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Abstract

We revisit the inverted pendulum problem with the goal of understanding and computing the true
optimal value function. We start with an observation that the true optimal value function must be
nonsmooth (i.e., not globally C1) due to the symmetry of the problem. We then give a result that
can certify the optimality of a candidate piece-wise C1 value function. Further, for a candidate
value function obtained via numerical approximation, we provide a bound of suboptimality based
on its Hamilton-Jacobi-Bellman (HJB) equation residuals. Inspired by Holzhüter (2004), we then
design an algorithm that solves backward the Pontryagin’s minimum principle (PMP) ODE from
terminal conditions provided by the locally optimal LQR value function. This numerical procedure
leads to a piece-wise C1 value function whose nonsmooth region contains periodic spiral lines and
smooth regions attain HJB residuals about 10−4, hence certified to be the optimal value function up
to minor numerical inaccuracies. This optimal value function checks the power of optimality: (i) it
sits above a polynomial lower bound; (ii) its induced controller globally swings up and stabilizes
the pendulum, and (iii) attains lower trajectory cost than baseline methods such as energy shaping,
model predictive control (MPC), and proximal policy optimization (with MPC attaining almost the
same cost). We conclude by distilling the optimal value function into a simple neural network. Our
code is avilable in https://github.com/ComputationalRobotics/InvertedPendulumOptimalValue.
Keywords: Optimal Control, Inverted Pendulum, Pontryagin’s Minimum Principle

1. Introduction
Inverted pendulum is arguably one of the most fundamental problems in nonlinear (optimal) control.
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Figure 1: Pendulum.

It has been frequently used in textbooks (Sontag, 2013; Slotine et al.,
1991; Tedrake, 2009; Khalil, 2002) to illustrate foundational concepts
such as feedback linearization, Lyapunov stability, proportional-integral-
derivative (PID) control, energy shaping, to name a few. More recently,
inverted pendulum is also one of the most basic benchmark problems
for reinforcement learning, e.g., in the Deepmind control suite (Tassa
et al., 2018). Not only is the inverted pendulum a theoretically interesting
problem to study, it also relates to practical applications in model-based
humanoid control (Feng et al., 2014; Sugihara et al., 2002).

One can often consider the inverted pendulum as a solved nonlin-
ear control problem because in the model-based paradigm there exists
elegant solutions such as energy pumping plus local linear-quadratic-
regulator (LQR) stabilization (Åström and Furuta, 2000; Muskinja and
Tovornik, 2006); and in the model-free paradigm algorithms such as proximal policy optimization
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(PPO) and actor critic work very well (Raffin et al., 2021; Ren et al., 2023). However, from the
perspective of optimal control, we know very little about the true optimal value function (or cost-
to-go) and its associated optimal controller. This leads to the side effect that we cannot evaluate
the suboptimality of other (approximately optimal) controllers. Let us state the continuous-time
infinite-horizon (undiscounted) pendulum swing-up problem to understand why it is challenging to
compute the optimal controller and value function.

Problem Setup. We are given the continuous-time pendulum dynamics as shown in Fig. 1

x :=

[
θ

θ̇

]
, ẋ(t) = f(x(t), u(t)) :=

[
θ̇

− 1
ml2

(
bθ̇ −mgl sin θ − u

)] , (1)

where θ is the angular position, θ̇ is the angular velocity, m is the point mass, l is the length
of the pole, b is the damping coefficient, g is the gravity constant, and u is the torque. Our goal
is to swing up and stabilize the pendulum from any initial state x0 to the upright position xU =
[2kπ, 0]T,∀k ∈ Z, an unstable equilibrium point. We formulate the undiscounted optimal control
problem

J∗(x0) = min
u(t)

∫ +∞

0
c(x(t), u(t))dt, subject to x(0) = x0, u(t) ∈ U, and (1) (2)

where the cost function c(x, u) is defined as

c(x, u) = q1 sin
2 θ + q1(cos θ − 1)2 + q2θ̇

2 + ru2, (3)

with q1, q2, r > 0. We let U in (2) be either R (without control saturation) or [−umax, umax] with
umax < mgl (with control saturation). Note that we use “sin θ” and “cos θ”, instead of θ, in the cost
function (3) to avoid the modulo 2π issue. It is not difficult to observe that J∗(xU) = 0 because it
is already stable. Problem (2) is a nonlinear quadratic regulator problem (Wernli and Cook, 1975).
We make an assumption about the set of admissible control trajectories.

