + (ytI − I(t))2

)
s.t. {(1)} ∀ t ∈ {1, . . . , N} and [S(0), E(0), I(0), R(0)] = x0

where ytR and ytI denote count data for infected and removed individuals at time t. The optimal
parameters obtained after solving NLLS can then be used to re-solve the ODE system to make
predictions for future time as well.

Why account for Uncertainty? NLLS discussed above can provide sufficiently reliable point
estimates of the parameter values and predictions of new cases into the future provided the time-
series data is accurate. Using these point estimates resource (vaccine) allocation problem is to be
solved subsequently. The efficacy of the overall allocation solution in real-world is highly dependent
on the accuracy of the predicted point estimates which are only as good as the data from which
these estimates are generated. For Covid-19, the data reported by various private organizations and
government agencies can be severely biased, under-reported Kobilov et al. (2021) and erroneous
due to numerous reasons Angelopoulos et al. (2020). Reliance on these point estimates can result in
severe region-wide inefficiencies. To address these issues and also account for potential modelling
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errors, we incorporate uncertainty through Bayesian inference to estimate the joint-distribution of
ODE model parameters from data, which we discuss next.

3. Bayesian Parameter Estimation
Bayesian inference for estimating ODE parameters has been well studied in literature Ramsay et al.
(2007), however in the absence of closed form posterior and the requirement of solving the ODE
system in each sampling iteration makes inference difficult. To overcome this limitation, Calderhead
et al. (2009) proposed the use of Gaussian Processes (GPs) to model the evolution of a state over
time while exploiting the fact that derivative of a Gaussian process is also a Gaussian process. This
significantly helps in achieving tractability and allows Bayesian inference to be computationally
feasible. Following Calderhead et al. (2009), numerous other related works like Dondelinger et al.
(2013); Barber and Wang (2014); Macdonald et al. (2015); Niu et al. (2016); Gorbach et al. (2017);
Wenk et al. (2019, 2020) have been proposed which also employ the use of GPs to efficiently
estimate the parameters of a non-linear ODE system (for eg: SEIR model). We discuss some of
these works, in particular the approach of Wenk et al. (2019) which is useful to our problem setting.

Consider a set of K time-dependent states denoted as x(t) = [x1(t), . . . , xK(t)]T . The evolu-
tion of each of these K state over time is defined by a set of K time-dependent arbitrary differential
equations denoted as follows:

ẋi(t) =
dxi(t)

dt
= fi(x(t), θ, t) ∀ i ∈ {1, . . . ,K} (3)

where the functional form of fi is known (for eg. SEIR model). Noisy observations (i.e. the
time-series data) of each of the K states (denoted y(t) = [y1(t), . . . , yK(t)]T ) at N different time
points where t1 < · · · < tN are available, i.e.

y1(t) = x1(t) + ϵ1(t)
...

yK(t) = xK(t) + ϵK(t)

 ,
where ϵi(t) ∼ N (0, σ2

i ).

∀ t ∈ {t1, . . . , tN}

Let ϵ(t) = [ϵ1(t), . . . , ϵK(t)]T , then in vector notation we have y(t) = x(t) + ϵ(t). As there are N
observations for each of the K states, for a clear exposition we introduce matrices of size K × N
as follows: X = [x(t1), . . . , x(tN )] and Y = [y(t1), . . . , y(tN )]. We can then write :

P (Y|X, σ) =
∏
k

∏
t

P (yk(t)|xk(t), σ) =
∏
k

∏
t

N (yk(t)|xk(t), σ2) (4)

Calderhead et al. (2009) proposed placing a Gaussian process prior on xk. Let µk and ϕk be the
hyper-parameters of this Gaussian process, we can then write:

p(xk|µk,ϕk) = N (xk|µk,Cϕk
) (5)

In (5), Cϕk
, denotes the Kernel (or the covariance) matrix for a predefined kernel function with

hyper-parameters ϕk. As differentiation is a linear operator therefore the derivative of a Gaussian
process is also a Gaussian process (see ch-9 in Rasmussen (2006) and Solak et al. (2002)). Therefore
a Gaussian process is closed under differentiation and the joint distribution of the state variables xk
and their derivatives ẋk is a multi-variate Gaussian distribution as follows:[

xk
ẋk

]
∼ N

([
µk

0

]
,

[
Cϕk

,′ Cϕk

C′
ϕk
,C′′

ϕk

])
(6)

where Cϕk
and C′′

ϕk
are the kernel matrices for the state xk and its derivative ẋk respectively,

while ′Cϕk
and C′

ϕk
are the cross-covariance kernel matrices between the states and their deriva-

tives. Functional form of the entries of Cϕk
,C′′

ϕk
,′ Cϕk

and C′
ϕk

are provided in SI. Importantly,

4

https://arxiv.org/pdf/2307.00032#page=14


UNCERTAINTY INFORMED OPTIMAL RESOURCE ALLOCATION

this implies that using the Gaussian process defined on the state variables xk, we can also make
predictions about their derivatives ẋk. From (6), we can compute the conditional distribution of the
state derivatives as: p(ẋk|xk,µk,ϕk) = N (ẋk|mk,Ak) (7)

where mk =′ Cϕk
Cϕk

−1(xk − µk); Ak = C′′
ϕk

−′ Cϕk
Cϕk

−1C′
ϕk

. Note that p(ẋk|xk,µk,ϕk)
corresponds to the second, i.e. GP part of the graphical model in fig. 3.

ẋθ x

λ

ODE model

ẋ x y

ϕ σ

GP model
Fig. 3

Using the functional form of the ODE system in (3) and
with state specific Gaussian additive noise λk, we can write

p(ẋk|X,θ, λk) = N (ẋk|fk(X,θ), λkI) (8)

where fk(X,θ) = [fk(x(t1),θ), . . . , fk(x(tN ),θ)]T . Note that
(8) corresponds to the ODE part of the graphical model in the
fig. 3.

ẋ x y

ϕ σ

F1F2λ θ

Fig. 4: Combined
model.

The two models p(ẋk|xk,µk,ϕk) in (7) and p(ẋk|X,θ, λk) in (8) are
combined through two new random variables F1 and F2, resulting in the
graphical model shown in fig. 4 Wenk et al. (2019). Considering a single
state (for notational simplicity), for given values of x and θ, F1 in fig.
4, represents the deterministic output of the ODEs, i.e. F1 = f(θ, x).
The value of p(F1|θ, x) can be written using the Dirac-delta function
(denoted δ(·)) as following:

p(F1|θ, x) = δ(F1 − f(θ, x)) (9)

Under the assumption that the GP model would be able to capture both, the true states and
their derivatives perfectly, then it would imply that F1 is same as ẋ, i.e. F1 = ẋ. But clearly this
assumption is unlikely to hold, therefore to account for any possible mismatch and small error in
the GP states and GP derivatives, this condition is relaxed so that:

F1 = ẋ + ϵ =: F2, where ϵ ∼ N (0, λI) (10)

The above argument regarding the the error in the states and derivatives of the GP model is
captured in the graphical model (fig. 4) through the use of the random variable F2. From a given
state-derivative ẋ obtained from the GP model, F2 is obtained after addition of Gaussian noise with
standard deviation λ. The probability density of F2 can then be written as

p(F2|ẋ, λ) = N (F2|ẋ, λI)) (11)

Note that the equality constraint in (10) is encoded in the graphical model using an un-directed edge
between F1 and F2. For the purpose of inference, this equality constraint is incorporated in the joint
density via the Dirac-delta function, i.e. δ(F1−F2). The joint-density of the whole graphical model
(fig. 4) is given as:

p(x, ẋ, y,F1,F2,θ|ϕ, σ, λ) =p(θ)p(x|ϕ)p(ẋ|x, ϕ)p(y|x, σ)p(F1|θ, x)p(F2|ẋ, λI)δ(F1 − F2) (12)

Finally, the marginal distribution of x,θ takes the following form:

p(x,θ|y,ϕ, σ, λ) = p(θ)×N (x|µ,Cϕ)×N (y|x, σ2I)×N (f(x,θ)|m,A + λI) (13)

3.1. Empirical Sampling Results
We now provide sampling results on the two disease-transmission ODE models: 1) SEIR model
(fig. 1) and 2) SEPIHR model (fig. 2).
SEIR: Using α = 0.9, β = 0.08 and γ = 0.1 (as true parameter values) we simulate the SEIR
model (eq:(1)) to get state values. We add zero-mean Gaussian noise with σ = 0.1 to each of
the simulated state values to generate our dataset. Using the data only for first 15 days (T =
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Fig. 5: SEIR: Empirical distribution after 3× 105 samples from the MCMC sampling procedure.