Assumption 1 (Admissible Control) In problem (2), the control sequence u(t) is admissible if (i)
u(t) is piece-wise continuous, and (ii) x(t)→ xU under u(t) when t→ +∞.

Intuitively, condition (ii) in Assumption 1 allows us to only consider the set of controllers that
asymptotically stabilize the pendulum at xU. When b is not too large, energy shaping followed by
local LQR is such an admissible controller (hence the admissible control set is nonempty).

1.1. Related Work
Dynamic Programming. A straightforward approach for solving (2) is to discretize the dynam-
ics (1) and perform value iteration with barycentric interpolation (Munos and Moore, 1998). Not
only will this approach suffer from the curse of dimensionality, it is also unclear whether it will
converge in the undiscounted case, as shown in (Yang, 2023, Example 2.3).

Hamilton-Jacobi-Bellman (HJB) Equation. The HJB theorem (Tedrake, 2009, Theorem
7.1) (Kamalapurkar et al., 2018) states that if one can find a C1 function J(x) such that J(xU) = 0,
J(x) is positive definite and satisfies the HJB equation

min
u∈U

c(x, u) +
∂J

∂x

T

f(x, u) = 0, ∀x (4)
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then J(x) is the optimal value function. Obtaining an analytic solution to (4) is often impossi-
ble, hence numerical approximations are needed. The levelset algorithm (Mitchell and Templeton,
2005; Osher and Sethian, 1988; Osher and Fedkiw, 2001) is a popular method to solve Hamilton-
Jacobi (HJ)-type equations, in particular those appearing in reachability problems (Bansal et al.,
2017). Nevertheless, to the best of our knowledge, it is not yet applicable to the pendulum problem
because (4) cannot be transformed into an HJB equation that has a time derivative and terminal
condition. A fundamental problem of the HJB equation (4) is that it implicitly assumes the optimal
value function is C1, which is not true for the pendulum problem, as we will show in Theorem 1.
One can consider the notion of a viscosity solution (Bardi et al., 1997) to avoid this issue, but it
does not make the computation any easier. A family of finite-element methods (Jensen and Smears,
2013; Smears and Suli, 2014; Kawecki and Smears, 2022) considers the stochastic optimal control
problem where (4) becomes an elliptic PDE. However, they do not consider the infinite-horizon case
where a boundary condition is unavailable.

Pontryagin’s Minimum Principle (PMP). Another classical result in optimal control is PMP
(to be reviewed in Lemma 4) (Bertsekas, 2012), which states the optimal state-control trajectory
must satisfy an ODE (but trajectories satisfying the ODE may not be optimal). (Holzhüter, 2004;
Hauser and Osinga, 2001) uses the local LQR value function of the pendulum to provide boundary
conditions for PMP and computes a value function that swings up the pendulum. However, they
only considered the case of no control saturation and did not prove optimality of the value function.

Weak Solution. Due to the difficulty of computing and certifying the optimal value function,
Lasserre et al. (2007, 2005) developed a general framework of using convex relaxations to compute
smooth weak solutions of the HJB (4) (Vinter, 1993). Yang et al. (2023) recently applied this
method to compute polynomial lower bounds of the optimal value function. However, because the
true optimal value function is nonsmooth, polynomial approximation is not expected to capture the
detailed geometry of the optimal value function, as we will show in Fig. 3.

Neural Approximation. In addition to the aforementioned classical methods, using neural
networks to approximate the optimal value function becomes increasingly popular (Lutter et al.,
2020; Shilova et al., 2023). (Doya, 2000; Munos et al., 1999) first introduced HJB residual, i.e.,
violation of (4), as a loss to train neural networks (Raissi et al., 2019), followed by Tassa and Erez
(2007) showing how to avoid local minima, and Liu et al. (2014) showing how to make it robust to
dynamic disturbance. However, the problem remains that only using HJB loss may lead to multiple
solutions. Another line of work uses PMP to generate data for training (Nakamura-Zimmerer et al.,
2021), but it requires solving a boundary value problem which may also have multiple solutions. In
general, neural approximation also faces the same difficulty that the optimal value function may be
nonsmooth, and it remains difficult to evaluate its suboptimality.