{1, . . . , 15}), we estimate the GP hyper-parameters for states using maximum-likelihood (see SI for
details). We then run the Metropolis-Hastings MCMC sampling procedure using the density from
eq: (13) to get our empirical posterior joint-distribution on α, β and γ. After removing the burn-in
samples, for the remaining 3 × 105 samples, we plot the marginal distributions along with their
mean and mode in fig. 5.
SEPIHR: This model has 5 parameters, i.e. α, β, δ1, γ1 and γ2, for which the joint-distribution is

to be estimated from data (see SI for model details). We use α = 1.1, β = 0.08, δ1 = 0.01, δ2 =
0.002, δ3 = 0.002, γ1 = 0.1, γ2 = 0.1 and γ3 = 0.06 as the true parameter values. Using the data
for only first 15 days, we follow the same sampling procedure as described previously for the SEIR
model. The marginal distributions along with their mean and mode are shown in fig. 6.

Fig. 6: SEPIHR: Empirical distribution after 3×105 samples from the MCMC sampling procedure.

We note that mode is very close to the true values in both the models, thus validating the ca-
pability of the sampling procedure in correctly estimating the parameter values. These empirical
samples can be used to construct the scenario-set (denoted Ω) to represent parameter uncertainty in
the vaccine allocation stochastic optimization formulation.

In a naive approach, each of the 3× 105 samples can be used to represent a real-world scenario.
However, working with such large sample size is computationally prohibitive and there is high
redundancy in the samples. In literature, this issue has been well-studied as an optimal-transport
problem Dupačová et al. (2003); Heitsch and Roemisch (2003); Rujeerapaiboon et al. (2022) and
is commonly resolved using k-means clustering. For theoretical and other details behind k-means
for optimal-transport formulation see SI. We also adopt the k-means approach and after performing
k-means clustering on the empirical 3× 105 samples, we generate our scenario-set Ω as follows:

Ω =
{
(αj , βj , γj , pj) ∀ j ∈ {1, . . . , k}

}
(14)

where αj , βj , γj denotes the location of the j-th centroid and pj denotes its associated probability.

Related literature: Before concluding this section, we briefly mention related literature. Varia-
tional inference (VI) based approach of Gorbach et al. (2017) provides improvements over Don-
delinger et al. (2013), however due to modelling assumptions is not suited for our work. The
optimization based gradient matching approaches of Ramsay et al. (2007); Liang and Wu (2008);
González et al. (2013); Niu et al. (2016); Wenk et al. (2020) and others like Gugushvili and Klaassen
(2012) only provide point-estimates. The generative modelling approach of Barber and Wang (2014)
suffers from identifiablity issues as explained by Macdonald et al. (2015). Approaches with differ-
ent sampling methods would include Kramer et al. (2014); Paun and Husmeier (2022); Huang et al.
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(2020); Calderhead and Girolami (2009, 2011) and approximation based methods would include
Toni et al. (2009); Alahmadi et al. (2020); Dass et al. (2017). Other VI based methods would in-
clude Roeder et al. (2019); Ghosh et al. (2021). Probabilistic numerics Hennig et al. (2015) based
methods include Tronarp et al. (2022) and Kersting et al. (2020). Teymur et al. (2018) showed the
use of probabilistic integrators for ODEs in parameter estimation. Chkrebtii et al. (2016); Vanlier
et al. (2013); Hug et al. (2013); Hauser et al. (2020) are other useful references.

4. Optimal Vaccine Allocation Formulation and Solution Algorithm
We now work towards formulating our optimization problem for vaccine allocation. Our goal is to
allocate vaccines (on a daily basis) to a set of K sub-populations, such that the maximum number of
total infections is minimized. This objective ensures that the peak of the pandemic is minimised as
much as possible in order to reduce the burden on the healthcare services particularly medical per-
sonnel at the height of the pandemic. The K sub-populations correspond to different geographical
regions such as nearby cities in a state. Let K = {1, . . . ,K}.