1.2. Contributions
We start with an observation (Theorem 1) that the optimal value function J∗(x) of (2) must be non-
smooth at the bottomright position due to symmetry of the problem, and hence the HJB equation (4)
cannot be satisfied everywhere in the state space. In such cases, little is known about J∗(x) except
that it is the so-called viscosity solution of the HJB (Bardi et al., 1997), which is difficult to inter-
pret for practitioners. We contribute a result that is easy to interpret (Theorem 2), using elementary
proof, that can certify the optimality of a given candidate piece-wise C1 function. For numerically
computed approximately optimal value functions, we give a result (Theorem 3) that certifies the
suboptimality of the numerical solution w.r.t. the true optimal value function.
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We then develop a numerical approach that, for the first time, computes the true optimal value
function of pendulum swing-up, up to minor numerical inaccuracies. Our algorithm is inspired
by the algorithm of Holzhüter (2004) and is based on PMP with boundary conditions provided
by local LQR, but it makes several improvements. For example, we handle the case with control
saturation, we uncover a nonsmooth curve in the optimal value function, and we can bound the
suboptimality of our solution using Theorem 3. We then showcase the power of optimality. (a) The
controller induced from the optimal value function swings up and stabilizes the pendulum from any
initial state. (b) The induced controller achieves lower cost than existing controllers such as energy
pumping, reinforcement learning, and model predictive control (MPC), with the MPC controller
being the best baseline as it achieves almost the same cost as our controller. (c) The optimal value
function indeed sits above the polynomial lower bound obtained from convex relaxations.

Our numerical algorithm is expensive as it requires solving a large amount of PMP trajectories,
computing intersections, and storing dense samples of the optimal value function. We therefore ask
if we can use a neural network to distill and compress the optimal value function. In the supervised
case, we show that we just need 50 optimal value samples to train a simple neural network whose
induced controller can globally swing up the pendulum. In the weakly supervised case, we design a
novel loss function to train a neural network directly from raw PMP trajectories, and the resulting
controller still globally swings up the pendulum. This simple training scheme generalizes to the
more challenging cart-pole problem, where we also obtain a global stabilizing controller.

Limitations. Unfortunately, there are still puzzles related to the true optimal value function (in
our opinion, due to the limitations of fundamental theoretical tools in optimal control). In the case
with control saturation, we observe and conjecture that the optimal value function is discontinuous.
Although we cannot formally prove our conjecture, we provide numerical evidence based on the
limiting discounted viscosity solution idea in Bardi et al. (1997).

Proofs and extra results are available at https://hyhan0118.github.io/l4dc.pdf.

2. Certificate of (Sub-)Optimality for the Nonsmooth Value Function
We start with an observation that the optimal value function J∗(x) of (2) must be nonsmooth.
Theorem 1 (Nonsmooth Optimal Value Function) The optimal value function J(x) to problem
(2) is not C1 at the bottomright position xB := [π + 2kπ, 0]T,∀k ∈ Z.
Here we provide a brief explanation. If J(x) were smooth at xB, then it must satisfy the HJB
equation (4), implying the optimal controller at xB must be unique due to strong convexity of the
cost (3). However, our physics insight suggests that swinging the pendulum from the left is equiva-
lent to swinging it from the right, resulting in two symmetric optimal controllers and a contradiction.

2.1. Certificate of Optimality
We then state a result that verifies the optimality of a candidate piece-wise C1 value function for (2).
Theorem 2 (Optimality Certificate of A Piece-wise C1 Value Function) Let O−N , . . . ,ON be
open subsets of R2 that satisfy

(i) ∪Ni=−NOi = R2,

(ii) ∀i, Oi ∩Oi+j ̸= ∅ if j = ±1, and Oi ∩Oi+j = ∅ if |j|> 1,

and J−N , . . . , JN (x) be C1 functions defined on them, respectively (N possibly infinite). Define

J(x) = min
i
{Ji(x)|x ∈ Oi}.
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If J(x), Oi’s, and Ji(x)’s are such that

(iii) J(x) is continuous and piece-wise C1 on R2,

(iv) J(xU) = 0 where xU = [2kπ, 0]T, ∀k ∈ Z is the upright position,

(v) ∀i, Ji(x) satisfies the HJB equation (4) everywhere on Oi,

(vi) the nonsmooth curve Γ := {x ∈ R2|∃(i, j) s.t. Ji(x) = Jj(x)} can be locally defined by
{x|G(x) = 0} with G a C1 function, and every admissible trajectory x(t) satisfies G(x(t))
is monotonic in t near an intersection point x(t0) where G(x(t0)) = 0,

(vii) ∀x0 ∈ R2, there exists a trajectory (x(t), u(t)) starting from x0 that attains cost J(x0),

then J(x) is the optimal value function of (2).1

Theorem 2 provides a list of conditions to certify optimality of a piece-wise C1 function J(x).
The only technical condition that is difficult to verify is (vi), which is necessary to avoid state
trajectories that cross the nonsmooth region Γ in a pathological way, e.g., imagine sin(1t ) crossing
the x-axis when t tends to 0. In the pendulum problem, each Oi is an open set containing xU and
differs from Oi±1 by a shift of 2π along the θ-axis, with Ji(x) defined on it (Ji(x) is equal to
Ji±1(x) by shifting 2π). Γ composes of an infinite number of nonsmooth spiral lines, again shifted
by 2π along the θ-axis, intersected by Ji(x) and Ji±1(x). The numerical algorithm we develop in
Section 3, based on PMP, ensures each Ji(x) satisfies HJB (4) on Oi

2, Ji(x) is C1, and J(x) is
attainable. For more details please refer to Figure 2.

2.2. Certificate of Suboptimality
Finding analytical solutions that exactly satisfy Theorem 2 is intractable. For numerically com-
puted candidate value functions, we wish to compute a suboptimality certificate w.r.t. J∗(x) of (2).
Toward this, we need to first review the local LQR controller of the inverted pendulum.

Local LQR. The pendulum dynamics (1) satisfies f(xU, 0) = 0 and we can linearize f(x, u)
around (xU, 0) to obtain a linear system

ẋ = A(x− xU) +Bu, A =
∂f

∂x
(xU, 0), B =

∂f

∂u
(xU, 0). (5)

Similarly, we can perform a quadratic approximation of the cost function c(x, u) around (xU, 0)

c(x, u) ≈ q1(θ − 2kπ)2 + q2θ̇
2 + ru2 = (x− xU)

TQ(x− xU) + ru2. (6)

The optimal value function for minimizing (6) subject to (5) is a quadratic function

J∞(x) = (x− xU)
TP (x− xU), (7)

where P ≻ 0 is the unique positive definite solution to the algebraic Riccati equation

ATP + PA− 1

r
PBBTP +Q = 0.

We now introduce a suboptimality certificate for any candidate C1 value function.
1. If J(x) is discontinuous, we require admissible trajectories to not cross the discontinuous region to attain lower costs.
2. The satisfaction of HJB and C1 is not entirely precise as it relies on numerical solutions, hence the development of

Theorem 3 for error estimation.
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Theorem 3 (Sub-Optimality Certificate of A C1 Value Function) LetL := {x ∈ R2 | J∞(x) ≤
ε} be defined with a sufficiently small ε > 0 such that L is a region of attraction for xU using the
local LQR controller within the control bounds U. Let Tx > 0 be the time taken by the optimal
controller to enter region L from initial state x ∈ R2. If J(x) is a C1 function on R2 that satisfies

(i) |J(x)− J∞(x)|≤ δ for any x ∈ L, and

(ii) there exists a continuous function l(x) such that

min
u∈U

c(x, u) +
∂J

∂x

T

f(x, u) = l(x), ∥l(x)∥< ϵ, ∀x ∈ R2, (8)

(iii) ∀x0 ∈ R2, there exists a trajectory (x(t), u(t)) starting from x0 that attains cost J(x0),

then J(x) has bounded error from J∗(x) as

J∗(x) ≤ J(x) ≤ J∗(x) + ϵTx + δ + ε. (9)
Theorem 3 is computationally useful as J(x) is usually a C1 function interpolated from samples.
Condition (i) is easy to realize, in fact, one can choose J(x) ≡ J∞(x) for x ∈ L so that δ = 0 (as
what we will do in Section 3, we will solve backward ODEs from J∞(x) to get J(x), so in L they
are the same). Condition (ii) is also checkable as one can compute l(x) from J(x) (the minimization
in (8) is closed-form solvable) and evaluate ϵ. Tx needs to be estimated. In practice, we approximate
Tx < 10 as we can swing up the pendulum to region L within ten seconds.3