The spread of disease in each sub-population is modeled using a separate SEIR model. To
account for the vaccinated individuals, the SEIR model in fig. 1 is updated with a new compartment
(denoted by M) to represent the immune population and the updated model (fig. 7) is denoted by
SEIRM. Let Vk(t) represent the number of people vaccinated at time t in the k-th sub-population
and η be efficacy of the vaccine, then the ODEs corresponding to the SEIRM model of the k-th
sub-population are given by eq: (15).

Fig. 7: SEIRM model

Ṡk(t) = − ηVk(t)−
uk(t)α

Nk

(
Sk(t)− ηVk(t)

)( K∑
r=1

λk
rIr(t)

)
Ėk(t) =

uk(t)α

Nk

(
Sk(t)− ηVk(t)

)( K∑
r=1

λk
rIr(t)

)
− βEk(t)

İk(t) = βEk(t)− γIk(t), Ṙk(t) = γIk(t), Ṁk(t) = ηVk(t)


(15)

We also consider two important features of disease transmission. First, due to mobility there is
contact between infected individuals of one sub-population with the susceptible individuals of an-
other sub-population. Second, due to different levels of mobility between different sub-populations,
onset of the pandemic in each of the sub-populations generally vary. Both of these are accounted in
the updated states Sk and Ek in eq:(15), where λk

r denotes the mobility levels from sub-population r

to sub-population k and uk(t) corresponds to a sigmoid function, uk(t) := 1/(1 + e−ck1(t−ck2)) with
parameters ck1 and ck2 . In particular, ck2 controls the onset of the pandemic in the k-th sub-population,
therefore we also account for uncertainty in ck2 ∀ k ∈ K, by appropriately extending the scenario
set Ω.

Let T = {1, . . . , T}, denote the simulation time period, Tv = {ts, . . . , tl} denote the vaccina-
tion time-period where ts and tl are the first and last vaccination days, such that Tv ⊆ T . We can
now write the nominal (or non-stochastic) optimization problem (denoted NF) for vaccine allo-
cation as (16), where Bt in (16e) denotes the total daily vaccine budget for all K sub-populations
and Uk

t in (16f) denotes the vaccine budget for k-th sub-population. Equations (16b) represent the
ODE constraints, (16c) & (16d) together computes the maximum (or peak) infection of the total
population (denoted I) and (16a) minimizes the peak infection.

We now provide the uncertainty-informed, i.e. stochastic counterpart (denoted SF) of the
nominal problem NF in (17), where Ω denotes the scenario-set, recall (14). Each state S,E,I,R,M
in ODE constraints in (17b) now has an associated superscript ω corresponding to that scenario,
Iω denotes the peak infection for scenario ω, (17a) computes the expected peak infection over all
scenarios. The vaccine budget constrains in (17c) remain same as in NF .
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NF : min
V

I (Nominal) (16a)

s.t.

{(15)} ∀ k ∈ K, t ∈ T (16b)
K∑

k=1

Ik(t) = Ĩ(t) ∀ t ∈ T (16c)

Ĩ(t) ≤ I ∀ t ∈ T (16d)
K∑

k=1

Vk(t) ≤ Bt ∀ t ∈ Tv (16e)

0 ≤ Vk(t) ≤ Uk
t ∀ k ∈ K, t ∈ Tv (16f)

Vk(t) = 0 ∀ k ∈ K, t ∈ T \ Tv (16g)

SF : min
V

∑
ω∈Ω

pωIω (Stochastic) (17a)

Ṡω
k (t)=−ηVk(t)−uω(t)αω

N

(
Sω
k (t)−ηVk(t)

)(∑K
r=1 λ

k
r I

ω
r (t)

)
Ėω

k (t)=
uω(t)αω

N

(
Sω
k (t)−ηVk(t)

)(∑K
r=1 λ

k
r I

ω
r (t)

)
−βωEω

k (t)


İωk (t) = βωEω

k (t)− γωIωk (t)

Ṙω
k (t) = γωIωk (t), Ṁ

ω
k (t) = ηVk(t)

K∑
k=1

Iωk (t) = Ĩω(t) , Ĩω(t) ≤ Iω


∀

k ∈ K,
t ∈ T ,
ω ∈ Ω

(17b)

{(16e), (16f), (16g)} (17c)

Definition 1. A vaccine policy V is defined as: V = {Vk(t) ∀ k ∈ K, t ∈ T }.
Theorem 1. Feasibility of V: The feasibility of a vaccine policy V in SF is only decided by the
budget constraints in (17c) and not by the ODE constraints in (17b).