3. Numerical Approximation by Pontryagin’s Minimum Principle
We design an algorithm based on PMP to compute a value function that verifies Theorem 2-3.
3.1. Numerical Procedure
We begin by recalling Pontryagin’s minimum principle, which can be derived using the method of
characteristics for the HJB (4).
Lemma 4 (Pontryagin’s Minimum Principle) Let (u∗(t), x∗(t)), t ∈ [0, T ] be a pair of optimal
control and state trajectories satisfying dynamics (1) and x∗(0) = x0 as given. Let p(t) be the
solution of the adjoint equation almost everywhere

ṗ(t) = −∇xH(x∗(t), u∗(t), p(t)), p(T ) = ∇xJ(x
∗(T )) (10)

where J is the optimal value function and H is the Hamiltonian defined by

H(x, u, p) = c(x, u) + pT f(x, u) (11)

Then, for almost every t ∈ [0, T ] we have

u∗(t) = argmin
u∈U

H(x∗(t), u, p(t)) (12)

To use Lemma 4, we will (i) solve the problem (12), and (ii) provide a terminal condition p(T ).
Solve u∗. Observe that the pendulum dyamics (1) is control-affine

f(x, u) = f1(x) + f2(x)u, f1(x) =

[
θ̇

− 1
ml2

(bθ̇ −mgl sin θ)

]
, f2(x) =

[
0
1

ml2

]
,

3. Or we can approximate Tx by Jϵ1 − Jϵ2 ≈ (ϵ1 − ϵ2)Tx, Jϵ is the calculated value function with error ϵ
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and the cost function c(x, u) (3) is quadratic in u. Therefore, the solution to (12) is

u∗ =

{
− 1

2rp
Tf2(x) if U = R

clip
(
− 1

2rp
Tf2(x),−umax, umax

)
if U = [−umax, umax]

(13)

where the “clip” function saturates the control between−umax and umax. Inserting (13) back to the
adjoint equation (10) and the original dynamics (1), we obtain an ODE in the optimal state x∗(t)
and the co-state p(t), which can be solved when boundary conditions are provided.

Terminal Condition. Inspired by Holzhüter (2004), we provide terminal conditions of the PDE,
i.e., a pair of x∗(Tx) and p(Tx) (because the associated p(0) with x∗(0) is unavailable). Because
the LQR value function (7) is locally optimal around xU, for any x∗(Tx) that is on the boundary of
the small ellipse (such that L is defined as in Theorem 3)

∂L = {x ∈ R2 | J∞(x) = ε}, (14)

we can approximate
p(Tx) = 2P (x∗(Tx)− xU).

Once x∗(Tx) and p(Tx) are available, we can solve the ODE using backward integration to obtain
a locally optimal trajectory that satisfies PMP.

Sample x∗(Tx). We then wish to densely sample x∗(Tx) on ∂L (14) to obtain a large amount of
PMP trajectories to densely cover the state space R2. A naive uniform sampling strategy will lead
to trajectories clustered in certain regions and do not fully cover R2. Inspired by Holzhüter (2004),
we sample x∗(Tx) based on a distance metric between two PMP trajectories. Let x∗1(t) and x∗2(t) be
two PMP trajectories already computed, the distance between these two trajectories is defined as

d(x∗1(t), x
∗
2(t)) = ∥xc1 − xc2∥, xci = {xi(tc) | J(xi(tc)) = Vc, tc ∈ [0,+∞]}, i = 1, 2, (15)

with Vc a positive number larger than ε (e.g., Vc = 10000ε). The idea of this metric is to ensure
the trajectories stay close after backward integration. The sampling algorithm is designed to make
adjacent PMP trajectories have equal distances based on (15). Details are provided in full paper.

Algorithm 1: Compute the Nonsmooth Curve

1 Input: PMP trajectories T ; small value increment ∆ > 0; number of values M
2 Output: Set of intersection points S
3 for k ← 1 to M do
4 C ← ∅
5 for τ in T do
6 jmax = max{j | τ(j).value ≤ k∆}
7 C ← C ∪ τ(jmax).state

8 end
9 S = shift_intersect(C)

10 S ← S ∪ S

11 end

Intersection of PMP Trajectories & the Nonsmooth Curve. After we obtain a large set of
PMP trajectories(in full paper), they will intersect with each other and themselves on a 2D plane.
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We calculate the state where a trajectory intersect with others at the first time, in order to stop it
there. All these terminal states form a spiral line, which you can find in the middle of Figure 2.

Given two PMP trajectories x∗1(t) and x∗2(t), if there exist t1 and t2 such that x∗12 = x∗1(t1) =
x∗2(t2) and J1(x

∗
1(t1)) = J2(x

∗
2(t2)) (here J1 and J2 are the same as in Theorem 1), then x∗12 is

an intersection point, from which there exist (at least) two optimal4 trajectories achieving the same
cost. Therefore, by the same reasoning as in Theorem 1, x∗12 can be a point at which the optimal
value function is nonsmooth. Algorithm 1 presents a method to compute all these intersection
points. Given a set of PMP trajectories T where each trajectory τ ∈ T contains a sequence of states
and values (i.e., x∗(t) and J(x∗(t)) at discrete timesteps, τ(j).value and τ(j).state represent the
value and state, respectively), line 4-8 computes all the states of the trajectories that have value k∆.
Among these states C, line 9 finds the common states by first forming a polygon using the points in
C and then intersect C with a copy of C shifted along θ-axis by 2π5. The output S thus contains all
such intersection points forming a spiral line.

Controller Synthesis. After getting the nonsmooth curves, we restrict all raw PMP trajectories
to lie inside the nonsmooth curves. Then, we interpolate the value samples to obtain the value
function. To synthesize controls, we use the solution in (13) with interpolated co-state p from
samples.

3.2. Results

Setup. We use m = 1, b = 0.1, l = 1, g = 9.8, q1 = 1, q2 = 1, r = 1 in the dynamics (1) and cost
function (3). We set umax = 2 in the case of control saturation. We are interested in the optimal
value function on the region x ∈ [−8, 8] × [−8, 8], as it contains [0, 0], [2π, 0] and [−2π, 0] (once
we obtain J on this region we can shift it by 2kπ to get other regions). We set ε = 0.0002 in (14).

Optimal Value Function. Fig. 2 shows the optimal value functions both (a) without control
saturation and (b) with control saturation. The middle column of Fig. 2 draws the nonsmooth
curves obtained using Algorithm 1, with the colored regions indicating the regions of attraction to
the upright position xU (e.g., for any initial state in the blue region, the optimal trajectory will stay
in the blue region and converges to xU). In each of the colored regions, the HJB residuals, i.e.,
l(x) in Theorem 3, are about 10−4. Therefore, according to Theorems 2 and 3, we can conclude
the numerically computed value functions in Fig. 2 are the optimal value functions, up to minor
numerical inaccuracies and suboptimality. To further verify the correctness of the optimal value
functions, Fig. 3 compares the numerical value function with a smooth degree-7 polynomial lower
bound computed using SOS relaxations in the case of control saturation (Yang et al., 2023). As
we can see, the optimal value function sits above the polynomial lower bound, and the smooth
polynomial hardly captures the nonsmooth geometry, especially around [±2π, 0].

Remark 5 (Discontinuity) The optimal value function in Fig. 2(b) appears to be discontinuous.
This is a puzzle that we cannot formally (dis-)prove. Even after adding a discount factor in the
cost (3), the discontinuous phenomenon remains, see full paper. As a result, we cannot conclude the
(dis-)continuity of the true optimal value function by using (Bardi et al., 1997, Theorem 1.5).