Theorem 1 holds true because of the budget constraints (17c), Vk(t) is non-negative and finite.
Thus the existence and uniqueness of a solution to ODEs in (17b) is guaranteed and can be shown
analytically using the Picard-Lindelöf theorem with appropriate initial conditions Coddington and
Levinson (1955); Sastry (2013); Sowole et al. (2019).

Lemma 1. Decomposability w.r.t Ω: For a given (fixed) vaccine policy V , the ODE constraints in
(17b) become decomposable, i.e. the set of ODE constraints in scenario ωi can be solved indepen-
dently of the set of ODE constraints in scenario ωj ∀j ∈ Ω \ i.

Lemma (1) follows from the fact that for a given scenario (say ωi), constraints in (17b) require
parameters only corresponding to scenario ωi. This has major computational implications as it
allows for parallel evaluation of scenarios in Ω. Due to the additive nature of the objective func-
tion (17a) w.r.t. to Ω, we can compute the objective function value after parallel computation of
scenarios. Therefore, we can efficiently solve SF using an iterative heuristic based optimization
procedure described in algorithm 1. Details on heuristics are provided in SI. Note that due to the
total vaccine budget constraint (16e) in NF and SF , using approaches like Bayesian optimization
(BO) is not feasible.

Algorithm 1 Optimization procedure to solve NF or SF
1: Randomly sample a batch of Vaccine policies of size B, i.e. V̄0 = {V1, . . . ,VB} and set i = 0.
2: while i ≤ Nopt do
3: for k ← 1 to B do
4: Evaluate constraint violation (denoted Ck) of V̄i[k] using (17c) .
5: In parallel, simulate all |Ω| scenarios for V̄i[k] using an ODE solver to compute Iω .
6: Compute fk

obj(17a): fk
obj ←

∑
ω∈Ω pωIω

7: end for
8: Update the batch of vaccine policies V̄i with heuristic rules using {f1

obj , . . . , f
B
obj} and {C1, . . . , CB} to generate

next batch of vaccine policies V̄i+1.
9: i← i+ 1

10: end while
11: return feasible vaccine policy V with lowest fobj .
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5. Experimental (Simulation) Results
In this section, we show the efficacy of our proposed approach on two different disease transmission
models, i.e. the SEIR and the SEPIHR models. For all experiments we report average of 5 runs.
In addition to the experiments in this section, various other numerical experiments under different
setups are provided in SI.

Recall that in section 3.1, we have already discussed the details and sampling results for both
the SEIR and SEPIHR model including figures 5 & 6 respectively. We also outlined how to obtain
the scenario-set Ω from the samples to account for uncertainty in vaccine allocation. Therefore
our main goal in this section is to show the benefit of incorporating uncertainty by comparing the
vaccine allocation policy (denoted VN ) obtained from solving the nominal formulation NF against
the vaccine allocation policy (denoted VS) obtained from solving the stochastic solution SF . We
also benchmark against a zero or no-vaccination policy denoted (denoted Vϕ), where Vϕ = {Vk(t) =
0 ∀ t ∈ T , k ∈ K}.
SEIR model: We use a total simulation time horizon of T = 120 days, vaccination period of 25
days starting on ts = 16 and ending on tl = 40 with daily available vaccine budgets Bt = 24× 103

and Uk
t = 104. Importantly, note that in section 3.1 for parameter estimation, we used data only

for first 15 days, i.e. T = {1, . . . , 15}, thus maintaining consistency for real-world applicability.
We perform experiments in two different settings, in the first setting we work with K = 3 i.e.
three sub-populations of sizes 7.5× 105, 5× 105 and 106 respectively and in the second setting we
increase K to K = 4, with an additional sub-population of size 6× 105. Numerical values of other
parameters like λk

r , c
k
1, c

k
2, η and additional experiments to evaluate their effect are provided in SI.

For each setting i.e. K = 3 and K = 4, using algorithm 1 and the nominal estimates of
α, β and γ, we solve the NF to get the nominal vaccine policy VN . Using the scenario-set Ω
(generated from the discrete-parameter distribution) we solve SF to get the uncertainty-informed
vaccine policy VS .
We next evaluate the efficacy of all the three vaccine policies i.e. Vϕ,VN and VS . For each of these
policies, we simulate all the scenarios in the scenario-set Ω and compute the expected values of all
the states i.e. S,E,I,R and M over the time horizon T .

(a) K = 3 sub-populations (b) K = 4 sub-populations

Fig. 8: SEIR: Evaluation of diff. vaccine policies i.e. no-vaccine Vϕ, nominal VN & stochastic VS .

The evolution of the infected state (I) of the total population and the infected (I) and immuned
(M) states of each sub-population are shown in fig. 8(a) and 8(b) for K = 3 and 4 respectively.
We note that for K = 3 (fig 8(a)) , the expected peak infection is reduced from around 501k
(with no-vaccination i.e. Vϕ) to 324k with nominal vaccination policy VN . This reduction of peak
infection by 35.3% is expected due to vaccination. More importantly, we observe that with the
stochastic vaccination policy VS the peak infection is further reduced to around 308k, which is an
improvement of around 4.9% over VN and 38.56% over Vϕ. This improvement of VS over VN
by 4.9% is also referred to as the value of stochastic solution (VSS) or equivalently the benefit of
accounting for uncertainty.
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For K = 4 (fig 8(b)), we observe that the peak infection with no-vaccine policy Vϕ is around
653k, and is reduced to 393k with VN and is further reduced to 361k with VS , i.e. VS provides
a reduction of around 8% over VN . This higher VSS of 8% for K = 4 compared to 4.9% for
K = 3 is due to the fact that the size of scenario set |Ω| is directly proportional to the number of
sub-populations K. Recall that we also account for the uncertainty in the onset of the pandemic in
each sub-population through the parameter ck2 .

Note that since the immuned sub-population size is directly proportional to vaccines allocated
to that sub-population, therefore the third figure in 8(a) and 8(b) also shows how many vaccines are
allocated to each sub-population relative to each other. We observe that there is a clear difference
between the nominal and the stochastic allocations. This significant difference in nature of the vac-
cine policies explain the reduction of 4.9% and 8% respectively, providing validity to our results
in the sense that the reductions obtained are not simply due to minor numerical changes in solution
values. Elaborate discussions on the differences of the two policies (VN vs VS) are provided in SI.
SEPIHR model: We next evaluate our approach on the SEPIHR model with additional states P
(for protective quarantine) and H (for hospitalised quarantined). Corresponding optimization for-
mulations (i.e. nominal and stochastic) are provided in SI. Importantly here as the number of hospi-
talisations (H) is modeled explicitly, therefore we minimize the peak (maximum) hospitalisations.

Fig. 9: SEPIHR: Evaluation of different policies: Vϕ, VN and VS with K = 4 sub-populations.

In fig. 9, we show the evolution of the infected (I) and hospitalised (H) states of the total
population, along with the I,H and immuned (M) for each of the 4 sub-populations. We note that
the peak infections (I) for the three policies (i.e. Vϕ, VN and VS) are around 539k, 280k and 262k
and the peak hospitalisations are around 16k, 9.4k and 9k respectively. Therefore, VS provides a
reduction of 6.3% in peak infections (I) over VN and a 4.4% reduction in peak hospitalisations (H).
Interestingly, from the fifth plot in fig. 8, we note that despite its largest size and earliest the onset
of the pandemic, red population is allocated the least vaccines. This can be explained by the fact
that we aim to minimize the peak of the total population (see SI for detailed discussion).

The above results on SEIR and SEPIHR models clearly demonstrate the benefit of uncertainty-
informed vaccine allocation using Bayesian inference over using nominal estimates. Our improve-
ments of 4-8% are either consistent with prior works in literature such as Yarmand et al. (2014) or
much better Thul and Powell (2023).

6. Concluding Remarks and Future Work
In this paper, we proposed first, an uncertainty informed vaccine allocation problem as a stochastic
optimization problem, for which the tractable scenario-set is constructed in a novel data-driven
manner using Bayesian inference for ODEs with GPs and second a scalable solution algorithm to
solve the stochastic program and showed that a significant gain can be achieved by accounting for
uncertainty. For future work, a natural extension would be to systematically investigate equity and
fairness of allocation through additional constraints and different objective functions.
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