Optimal Controller. The right column of Fig. 2 plots state trajectories using the optimal con-
troller induced by the optimal value function via (13), starting from a dense grid of 30 × 30 initial

4. Here "optimal" solely means it satisfied PMP and is a candidate for optimal trajectory
5. One can treat C as contour line
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(a) Without control saturation U = R
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(b) With control saturation U = [−umax, umax], umax = 2

Figure 2: Optimal value function and controller. Left: optimal value function shown in 3D plots.
Middle: nonsmooth curves computed from Algorithm 1. Right: global stabilizing trajec-
tories starting from 30× 30 initial states. Better viewed when zoomed in.
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RL: 15.6523

0 5 10

0

2

4

6

ours: 55.4489
energy pumping: 70.3138
MPC-100Hz: 55.4492
MPC-50Hz: 55.489
one-way collocation: 75.6067

Figure 3: Comparison of the optimal value function and controller with baselines. Left: the optimal
value function sits above a polynomial lower bound. Middle: optimal controller achieves
lower cost than a controller trained from PPO. Right: optimal controller achieves lower
cost than energy pumping, and almost the same cost as MPC.

states. Observe that the optimal controller swings up and stabilizes the pendulum in all cases. We
then investigate if the optimal controller outperforms other algorithms. We implement four base-
lines: (i) energy pumping plus local LQR, (ii) open-loop trajectory optimization using direct collo-
cation with 80 variable timesteps, (iii) model predictive control (MPC) with 5 seconds prediction
horizon, at 50 Hz and 100 Hz using (Fiedler et al., 2023), and (iv) proximal policy optimization
(PPO) (Schulman et al., 2017; Raffin et al., 2021). Comparison with the first three baselines using
the same set of parameters as before are shown in Fig. 3 right column. Observe that the optimal
controller achieves lower costs than energy pumping and trajectory optimization, and almost the
same cost as MPC. PPO fails in the original set of parameters but succeeds with q1 = 1, q2 = 0.1,
r = 0.01. We therefore rerun our numerical procedure to compare our controller with PPO, shown
in Fig. 3 middle column. Similarly, the optimal controller outperforms PPO in terms of lower cost.
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4. Neural Approximation

The power of optimality comes at a price: there are 78, 797 raw PMP trajectories and 371, 028, 742
value samples in the optimal value function of Fig. 2(b). We investigate using a neural network
JNN(x) to distill knowledge from the PMP data. We use a neural network with 2 hidden layers each
with 200 neurons. The input to JNN is (sin θ, cos θ, θ̇). We consider the case with control saturation.

Supervised Training. We supervise JNN(x) using data samples from J∗(x) with the loss

ℓS = λLQRℓLQR + λVℓV + λHJBℓHJB + λsmoothℓsmooth, (16)

where ℓLQR uses the local LQR value function J∞(x) to supervise JNN(x) around xU; ℓV uses
random samples from J∗(x) in Fig. 2 to supervise JNN(x); ℓHJB penalizes violation of the HJB
residual (4); and ℓsmooth encourages JNN(x) to be smooth (more details in full paper). Fig. 4(a)
plots trained JNN(x) and the induced controllers with decreasing samples used in ℓV. We see even
with just 50 value samples, the controller globally swings up and stabilizes the pendulum.

Weakly Supervised Training. The loss ℓV requires J∗(x) that is expensive to compute due to
Algorithm 1. We replace ℓV with a loss that only requires raw PMP trajectories

ℓPMP =
1

NPMP

NPMP∑
i=1

LeakyReLU(JNN(xi)− PMP(xi)),

where PMP(xi) indicates the value of xi along a given PMP trajectory. Choosing NPMP = 100000,
we obtain JNN(x) and its induced controller that globally stabilizes the pendulum in Fig. 4(b). In
extra results we show the weakly supervised method generalizes to the 3-dimensional cart-pole.
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(a) Supervised training with, left to right, 1000, 100, and 50 samples (b) Weak supervision

Figure 4: Neural approximations of the optimal value function. (a) Supervised training with de-
creasing data samples. (b) Weakly supervised training with raw PMP trajectories.

5. Conclusion
We showed the optimal value function of infinite-horizon undiscounted pendulum swing-up is non-
smooth. Motivated by this, theoretically, we provide two results that certify the optimality and sub-
optimality of candidate value functions; algorithmically, we develop a numerical procedure based
on backward solving PMP with local LQR terminal conditions to compute the true optimal value
function up to minor numerical inaccuracies. The optimal value function outperforms other base-
line algorithms and verified optimality. We demonstrate it is possible to learn simple and effective
neural approximations of the optimal value function via either strong or weak supervision.
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